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Appendix B

Appendix B gives the proofs of Propositions 1 and 2, which show the asymptotic property for
the 2sQML estimator suggested for estimating the parameters for the rotated multivariate BEKK
model of Noureldin et al. (2014).

We use the following notation in Appendix B. For a matrix A, we define A⊗2 = (A⊗A). With
ξ1, . . . , ξn, the n eigenvalues of a matrix A, ρ(A) = maxi∈{1,...,n}|ξi|, is the spectral radius of A.

The Frobenius norm of the matrix, or vector A, is defined as ||A|| =
√
tr(A′A). For a positive

matrix A, we define the square root, A1/2, by the spectral decomposition of A. By K and ϕ, we
denote strictly positive generic constants with ϕ < 1.

B.1 Proof of Proposition 1

To prove the consistency of the 2sQML estimator, we need to accommodate the estimate of Ω in
A∗ = Ω1/2AΩ−1/2 and B∗ = Ω1/2BΩ−1/2 by modifying the proof of Theorem 4.1 of Pedersen and
Rahbek (2014).

By the ergodic theorem under Assumption 3(a) and E[||Xt||2] < ∞, as T → ∞, we obtain:

ω̂
a.s.−−→ ω0. (B.1)

For the consistency of λ̂, we apply the technique used in the proof of Theorem 4.1 of Pedersen
and Rahbek (2014). For this purpose we first give the following lemma.

Lemma B.1. Under Assumptions 1(a), 2, and 3, as T → ∞,

sup
λ∈Θλ

|LT (ω0,λ)− LT,h(ω̂,λ)| a.s.−−→ 0. (B.2)

Proof. We can apply the technique used in the proof of Lemma B.1 of Pedersen and Rahbek
(2014), by considering bounds regarding Ht. By recursion, we obtain:

vec (Ht(ω0,λ))− vec
(
Ht,h(ω̂,λ)

)
=

t−1∑
i=0

(B⊗2)iA⊗2
{
(Ω−1)⊗2 − (Ω̂−1)⊗2

}
vec
(
Xt−i−1X

′
t−i−1

)
+ (B⊗2)tvec (H0 − h) .

(B.3)
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By Proposition 4.5 of Boussama et al. (2011), the assumption, ρ
(
A⊗2 +B⊗2

)
< 1 on Θ, indicates

ρ
(
B⊗2

)
< 1 on Θ. Hence, for any i and for some 0 < ϕ < 1:

sup
λ∈Θλ

∥∥(B⊗2)i
∥∥ ≤ Kϕi. (B.4)

For equation (B.3), by the compactness of Θ, (B.1), and (B.4), we obtain:

sup
λ∈Θλ

∥∥vec (Ht(ω0,λ))− vec
(
Ht,h(ω̂,λ)

)∥∥ ≤ Kϕt + o(1) a.s., (B.5)

as T → ∞, as in (B.16) of Pedersen and Rahbek (2014). We can also show:

sup
λ∈Θλ

∥∥∥H−1
t,h(ω̂,λ)

∥∥∥ ≤ sup
θ∈Θ

∥∥∥H−1
t,h(ω̂,λ)

∥∥∥ ≤ K,

sup
λ∈Θλ

∥∥∥H−1
t,h(ω0,λ)

∥∥∥ ≤ sup
θ∈Θ

∥∥∥H−1
t,h(ω0,λ)

∥∥∥ ≤ K,
(B.6)

by the approach used in (B.13) of Pedersen and Rahbek (2014).

