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Abstract: The ordinary least squares (OLS) estimator for spatial autoregressions may be consistent
as pointed out by Lee (2002), provided that each spatial unit is influenced aggregately by a significant
portion of the total units. This paper presents a unified asymptotic distribution result of the properly
recentered OLS estimator and proposes a new estimator that is based on the indirect inference
(II) procedure. The resulting estimator can always be used regardless of the degree of aggregate
influence on each spatial unit from other units and is consistent and asymptotically normal. The new
estimator does not rely on distributional assumptions and is robust to unknown heteroscedasticity.
Its good finite-sample performance, in comparison with existing estimators that are also robust to
heteroscedasticity, is demonstrated by a Monte Carlo study.
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1. Introduction

Spatial autoregressions (SAR) have attracted lots of attention from both practical and theoretical
sides in economics and other disciplines of social sciences since the classical work of Cliff and Ord
(1981). Its popularity is mainly due to its parsimonious representation of the cross-sectional correlation
by a weight matrix. Correlation in spatial data arises naturally due to competition, copycatting,
spillover, aggregation, to name just a few. In these contexts, space embodied in the weight matrix can
be defined in terms of not only geographical distance but also economic distance.

The spatial autoregression model extends autocorrelation in time series to the spatial dimension
in the sense that in the structural equation a spatially “lagged” dependent variable is included as
a regressor. In time series, the autoregression model can be estimated consistently by the ordinary
least squares (OLS), but for the spatial autoregression, the OLS is usually regarded as an inconsistent
method. Robinson (2008) provided an excellent discussion of the intuition behind this. Estimation
strategies like the maximum likelihood (ML), quasi maximum likelihood (QML), instrument variables
(IV), and generalized method of moments (GMM) have been proposed in the literature. The ML is
the most efficient, but it imposes stringent distributional assumptions on the data generating process,
whereas both the ML and QML rule out heteroscedasticity in the error term. Further, the (Q)ML
method involves calculating the determinant or eigenvalues of a matrix that is of the same size as
the sample, and thus many researchers dismiss its use in moderately large samples and advocate
the more flexible IV and GMM estimators that may incur less computational burden and are also
robust to heteroscedasticity.

Lee (2002) overturned the traditional wisdom regarding the OLS estimator in spatial
autoregressions when there are exogenous regressors included. He showed that while the OLS
estimator is inconsistent for spatial autoregressions with a sparse weight matrix, it can be consistent
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when spatial units may have small spatial impacts on other units but each unit may be influenced
aggregately by a significant portion of the total units. For the special case of the so-called pure SAR
model, namely, when there is no other exogenous regressor, Lee (2002) demonstrated that regardless
of the structure of the weight matrix, the OLS estimator is always inconsistent.

In practice, one may have limited knowledge to judge whether a spatial unit is influenced by
a significant portion of the total units. When a researcher is constructing the weight matrix, she may
know the number of neighboring units for each unit, but she may be unable to tell whether the number
of neighbors is significant in finite samples. Thus, this poses a challenge for practitioners regarding
the usefulness of the OLS estimator: it may or may not be consistent, depending on the degree of
aggregate influence on each unit from other units, which may hardly manifest itself in finite samples.
This paper carefully analyzes the asymptotic distribution theory for the OLS estimator. A unified
asymptotic distribution result for the recentered OLS estimator is presented under different regimes
for the spatial weight matrix. Given the asymptotic result for the recentered OLS estimator, a new
estimator based on the indirect inference (II) procedure is proposed.

Kyriacou et al. (2017) novelly used the II procedure to correct the inconsistency of the OLS
estimator in the pure SAR model under homoscedasticity. Even though they provided promising
simulation results under some mild heteroscedasticity, they have yet to show rigorously how to
construct a consistent estimator with no restrictions on the form of heteroscedasticity. In contrast,
this paper considers the SAR model with exogenous regressors and it adds to the existing spatial
literature with unknown heteroscedasticity.1

Note that the problem of inconsistency (of the OLS estimator) is solely due to the presence of
the endogenous spatially lagged variable. Once the spatial autoregression parameter is estimated
consistently, the OLS procedure can be used to estimate the remaining parameters, though the
asymptotic variance needs to be modified accordingly to take into account the uncertainty in
the estimated spatial autoregression parameter.

The structure of this paper is as follows. In the next section, the asymptotic behavior of the OLS
estimator is discussed under different spatial scenarios. The II estimator, which aims to correct
the possible inconsistency of the OLS estimator, is defined and its asymptotic distribution is derived.
A very important message from this section is that regardless of the degree of aggregate influence on
each spatial unit from other units, the II procedure can always be used and the resulting estimator
is consistent and asymptotically normal. Section 3 discusses the special case of pure SAR. Section 4
provides Monte Carlo evidence of the effectiveness of the II estimation strategy. It shows that the II
estimator possesses good finite-sample performance relative to other consistent estimators that are
also robust to unknown heteroscedasticity and that the II method may be favored for the purpose of
hypothesis testing, especially for testing the spatial autoregression parameter. Section 5 concludes.
Some useful lemmas are collected in Appendix A and proofs of the results presented in Sections 2
and 3 are given in Appendix B.

Throughout this paper, K is used to denote a positive constant on different occasions, arbitrarily
large but bounded, that does not depend on the sample size n and whose value may vary in different
contexts. In is the identity matrix of dimension n and 1n is an n × 1 vector of ones. For an n × 1
vector an, ai,n denotes its i-th element and for an n × n matrix An, aij,n denotes its ij-th element.
||An||∞ = max1≤i<n ∑n

j=1 |aij,n| and ||An||1 = max1≤j<n ∑n
i=1 |aij,n| are the maximum row sum norm

and maximum column sum norm, respectively. A sequence of matrices {An} is uniformly bounded
in row sum if ||An||∞ ≤ K, and is uniformly bounded in column sum if ||An||1 ≤ K. tr and � are
matrix trace and Hadamard product operators, respectively. Dg(an) denotes a square diagonal matrix
with the vector an spanning the main diagonal, dg(An) is an n× 1 column vector that collects in order

1 Recent literature on dealing with heteroscedasticity in the spatial framework includes Kelejian and Prucha (2010), Badinger
and Egger (2011), Liu and Yang (2015), Jin and Lee (2019), among others. An essential idea in this strand of literature is to
use some moment conditions that are robust to unknown heteroscedasticity.
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the diagonal elements of the square matrix An, and Dg(An) = Dg(dg(An)). The subscript 0 is used to
signify the true parameter value.

2. Main Results

Consider the SAR model

yn = λWnyn + Xnβ + un = Znθ+ un, (1)

where n is the total number of cross-sectional units, Zn = (Wnyn, Xn), θ = (λ, β′)′, yn is an n× 1
vector, collecting observations on the dependent variable, Xn is an n× k matrix of observations on k
exogenous nonstochastic regressors with coefficient vector β, Wn is an n× n matrix of spatial weights
with zero diagonals, λ is the spatial autoregression coefficient, and un is an n-dimensional vector of
error terms.

For the ease of presentation, the following matrix notation is introduced in this paper:

Sn(λ) = In − λWn, Gn(λ) = WnS−1
n (λ), Mn = In − Xn(X ′nXn)

−1X ′n,

Dn(λ) = Dg(MnGn(λ)), En(λ) = MnGn(λ)− Dn(λ). (2)

When a matrix is presented without its argument λ, it means that it is evaluated at the parameter
value λ0. Namely, Sn = Sn(λ0), Gn = Gn(λ0), Dn = Dn(λ0), and En = En(λ0).

If λ is known (equal to its true value), the model becomes a standard linear model with Snyn being
the dependent variable; otherwise, Wnyn appears on the right-hand side of (1) as a spatially lagged
or weighted variable. The OLS estimator of θ0 is θ̂n = (Z′nZn)−1Z′nyn, which may be inconsistent.
Since the inconsistency of θ̂n is solely due to the endogenous Wnyn, the properties of λ̂n (the first
element of θ̂n) are discussed first in this paper. Once a consistent estimator of λ0 is available, one can
show that a consistent estimator of β0 follows immediately (see Theorem 4 to be introduced).2

Let rn = r1n + r2n, r1n = u′n MnGnun, r2n = β′0X ′nG′n Mnun, dn = d1n + d2n + d3n,
d1n = u′nG′n MnGnun, d2n = 2β′0X ′nG′n MnGnun, and d3n = β′0X ′nG′n MnGnXnβ0. By using
the partitioned regression formula and substituting Wnyn = GnXnβ0 + Gnun, one may put

λ̂n − λ0 =
y′nW ′

n Mnun

y′nW ′
n MnWnyn

=
rn

dn
=

r1n + r2n

d1n + d2n + d3n
. (3)

The following assumptions are made throughout this paper.

Assumption 1. (i) ∀i 6= j, wij,n = O(h−1
n ), where the rate sequence {hn} is uniformly bounded away from zero

and lim
n→∞

hn/n = 0; (ii) the sequence {Wn} is is uniformly bounded in row and column sums; (iii) wii,n = 0.

Assumption 2. (i) S−1
n exists; (ii) the sequence {S−1

n } is uniformly bounded in row and column sums.

Assumption 3. The error terms {ui,n} in un = (u1,n, · · · , un,n)′ have following properties: (i) E(ui,n) = 0;
(ii) E(|ui,n|4+δ) < ∞ for some positive constant δ; (iii) ui,n and uj,n are independent for any i 6= j.

Assumption 4. λ0 is contained in a compact parameter space Λ. For any admissible λ ∈ Λ, {S−1
n (λ)} is

uniformly bounded in row and column sums.

2 It should be pointed out when lim
n→∞

√
n/hn = 0 (and lim

n→∞
hn/n = 0, where h−1

n is the order of magnitude of elements of

Wn), θ̂n is consistent, as shown in Lee (2002), and thus one may not need to seek a consistent estimator of λ0 separately and
then use it to construct a consistent estimator of β0. In practice, one may not know a priori the rate of hn, but the II estimator
to be introduced is always consistent regardless of the rate of hn.
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Assumption 5. (i) The elements of Xn are uniformly bounded constants for all n; (ii) the probability limit Γ of
n−1Z′nZn exists and is nonsingular.

Assumption 6. (i) limn→∞ n−1Var(rn) exists and is nonzero; (ii) limn→∞ n−1Var(u′nEnun +

β′0X ′nG′n Mnun) exists and is nonzero.

