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Abstract: Previous findings indicate that the inclusion of dynamic factors obtained from a large
set of predictors can improve macroeconomic forecasts. In this paper, we explore three possible
further developments: (i) using automatic criteria for choosing those factors which have the greatest
predictive power; (ii) using only a small subset of preselected predictors for the calculation of the
factors; and (iii) utilizing frequency-domain information for the estimation of the factor models.
Reanalyzing a standard macroeconomic dataset of 143 U.S. time series and using the major measures
of economic activity as dependent variables, we find that (i) is not helpful, whereas focusing on
the low-frequency components of the factors and disregarding the high-frequency components can
actually improve the forecasting performance for some variables. In the case of the gross domestic
product, a combination of (ii) and (iii) yields the best results.

Keywords: dynamic factor models; model selection; shrinkage; targeted predictors; frequency
domain

1. Introduction

Factor models have become increasingly popular for the efficient extraction of information from a
large number of macroeconomic variables. To investigate the forecasting performance of these models,
Eickmeier and Ziegler (2008) conducted a meta-analysis of 52 studies and obtained mixed results
that depended on the region, the category of the variable to be predicted, the size of the dataset,
and the estimation technique. This is aggravated by the facts that it is a priori not clear how many
factors should be included (Bai and Ng 2002, 2006, 2008b) and that the findings change noticeably
when different sub-periods (states of the business cycle) are considered (Kim and Swanson 2014).
Accordingly, many efforts have been made to improve the standard factor-augmented forecast, which is
based on lagged values of the variable of interest and a small number of factors. Two approaches are of
particular interest. The first approach by Bai and Ng (2008a) allows the factors to be used as predictors
to depend on the variable to be predicted. As pointed out by the authors, the obvious procedure to
include the factors in their natural order fails to take their predictive power into account, hence it could
possibly be improved by using fewer but more informative predictors (targeted-predictors).

The second approach applies high-dimensional methods (such as pretest, Bayesian model
averaging, empirical Bayes methods, or bagging) to large sets of factors. Noticing the
difficulty in comparing these high-dimensional methods theoretically because of differences in the
modeling assumptions and empirically because of differences in the datasets and implementations,
Stock and Watson (2012) provided a general yet simple shrinkage representation that covers all these
methods. Using this generalized shrinkage representation, they examined in an empirical analysis of a
large macroeconomic dataset whether the shrinkage methods can outperform what is often regarded
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as “standard factor-augmented forecast”, i.e., the forecast based on those five factors (principal
components) with the largest variances (eigenvalues). They found that this was not the case. However,
factor proponents might take some small comfort in the fact that the standard forecast appeared to
improve upon a simple autoregressive benchmark for a group of variables that included the major
measures of economic activity (GDP, industrial production, employment, and unemployment).

In general, it is difficult to assess the significance of any further development of an existing
method because the improved method is usually much more complex and depends on a larger number
of tuning parameters, which increases the risk of a data-snooping bias. In the case of the standard
factor-augmented forecast, Stock and Watson (2012) had to select the dataset and the investigation
period, the variables to be predicted, the transformations (e.g., taking logarithms and/or differencing)
to be applied to achieve stationarity, and the number of lagged values. The fact that the standard
forecast improves upon an autoregressive forecast encourages not only the exploration of much more
sophisticated further developments (see, e.g., Kim and Swanson 2014) but also the use of the standard
forecast as a benchmark for the performance of new forecasts (see, e.g., Cheng and Hansen 2015).
Clearly, the results of studies using this benchmark will be severely compromised if this improvement
is not genuine. After all, what is the point of beating a bad benchmark?

There are two major goals of this paper. The first is to scrutinize the usefulness of the
standard factor-augmented forecast. To that end, we reanalyze the macroeconomic dataset used
by Stock and Watson (2012) with a focus on the continuous evaluation of the forecasting performance
throughout the whole investigation period (1960:II–2008:IV). Our second major goal is to explore
options for possible improvements. Taking up the idea that relationships between variables may
exist only in certain frequency bands (Engle 1974; Hannan 1963; Reschenhofer and Chudy 2015a), we
examine whether the use of frequency-domain information can improve forecasts based on factor
models. We also address the central issue of how to select the factors. We may only try to determine
the number of factors to be included and then just use the first factors (in their natural order) or,
alternatively, find that subset of factors which has the greatest predictive power. It is only in the first
case that conventional model selection criteria such as AIC and BIC are adequate. In the second case,
criteria specially designed for nonnested models (Foster and George 1994; George and Foster 2000;
Reschenhofer 2015; Tibshirani and Knight 1999) should be used. The third option is using a technique
suitable for high-dimensional set-up, which is invariant to the ordering of predictors, e.g., LASSO
(Tibshirani 1996). Finally, we exploit the possibility to reduce the set of predictors from which we then
compute the factors. We first follow Bai and Ng (2008a) and use LASSO to obtain a reduced set of
targeted predictors. Alternatively, we select a small set of predictors based on economic arguments.