Now, we turn to the difference of the likelihood function as in (B.2). By the technique of the
proof of Lemma B.1 of Pedersen and Rahbek (2014), we obtain:

sup
λ∈Θλ

|LT (ω0,λ)− LT,h(ω̂,λ)|

≤

∣∣∣∣∣log
(
det(Ω0)

det(Ω̂)

)∣∣∣∣∣+ 1

T

T∑
t=1

sup
λ∈Θλ

∣∣∣∣log( det(Ht(ω0,λ))

det(Ht,h(ω̂,λ))

)∣∣∣∣
+

1

T

T∑
t=1

sup
λ∈Θλ

∣∣∣tr(XtX
′
t

(
H−1

t (ω0,λ)−H−1
t,h (ω̂,λ)

))∣∣∣
≤

∣∣∣∣∣log
(
det(Ω0)

det(Ω̂)

)∣∣∣∣∣+ dK
1

T

T∑
t=1

sup
λ∈Θλ

∥∥Ht(ω0,λ)−Ht,h(ω̂,λ)
∥∥

+K
1

T

T∑
t=1

sup
λ∈Θλ

∥Ht(ω0,λ)−Ht,h(ω̂,λ)∥ ||Xt||2.

Noting that:

vec (Ht(ω0,λ))− vec (Ht,h(ω̂,λ))

=
(
Ω⊗2
0 − Ω̂⊗2

0

)
vec (Ht(ω0,λ)) + Ω̂⊗2

(
vec (Ht(ω0,λ))− vec

(
Ht,h(ω̂,λ)

))
,

and (B.5), we obtain:

sup
λ∈Θλ

|LT (ω0,λ)− LT,h(ω̂,λ)| ≤ K
1

T

T∑
t=1

ϕt +K
1

T

T∑
t=1

ϕt||Xt||2 + o(1) a.s.

As in the proof of Lemma B.1 of Pedersen and Rahbek (2014), it is shown that (B.2) holds. □
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By the structure of the RBEKK model as a special case of the BEKK model, Lemmas B.2-B.4
of Pedersen and Rahbek (2014) also hold under Assumptions 1(a), 2, and 3. Using Lemma B.2
with the above Lemma B.1 and the definition of λ̂, we obtain:

E[lt(ω0,λ0)] < LT (ω0,λ0) +
ε

5
, LT (ω0, λ̂) < E[lt(ω0, λ̂)] +

ε

5
,

LT (ω0,λ0) < LT,h(ω̂,λ0) +
ε

5
, LT,h(ω̂, λ̂) < LT (ω0, λ̂) +

ε

5
,

LT,h(ω̂,λ0) < LT,h(ω̂, λ̂) +
ε

5
,

for any ε > 0 almost surely for large enough T . Hence, for any ε > 0,

E[lt(ω0,λ0)] < E[lt(ω0, λ̂)] + ε.

By applying the arguments of the proof of Theorem 2.1 in Newey and McFadden (1994), it follows
that as T → ∞, λ̂

a.s.−−→ λ0. Combined with (B.1), we obtain as T → ∞, θ̂
a.s.−−→ θ0.

B.2 Proof of Proposition 2

For notational convenience, let H0t = Ht(ω0,λ0). We use the following lemma to show the
asymptotic normality of the 2sQML estimator.

Lemma B.2. Under Assumptions 1(a), 2-4, as T → ∞,

√
T

(
ω̂ − ω0

∂LT (ω0,λ0)/∂λ

)
=

1√
T

T∑
t=1

Υt(ω0,λ0)vec
(
ZtZ

′
t − Id

)
+ op(1), (B.7)

where

Υt(ω0,λ0)

=

 Υωt(ω0,λ0)
Υαt(ω0,λ0)
Υβt(ω0,λ0)

 =


(
Ω
1/2
0

)⊗2 (
Id2 −A⊗2

0 −B⊗2
0

)−1 (
Id2 −B⊗2

0

) (
Ω
−1/2
0 H

1/2
0t

)⊗2

1
2

[∑∞
i=0(B

⊗2
0 )iNt−1−i(ω0,λ0)

]′ (
Ω
1/2
0 H

−1/2
0t

)⊗2

1
2

[∑∞
i=0(B

⊗2
0 )iÑt−1−i(ω0,λ0)