Intuitions and related discussions for Assumptions 1–5 are provided in Kelejian and Prucha (2010)
and Lee (2001, 2002, 2004). Assumption 1(i) follows naturally when Wn is row- or column-normalized,
as is typically the case. Assumption 1(ii) and Assumption 2 limit the degree of dependency
among the spatial units and is originated by Kelejian and Prucha (1999). Given Assumption 2,
the equilibrium solution of yn is yn = S−1

n Xnβ0 + S−1
n un. Under Assumption 3, let σ2

i,n = E(u2
i,n),

Σn = Dg(σ2
1,n, · · · , σ2

n,n), and Σ
(j)
n = Dg(µ(j)

1,n, · · · , µ
(j)
n,n) with µ

(j)
i,n = E(uj

i,n), j = 3, 4. Lee (2002)
emphasized that Assumption 5(ii) is related to an identification condition for estimation in the least
squares and IV frameworks. It rules out possible multicollinearities among Xn and GnXnβ0 for
large n and implies that the limit of d3n/n is bounded away from zero.3 Assumption 6 ensures that
the asymptotic variances of the (properly recentered) OLS estimator and the resulting II estimator
are positive.4

2.1. The Asymptotic Behavior of the OLS estimator

From Lemma A6 in Appendix A, r1n and d1n are both OP(n/hn), r2n and d2n are both OP(
√

n),
and d3n = O(n). The asymptotic properties of the OLS estimator crucially depend on the magnitude
of hn.

When hn is bounded, the OLS estimator cannot be consistent, since now

λ̂n − λ0 =
1
n r1n

1
n d1n +

1
n d3n

+ oP(1),

but the probability limit of the numerator n−1r1n is typically nonzero.
If hn → ∞, d3n dominates the denominator in (3), then

λ̂n − λ0 =

1
hn

(
hn
n r1n

)
+ 1√

n

(
1√
n r2n

)
1
n d3n

+ oP(1)
p→ 0,

indicating that λ̂n is consistent as long as hn → ∞.

3 Multicollinearities can happen, for example, when Xn = 1n and Wn is row-normalized. Lee (2004) showed that under
homoscedasticity, however, the QML estimator can still be consistent in spite of violation of this condition. Since the II
estimator to be discussed in this paper is to correct the possible inconsistency of the OLS estimator, Assumption 5(ii)
is maintained.

4 The asymptotic variances are given by limn→∞ n−1Var(rn)/[plim(dn/n)]2 = limn→∞[Var(rn)/n]/[E(dn)/n]2 and
limn→∞ n−1Var(u′nEnun + β′0X ′nG′n Mnun)/[plim(dn/n)]2 = limn→∞[Var(u′nEnun + β′0X ′nG′n Mnun)/n]/[E(dn)/n]2,
respectively, for the (properly recentered) OLS estimator and the resulting II estimator. Their explicit expressions
are given respectively in Theorems 1 and 2 to be introduced. Assumption 5(ii) implies that plimn→∞(dn/n) =
plimn→∞(y′nW ′

n MnWnyn/n) exists and is nonzero. It can be shown (see Appendix A) that Var(rn) = Var(u′n MnGnun) +

β′0X ′nG′n MnΣn MnGnXnβ0 + 2Cov(β′0X ′nG′n MnΣn MnGnXnβ0, u′n MnGnun), where the covariance term disappears under
normality, and Var(u′nEnun + β′0X ′nG′n Mnun) = Var(u′nEnun) + β′0X ′nG′n MnΣn MnGnXnβ0. When hn diverges,
β′0X ′nG′n MnΣn MnGnXnβ0 is the dominating term in Var(rn) as well as Var(u′nEnun + β′0X ′nG′n Mnun). Then the usual
condition that plimn→∞n−1Z′nΣnZn exists and is nonsingular is sufficient for Assumption 6 to hold. When hn is
bounded, a more precise characterization of a sufficient condition is not immediately obvious. Essentially, it requires,
in addition to the existence and nonsingularity of plimn→∞n−1Z′nΣnZn, the existence of limn→∞ n−1Var(u′nEnun) and
limn→∞ n−1Var(u′n MnGnun), where Var(u′nEnun) = O(n/hn) and Var(u′n MnGnun) = O(n/hn).
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More interestingly, the behavior of λ̂n depends on how fast hn diverges to infinity. If hn tends to
infinity at a rate slower than

√
n, then r1n dominates r2n in the numerator, and

hn(λ̂n − λ0) =
hn
n r1n
1
n d3n

+ oP(1), (4)

which implies that λ̂n converges at the slower rate hn, but it does not converge to λ0 at rate hn,
as plim

n→∞
(hn/n)r1n = lim

n→∞
(hn/n)tr(Σn MnGn) is typically nonzero.

If hn = O(
√

n), r1n and r2n are of the same order in the numerator, so

√
n(λ̂n − λ0) =

1√
n r1n +

1√
n r2n

1
n d3n

+ oP(1), (5)

indicating that λ̂n converges at rate
√

n, but at this rate it does not converge to λ0, as in general
plim
n→∞

n−1/2r1n = lim
n→∞

n−1/2tr(Σn MnGn) is nonzero.

If hn tends to infinity at a rate faster than
√

n (and yet smaller than n), namely, lim
n→∞

√
n/hn = 0

(and lim
n→∞

hn/n = 0), then in the numerator r2n dominates r1n,

√
n(λ̂n − λ0) =

1√
n r2n

1
n d3n

+ oP(1), (6)

indicating that λ̂n converges to λ0 at rate
√

n and is asymptotically normal if one applies a central limit
theorem to n−1/2r2n.

One sees that the asymptotic behavior of λ̂n depends on the magnitude of hn, which may be
unknown in practice. The following theorem shows that if one can properly recenter λ̂n, then a unified
asymptotic distribution result follows.

Theorem 1. Under Assumptions 1–6, the OLS estimator λ̂n of λ0 in the SAR model (1) has the following
asymptotic distribution,

√
n
(

λ̂n − λ0 −
tr(Σn MnGn)

y′nW ′
n MnWnyn

)
d→ N(0, v), (7)

where

v = lim
n→∞

nVar(rn)

[tr(ΣnG′n MnGn) + β′0X ′nG′n MnGnXnβ0]
2

with

Var(rn) = tr(Σ(4)
n �MnGn �MnGn) + tr[Σn MnGnΣn(MnGn + G′n Mn)]

+ β′0X ′nG′n MnΣn MnGnXnβ0 + 2β′0X ′nG′n Mndg(Σ(3)
n �MnGn).

Remark 1. The recentering term tr(Σn MnGn)/y′nW ′
n MnWnyn is in fact E(rn)/dn. One could have

recentered λ̂n − λ0 by E(rn)/E(dn) . (This is the approach taken by Kyriacou et al. (2017) when dealing
with the special case of pure SAR model.) But then by following a similar expansion as in the proof of Theorem 1
(see Appendix B.1), one can find that the asymptotic variance of the resulting recentered estimator is much more
complicated, involving the variances of rn and dn as well as their covariance.

Remark 2. When lim
n→∞

√
n/hn = 0, the recentering term tr(Σn MnGn)/y′nW ′

n MnWnyn is in fact oP(n−1/2)

and the asymptotic distribution of
√

n(λ̂n − λ0) centers at zero, so one does not need to recenter λ̂n − λ0 by
tr(Σn MnGn)/y′nW ′

n MnWnyn; nor does one need to recenter it by y′nS′n MnDn MnSnyn/y′nW ′
n MnWnyn,

which is also oP(n−1/2), as in Theorem 2 to be introduced.
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Remark 3. When hn diverges, one may single out dominating terms in Var(rn) and E(dn) so that a finer
expression of v = limn→∞[Var(rn)/n]/[E(dn)/n]2 can be presented. For example, under divergent hn,
one can replace Var(rn) with Var(r2n) = β′0X ′nG′n MnΣn MnGnXnβ0 and replace E(dn) with its dominating
term β′0X ′nG′n MnGnXnβ0. When hn is bounded, however, such replacements are not available and one needs to
keep all the term in Var(rn) and E(dn). Moreover, since Var(rn) depends on higher-order moments of u, namely,
Σ
(3)
n and Σ

(4)
n , then, with bounded hn, the asymptotic variance v of the recentered OLS estimator depends on

them, too.

Remark 4. In view of Remark 3, under divergent hn, if further Σn = σ2
0 In, namely, under homoscedasticity

with σ2
0 = E(u2

i,n), then v corresponds to the top left element of σ2
0 Γ−1. This, together with Remark 2, is in line

with the observation in Lee (2002) that the (consistent, uncentered) OLS estimator (when lim
n→∞

√
n/hn = 0)

has the same limiting distribution of the optimal IV estimator and under normality it has the same limiting
distribution of the ML estimator. It also implies that under other cases of divergent hn (slower than or equal to
rate
√

n), as long as the OLS estimator is properly recentered, it achieves the same limiting distribution.

Remark 5. Theorem 1 gives a unified representation of the asymptotic distribution of the properly recentered
OLS estimator, regardless of the possibly unknown magnitude of hn. Further, it facilitates the construction
of the indirect inference estimator to be introduced that corrects the inconsistency, when present, of the
OLS estimator.

2.2. The Indirect Inference Estimator

One can see from Theorem 1 in the previous subsection that the OLS estimator λ̂n may have an
asymptotic bias. Yet a direct feasible bias-correction procedure is not possible, since the bias itself
depends on unknown parameters, including λ0, which may not be consistently estimated by the OLS
estimator λ̂n. Following Phillips (2012) and Kyriacou et al. (2017), one may define the binding function
that involves the bias of λ̂n. Unfortunately, the resulting binding function then involves the unknown
Σn, which appears in the recentering quantity for the OLS estimator in (7). The strategy in this paper is
to replace tr(Σn MnGn) = E(u′n MnGnun) with a term that is of the same order of u′n MnGnun and at
the same time does not directly involve Σn.

Recall that Dn = Dg(MnGn). Then under a general form of unknown heteroscedasticity,
tr(Σn MnGn) = tr(ΣnDn) = E(u′nDnun), where un = Snyn − Xnβ0. If λ0 is known, then β0 can
be consistently estimated by β̃n = β̃n(λ0) = (X ′nXn)−1X ′nSnyn. Let ũn = ũn(λ0) = Snyn − Xn β̃n =

MnSnyn. Now one may be able to replace E(u′nDnun) with ũ′nDnũn = y′nS′n MnDn MnSnyn and use
y′nS′n MnDn MnSnyn/y′nW ′

n MnWnyn as the recentering quantity.

Theorem 2. Under Assumptions 1–6, the OLS estimator λ̂n of λ0 in the SAR model (1) has the following
asymptotic distribution:

√
n
(

λ̂n − λ0 −
y′nS′n MnDn MnSnyn

y′nW ′
n MnWnyn

)
d→ N(0, η), (8)

where

η = lim
n→∞

n
{

tr[ΣnEnΣn(En + E′n)] + β′0X ′nG′n MnΣn MnGnXnβ0
}

[tr(ΣnG′n MnGn) + β′0X ′nG′n MnGnXnβ0]
2

.