In our rolling one-step-ahead forecasting study, we find that the inclusion of factors obtained from
a large set of potential predictor series results in an improvement over a simple univariate benchmark
and that the further developments proposed in this paper perform differently depending on which
variables are to be predicted.

The rest of the paper is organized as follows. Section 2 discusses the models, the model-
identification methods, and the forecasting techniques. In Section 3, the data as well as the data
transformations are described and the empirical results are presented. Section 4 concludes.

2. Methods

2.1. Simple Linear Forecast

Let Y1, . . . , Yn be the time series of interest and X1k, . . . , Xnk, k = 1, . . . , H, a large number
of possible predictor series. Following Stock and Watson (2012), the series are first subjected to
suitable transformations in order to achieve stationarity. Then, autoregressive dynamics are partialed
out by regressing (Y2, . . . , Yn)> on (1, . . . , 1)>, (Y1, . . . , Yn−1)

>, . . . , (Y−2, . . . , Yn−4)
> and for each

k, (X1k, . . . , Xnk)
> on (1, . . . , 1)>, (Y1, . . . , Yn)>, . . . , (Y−2, . . . , Yn−3)

>, where it is assumed that the
observations Y0, Y−1, Y−2 are available. Denoting the estimated parameter vector of the autoregression
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by φ̂ = (φ̂0, φ̂1, . . . , φ̂4), the residual vector by y = (y2, . . . , yn)>, and the residual vectors of the other
regressions by xk = (x1k, . . . , xnk)

>, k = 1, . . . , H, a simple forecast of yn+1 is given by

ŷn+1 =
∑
k∈M

β̂kxnk, (1)

where the OLS estimates β̂k are obtained by regressing y on xk = (x1k, . . . , x(n−1)k)
>, k ∈ M ⊆

{1, . . . , H}, and the associated forecast of Yn+1 is given by

Ŷn+1 = φ̂0 + φ̂1Yn + . . . + φ̂4Yn−3 + ŷn+1. (2)

The separate estimation of the parameters φk and β j can be justified by orthogonality arguments.

2.2. Selecting Factors for Prediction

Model selection criteria try to balance the trade-off between the goodness-of-fit of a model and its
complexity. For example, the FPE (D. Rothman in Akaike 1969; Johnson et al. 1968) uses the residual
sum of squares and the number of predictors for the quantification of these conflicting objectives and
selects that model which minimizes the product of the residual sum of squares and a penalty term,
which increases as the number of predictors increases. The penalty term of the FPE is constructed
so that the product is an unbiased estimator of the mean squared prediction error. If a predictor is
included that is actually dispensable, it will still explain some random fluctuations and thereby reduce
the sum of squared residuals. Clearly, this reduction will be much greater if this predictor is not fixed a
priori but is found by data snooping, i.e., by trying different predictors and choosing the one which fits
best. The FPE-penalty term just neutralizes the effect of the inclusion of a number h of fixed predictors;
hence, its penalization will not be harsh enough if the “best” h predictors are chosen from a set of
H > h predictors. A data-snooping bias can only be avoided by using a penalty term that depends on
both h and H. However, the two most widely used model selection criteria, namely AIC (Akaike 1998),
which is asymptotically equivalent to FPE in linear regression models, and BIC (Schwarz 1978), take
only the number h of actually included predictors into account. Thus, the (asymptotic) unbiasedness
of AIC as well as the consistency of BIC are guaranteed only in the case of nested models where there
is only one candidate model for each model dimension.