]′ (
Ω
1/2
0 H

−1/2
0t

)⊗2


(B.8)

with

Nt(ω0,λ0) =
[
A0(Ω

−1/2
0 XtX

′
tΩ

−1/2
0 − Id)⊗ Id

]
+
[
Id ⊗A0(Ω

−1/2
0 XtX

′
tΩ

−1/2
0 − Id)

]
Cdd,

Ñt(ω0,λ0) = [B0(H0t − Id)⊗ Id] + [Id ⊗B0(H0t − Id)]Cdd.
(B.9)

Proof. By (A.4), we obtain:

∂vec(H0t)

∂α′ =
∞∑
i=0

(B⊗2
0 )iNt−1−i(ω0,λ0),

∂vec(H0t)

∂β′ =
∞∑
i=0

(B⊗2
0 )iÑt−1−i(ω0,λ0).
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Hence, by (A.1)-(A.3), we obtain the result for
√
T ∂LT (ω0,λ0)/∂λ stated in (B.7).

Now, we consider ω̂ in the vector form as:

ω̂ =
1

T

T∑
t=1

(
H

1/2
0t

)⊗2
vec
(
ZtZ

′
t − Id

)
+ vec

(
1

T

T∑
t=1

H0t

)
, (B.10)

with

vec

(
1

T

T∑
t=1

H0t

)
=
(
Ω
1/2
0

)⊗2
vec

(
1

T

T∑
t=1

H0t

)
.

Furthermore,

vec

(
1

T

T∑
t=1

H0t

)
= vec(I −A0A

′
0 −B0B

′
0)

+
(
A0Ω

−1/2
0

)⊗2
vec

(
1

T

T∑
t=1

XtX
′
t +

1

T
(X0X

′
0 −XTX

′
t)

)

+B⊗2
0 vec

(
1

T

T∑
t=1

H0t +
1

T
(H00 −H0T )

)
,

yielding:

vec

(
1

T

T∑
t=1

H0t

)
=
(
Id2 −B⊗2

0

)−1
vec(I −A0A

′
0 −B0B

′
0)

+
(
Id2 −B⊗2

0

)−1
(
A0Ω

−1/2
0

)⊗2
(
ω̂ +

1

T
vec(X0X

′
0 −XTX

′
t)

)
+
(
Id2 −B⊗2

0

)−1
B⊗2

0

1

T
vec(H00 −H0T ).

(B.11)

As ρ(B⊗2
0 ) < 1, it follows that

(
Id2 −B⊗2

0

)
is invertible.

After inserting (B.10) in (B.11), we can transform the equation to obtain:

[I −A⊗2
0 −B⊗2

0 ]
(
Ω
−1/2
0

)⊗2
ω̂

= vec(I −A0A
′
0 −B0B

′
0)

+
(
Id2 −B⊗2

0

) (
Ω
−1/2
0

)⊗2 1

T

T∑
t=1

(
H

1/2
0t

)⊗2
vec
(
ZtZ

′
t − Id

)
+

[(
A0Ω

−1/2
0

)⊗2 1

T
vec(X0X

′
0 −XTX

′
t) +B⊗2

0

1

T
vec(H00 −H0T )

]
,
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which gives

ω̂ − ω0 =
(
Ω
1/2
0

)⊗2
[I −A⊗2

0 −B⊗2
0 ]−1

(
Id2 −B⊗2

0

) (
Ω
−1/2
0

)⊗2

× 1

T

T∑
t=1

(
H

1/2
0t

)⊗2
vec
(
ZtZ

′
t − Id

)
+
(
Ω
1/2
0

)⊗2
[I −A⊗2

0 −B⊗2
0 ]−1

×
[(

A0Ω
−1/2
0

)⊗2 1

T
vec(X0X

′
0 −XTX

′
t) +B⊗2

0

1

T
vec(H00 −H0T )

]
.