Remark 6. When one replaces tr(Σn MnGn) that involves the unknown Σn and appears in the recentering
term of the OLS estimator, the asymptotic variance η of the newly recentered estimator no longer involves Σ

(3)
n

and Σ
(4)
n . This stands in contrast to the asymptotic variance v (see Remark 3). So replacing tr(Σn MnGn) with

y′nS′n MnDn MnSnyn facilitates not only the construction of the indirect inference estimator to be introduced
but also the inference procedure.
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Given Theorem (2) and the observed sample data yn and Xn, one can always define the sample
binding function. Recall that Sn(λ) = In − λWn and Dn(λ) = Dg(MnGn(λ)) = Dg(MnWnS−1

n (λ))

are functions of the parameter λ (as well as Xn). So the binding function can be defined as

bn(λ) = λ +
y′nS′n(λ)MnDn(λ)MnSn(λ)yn

y′nW ′
n MnWnyn

(9)

and the II estimator inverts this binding function:

λ̂I I
n = b−1

n (λ̂n). (10)

Intuitively, the II estimator defined as such tries to match λ̂n from the observed data to its expectation,
at least approximately. Typically, the expectation may be approximated, to an arbitrary degree of
accuracy, via the method of simulations, as in the original spirit of Gouriéroux et al. (1993) and
Smith (1993); however, in simulations one needs to make some distributional assumption to generate
the pseudo error term. Instead one may use some analytical approximation as in Phillips (2012),
Kyriacou et al. (2017), and this paper.

In the definition of the II estimator as in (10), it is implicitly assumed that the binding function
bn(λ) is invertible. Note that bn(λ) is a function of λ and the sample data yn and Xn and thus it
is random.5

Assumption 7. For all λ ∈ Λ, the binding function (9) is monotonic in λ with probability 1 and when hn is
bounded, b′n(λ0)

a.s.→ b0 6= 0, where

b′n(λ0) = 1 +
y′nS′n MnDg(MnG2

n)MnSnyn − 2y′nW ′
n MnDn MnSnyn

y′nW ′
n MnWnyn

. (11)

One can see from the expression (A.10) in Appendix B.3 that the derivative of the binding function
with respect to λ is

b′n(λ) = 1 + OP

(
1
hn

)
.

For divergent hn, one can show that the OP(h−1
n ) converges almost surely to zero for all λ ∈ Λ.

So in large samples, Assumption 7 is more likely to hold. Assumption 7 lists the conditions under
which the II estimator exists and is consistent. It would be desirable if one could lay down some
primitive conditions on the data matrix Xn, the weight matrix Wn, and the parameter space Λ so that
Assumption 7 would be satisfied. Given the sample data, one may plot the binding function against λ

to verify numerically the validity of this assumption. Simulations as in Gospodinov et al. (2017) may
also help to establish this assumption’s credibility.

Theorem 3. For the SAR model (1), under Assumptions 1–7, the II estimator λ̂I I
n of λ0, defined as in (10),

which is based on the binding function (9), has the following asymptotic distribution:

√
n(λ̂I I

n − λ0)
d→ N

(
0,

η

b2
0

)
. (12)

5 The use of observed, endogenous but non-simulated, variables within the binding function does not appear to be common.
An interesting example is Gospodinov et al. (2017), where the authors used observed data within the binding function to
hedge against misspecification bias. In their set-up of the autoregressive distributed lag model with a latent scalar predictor
under the presence of measurement error, a similar technical difficulty exists regarding the invertibility condition of their
binding function and they resorted to simulations to approximate the binding function and then the invertibility condition
is numerically verified based on the approximated binding function.
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Remark 7. Since when hn diverges, b′n(λ0) converges almost surely to 1, the asymptotic distribution of
the II estimator is identical to that of the properly recentered OLS estimator. Further, under divergent hn,
β′0X ′nG′n MnΣn MnGnXnβ0 dominates Var(u′nEnun + β′0X ′nG′n Mnun) and β′0X ′nG′n MnGnXnβ0 dominates
E(dn), so η = v + o(1). In light of Remark 4, this means that under homoscedasticity, the II estimator defined
as in (10) is as efficient as the optimal IV estimator and can be as efficient as the ML estimator if the spatial data
is normally distributed. (The same conclusion holds for the slightly modified II estimator, designed specifically
under homoscedasticity, in Appendix B.6.)

Remark 8. Theorem 3 shows that regardless of the magnitude of hn, which researchers may not know in practice,
one can always apply the II procedure after the OLS estimation is done. At worst, when lim

n→∞

√
n/hn = 0,

this procedure is redundant (see Remark 2), but still the resulting II estimator has exactly the same asymptotic
distribution as the consistent OLS estimator (since η = v + o(1), see Remark 7). Otherwise, the II procedure
provides a correction to the inconsistent OLS estimator.

Once the spatial autoregression parameter λ is consistently estimated by λ̂I I
n , one can estimate

the parameter vector β by

β̂
I I
n = (X ′nXn)

−1X ′nŜnyn, (13)

where Ŝn = Sn(λ̂I I
n ) = Sn − (λ̂I I

n − λ0)Wn.

Theorem 4. For the SAR model (1), under Assumptions 1–7, the OLS estimator of β0 defined as in (13) has
the asymptotic distribution

√
n(β̂

I I
n − β0)

d→ N(0, V),

and jointly,
√

n(θ̂I I
n − θ0) =

√
n

(
λ̂I I

n − λ0

β̂
I I
n − β0

)
d→ N

(
0,

( η

b2
0

γ′

γ V

))
,

where V , assumed to exist and be positive definite, is given by (A.14) and γ is given by (A.15), respectively,
in Appendix B.4.

Remark 9. One can see (from Appendix B.4) that the expression of V contains the traditional OLS variance
term under heteroscedasticity, lim

n→∞
n(X ′nXn)−1X ′nΣnXn(X ′nXn)−1, as well as terms that signal the additional

uncertainty introduced by λ̂I I
n in the definition of β̂

I I
n as in (13).

In practice, in order to make asymptotically valid inference from the II estimation strategy,
one needs to estimate η/b2

0, V , and γ in Theorems 3 and 4 by η(θ̂
I I
n )/[b′n(λ̂I I

n )]2, V(θ̂
I I
n , Σ̂n),

and γ(θ̂
I I
n , Σ̂n), respectively, where Σ̂n = Dg(û2

1,n, · · · , û2
n,n) and ûi,n’s are the sample residuals from

the II estimation.6

3. The Special Case of Pure SAR

It is worthwhile to discuss the case when there is no Xn, namely, the so-called pure SAR model

yn = λWnyn + un. (14)

This case is of special interest since there is no IV available. On the other hand, the QML estimator is
not consistent under heteroscedasticity. Kyriacou et al. (2017) were the first to explore the possibility
of using the II procedure to correct the inconsistency of the OLS estimator under some mild form of

6 This follows similarly from the proof of Proposition 2 in Lin and Lee (2010).
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heteroscedasticity and their results were quite promising. In this paper, no restrictions are imposed on
the form of the unknown heteroscedasticity.

Given the expansion (3), one can see obviously that

plim
n→∞

(λ̂n − λ0) =

plim
n→∞

hn
n r1n

plim
n→∞

hn
n d1n

=
lim

n→∞
hn
n tr(ΣnGn)

lim
n→∞

hn
n tr(ΣnG′nGn)

6= 0,

regardless of the magnitude of hn. Proceeding similarly as before, as long as hn = o(n), one can write
r1n − E(r1n) = OP(

√
n/hn), d1n − E(d1n) = OP(

√
n/hn), and E(d1n) = O(n/hn). (See Lemma A6 in

Appendix A). Then, by a Nagar-type (Nagar (1959)) expansion,√
n
hn

(
λ̂n − λ0 −

E(r1n)

d1n

)
=

√
n
hn

(
r1n − E(r1n)

E(d1n) + d1n − E(d1n)

)
=

√
n
hn

r1n − E(r1n)

E(d1n)
+ oP(1). (15)

Assumption 6 needs to be modified accordingly to ensure the asymptotic variance of the properly
recentered λ̂n exists and is positive. Now let Dn = Dg(Gn) and En = Gn − Dn.

Assumption 8. (i)

v = lim
n→∞

n{tr(Σ(4)
n �Gn �Gn) + tr[ΣnGnΣn(Gn + G′n)]}

hn[tr(ΣnG′nGn)]2

exists and is positive; (ii)

η = lim
n→∞

ntr[ΣnEnΣn(En + E′n)]
hn[tr(ΣnG′nGn)]2

exists and is positive.

Corollary 1. Under Assumptions 1–4 and 8, the OLS estimator λ̂n of λ in the pure SAR model (14) has
the following asymptotic distribution,√

n
hn

(
λ̂n − λ0 −

tr(ΣnGn)

y′nW ′
nWnyn

)
d→ N(0, v), (16)

where v is defined as in Assumption 8(i).

Corollary 2. Under Assumptions 1–4 and 8, the OLS estimator λ̂n of λ in the pure SAR model (14) has
the following asymptotic distribution:√

n
hn

(
λ̂n − λ0 −

y′nS′nDnSnyn
y′nW ′

nWnyn

)
d→ N(0, η), (17)

where η is defined as in Assumption 8(ii).

Let the sample binding function be

bn(λ) = λ +
y′nS′n(λ)Dn(λ)Sn(λ)yn

y′nW ′
nWnyn

. (18)

Accordingly, Assumption 7 is modified as follows.
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Assumption 9. For all λ in Λ, the binding function (18) is monotonic in λ with probability 1 and b′n(λ0)
a.s.→

b0 6= 0, where

b′n(λ0) = 1 +
y′nS′nDg(G2

n)Snyn − 2y′nW ′
nDnSnyn

y′nW ′
nWnyn

. (19)

Corollary 3. For the pure SAR model (14), under Assumptions 1–4, 8, and 9, the II estimator λ̂I I
n of λ that is

based on the binding function (18) has the following asymptotic distribution:√
n
hn

(
λ̂I I

n − λ0

)
d→ N

(
0,

η

b2
0

)
, (20)

where η is defined as in Assumption 8(ii).

Remark 10. If Σn = σ2
0 In (namely, under homoscedasticity) and ones uses E(r1n)/E(d1n) = tr(Gn)/tr(G′nGn)

as the recentering term, which fortunately does not involve the unknown variance parameter σ2
0 , then the binding

function, its derivative, and the asymptotic distribution of the resulting II estimator can be modified accordingly
as in Kyriacou et al. (2017). In contrast to the SAR model with Xn, the recentered OLS estimator and the II
estimator in the pure SAR model have convergence rate

√
n/hn.

