
econometrics

Article

Important Issues in Statistical Testing and
Recommended Improvements in
Accounting Research

Thomas R. Dyckman 1,* and Stephen A. Zeff 2

1 Accounting Department, Cornell University, Ithaca, NY 14850, USA
2 Accounting Department, Rice University, Houston, TX 77005, USA; sazeff@rice.edu
* Correspondence: trd2@cornell.edu

Received: 17 December 2018; Accepted: 26 April 2019; Published: 8 May 2019
����������
�������

Abstract: A great deal of the accounting research published in recent years has involved statistical tests.
Our paper proposes improvements to both the quality and execution of such research. We address
the following limitations in current research that appear to us to be ignored or used inappropriately:
(1) unaddressed situational effects resulting from model limitations and what has been referred to
as “data carpentry,” (2) limitations and alternatives to winsorizing, (3) necessary improvements to
relying on a study’s calculated “p-values” instead of on the economic or behavioral importance of
the results, and (4) the information loss incurred by under-valuing what can and cannot be learned
from replications.
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1. Introduction

As professors of accounting for nearly 60 years and past presidents of the American Accounting
Association, we are concerned about the quality of statistical research in accounting. This article is a
call to our accounting colleagues, and also perhaps to those in other fields, to invest substantial time
and effort toward improving their requisite knowledge and skill when conducting the appropriate
statistical analysis. Involving expert statisticians may be helpful, as we all need to recognize the
limitations in our own knowledge in order to tap into this expertise. Our heightened interest in
improvements to the quality of statistical analysis in accounting research was in response to attending
research presentations and reading the current literature.

Several years ago, we suggested several improvements to statistical testing and reporting
(Dyckman and Zeff 2014). In that paper, we reviewed the 66 articles involving statistical testing that
accounted for 90 percent of the research papers published between September 2012 and May 2013
in The Accounting Review and the Journal of Accounting Research, two leading journals in the field of
accounting. Of these 66 papers, 90 percent relied on regression analysis. Our paper examined ways of
improving the statistical analysis and the need to report the economic importance of the results.

An extension of these concerns was included in a commissioned paper included in the 50th
anniversary of Abacus (Dyckman and Zeff 2015). We acknowledge several accounting academics who
are also concerned with these issues, including Ohlson (2018), Kim et al. (2018), and Stone (2018),
whose works we cite.

Concerns about statistical testing led to exploring the advantages of a Bayesian approach and
abandoning null hypothesis tests (NHST) in favor of reporting confidence intervals. We also suggested
the advantages—and limitations—of meta-analysis that would allow for the inclusion of replication
studies in the assessment of evidence. This approach would replace the typical NHST process and its
reliance on p-values (Dyckman 2016).
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A fourth article which reviewed the first 30 years’ history of the research journal, Accounting
Horizons, continued our concern with the current applications of statistical testing to accounting
research. An additional aspect of this article was the attention we gave to accounting researchers’
seeming lack of interest in communicating with an audience of professionals beyond other like
researchers, as if their only role as researchers was to enrich the research literature and not to contribute
to the stock of accounting knowledge. We submit that accounting academics, because of the academic
reward structure in their universities, tend to write for their peers. Accounting standard setters and
accounting professionals, as well as those who make business and policy decisions, are all too often
relegated to the sidelines. We argued that accounting research should, in the end, be relevant to
important issues faced by accounting professionals, regulators and management, and that the research
findings should be readable by individuals in this broader user community (Zeff and Dyckman 2018).

In the current paper, we expand on the statistical testing issues raised in our earlier papers, and
we identify limitations often overlooked or ignored. Our experience suggests that many accounting
professors, and perhaps those in other fields, are not familiar with, or equipped to, address them.
We take up the following major topics: Model Specification and Data Carpentry, Testing the Model,
Reporting Results, and Replication Studies, followed by A Critical Evaluation and A Way Forward.

2. Model Specification and Data Carpentry

The choice of a topic and related theory established the basis for the hypotheses to be examined and
the concepts that will constitute the independent variables. Accounting investigations often rest only
on a story rather than on a theory. A major problem here is that a story, but not theory, can be changed or
modified, which encourages data mining (Black 1993, p. 73). Establishing the appropriate relationships
require an understanding of the actual decision-making environment. These ingredients, along with the
research team’s insights and abilities, are critical to designing the research testing program and the data
collection and analysis process. Failure to take them into account in the data-selection decision process
and analysis was discussed in detail in a recent paper by Gow et al. (2016). There, the authors provided
a detailed example (pp. 502–14) of how the decision environment can reflect its own idiosyncratic
differences that, in turn, influence the data. For example, even if the business context is essentially the
same across companies, data limitations remain. First, the data will inevitably reflect different sets of
decision makers and different organizations, different time periods, different information, and, at least,
some differences in the definitions of the variables deemed to be relevant. The interactions between
these variables, and with any relevant but excluded variables, will, as the authors showed, lead to
questionable results. How the selected variables interact with each other—and with any excluded but
relevant variables—depends on the nature of the contextual environment in which the relation arises.
We note here that careful research designs up front can reduce interactions among the independent
variables. Authors can and should describe the decision environment and differences, if any, that have
a potential impact upon the analysis and conclusions. A thorough analysis and description of the
decision environments is essential and endows additional credibility on the research.