For any ε > 0, by the Markov’s inequality:

P

(∥∥∥∥(A0Ω
−1/2
0

)⊗2 1√
T
vec(X0X

′
0 −XTX

′
t) +B⊗2

0

1√
T
vec(H00 −H0T )

∥∥∥∥ > ε

)
≤ KE||Xt||2√

Tε
→ 0,

as T → ∞, which yields:

ω̂ − ω0 =
(
Ω
1/2
0

)⊗2
[I −A⊗2

0 −B⊗2
0 ]−1

(
Id2 −B⊗2

0

) (
Ω
−1/2
0

)⊗2

× 1

T

T∑
t=1

(
H

1/2
0t

)⊗2
vec
(
ZtZ

′
t − Id

)
+ op(T

−1/2).

Therefore, (B.7) holds. □
We use the approach in the proof of Proposition 4.2 of Pedersen and Rahbek (2014). By

Assumption 4(b) and the definition of λ̂ in (11), we apply the mean value theorem in order to
obtain:

0 =
∂LT,h(ω0,λ0)

∂λ
+KT,h(θ

†)(ω̂ − ω0) + JT,h(θ
†)(λ̂− λ0), (B.12)

where

∂LT,h(ω0,λ0)

∂λ
=

∂LT,h(ω,λ)

∂λ

∣∣∣∣
θ=θ0

,

KT,h(θ
†) =

∂2LT,h(ω,λ)

∂λ∂ω′

∣∣∣∣
θ=θ†

, JT,h(θ
†) =

∂2LT,h(ω,λ)

∂λ∂λ′

∣∣∣∣
θ=θ†

,

with θ† between θ0 and θ̂. Instead of LT,h(ω,λ), we also use LT (ω,λ) to denote ∂LT (ω0,λ0)/∂λ,
KT (θ

†), and JT (θ
†). Moreover, define:

K0 = E

(
∂2lt(ω,λ)

∂λ∂ω′

)
, J0 = E

(
∂2lt(ω,λ)

∂λ∂λ′

)
. (B.13)

By the techniques used in the proofs of Lemmas B.5-B.7 of Pedersen and Rahbek (2014), under
Assumptions 1(a), 2-4, we show that:

E

[
sup
θ∈Θ

∣∣∣∣∂2lt(ω,λ)

∂θi∂θj

∣∣∣∣] < ∞, (B.14)
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sup
λ∈Θλ

∣∣∣∣∂2LT (ω,λ)

∂θi∂θj
− E

[
∂2lt(ω,λ)

∂θi∂θj

]∣∣∣∣ a.s.−−→ 0, (B.15)

for all i, j = 1, . . . , 3d2, and that J0 is non-singular. With the consistency of θ̂, the above results
imply that JT (θ

†) is invertible with probability approaching one.

As a straightforward extension of Lemma B.11 of Pedersen and Rahbek (2014), we can show
that: ∣∣∣∣√T

(
∂LT,h(ω0,λ0)

∂λi
− ∂LT (ω0,λ0)

∂λi

)∣∣∣∣ p−→ 0,

for i = 1, . . . , 2d2, and

sup
λ∈Θλ

∣∣∣∣∂2LT (ω,λ)

∂θi∂θj
−

∂2lt,h(ω,λ)

∂θi∂θj

∣∣∣∣ a.s.−−→ 0,

for i, j = 1, . . . , 3d2. Applying the above result to (B.12) that JT (θ
†) is invertible with probability

approaching to one, we obtain:

√
T
(
θ̂ − θ0

)
=

(
Id2 Od2×2d2

−J−1
T (θ†)KT (θ

†) −J−1
T (θ†)

)√
T

(
(ω̂ − ω0)

∂L(ω,λ)/∂λ

)
+ op(1).

By (B.15) and Proposition 1:(
Id2 Od2×2d2

−J−1
T (θ†)KT (θ

†) −J−1
T (θ†)

)
p−→
(

Id2 Od2×2d2

−J−1
0 K0 −J−1

0

)
.