Remark 11. One can see that b′n(λ0) does not converge almost surely to 1 when hn is divergent as in the case
when X is present. This is because y′nW ′

nWnyn = OP(n/hn) for the pure case and y′nW ′
n MnWnyn = OP(n)

when X is present, whereas both the numerators in the second terms on the right-hand sides of (19) and (11) are
OP(n/hn).

Remark 12. Admittedly, the convergence rate in (20) depends on hn. However, this does not prevent one from
using the II estimator if one is interested in estimating the pure SAR model, since the binding function (18)
does not involve hn. For inference purpose, since η defined as in Assumption 8(ii) has the scaling factor
n/hn, one can see that once λ̂I I

n and the sample residuals ûi,n are available, the standard error of λ̂I I
n can

be calculated as
√

tr[Σ̂nÊnΣ̂n(Ên + Ê′n)]/[b′n(λ̂I I
n )tr(Σ̂nĜ′nĜn)]2, where Ĝn = Gn(λ̂I I

n ), Ên = En(λ̂I I
n ),

and Σ̂n = Dg(û2
1,n, · · · , û2

n,n).

4. Monte Carlo Evidence

In this section, Monte Carlo simulations are provided to demonstrate the performance of λ̂I I
n

(as well as β̂
I I
n in (13)) in finite samples, in comparison with consistent estimators that are also robust

under heteroscedasticity: the optimal robust GMM estimator of Lin and Lee (2010) and the modified
QML (MQML) estimator of Liu and Yang (2015). For the optimal robust GMM estimator of Lin
and Lee (2010), u′nΣ−1

n (Gn(λ) − Dg(Gn(λ))un and u′nΣ−1
n (Gn(λ)Xnβ, Xn) are used as the optimal

moment conditions, see Debarsy et al. (2015). They involve λ (appearing in Gn(λ)) and β as well
as the covariance matrix Σn. For λ and β, an initial estimation is constructed from the simple 2SLS
with WnXn and Xn as IV’s. One may assume a model for Σn and then estimate the assumed model so
as to construct the moment conditions. In this section, two choices are made regarding this: one is
to use u′n(Gn − Dg(Gn)un and u′n(GnXnβ, Xn) as the moment conditions and the other is to use
u′nΣ−1

n (Gn − Dg(Gn)un and u′nΣ−1
n (GnXnβ, Xn) with the true Σn (known in simulations) plugged

in. The two resulting estimators are denoted by GMM and GMM(Σn), respectively, in Tables 1–4.
One would expect that in practice the performance of the optimal robust GMM estimator with an
estimated Σn appearing in the moment conditions would most likely stand between the two.

In each experiment, for each estimator, reported are the bias and root mean squared error
(RMSE) from 1000 Monte Carlo simulations. The empirical rejection probabilities of the relevant
t tests for testing each parameter equal to its true value at 5% are also reported, denoted by P(5%),
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where the asymptotic variances for λI I
n and β̂

I I
n , as discussed in the last paragraph of Section 2,

are estimated with the unknowns replaced by their estimates based on the II procedure.7

For the purpose of comparison, the experimental design in Lin and Lee (2010) is followed
closely. The spatial scenario under a group interaction weight matrix of Case (1991) is considered.
The exogenous variables include a constant term and two independently distributed random variables
following N(3, 1) and U(−1, 2), respectively. The size of each group is determined by a U(3, 20)
random variable. The error terms follow a zero-mean normal distribution with variances varying
across groups. Two variance structures (V1 and V2) are considered. V1: for each group, if the group
size is greater than 10, then the error variance is the same as the group size; otherwise, the variance is
the inverse of the square of the group size. V2: for each group, the error variance is the inverse
of the group size. Two sets of parameter configurations are used: θ0 = (λ0, 0.8, 0.2, 1.5)′ and
θ0 = (λ0, 0.2, 0.2, 0.1)′, named P1 and P2, respectively. Different degrees of spatial autocorrelation are
considered: λ0 = 0.2, 0.6, 0.9. Results are reported in Tables 1–4.

7 Neither Lin and Lee (2010) nor Liu and Yang (2015) reported how the inference procedures based on their estimators would
perform in finite samples.
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Table 1. Estimation of spatial autoregressions (SAR) with variance structure V1 and parameter configuration P1.

MQML GMM GMM(Σn) II

R θ0 Bias RMSE P(5%) Bias RMSE P(5%) Bias RMSE P(5%) Bias RMSE P(5%)

100 0.2 −0.009 0.067 3.6% −0.015 0.073 5.8% 0.000 0.01 4.9% −0.009 0.067 3.8%
0.8 0.034 0.367 4.5% 0.050 0.377 5.4% 0.001 0.036 5.6% 0.033 0.367 4.7%
0.2 −0.002 0.099 5.0% −0.002 0.099 5.1% 0.000 0.008 5.5% −0.002 0.099 5.0%
1.5 −0.004 0.088 4.9% −0.005 0.088 5.1% 0.000 0.007 4.1% −0.004 0.088 4.9%

0.6 −0.005 0.035 3.0% −0.008 0.039 7.2% 0.000 0.005 5.3% −0.005 0.035 4.1%
0.8 0.032 0.366 3.8% 0.047 0.378 5.9% 0.001 0.037 5.6% 0.031 0.367 4.7%
0.2 −0.001 0.102 5.5% −0.001 0.102 5.5% 0.000 0.008 5.7% −0.001 0.102 5.5%
1.5 0.004 0.089 4.9% 0.004 0.089 4.9% 0.000 0.007 4.6% 0.004 0.089 4.9%

0.9 −0.001 0.009 0.3% −0.002 0.01 7.7% 0.000 0.001 6.1% −0.001 0.009 4.3%
0.8 0.022 0.367 4.0% 0.037 0.378 6.0% 0.003 0.04 6.5% 0.02 0.367 5.6%
0.2 −0.002 0.102 4.4% −0.002 0.102 4.4% 0.000 0.008 5.3% −0.002 0.102 4.4%
1.5 0.000 0.093 5.9% 0.000 0.094 6.0% 0.000 0.007 4.7% 0.00 0.094 6.1%

200 0.2 0.000 0.047 5.6% −0.003 0.051 8.0% 0.000 0.007 5.3% 0.000 0.047 6.1%
0.8 −0.005 0.255 5.1% 0.003 0.261 5.8% 0.001 0.026 6.9% −0.005 0.255 5.2%
0.2 0.002 0.071 5.8% 0.001 0.071 5.7% 0.000 0.006 5.4% 0.002 0.071 5.8%
1.5 0.003 0.061 3.3% 0.002 0.061 3.4% 0.000 0.005 5.4% 0.003 0.061 3.3%

0.6 −0.003 0.025 2.2% −0.005 0.028 8.6% 0.000 0.004 5.1% −0.003 0.025 5.0%
0.8 0.021 0.256 4.1% 0.030 0.264 6.0% 0.000 0.026 5.2% 0.020 0.256 4.7%
0.2 −0.001 0.069 4.5% −0.001 0.069 4.6% 0.000 0.006 5.7% −0.001 0.069 4.5%
1.5 0.000 0.062 4.2% −0.001 0.062 4.3% 0.000 0.005 4.9% 0.000 0.062 4.2%

0.9 −0.001 0.006 0.7% −0.001 0.007 8.3% 0.000 0.001 6.0% −0.001 0.006 4.7%
0.8 0.022 0.262 4.2% 0.030 0.269 6.7% 0.000 0.026 4.5% 0.021 0.262 5.7%
0.2 −0.001 0.072 5.5% −0.001 0.072 5.3% 0.000 0.005 4.8% −0.001 0.072 5.5%
1.5 0.000 0.063 3.8% 0.000 0.063 3.9% 0.000 0.005 4.4% 0.000 0.063 3.8%

The weight matrix is a social interaction matrix Wn = IR ⊗ [(1mj 1
′
mj
− Imj )/(mj − 1)], mj ∼ IID U(3, 20), j = 1, · · · , R. Reported for each estimator are

the bias, root mean squared error (RMSE), and the empirical size of the t test for each parameter equal to its true value at 5% from 1000 simulations.
The exogenous regressors are (1, xi1, xi2)

′, xi1 ∼ IID N(3, 1), xi2 ∼ IID U(−1, 2), and xi1 is independent of xi2. The group size mj follows IID U(3, 20).
The error terms follow a zero-mean independent normal distribution. The variance structure is such that if mj > 10, the error variance in the j-th group is mj

and otherwise is 1/m2
j , j = 1, · · · , R.
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Table 2. Estimation of SAR with variance structure V1 and parameter configuration P2.

MQML GMM GMM(Σn) II

R θ0 Bias RMSE P(5%) Bias RMSE P(5%) Bias RMSE P(5%) Bias RMSE P(5%)

100 0.2 −0.010 0.076 5.5% −0.014 0.078 5.9% −0.003 0.049 5.4% −0.009 0.076 5.7%
0.2 0.007 0.335 5.7% 0.013 0.336 6.0% 0.005 0.056 5.8% 0.007 0.335 5.8%
0.2 0.001 0.102 5.7% 0.001 0.102 5.7% −0.001 0.008 6.3% 0.001 0.102 5.7%
0.1 0.000 0.095 5.9% 0.000 0.096 5.9% 0.000 0.007 6.0% 0.000 0.095 5.9%

0.6 −0.005 0.039 2.8% −0.007 0.040 5.2% −0.002 0.026 4.8% −0.004 0.039 4.6%
0.2 −0.004 0.330 4.1% 0.002 0.331 4.3% 0.005 0.058 5.3% −0.004 0.330 4.2%
0.2 0.005 0.100 4.3% 0.005 0.100 4.4% 0.000 0.008 6.4% 0.005 0.100 4.3%
0.1 0.000 0.091 5.6% 0.000 0.091 5.7% 0.000 0.007 5.3% 0.000 0.091 5.6%

0.9 −0.001 0.010 0.9% −0.002 0.010 4.6% 0.000 0.006 3.9% −0.001 0.010 5.0%
0.2 0.013 0.335 5.2% 0.018 0.336 6.1% 0.001 0.055 4.1% 0.012 0.335 5.7%
0.2 −0.001 0.102 5.2% −0.001 0.102 5.4% 0.000 0.008 7.3% −0.001 0.102 5.2%
0.1 0.002 0.089 5.1% 0.002 0.089 5.1% 0.000 0.007 5.9% 0.002 0.089 5.1%

200 0.2 −0.007 0.054 5.4% −0.009 0.055 5.9% −0.005 0.034 5.6% −0.007 0.054 5.9%
0.2 0.013 0.231 4.7% 0.016 0.232 4.7% 0.006 0.040 6.0% 0.013 0.231 4.7%
0.2 −0.002 0.071 4.3% −0.002 0.071 4.4% 0.000 0.005 5.1% −0.002 0.071 4.3%
0.1 0.000 0.064 4.7% 0.000 0.064 4.7% 0.000 0.005 5.1% 0.000 0.064 4.7%