In the case of nonnested models with orthogonal predictors (e.g., principal components),
unbiasedness can be achieved using a simple substitution in the multiplicative FPE-penalty term
(n + h)/(n − h). The number of predictors h, which coincides with the expected value of
the sum of h χ2(1)-distributed random variables, is substituted by the expected value ζ(h, H)

of the sum of the h largest of H χ2(1) random variables (Reschenhofer 2004). For related
criteria, see George and Foster (2000); Tibshirani and Knight (1999), and, for tables of ζ(h, H),
see Reschenhofer (2010). However, the resulting criterion FPEsub suffers from important shortcomings.
Firstly, its usefulness is limited by the fact that the values of ζ(h, H) are not readily available in software
packages and must be looked up in tables. Secondly, the penalty term (n + ζ(h, H))/(n− ζ(h, H))

may quickly become numerically unstable as h and H increase. Thirdly, the increase from ζ(h, H) to
ζ(h + 1, H) seems to be too small to prevent the inclusion of an unneeded predictor when there are
h dominant predictors that are certain to be included. In this case, it would be more appropriate to
regard the first h predictors as fixed and the next predictor as the best fitting of the remaining H − h
predictors rather than as the worst fitting of the best h + 1 predictors.

Luckily, we can deal with all three issues at the same time by taking a stepwise approach (STP),
according to which model dimension h + 1 should be preferred over model dimension h if

n + h + ζ(1, H − h)
n− h− ζ(1, H − h)

RSS(h + 1) <
n + h
n− h

RSS(h), (3)
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where RSS(h) yields the residual sum of squares based on h predictors (see
Reschenhofer et al. 2012, 2013). Here, we need only the expected value of the maximum, which can be
approximated by (see (Reschenhofer 2004))

ζ̂(1, H) = 2 log(H)− log(log(H)), (4)

hence no tables are needed. Moreover, numerical problems because of small denominators occur only
when h is close to n. For a related but not stepwise approach, see Foster and George (1994).

2.3. Using Factors for Prediction

A widely used method to extract h common factors from a large number of
available macroeconomic and financial variables is to use the first h principal components
(see (Cheng and Hansen 2015; Connor and Korajczyk 1993), (Stock and Watson 2002, 2012)), but
other choices exist depending on the framework used (e.g., Forni et al. 2000, suggest using dynamic
principal components for their generalized dynamic framework).

Using principal components as predictors in the spirit of Stock and Watson (2002) offers
considerable advantages over using the original variables. Firstly, principal components can be
ordered according to the size of the associated eigenvalues, i.e., according to the portion of variation
from the original set of predictors explained by each respective component. This natural ordering of
principal components allows us to think of the regression model where these components represent
predictors as of a nested model. Hence, conventional criteria such as AIC and BIC become available
for choosing the best model. Secondly, one can also consider nonnested setup, i.e. a classical regression
setup where there is no natural ordering among the predictors. In this setup, it is often infeasible
to identify the best subset of predictors. Principal components, however, are orthogonal, which
makes the problem of finding the best model for each model dimension computationally tractable and
therefore allows us to choose the overall best model using, e.g., stepwise procedure in Equation (3)
for orthogonal predictors discussed in the previous subsection. Clearly, these advantages are purely
technical and do not imply superior forecasting performance in practice.

The forecast of yn+1 based on a subset of principal components is given by

ŷn+1 =
∑
k∈M

δ̂k fnk, (5)

where M ⊆ {1, . . . , K}, K < H, fk = (x1, . . . , xH)vk is the kth principal component with vk denoting
the eigenvector associated with the kth largest eigenvalue of the sample covariance matrix of the
(standardized) predictors x1, . . . , xH , and the OLS estimate δ̂k is obtained by regressing y on fk.
Usually, we consider only K < H principal components to avoid numerical problems with the
smallest eigenvalues.

2.4. Adjusting Factor Prediction with Frequency-Band Filter

In some economic applications, it may be useful to focus on certain frequency bands (e.g., the
neighborhood of frequency zero when we are looking for long-term relationships; see Müller and
Watson 2016; Phillips 1991) and disregard others (e.g., narrow bands around all seasonal frequencies
when we are analyzing not seasonally adjusted time series). In the case of forecasting (quarterly)
macroeconomic times series, we could make use of the fact that these series are typically dominated
by their low-frequency components. Defining the low-frequency components y, xk of the vectors
y, xk, k ∈ M of length n− 1 by their projections onto the span of the columns of the (n− 1)× r matrix

G =

…
2
n

Ö
cos(ω11) sin(ω11) · · · cos(ωr1) sin(ωr1)

...
...