Typically, a concept can be operationalized by more than one variable. For example, firm size may
be proxied by the number of employees or by revenue. Furthermore, the choice of a measure is often
made according to data availability. Even the topic selection may be determined by the availability of
an interesting data set. Unfortunately, authors usually do not acknowledge the latter and may fail to
justify the selected variable measure. Once the hypotheses have been modeled and the variables with
their measure selected, the decisions must not be altered, expanded, or dropped without full disclosure.
Yet, we have seldom seen these explicit limitations revealed, let alone discussed. Authors appear to
ask readers to accept implicitly that such alterations have not occurred. Even a careful reading may
not reveal the authors’ reasons for their specific choices. Authors should not assume that their choices
are transparent and elect not to address the choice process.

The choice of the data set for the variables included in the study is critical. We think of this
as the data carpentry, during which the raw data are melded into the data set for analysis. This is
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when data snooping, data mining, and related inappropriate activities must be avoided. Furthermore,
researchers should not unquestioningly adopt a data set used by previous authors without verifying
its accuracy and applicability to the current issue addressed. (For a discussion of what can occur,
see Zeff 2016). Authors should also be alert to data sets reflecting different time periods, locations,
or information processes. Conditions can be very different for the same variable across these dimensions.
An assumption that data obtained under such circumstances will lead to valid conclusions cannot be
sustained. Moreover, if the data source, timing, processing, or availability changes, the research team
is obliged to bring these changes to the attention of the reader, together with the resulting limitations
imposed on the findings.

2.1. Assumption of Randomness

The concept of hypothesis testing and its key elements, including test statistic, p-value, standard
error, sampling distribution, significance level, rely on an implicit assumption of randomness.
The investigation relies on the researchers obtaining a random sample from a well-defined population.
Indeed, one of the purposes of hypothesis testing is to determine how big or small the random sampling
error is with respect to the parameter value being tested under the null hypothesis. Accounting
researchers, by their failure to address the issue, are taking this fundamental assumption for granted.
This is unfortunate. Authors appear to be implicitly relying on Dunning (2012) assurance that
randomness can be accepted if the reader can be assured that the researchers had no influence, intended
or not, on the data process. Unfortunately, databases may be problematic in the context of random
sampling. For example, these databases often cover the data for listed companies only, which can
provide a biased sample if the research outcome is applied to non-listed companies. The decision to
seek big data or even a large sample can lead to a similar problem (Harford 2014). Several examples
with serious consequences are examined in this article.

A thorough defining of the population is essential, but is not easily accomplished, and often
remains unspecified by the authors. An implicit assumption of randomness may be comforting, but
it is not adequate. Authors are obliged to expend the necessary human capital to alert the reader to
possible limitations in their data and how any such limitations could affect their results. An example is
provided by big data (Boyd and Kate 2011). Unless the research design takes the sampling distribution
into account, it becomes difficult to justify resampling and randomization. The authors recall no recent
accounting papers, including those relying on big data, that have addressed this situation. The process
of determining whether a subset of big data amenable to the theory of relevance could be identified is
likely to doom any honest sampling process. Additionally, it would preclude replication.

2.2. Model Modifications

Once the hypotheses have been modeled and the variables have been selected and measured,
any changes must be justified with full disclosure. Yet we have seldom seen such changes revealed.
Authors apparently expect readers to accept implicitly that such alterations have either not occurred or
are appropriate. A new approach to reduce this problem is being explored that requires authors to
describe their choices in advance of executing the research project and to communicate to the editors
any changes thereafter (Bloomfield et al. 2018; Kupferschmidt 2018). However, there is no assurance
that this requirement will always be met, because the action may occur before initial submission.

2.3. Winsorizing

It is not uncommon to find accounting studies whose authors have winsorized their data and
assumed their readers understand the process. By winsorizing, the authors are attempting to prevent
what they regard as outliers in the data from unduly influencing the results. Authors using this
approach apparently assume that the outliers do not belong to the set defined by the variable under
consideration. Retaining these data points, if inappropriate, will bias the results. Each such data point
also has a larger impact on the results. However, the adjustment process used is generally ad hoc.
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We submit that data points omitted from the analysis require individual justification based on analysis.
An omitted observation might even be the most interesting data point, were it to be investigated.
Or it may be due to factors not associated with the other sample data, a possibility advanced by
Belsley et al. (1980). There is no theory justifying winsorizing (or truncation). These methods also
make replication decidedly more difficult.