0.6 −0.003 0.027 2.8% −0.004 0.027 5.3% −0.001 0.017 4.1% −0.003 0.027 4.9%
0.2 −0.001 0.233 5.2% 0.001 0.233 5.4% 0.002 0.039 4.4% −0.002 0.233 5.2%
0.2 0.003 0.071 4.7% 0.003 0.071 4.7% 0.000 0.005 5.1% 0.003 0.071 4.7%
0.1 0.000 0.063 5.5% 0.000 0.063 5.5% 0.000 0.005 5.8% 0.000 0.063 5.5%

0.9 −0.001 0.007 1.3% −0.001 0.007 5.7% −0.001 0.005 4.9% −0.001 0.007 5.3%
0.2 0.012 0.232 3.4% 0.015 0.233 4.2% 0.004 0.039 5.0% 0.012 0.232 4.1%
0.2 −0.002 0.072 5.0% −0.002 0.072 5.1% 0.000 0.006 5.5% −0.002 0.072 5.0%
0.1 0.002 0.063 5.0% 0.002 0.063 5.0% 0.000 0.005 6.7% 0.002 0.063 5.0%

The weight matrix is a social interaction matrix Wn = IR ⊗ [(1mj 1
′
mj
− Imj )/(mj − 1)], mj ∼ IID U(3, 20), j = 1, · · · , R. Reported for each estimator are the bias,

RMSE, and the empirical size of the t test for each parameter equal to its true value at 5% from 1000 simulations. The exogenous regressors are (1, xi1, xi2)
′,

xi1 ∼ IID N(3, 1), xi2 ∼ IID U(−1, 2), and xi1 is independent of xi2. The group size mj follows IID U(3, 20). The error terms follow a zero-mean independent
normal distribution. The variance structure is such that if mj > 10, the error variance in the j-th group is mj and otherwise is 1/m2

j , j = 1, · · · , R.
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Table 3. Estimation of SAR with variance structure V2 and parameter configuration P1.

MQML GMM GMM(Σn) II

R θ0 Bias RMSE P(5%) Bias RMSE P(5%) Bias RMSE P(5%) Bias RMSE P(5%)

100 0.2 0.000 0.014 4.6% 0.000 0.014 5.2% −0.001 0.013 4.9% 0.000 0.014 5.0%
0.8 0.001 0.047 3.6% 0.000 0.047 3.7% 0.003 0.042 3.7% 0.001 0.046 3.7%
0.2 0.000 0.008 4.1% 0.000 0.008 4.1% 0.000 0.008 5.1% 0.000 0.008 4.2%
1.5 0.000 0.008 5.3% 0.000 0.008 5.4% 0.000 0.007 4.6% 0.000 0.008 5.3%

0.6 0.000 0.008 4.3% 0.000 0.008 4.9% −0.001 0.007 4.3% 0.000 0.008 4.6%
0.8 0.001 0.049 4.5% 0.002 0.049 5.7% 0.002 0.043 4.3% 0.001 0.049 5.5%
0.2 0.000 0.008 5.3% 0.000 0.008 5.1% 0.000 0.008 4.9% 0.000 0.008 5.2%
1.5 0.000 0.008 5.3% 0.000 0.008 5.4% 0.000 0.007 4.7% 0.000 0.008 5.3%

0.9 0.000 0.002 5.1% 0.000 0.002 7.8% 0.000 0.002 5.9% 0.000 0.002 6.8%
0.8 0.002 0.050 4.1% 0.002 0.050 5.8% 0.002 0.045 4.9% 0.002 0.049 4.6%
0.2 0.000 0.008 5.4% 0.000 0.008 5.4% 0.000 0.008 5.6% 0.000 0.008 5.4%
1.5 0.000 0.008 5.2% 0.000 0.008 5.2% 0.000 0.007 4.7% 0.000 0.008 5.0%

200 0.2 0.000 0.010 3.8% 0.000 0.010 4.7% 0.000 0.009 3.8% 0.000 0.010 4.4%
0.8 0.001 0.033 4.6% 0.001 0.033 4.1% 0.001 0.030 2.6% 0.001 0.033 4.6%
0.2 0.000 0.006 4.6% 0.000 0.006 4.6% 0.000 0.005 4.7% 0.000 0.006 4.6%
1.5 0.000 0.005 4.9% 0.000 0.005 4.6% 0.000 0.005 5.5% 0.000 0.005 4.9%

0.6 0.000 0.005 3.9% 0.000 0.006 5.4% 0.000 0.005 4.5% 0.000 0.005 4.6%
0.8 0.000 0.034 3.7% −0.001 0.034 5.0% 0.000 0.030 3.8% 0.000 0.034 3.9%
0.2 0.000 0.006 5.9% 0.000 0.006 6.1% 0.000 0.006 5.1% 0.000 0.006 5.9%
1.5 0.000 0.006 5.5% 0.000 0.006 5.4% 0.000 0.005 4.8% 0.000 0.006 5.6%

0.9 0.000 0.001 3.9% 0.000 0.001 5.9% 0.000 0.001 5.4% 0.000 0.001 5.0%
0.8 −0.001 0.035 4.3% −0.002 0.035 5.4% 0.000 0.031 5.8% −0.001 0.034 5.0%
0.2 0.000 0.006 3.8% 0.000 0.006 3.9% 0.000 0.005 4.4% 0.000 0.006 3.8%
1.5 0.000 0.006 5.1% 0.000 0.006 5.2% 0.000 0.005 4.6% 0.000 0.006 5.5%

The weight matrix is a social interaction matrix Wn = IR ⊗ [(1mj 1
′
mj
− Imj )/(mj − 1)], mj ∼ IID U(3, 20), j = 1, · · · , R. Reported for each estimator are the bias,

RMSE, and the empirical size of the t test for each parameter equal to its true value at 5% from 1000 simulations. The exogenous regressors are (1, xi1, xi2)
′,

xi1 ∼ IID N(3, 1), xi2 ∼ IID U(−1, 2), and xi1 is independent of xi2. The group size mj follows IID U(3, 20). The error terms follow a zero-mean independent
normal distribution. The variance structure is such that the error variance in the j-th group is 1/mj, j = 1, · · · , R.
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Table 4. Estimation of SAR with variance structure V2 and parameter configuration P2.

MQML GMM GMM(Σn) II

R θ0 Bias RMSE P(5%) Bias RMSE P(5%) Bias RMSE P(5%) Bias RMSE P(5%)

100 0.2 −0.005 0.058 5.2% −0.004 0.080 19.0% −0.005 0.051 6.4% −0.005 0.058 5.9%
0.2 0.006 0.066 5.0% 0.006 0.086 15.4% 0.006 0.058 6.4% 0.006 0.066 6.7%
0.2 0.000 0.008 4.8% 0.000 0.008 4.9% 0.000 0.008 5.2% 0.000 0.008 4.8%
0.1 0.000 0.008 4.6% 0.000 0.008 4.6% 0.000 0.007 4.8% 0.000 0.008 4.6%

0.6 −0.003 0.029 1.4% −0.001 0.042 19.7% −0.003 0.027 6.5% −0.003 0.029 5.5%
0.2 0.007 0.067 1.5% 0.003 0.091 17.9% 0.007 0.061 6.2% 0.006 0.067 5.2%
0.2 0.000 0.008 3.7% 0.000 0.008 3.6% 0.000 0.008 4.2% 0.000 0.008 3.8%
0.1 0.000 0.007 4.4% 0.000 0.007 4.0% 0.000 0.007 5.6% 0.000 0.007 4.4%

0.9 −0.001 0.008 0.4% −0.001 0.011 19.2% −0.001 0.007 5.4% −0.001 0.007 5.8%
0.2 0.009 0.067 0.4% 0.008 0.093 17.8% 0.009 0.059 4.4% 0.007 0.065 5.0%
0.2 0.000 0.009 4.8% 0.000 0.009 5.7% 0.000 0.008 6.1% 0.000 0.009 5.1%
0.1 0.000 0.008 5.5% 0.000 0.008 5.7% 0.000 0.007 5.6% 0.000 0.008 5.6%

200 0.2 −0.003 0.039 5.4% −0.004 0.058 20.1% −0.004 0.035 5.9% −0.003 0.039 6.0%
0.2 0.005 0.045 4.9% 0.006 0.064 17.1% 0.005 0.041 6.4% 0.004 0.045 5.7%
0.2 −0.001 0.006 5.3% −0.001 0.006 5.6% 0.000 0.006 5.4% −0.001 0.006 5.3%
0.1 0.000 0.005 5.8% 0.000 0.005 5.7% 0.000 0.005 5.3% 0.000 0.005 5.8%

0.6 −0.002 0.020 0.7% −0.001 0.029 16.8% −0.003 0.018 4.8% −0.001 0.020 4.6%
0.2 0.003 0.045 1.1% 0.002 0.062 15.6% 0.005 0.040 4.3% 0.002 0.044 4.5%
0.2 0.000 0.006 5.0% 0.000 0.006 5.0% 0.000 0.005 4.9% 0.000 0.006 5.0%
0.1 0.000 0.005 5.3% 0.000 0.005 5.2% 0.000 0.005 5.2% 0.000 0.005 5.1%

0.9 0.000 0.005 0.1% 0.000 0.008 17.3% 0.000 0.004 5.4% 0.000 0.005 4.7%
0.2 0.002 0.045 0.2% 0.002 0.064 15.9% 0.003 0.039 3.7% 0.002 0.044 3.9%
0.2 0.000 0.006 4.4% 0.000 0.006 5.3% 0.000 0.006 4.6% 0.000 0.006 4.7%
0.1 0.000 0.005 5.8% 0.000 0.005 5.8% 0.000 0.005 5.1% 0.000 0.005 5.9%

The weight matrix is a social interaction matrix Wn = IR ⊗ [(1mj 1
′
mj
− Imj )/(mj − 1)], mj ∼ IID U(3, 20), j = 1, · · · , R. Reported for each estimator are the bias,

RMSE, and the empirical size of the t test for each parameter equal to its true value at 5% from 1000 simulations. The exogenous regressors are (1, xi1, xi2)
′,

xi1 ∼ IID N(3, 1), xi2 ∼ IID U(−1, 2), and xi1 is independent of xi2. The group size mj follows IID U(3, 20). The error terms follow a zero-mean independent
normal distribution. The variance structure is such that the error variance in the j-th group is 1/mj, j = 1, · · · , R.
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Some interesting observations arise. Firstly, all the consistent estimators deliver almost unbiased
results across all the experimental configurations, though the estimated intercept term associated
with Xn is relatively more biased. Secondly, among the consistent estimators, the optimal robust
GMM using the true Σn usually achieves the smallest RMSE. The other three estimators have very
similar performance in terms of RMSE. Thirdly, for the purpose of hypothesis testing, it appears that
the II-based procedure is as good as the one based on (the infeasible) GMM(Σn), with the empirical
rejection rates matching very closely the nominal size. The MQML of Liu and Yang (2015) tends to
deliver under-sized t-test regarding the spatial autoregression parameter λ when its value is relatively
high. For example, in Table 4, one sees the rejection rates of 0.4% and 0.1%, under R = 100 and
R = 200, respectively, for testing λ equal to its true value when λ0 = 0.9 from a 5% t-test based
on Liu and Yang (2015). This under-size problem, when the degree of spatial correlation is high,
also carries over to the t test associated with the intercept parameter. The GMM estimator, when one is
unsure of the error variance structure and uses u′n(Gn−Dg(Gn)un and u′n(GnXnβ, Xn) as the moment
conditions, delivers very disappointing size performance in Table 4 when testing either the spatial
autoregression parameter λ or the intercept parameter: the rejection rates approach around 20% at
the 5% nominal size.