. . .
...

...
cos(ω1(n− 1)) sin(ω1(n− 1)) · · · cos(ωr(n− 1)) sin(ωr(n− 1))

è
, (6)



Econometrics 2019, 7, 46 5 of 14

where ωj =
2π j

n , j = 1, . . . , r are the first r < m = [n/2] Fourier frequencies, and the high-frequency
components by y = y− y and X = X− X. Reschenhofer and Chudy (2015a) assumed that the latter
components are uninformative and therefore imposed the restriction

X>y = 0, (7)

on the representation

β̂ =
Ä

X>X
ä−1

X>y =
((

X + X
)> (X + X

))−1 ((
X + X

)> Äy + y
ä)

=
(

X>X + X>X
)−1 (

X>y + X>y
)

of the conventional OLS estimator, where the column vectors of matrices X, X and X are given by the
vectors xk, xk and xk, respectively. The resulting estimator

β̃ =
(

X>X + X>X
)−1

X>y (8)

may be regarded as a shrinkage version of the band-regression estimator (see Engle 1974; Hannan
1963)

β̆ =
Ä

X>X
ä−1

X>y =
Ä

X>GG>X
ä−1

X>GG>y. (9)

Using the adjusted-band-regression estimator in Equation (8) instead of the OLS estimator, the
forecasts in Equations (1) and (5) become

ŷn+1 =
∑
k∈M

β̃kxnk, (10)

and
ŷn+1 =

∑
k∈M

δ̃k fnk, (11)

respectively.
In view of the typical shapes of univariate spectral densities and squared coherence functions of

quarterly macroeconomic time series (see e.g., Reschenhofer and Chudy 2015b), it seems that [0.4m] is
a safe choice for r that keeps only components with period larger than one year (for monthly data, a
similar choice was made by Altissimo et al. 2010, see also remarks regarding monthly data later in the
discussion section).

3. Empirical Results

3.1. Data and Transformations

For our investigation of the forecasting performance of factor models, we use the same
dataset as Stock and Watson (2012). This dataset consists of 143 quarterly U.S. time series from
1960:II to 2008:IV and can be downloaded from Mark Watson’s website1. In their empirical study,
Stock and Watson (2012) transformed the series by taking logarithms and/or differencing in order
to achieve stationarity, but ignored possible structural breaks such as the end of the Bretton Woods
system in 1971, the slowdown in growth after the oil price shock in 1973, or the decrease in volatility
starting in the 1980s (Great Moderation). Clearly, the impact on the performance of the factor models
depends on the magnitude of these instabilities (see, e.g., Chen et al. 2014; Stock and Watson 2009).

1 http://www.princeton.edu/~mwatson/.

http://www.princeton.edu/~mwatson/
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In general, this problem is less severe in the case of a rolling analysis. For example, in the case of a
single structural break, all subseries before and after the break will still be stationary and only those
few subseries that actually contain the break will be negatively affected. Moreover, trying to determine
the number and locations of the breaks for each series would introduce a subjective element into
the analysis. We therefore refrained from pursuing this further, which has the additional benefit of
allowing a fair comparison with the results obtained by Stock and Watson (2012). For the same reason,
we kept the number of lags used by Stock and Watson (2012) for partialing out the autoregressive
dynamics as well as their unorthodox method of dealing with possible outliers, i.e., replacing each
outlier with the median value of the preceding five observations (which may even turn an extremely
large positive/negative value into a negative/positive value).

Of the 143 series in the dataset, 34 are high-level aggregates and 109 are subaggregates. The former
series are used as the dependent variables to be forecasted and the latter series are used as predictors.
In the case of the dependent variables, our focus is on the major measures of economic activity,
namely gross domestic product, industrial production, employment, and unemployment, rather
than on “hard-to-forecast series” such as price inflation, exchange rates, stock returns, and consumer
expectations Stock and Watson (2012, p. 491). Clearly, it does not make sense to compare different
forecasts in a situation where all of them perform poorly. In contrast, in the case of the predictors, none
are excluded. All subaggregates are used for the construction of the principal components (save for
the case of targeted predictors, which we clarify in Section 3.4).