By the same argument used in the proof of Lemma B.10 of Pedersen and Rahbek (2014), as
T → ∞:

1√
T

T∑
t=1

Υt(ω0,λ0)vec
(
ZtZ

′
t − Id

) d−→ N(0,Γ0), (B.16)

where
Γ0 = E

[
Υt(ω0,λ0)vec

(
ZtZ

′
t − Id

) (
vec
(
ZtZ

′
t − Id

))′
Υ′

t(ω0,λ0)
]
, (B.17)

with Υt(ω0,λ0) defined by (B.8). By Lemma B.2, (B.16), and the Slutzky theorem, we can obtain
the asymptotic normality of the 2sQML estimator.

Appendix C

Appendix C provides the results of Monte Carlo experiments for DGP1 and DGP2 with the
multivariate standardized t distribution with the degree of freedom, nu, denoted by St(ν). The
sample size is T = 500 and the number of replications is 2000.
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Table C.1: Finite Sample Properties of the 2sQML Estimator for the Diagonal RBEKK Model
with Heavy-Tailed Distributions

DGP1 with St(7) DGP2 with St(7)
Parameters True Mean Std. Dev. RMSE True Mean Std. Dev. RMSE

Ω11 1.00 0.9811 0.4550 0.4553 0.640 0.6336 0.3517 0.3518
Ω21 0.54 0.5238 0.3317 0.3320 −0.264 −0.2633 0.0915 0.0915
Ω22 0.81 0.7781 0.6309 0.6316 1.210 1.2046 0.2264 0.2264
A11 0.60 0.5748 0.0693 0.0737 0.600 0.5744 0.0746 0.0789
A22 0.40 0.3861 0.0507 0.0525 −0.300 −0.3024 0.0655 0.0655
B11 0.70 0.6866 0.1104 0.1112 0.700 0.6858 0.1091 0.1100
B22 0.90 0.8860 0.0968 0.0978 −0.900 −0.8552 0.1419 0.1488

Table C.2: Finite Sample Properties of the 2sQML Estimator for the Diagonal RBEKK Model
without Sixth Moments

DGP1 with St(5) DGP2 with St(5)
Parameters True Mean Std. Dev. RMSE True Mean Std. Dev. RMSE

Ω11 1.00 0.9712 0.6597 0.6602 0.640 0.6272 0.3968 0.3969
Ω21 0.54 0.5180 0.5967 0.5969 −0.264 −0.2635 0.1184 0.1184
Ω22 0.81 0.7975 1.7237 1.7233 1.210 1.2110 0.4820 0.4821
A11 0.60 0.5662 0.0786 0.0855 0.600 0.5673 0.0848 0.0908
A22 0.40 0.3824 0.0616 0.0614 −0.300 −0.3003 0.0839 0.0839
B11 0.70 0.6833 0.1235 0.1246 0.700 0.6705 0.1628 0.1654
B22 0.90 0.8742 0.1525 0.1546 −0.900 −0.8223 0.2583 0.2697
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Table C.3: Finite Sample Properties of the 2sQML Estimator for the Diagonal RBEKK Model
without Fourth Moments

DGP1 with St(3) DGP2 with St(3)
Parameters True Mean Std. Dev. RMSE True Mean Std. Dev. RMSE

Ω11 1.00 1.0159 1.2195 1.2197 0.640 0.7357 7.1907 7.1919
Ω21 0.54 0.5497 0.5517 0.5518 −0.264 −0.2713 1.0842 1.0844
Ω22 0.81 0.6084 0.9935 1.0135 1.210 1.1652 0.8867 0.8876
A11 0.60 0.5157 0.1183 0.1453 0.60 0.5179 0.1221 0.1471
A22 0.40 0.3522 0.1304 0.1388 −0.30 −0.2663 0.1617 0.1651
B11 0.70 0.5193 0.4442 0.4794 0.70 0.5166 0.4366 0.4735
B22 0.90 0.6222 0.5935 0.6551 −0.90 −0.5525 0.6241 0.7142
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