Given the simulated data, it is worthwhile to look at a plot of the binding function to check
whether the binding function is monotonic, as required by Assumption 7. Figure 1 is drawn for 1000
simulated data sets under variance structure V1 and parameter configuration P1 with R = 100.8

Recall that for a given θ0 = (λ0, β′0)
′ and the exogenous Xn, the data generating process generates

the observable data yn and the binding function λ + y′nS′n(λ)MnDn(λ)MnSn(λ)yn/y′nW ′
n MnWnyn

is a function of λ. Figure 1 clearly illustrates that the binding function is a monotonic function of λ and
thus the monotonicity condition in Assumption 7 is numerically valid. Figures drawn for the simulated
data under other configurations display similar patterns and are omitted.

Figure 1. bn(λ) under variance structure V1 and parameter configuration P1, R = 100.

One may wonder about the performance of the proposed II estimator under homoscedasticity,
relative to the QML estimator of Lee (2004) and the best GMM estimator of Lee (2007).9 Tables 5 and 6
report the Monte Carlo results under parameter configurations P1 and P2, but now the error term is
simulated as a standard normal random variable. The exogenous variables were simulated the same
as before. From Tables 5 and 6, one observes that the II estimator is slightly better than the best GMM
estimator of Lee (2007), usually delivering smaller finite-sample bias and lower RMSE. Both methods
have good finite-sample size performance in terms of the 5% t test. The finite-sample performance
of the QML, on the other hand, is quite different from what the asymptotic theory predicts. Its bias
is more severe than the other two and it also gives higher RMSE. Moreover, its size performance is
very poor.

8 Each sub-figure contains 1000 lines, one for each of the simulated data set.
9 The authors thank a referee for suggesting this comparison. Since one needs to concentrate out the scalar error variance

instead of the nuisance matrix Σn, the II procedure needs to be modified, see Appendix B.6.
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Table 5. Estimation of SAR under homoscedasticity with parameter configuration P1.

QML GMM II

R θ0 Bias RMSE P(5%) Bias RMSE P(5%) Bias RMSE P(5%)

100 0.2 0.014 0.043 19.0% −0.007 0.040 7.5% −0.003 0.037 5.6%
0.8 −0.032 0.146 18.5% 0.025 0.144 6.7% 0.013 0.138 6.3%
0.2 −0.002 0.029 15.9% −0.002 0.029 6.1% −0.002 0.029 6.1%
1.5 −0.001 0.026 17.7% −0.002 0.026 6.1% −0.001 0.026 5.9%

0.6 0.026 0.032 34.1% −0.004 0.020 5.4% −0.002 0.019 5.2%
0.8 −0.137 0.188 26.5% 0.022 0.137 5.4% 0.010 0.131 4.7%
0.2 −0.001 0.029 17.3% −0.001 0.029 5.1% 0.000 0.029 5.1%
1.5 −0.005 0.026 15.3% 0.000 0.026 4.5% 0.001 0.026 4.4%

0.9 0.011 0.011 51.3% −0.001 0.005 5.2% 0.000 0.005 4.1%
0.8 −0.213 0.248 39.9% 0.022 0.140 5.5% 0.009 0.134 5.0%
0.2 −0.002 0.028 14.5% −0.001 0.028 4.3% −0.001 0.028 3.9%
1.5 −0.011 0.029 19.8% 0.001 0.027 5.1% 0.001 0.027 4.7%

200 0.2 0.017 0.032 23.0% −0.003 0.026 5.6% −0.001 0.025 4.3%
0.8 −0.044 0.103 18.6% 0.009 0.094 5.0% 0.003 0.090 3.6%
0.2 −0.001 0.020 15.7% −0.001 0.020 4.1% −0.001 0.020 4.2%
1.5 0.001 0.017 14.1% 0.001 0.017 4.6% 0.001 0.017 4.9%

0.6 0.028 0.030 62.1% −0.002 0.014 5.3% −0.001 0.013 4.2%
0.8 −0.145 0.172 47.1% 0.009 0.096 4.8% 0.003 0.093 3.8%
0.2 0.000 0.021 18.4% 0.000 0.021 4.5% 0.000 0.021 4.5%
1.5 −0.005 0.019 18.1% 0.000 0.018 5.3% 0.001 0.018 4.8%

0.9 0.011 0.011 85.1% 0.000 0.004 6.3% 0.000 0.003 4.1%
0.8 −0.220 0.237 68.7% 0.009 0.097 5.9% 0.004 0.093 5.0%
0.2 −0.002 0.021 17.7% 0.000 0.021 4.5% 0.000 0.021 4.4%
1.5 −0.014 0.023 25.0% −0.002 0.019 4.6% −0.001 0.019 4.5%

The weight matrix is a social interaction matrix Wn = IR ⊗ [(1mj 1
′
mj
− Imj )/(mj − 1)], mj ∼ IID U(3, 20), j = 1, · · · , R.

Reported for each estimator are the bias, RMSE, and the empirical size of the t test for each parameter equal to its true value
at 5% from 1000 simulations. The exogenous regressors are (1, xi1, xi2)

′, xi1 ∼ IID N(3, 1), xi2 ∼ IID U(−1, 2), and xi1 is
independent of xi2. The group size mj follows IID U(3, 20). The error terms follow a standard normal distribution.
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Table 6. Estimation of SAR under homoscedasticity with parameter configuration P2.

QML GMM II

R θ0 Bias RMSE P(5%) Bias RMSE P(5%) Bias RMSE P(5%)

100 0.2 0.041 0.078 13.3% −0.007 0.056 5.7% −0.004 0.055 5.6%
0.2 −0.037 0.121 14.7% 0.017 0.112 5.3% 0.011 0.109 5.1%
0.2 −0.002 0.029 16.2% −0.004 0.029 5.9% −0.002 0.029 6.0%
0.1 0.000 0.026 18.0% −0.001 0.026 6.6% 0.000 0.026 6.4%

0.6 0.072 0.076 29.7% −0.004 0.029 4.6% −0.002 0.028 4.3%
0.2 −0.149 0.181 25.9% 0.007 0.108 5.3% 0.001 0.107 5.6%
0.2 −0.001 0.029 16.4% −0.001 0.029 5.2% 0.001 0.029 5.2%
0.1 0.000 0.026 18.2% 0.000 0.027 6.6% 0.001 0.027 6.2%

0.9 0.026 0.027 48.5% −0.001 0.008 5.3% −0.001 0.008 5.3%
0.2 −0.214 0.235 38.4% 0.010 0.110 5.3% 0.004 0.109 4.9%
0.2 −0.003 0.028 15.8% 0.000 0.028 4.0% 0.001 0.028 4.2%
0.1 −0.002 0.025 15.2% 0.000 0.026 5.1% 0.001 0.026 4.9%

200 0.2 0.046 0.064 23.3% −0.004 0.038 4.6% −0.003 0.038 4.5%
0.2 −0.046 0.093 18.7% 0.009 0.079 5.3% 0.005 0.078 4.7%
0.2 −0.001 0.021 17.5% −0.002 0.021 6.0% −0.001 0.021 5.6%
0.1 0.000 0.018 15.8% 0.000 0.018 4.3% 0.000 0.018 4.0%

0.6 0.074 0.076 70.7% −0.002 0.020 4.8% −0.001 0.020 4.6%
0.2 −0.152 0.170 49.3% 0.004 0.081 6.3% 0.000 0.079 5.9%
0.2 −0.002 0.021 17.6% −0.001 0.021 5.0% 0.001 0.021 5.0%
0.1 0.000 0.019 17.8% 0.000 0.019 6.1% 0.001 0.019 6.4%

0.9 0.027 0.027 95.2% −0.001 0.005 4.6% 0.000 0.005 4.1%
0.2 −0.218 0.229 72.6% 0.005 0.081 6.0% 0.001 0.079 5.2%
0.2 −0.003 0.020 15.3% 0.000 0.020 4.8% 0.001 0.020 4.8%
0.1 −0.001 0.018 15.0% 0.000 0.018 4.2% 0.001 0.018 3.9%

The weight matrix is a social interaction matrix Wn = IR ⊗ [(1mj 1
′
mj
− Imj )/(mj − 1)], mj ∼ IID U(3, 20), j = 1, · · · , R.

Reported for each estimator are the bias, RMSE, and the empirical size of the t test for each parameter equal to its true value
at 5% from 1000 simulations. The exogenous regressors are (1, xi1, xi2)

′, xi1 ∼ IID N(3, 1), xi2 ∼ IID U(−1, 2), and xi1 is
independent of xi2. The group size mj follows IID U(3, 20). The error terms follow a standard normal distribution.
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The simulation results suggest that the II estimator could be used at least as a complement to
other consistent estimators proposed in the literature that are robust to unknown heteroscedasticity.
The II method may be favored for the purpose of hypothesis testing, especially for testing the spatial
autoregression parameter. It also has very good finite-sample performance under homoscedasticity.

5. Concluding Remarks

Lee (2002) challenged the traditional wisdom that the OLS estimator is biased and inconsistent
in spatial autoregressions and showed that it may be consistent under some special circumstances if
there are exogenous regressors included. This paper thoroughly examines the asymptotic behavior
of the OLS estimator under different specifications of the degree of aggregate influence on each
unit from other units and provides a unified asymptotic distribution result of the recentered OLS
estimator. Based on this, an indirect inference estimator, which is consistent and asymptotically
normal, is introduced. The new estimator is relatively easy to calculate, does not rely on distributional
assumptions on the data, and is robust to heteroscedasticity. Monte Carlo experiments in this paper
show the good finite-sample performance of the II estimator in comparison with other consistent
estimators that are robust to unknown heteroscedasticity.