3.2. Forecasting the Major Measures of Economic Activity

In a rolling analysis, each subsample of n = 100 successive quarters is used to partial out the
autoregressive dynamics (up to lag four), estimate the principal components from the residuals, and
compute the competing forecasts. Instead of using just a single measure, e.g., the sum of squared
prediction errors, for the assessment of the forecasting performance, we prefer to use plots of the
cumulative absolute or squared prediction errors, which allows a continuous assessment over the
whole evaluation period. However, to save space, we only show the former plots because there are no
major discrepancies. An obvious advantage of using absolute errors is that they are less volatile and
rankings of the competing forecasts are therefore not so easily inverted by individual extreme errors.
Using the autoregression with four lags (AR4) as a benchmark, Figure 1 compares the OLS forecasts
based on the first five principal components with the adjusted band regression forecasts obtained from
the same principal components by using only the first r = [0.4m] Fourier frequencies. In one case, the
latter forecasts slightly outperform the former, and, in another case, it is the other way round. In two
cases, there is practically no difference. Table 1 shows both the root mean absolute prediction error
and the root mean squared prediction error relative to the benchmark (value < 1 means better than
benchmark) for the two competing forecasts. When we increase the number of principal components
from five (used by Stock and Watson 2012) to ten, the adjusted band regression is superior in three
of the four case, which shows that the forecasting performance strongly depends on the number of
included factors. In the rest of this section, we therefore explore various modifications of the standard
factor model, particularly also methods for the automatic selection of the factors to be included in the
model. For the assessment of these modifications, only the GDP is used as dependent variable.

Table 1. Root mean absolute prediction error and root mean squared prediction error by forecasting
method and by dependent variable, relative to AR(4) = 1.000; rolling forecasts.

Ordinary Least Squares Adjusted-Band-Regression

Group RMSPE RMAPE RMSPE RMAPE

GDP 0.915 0.965 0.926 0.968
IP 0.971 0.959 0.940 0.939
Employment 0.906 0.919 0.919 0.920
Unemployment 0.884 0.911 0.919 0.930
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Figure 1. Cumulative sums of absolute prediction errors relative to AR4 benchmark (black) for OLS
forecasts based on first five principal components (red) and adjusted band regression forecasts based
also on the first five principal components (violet). The (quarterly) dependent variables to be forecasted
are: (A) gross domestic product; (B) industrial production; (C) employment; and (D) unemployment.

3.3. Selecting the Predictors

Using the GDP as dependent variable, Figure 2A shows the performance of the OLS forecasts
when only the first five, the second five, the third five, etc. principal components are included in the
model. Apparently, only the forecast using the first five principal components (PCs 1–5) can compete
with the benchmark. Figure 2B shows the performance of the OLS forecasts when only the first, the
first two, the first three, etc. principal components are included in the model. There is hardly any
difference between the models with five and ten principal components, respectively.

Since quarterly macroeconomic series as well as the relationships between them are typically
dominated by their low frequency components, we may expect that the first principal components in
their effort to explain as much variation as possible focus primarily on the lower frequencies while the
other principal components must deal with the rest. The leading principal components might therefore
be more informative than the ones following behind. Figure 3 suggests that this is indeed the case.
The periodograms of the first and second principal component have a peak close to frequency zero
(see Figure 3A,B) while the periodograms of the 89th and 90th principal component are featureless
and resemble periodograms obtained from white noise (see Figure 3C,D).

Instead of using a fixed number of principal components, we might try to choose the optimum
number with the help of a model selection criterion. AIC and BIC choose the first three or four principal
components while FPEsub and STP select not a single one until around the short recession in 2001.
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The most parsimonious criterion is the Bai–Ng (denoted as BIC3 on page 201 in Bai and Ng 2002),
which copies the benchmark line and selects nothing at all. The other extreme is the prediction by
LASSO2 selecting over 10 factors during the entire evaluation period leading to the overall worst
performance under the nested setup. As discussed in Section 2.3, when not the h first principal
components (ordered according to the size of the eigenvalues) are chosen for a model of dimension
h but rather the h best fitting of the K = 90 first principal components, AIC and BIC are no longer
suitable. In the former case (nested models), there is only one model for each h, whereas, in the latter
case (nonnested models), there are K!/(h!(Kh)!) models for each h, from which the best fitting model
is selected. The orthogonality of the principal components allows us to find the best fitting model
for each model dimension h just by running K regressions with only a single principal component
and choosing the h best fitting principal components. Despite the computational simplicity of this
procedure, the chosen models must still be regarded as the best of a large number of models of the
same dimension, hence there is a huge danger of a data-snooping bias, which must be taken care
of. Not surprisingly, AIC and BIC fail to do so and therefore always select a much too large model
dimension and consequently perform much worse than the other criteria (see Figure 2D). In general,
there is obviously no need to change the natural order of the principal components on the basis of their
correlations with the dependent variable.