In this paper, no attempt is made to conduct some comparison of the asymptotic variances
of the GMM and II estimators. The II estimator in this paper may be interpreted as an estimator
that uses one moment condition, namely, by matching the OLS estimator λ̂n with its approximate
analytical expectation. In contrast, the GMM estimator in Lin and Lee (2010) is based on a set of exact
expectations of bilinear and quadratic forms in un. The OLS estimator itself is based on an incorrect
moment condition, namely, exogeneity of Wnyn. It is not clear whether correcting an incorrect
moment condition is as efficient as using a set of correct moment conditions. A fruitful strategy is
perhaps to design a combined estimator.10 Another possible extension is to consider the more general
higher-order SARAR (spatial autoregressive model with spatial autoregressive disturbances) with
heteroscedastic innovations as in Badinger and Egger (2011) and Jin and Lee (2019). In this more
general setup, the II procedure may be implemented as follows. One can first derive the approximate
analytical expectation of the OLS estimator of the parameters in the SAR part, taken the parameters in
the disturbance part as given, and thus design a “corrected” SAR estimator. Then based on the residuals
that arise from the “corrected” SAR estimator, one can derive approximate analytical expectation of
the OLS estimator of the parameters in the disturbance part. In the end, one can jointly estimate all
the parameters in the SAR and disturbance parts by using the two sets of approximate analytical
expectations. Some preliminary simulations show very promising results from this approach. Rigorous
treatments of these extensions are left for future studies.
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Appendix A. Lemmas

This appendix collects several lemmas that are useful for deriving the main results. Some of these
results (without proofs) were either derived or presented in different ways, see Kelejian and Prucha
(1999, 2001) and Lee (2001, 2002, 2004).

Lemma A1. If {An} and {Bn} are uniformly bounded in row and column sums, then so are {An + Bn}
and {AnBn}.

Lemma A2. Suppose {An} has its elements of order O(h−1
n ). If {Bn} is uniformly bounded in column sum,

then the elements of AnBn are O(h−1
n ); if {Bn} is uniformly bounded in row sum, then the elements of Bn An

are O(h−1
n ). In either case, tr(AnBn) = O(n/hn).

Lemma A3. For a product involving (powers of) Gn and G′n, ∏m
l=1(G

i1
n G′i2n )jl , where i1, i2 ≥ 0, i1i2 > 0,

jl ≥ 0, ∏m
l=1 jl > 0, i1, i2, jl all being integers, under Assumptions 1 and 2, its elements are of order O(h−1

n )

and its trace is of order O(n/hn).

Proof. Under Assumptions 1 and 2, from Lemma A2, the elements of Gn = WnS−1
n are O(h−1

n ) and
tr(Gn) = O(n/hn). From Lemma A1, Gn = WnS−1

n is uniformly bounded in row and column sums.
By successive using of Lemma A1, Gi1−1

n is uniformly bounded in row and column sums, and through
Lemma A2, the elements of Gi1

n = GnGi1−1
n are O(h−1

n ) and tr(Gi1
n ) = O(n/hn). Similarly, such a claim

applies to G′i2n , which is also uniformly bounded in row and column sums. Then Gi1
n G′i2n is uniformly

bounded in row and column sums with its elements being O(h−1
n ) and tr(Gi1

n G′i2n ) = O(n/hn).
Proceeding similarly, one can see that the product ∏m

l=1(G
i1
n G′i2n )jl shares these properties too.

Lemma A4. For the sequence {un} with the elements following Assumption 3, let An and Bn be
nonrandom, then

E(u′n Anun) = tr(Σn An), (A.1)

E(unu′n Anun) = dg(Σ(3)
n � An), (A.2)

E(u′n Anunu′nBnun) = tr(Σ(4)
n � An � Bn) + tr(Σn An)tr(ΣnBn)

+ tr[Σn AnΣn(Bn + B′n)]. (A.3)

Lemma A5. Under Assumptions 1–5,

u′nGnun = OP(n/hn), u′n MnGnun = OP(n/hn),

u′nG′n MnGnun = OP(n/hn), β′0X ′nG′n Mnun = OP(
√

n),

β′0X ′nG′n MnGnun = OP(
√

n), β′0X ′nG′n MnGnXnβ0 = O(n).

Proof. From (A.1), E(u′nGnun) = tr(ΣnGn). Under Assumption 3, Σn is uniformly bounded,
so tr(ΣnGn) ≤ Ktr(Gn) = O(n/hn) from Lemma A3. Lee (2004) shows that, under Assumption 5,
limn→∞ n−1(Xn, GnXnβ0)

′(Xn, GnXnβ0) is nonsingular if and only if both the limits of n−1X ′nXn and
n−1β′0X ′nG′n MnGnXnβ0 are nonsingular, indicating that X ′nXn = O(n) and β′0X ′nG′n MnGnXnβ0 =

O(n). Also from Lee (2004), Mn is uniformly bounded in row and column sums, and then
E(u′n MnGnun) = tr(Σn MnGn) ≤ Ktr(MnGn) = O(n/hn) from Lemmas A2 and A3. Similarly,
one can show E(u′nG′n MnGnun) = O(n/hn). As for β′0X ′nG′n Mnun, its expectation is zero and its
variance is given by β′0X ′nG′n MnΣn MnGnXnβ0, which is bounded by Kβ′0X ′nG′n MnGnXnβ0 = O(n).
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Then it follows that β′0X ′nG′n Mnun = OP(
√

n). Similarly, β′0X ′nG′n MnGnun = OP(
√

n). Note that
G′n MnGnG′n MnGn is uniformly bounded in row and column sums through Lemmas A1 and A2.
Given that the elements of Xn are uniformly bounded, one has β′0X ′nG′n MnGnG′n MnGnXnβ0 = O(n).
Then it follows that β′0X ′nG′n MnGnun = OP(

√
n).

Lemma A6. Under Assumptions 1–5, E(rn) = O(n/hn), Var(rn) = O(n), E(dn) = O(n), and Var(dn) =

O(n). When there is no X, then E(r1n) = O(n/hn), Var(r1n) = O(n/hn), E(d1n) = O(n/hn), and
Var(d1n) = O(n/hn).

Proof. Given Lemmas A4 and A5,

E(rn) = tr(Σn MnGn) = O(n/hn) (A.4)

and
E(dn) = tr(ΣnG′n MnGn) + β′0X ′nG′n MnGnXnβ0 = O(n) (A.5)

are obvious. Using Lemma A4,

Var(rn) = Var(u′n MnGnun) + Var(β′0X ′nG′n Mnun)

+ 2Cov(u′n MnGnun, β′0X ′nG′n Mnun)

= E[(u′n MnGnun)
2]− [E(u′n MnGnun)]

2 + E(u′n MnGnXnβ0β′0X ′nG′n Mnun)

+ 2β′0X ′n G′n MnE(unu′n MnGnun)

= tr(Σ(4)
n �MnGn �MnGn) + tr[Σn MnGnΣn(MnGn + G′n Mn)]

+ β′0X ′nG′n MnΣn MnGnXnβ0 + 2β′0X ′nG′n Mndg(Σ(3)
n �MnGn), (A.6)

where in view of Lemma A3 and A5, β′0X ′nG′n MnΣn MnGnXnβ0 = O(n) is the leading term. Similarly,

Var(dn) = E[(u′nG′n MnGnun)
2]− [E(u′nG′n MnGnun)]

2

+ 4(u′nG′n MnGnXnβ0β′0X ′nG′n MnGnun)

+ 4β′0X ′nG′n MnGnE(unu′nG′n MnGnun)

= tr(Σ(4)
n �G′n MnGn �G′n MnGn) + 2tr[ΣnG′n MnGnΣnG′n MnGn]

+ 4β′0X ′nG′n MnGnΣnG′n MnGnXnβ0

+ 4β′0X ′nG′n MnGndg(Σ(3)
n �G′n MnGn), (A.7)

in which β′0X ′nG′n MnGn ΣnG′n MnGnXnβ0 = O(n) is the leading term. For the case when there is no
X, the results are obvious.

Lemma A7. Suppose {An} is a sequence of matrices with uniformly bounded row and column sums. Let {bn}
be a sequence of constants with uniformly bounded elements and supn→∞ n−1 ∑n

i=1 |bi,n|2+η1 < ∞ for some
η1 > 0 . For the sequence {un} that satisfies Assumption 3, let Qn = b′nun + u′n An un. Then

Qn − E(Qn)√
Var(Qn)

d→ N(0, 1). (A.8)

Appendix B. Proofs

The proofs of Theorems 1–4 in Section 2 and Corollary 2 in Section 3 are provided in this appendix
and those of Corollaries 1 and 3, which follow similarly, are skipped.
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Appendix B.1. Proof of Theorem 1

Proof. By a Nagar-type (Nagar (1959)) expansion,

√
n
(

λ̂n − λ0 −
tr(Σn MnGn)

y′nW ′
n MnWnyn

)
=
√

n
(

r1n − E(r1n) + r2n

dn

)
=
√

n
(

r1n − E(r1n) + r2n

E(dn) + dn − E(dn)

)
=
√

n
(

r1n − E(r1n) + r2n

E(dn)

)(
1 +

dn − E(dn)

E(dn)

)−1

=
√

n
(

r1n − E(r1n) + r2n

E(dn)

)
+ oP(1)

where, in light of the proof of Lemma A6, r1n−E(r1n) = OP(
√

n/hn), r2n = O(
√

n), and E(dn) = O(n).
So when hn diverges,

√
n
(

λ̂n − λ0 −
tr(Σn MnGn)

y′nW ′
n MnWnyn

)
=

√
nr2n

E(dn)
+ oP(1),

and one can apply Lemma A7 to r2n = β′0X ′nG′n Mnun; when hn is bounded, one can apply Lemma
A7 to rn = r1n + r2n = u′n MnGnun + β′0X ′nG′n Mnun. From Lemma A6, one sees that Var(r2n) =

Var(rn) + o(n) when hndiverges. Therefore, regardless of hn,

√
n
(

λ̂n − λ0 −
tr(Σn MnGn)

y′nW ′
n MnWnyn

)
d→ N

(
0, lim

n→∞

nVar(rn)

[E(dn)]2

)
.

Appendix B.2. Proof of Theorem 2

Proof. Note that

ũ′nDnũn = u′nDnun + (β̃n − β0)
′X ′nXn(β̃n − β0)− 2(β̃n − β0)

′X ′nDnun

= u′nDnun + OP(1) + OP(n−1/2)OP(
√

n/h2
n),

in view of X ′nXn = O(n), β̃n − β0 = OP(n−1/2) and Var(X ′nDnun) = X ′nDnΣnDnXn = O(n/h2
n).

Then

√
n
(

λ̂n − λ0 −
y′nS′n MnDn MnSnyn

y′nW ′
n MnWnyn

)
=
√

n
(

λ̂n − λ0 −
u′nDnun

dn
+

u′nDnun − ũ′nDnũn

dn

)
=
√

n
(

rn − u′nDnun

dn

)
+ oP(1)

=
√

n
(

rn − u′nDnun

E(dn)

)
+ oP(1).

It follows from Lemma A7 that

√
n
(

λ̂n − λ0 −
y′nS′n MnDn MnSnyn

y′nW ′
n MnWnyn

)
d→ N(0, η),
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where

η = lim
n→∞

n
Var(rn − u′nDnun)

[E(dn)]2

= lim
n→∞

n
Var(u′nEnun + β′0X ′nG′n Mnun)

[E(dn)]2

= lim
n→∞

n
{

tr[ΣnEnΣn(En + E′n)] + β′0X ′nG′n MnΣn MnGnXnβ0
}

[E(dn]2
(A.9)

by using Lemma A4 and the fact that dg(En) = 0.

Appendix B.3. Proof of Theorem 3

Proof. One can apply the extended delta method as in Phillips (2012) to derive the asymptotic
distribution of

√
n(λ̂I I

n − λ0). For this purpose, one needs to check a technical condition, namely,
the ∂b−1

n (λ)/∂λ should be asymptotically locally equicontinuous at λ0: for given ζ > 0, if sn → ∞ and
sn/
√

n→ 0,

sup
sn |λ−λ0|<ζ

∣∣∣∣∣ b−1′
n (λ)− b−1′

n (λ0)

b−1′
n (λ0)

∣∣∣∣∣ = sup
sn |λ−λ0|<ζ

∣∣∣∣ b′n(λ0)− b′n(λ)
b′n(λ)

∣∣∣∣ a.s.→ 0.

The first derivative of the binding function is

b′n(λ)

= 1 +
y′nS′n(λ)MnDg(MnG2

n(λ))MnSn(λ)yn − 2y′nW ′
n MnDg(MnGn(λ))MnSn(λ)yn

y′nW ′
n MnWnyn

. (A.10)

By substituting yn = S−1
n Xnβ0 + S−1

n un and using Lemmas A2–A4, one can see that the second term
in (A.10) converges almost surely to a bounded constant for all λ ∈ Λ. In a similar way, one can show

b′′n(λ)

=
2y′nS′n(λ)MnDg(MnG3

n(λ))MnSn(λ)yn + 2y′nW ′
n MnDg(MnGn(λ))MnWnyn

y′nW ′
n MnWnyn

also converges almost surely to a bounded constant. Thus, for some λ∗ that lies between λ0 and λ,∣∣∣∣ b′n(λ0)− b′n(λ)
b′n(λ)

∣∣∣∣ = |λ− λ0|
∣∣∣∣ b′′n(λ∗)b′n(λ)

∣∣∣∣ < ζ

sn

∣∣∣∣ b′′n(λ∗)b′n(λ)

∣∣∣∣ a.s.→ 0.

With all these results, (12) follows immediately from Theorem 1 of Phillips (2012) and Theorem 2 in
this paper.

Appendix B.4. Proof of Theorem 4

Proof. Upon substitution,

β̂
I I
n = (X ′nXn)

−1X ′nŜnS−1
n Xnβ0 + (X ′nXn)

−1X ′nŜnS−1
n un

= (X ′nXn)
−1X ′n

[
Sn − (λ̂I I

n − λ0)Wn

]
S−1

n Xnβ0

+ (X ′nXn)
−1X ′n

[
Sn − (λ̂I I

n − λ0)Wn

]
S−1

n un

= β0 + (X ′nXn)
−1X ′nun − (λ̂I I

n − λ0)
[
(X ′nXn)

−1X ′nGnXnβ0 + (X ′nXn)
−1X ′nGnun

]
,
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where λ̂I I
n − λ0 = Op(n−1/2) (from Theorem 3). Further, (X ′nXn)−1X ′nun = Op(n−1/2),

(X ′nXn)−1X ′nGnXnβ0 = O(1), and (X ′nXn)−1X ′nGnun = Op(n−1/2) (from Lemma A5). Note that
if one expands λ̂I I

n − λ0 = b−1
n (λ̂n)− b−1

n (bn(λ0)),

√
n(λ̂I I

n − λ0) =

√
n
(
λ̂n − bn(λ0)

)
b′n(λ0)

+ OP(n−1/2). (A.11)

From the proof of Theorem 2,

λ̂n − bn(λ0) =
rn − u′nDnun

E(dn)
+ oP(n−1/2) =

u′nEnun + β′0X ′nG′n Mnun

E(dn)
+ oP(n−1/2). (A.12)

Given the above results, one has

√
n(β̂

I I
n − β0)

=
√

n(X ′nXn)
−1X ′nun −

√
n(λ̂I I

n − λ0)(X ′nXn)
−1X ′nGnXnβ0 + oP(1)

=
√

n(X ′nXn)
−1X ′nun −

[√
n
(
λ̂n − bn(λ0)

)
b′n(λ0)

]
(X ′nXn)

−1X ′nGnXnβ0 + oP(1)

=
√

n(X ′nXn)
−1X ′nun −

√
n(X ′nXn)−1X ′nGnXnβ0

b′n(λ0)

u′nEnun + β′0X ′nG′n Mnun

E(dn)
+ oP(1). (A.13)

One can check that Lemma A7 can be applied to each element or any nonstochastic linear combination

of elements of
√

n(β̂
I I
n − β0) under such a representation. So

√
n(β̂

I I
n − β0) converges to a normal

distribution, with the asymptotic covariance matrix,

V = lim
n→∞
{n(X ′nXn)

−1X ′nΣnXn(X ′nXn)
−1

+
η

b2
0
(X ′nXn)

−1X ′nGnXnβ0β′0X ′nG′nXn(X ′nXn)
−1

− n(X ′nXn)−1X ′nGnXnβ0β′0X ′nG′n MnΣnXn(X ′nXn)−1

b0[tr(ΣnG′n MnGn) + β′0X ′nG′n MnGnXnβ0]

− n(X ′nXn)−1X ′nΣn MnGnXnβ0β′0X ′nG′nXn(X ′nXn)−1

b0[tr(ΣnG′n MnGn) + β′0X ′nG′n MnGnXnβ0]

}
. (A.14)

The asymptotic covariance between β̂
I I
n and λ̂I I

n follows from the expansion of
√

n(λ̂I I
n − λ0) (see (A.11)

and (A.12)) and that of
√

n(β̂
I I
n − β0) (see (A.13)) , given by

γ = lim
n→∞

[
n

b0E(dn)
(X ′nXn)

−1X ′nΣn MnGnXnβ0 −
η

b2
0
(X ′nXn)

−1X ′nGnXnβ0

]
. (A.15)

Appendix B.5. Proof of Corollary 2

Proof. By substitution and using the Nagar (1959) expansion,
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√
n
hn

(
λ̂n − λ0 −

y′nS′nDnSnyn
y′nW ′

nWnyn

)
=

√
n
hn

(
r1n
d1n
− u′nDnun

d1n

)
=

√
n
hn

(
u′nEnun

d1n

)
=

√
n
hn

u′nEnun

E(d1n)
+ oP(1),

where E(u′nEnun) = 0, Var(u′nEnun) = tr[ΣnEnΣn(En + E′n)] = O(n/hn), and and the asymptotic
distribution follows when one applies Lemma A7 to the quadratic form u′nEnun.

Appendix B.6. The Case of Homoscedastic Error Term

If Σn = σ2
0 In (and further Σ

(j)
n = µj In, µj = E(uj

i,n), j = 3, 4), then the recentering term
in (7) becomes σ2

0 tr(MnGn)/y′nW ′
n MnWnyn. To make the II procedure feasible, one may replace

σ2
0 tr(MnGn)/y′nW ′

n MnWnyn by n−1y′nS′n MnSnyntr(MnGn)/y′nW ′
n MnWnyn. Similar to the proof of

Theorem 2, one can put

√
n

(
λ̂n − λ0 −

n−1y′nS′n MnSnyntr(MnGn)

y′nW ′
n MnWnyn

)
=
√

n
(

r∗n − E(r∗n)
E(dn)

)
+ oP(1)

d→ N(0, ω),

where ω = limn→∞ nVar(r∗n)/{[E(dn)]2}, r∗n = u′n MnG∗nun + β′0X ′nG′n Mnun, G∗n = Gn −
n−1tr(MnGn). In particular,

Var(r∗n) = µ4tr(MnG∗n �MnG∗n) + σ2
0 tr[MnG∗n(MnG∗n + G∗′n Mn)]

+ σ2
0 β′0X ′nG′n Mn MnGnXnβ0 + 2µ3β′0X ′nG′n Mndg(MnG∗n).

Define the binding function as bn(λ) = λ + n−1y′nS′n(λ)MnSn(λ)yntr(MnGn(λ))/y′nW ′
n MnWnyn

and b′n(λ0) = 1 + (ny′nW ′
n MnWnyn)

−1[y′nS′n MnSnyntr(MnG2
n) − 2y′nW ′

n MnSnyntr(MnGn)].

Assume b′n(λ0)
a.s.→ b0 6= 0. The asymptotic distribution of (λ̂I I

n , β̂
I I′
n )′ resulting from this binding

function follows similarly from the proofs of Theorems 3 and 4 , given by

√
n

(
λ̂I I

n − λ0

β̂
I I
n − β0

)
d→ N

(
0,

(
ω
b2

0
γ′

γ V

))
,

where

V = lim
n→∞
{nσ2

0 (X ′nXn)
−1 +

ω

b2
0
(X ′nXn)

−1X ′nGnXnβ0β′0X ′nG′nXn(X ′nXn)
−1

−
n(X ′nXn)−1X ′nGnXnβ0[σ

2
0 β′0X ′nG′n Mn + µ3dg(MnG∗n)′]Xn(X ′nXn)−1

b0[σ
2
0 tr(G′n MnGn) + β′0X ′nG′n MnGnXnβ0]

−
n(X ′nXn)−1X ′n[σ2

0 MnGnXnβ0 + µ3dg(MnG∗n)]β
′
0X ′nG′nXn(X ′nXn)−1

b0[σ
2
0 tr(G′n MnGn) + β′0X ′nG′n MnGnXnβ0]

}

and

γ = lim
n→∞

{
n

b0E(dn)
(X ′nXn)

−1X ′n[σ
2
0 MnGnXnβ0 + µ3dg(MnG∗n)]−

ω

b2
0
(X ′nXn)

−1X ′nGnXnβ0

}
.
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