3.4. Using Frequency-Domain Information in Case of Small Subsets of Predictors

In this subsection, we use only small subsets of the original 109 low-level aggregates. We obtain3

these subsets of “targeted predictors” (see Bai and Ng 2008a) with the help of LASSO independently
for each subsample in the rolling analysis. Alternatively, the elements of the subsets are fixed as the
ten GDP components. Despite the small number of predictors, we still switch to factors/principal
components to benefit from their orthogonality properties and further reduce the model dimension
without compromising the precision of the forecast. Figure 4 shows that the adjusted band regression
forecasts based on the principal components of the second subset (which has been chosen by economic
arguments rather than statistical arguments) perform best.

2 The tuning parameter λ, which controls for the parsimonity of the LASSO procedure, is selected by leave-one-out cross
validation at each rolling iteration.

3 Note that in Section 3.3, we use LASSO for selecting the factors, whereas here we use LASSO for preselecting the predictors.
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Figure 2. Cumulative sums of absolute prediction errors relative to AR4 benchmark (black) for OLS
forecasts based on: (A) first five, second five, third five, etc. principal components obtained from all
predictors; (B) first, first two, first three, etc. principal components obtained from all predictors; and
(C) first h principal components, where h is chosen by AIC, BIC, FPEsub, STP, BaiNg and LASSO, (D) h
best fitting principal components, where h is chosen by AIC, BIC, LASSO, etc.
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Figure 3. Periodograms of the kth principal component for: (A) k = 1; (B) k = 2; (C) k = 89; and (D) k = 90.
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Figure 4. Cumulative sums of absolute prediction errors relative to AR4 benchmark (black) for OLS
forecasts (A,C) and adjusted band regression (B,D) based on the first, the first two, the first three, and
principal components obtained from a subset of all predictors preselected by LASSO (A,B) and the
subset containing only the ten GDP components (C,D), respectively.

4. Discussion

Using the macroeconomic dataset of Stock and Watson (2012), we explored various methods
to improve the performance of the standard factor-augmented forecast, which is based on lagged
values of the variable of interest and a small number of factors obtained from a large set of predictors.
We found that the use of automatic criteria for the selection of the optimal subset of factors is not
helpful, whether the order of the factors is fixed or not. Focusing on the low-frequency components
of the factors and disregarding the high-frequency components, which can technically be achieved
by dismissing OLS regression in favor of adjusted band-regression, is more promising. However,
the results are mixed and depend on the variables to be predicted and on the model specifications.
In the case of the gross domestic product, the best results were obtained when the frequency-domain
approach was combined with a preselection of a small subset of predictors, which was then used for
the calculation of the factors.

From the four major measures of economic activity used in our empirical study, namely gross
domestic product, industrial production, employment, and unemployment, the last three are also
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available as monthly time series. However, the typical spectral shapes of quarterly and monthly time
series are very different in nature. While the former are dominated by their low-frequency components,
the latter often also have considerable power in the high-frequency band, which makes the use of
a band regression approach more difficult. Although the adaption of the forecasting procedure to
monthly series is certainly doable, it would possibly be better to leave it for future research. For the
time being, we have to be satisfied with Figure 5, which is analogous to Figure 1, but includes M2
money stock instead of GDP and does not yet take into account the differences between quarterly
and monthly time series. It compares the performance of the OLS forecasts and the adjusted band
regression forecasts. The results are mixed. The adjusted band regression forecasts perform better in
two cases and worse in one case. In one case, there is practically no difference.
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Figure 5. Cumulative sums of absolute prediction errors relative to AR4 benchmark (black) for OLS
forecasts based on first five principal components (red) and adjusted band regression forecasts based
also on the first five principal components (violet). The (monthly) dependent variables to be forecasted
are: (A) industrial production; (B) employment; (C) unemployment; and (D) M2 money stock.
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