Winsorizing is one example of inappropriate data manipulation practiced during data carpentry,
together with data mining and data snooping. Other examples of inappropriate data activities involved
in establishing the data set include omitting data obtained under different circumstances, such as from
different companies, time periods, or locations. Data produced by different individuals operating
under different procedures and dissimilar situations also should be assumed to be inappropriate. See
Zeff (2016) for an example. Inclusion of any such data must be thoroughly vetted and disclosed,
including its impact on the identified hypothesis.

Instead of winsorizing, we suggest the authors consider robust regression (RR) recommended by
Leone et al. (2019). Using simulation, the authors find RR outperforms winsorization and truncation,
which are largely ineffective. The authors suggest using approaches based on residuals for which RR is
both theoretically appealing and easy to implement.

3. Testing the Model

An approach that some researchers are turning to—and which we encourage—is to apply the
research model to alternative relevant data sets (Lindsay 1995). While this approach is time-consuming,
the results, when thus confirmed, are more compelling. Additionally, tests might also be run on logical
choices of subsets of the original data. An interesting alternative would be to test the model through
one or more predictions, although we have not seen much enthusiasm for this option.

The data sets in accounting studies, other than experimental ones, tend to be large. Data sets over
10,000 are not uncommon. Small data sets, below 25, are unusual, except in behavioral accounting
work, an area we are not explicitly targeting here. Accounting journals would not reject a small sample
of, say, 25 if there were a compelling reason for the size and the results were clearly of interest. Multiple
hypotheses based on a single data set are common, and the use of a data set to examine a different
hypothesis by a different research team is not uncommon. The concern here, however, is that any data
problem that is unresolved or miss-handled in the original research is likely to influence the new work.
We believe that a borrowed data set must go through a thorough analysis before it can be presumed to
be appropriate for testing a new hypothesis. This is appropriate for the original paper and even more
so for a replication or the use of the sample by a new investigating team.

Our reading of the accounting literature indicates that some authors do rely on the same data set
to test multiple hypotheses. Yet Floyd and List (2016, p. 454) observe, “When multiple hypotheses . . .
are considered together, the probability that at least some Type 1 errors are committed often increases
dramatically with the number of hypotheses.” See also Ohlson (2018). Fortunately, studies that perform
multiple tests on a single data set are not difficult to identify. Authors should either alert readers to
what amounts to over-testing or confine their analysis to the critical issue of the study. Additionally,
it often happens that the ideal data set is impossible to obtain. When this is the case, the ideal data set
should be acknowledged and its absence justified, including any change in the variables selected and
their measures. Unfortunately, while applauding the changes in the reviewing process championed by
Bloomfield et al. (2018) and others, we believe there is currently no way to assure that data tampering,
including data mining, does not occur prior to the submission of a research paper to a journal.

Sample Size Concerns

Sample size has an important effect on statistical tests. Many accounting studies involve very
large samples, while small samples are rare except in situations involving behavioral experiments.
Indeed, researchers appear to believe that very large samples are somehow superior or more likely to
generate statistical significance. Yet what the researcher observes in the sample may not be true at
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the population level. This is particularly likely to happen when the sample data ultimately used in
the test are substantially fewer than what are contained in the initial sample. This situation, while
not common in accounting research, does occur. See Santanu et al. (2015). The authors reported a
sample size of 11,262 after concluding that, for undisclosed reasons, 14,042 observations were rejected,
a rejection level of 55% of the available data. This condition alone does not invalidate the research.
Such a large reduction calls for an explanation, which was not given. Indeed, the authors were likely
engaged in data snooping, which could lead to such a large reduction in sample size. Researchers
should also not forget the Jeffery-Lindley paradox, which shows that, with a large enough sample size,
a 0.05 significance result can correspond to assigning the null hypothesis a high probability (0.95). This
result does not hold, however, for interval hypotheses. See also Ohlson (2015) on sample size.

4. Reporting Results

The most important point to be made here is not whether a reported significant p-value, say at the
0.01 level, has been obtained but rather the overall credibility of the work. Credibility depends on
a myriad of factors. These factors include the accuracy and veracity of not only the model but also
the variable choices and their measurement. For example, if the model were to omit an important
explanatory variable, the effect of the omission may be subsumed under one or more of the other
explanatory variables, causing it or them to appear more significant than would otherwise be the
case. It remains the responsibility of the authors to consider the challenges that serious readers are
likely to raise concerning the central model, the variable choices or omissions, and how they should be
operationalized. Assuring that readers have an adequate description of the methodology, including
the model, data set, and the computer protocol in order to permit, and indeed invite, a replication
would be one template for ascertaining that the essential elements have been disclosed. Improperly
executed research can, as pointed out most recently by Kim et al. (2018) and by Lindsay (1994, 1995),
ultimately lead to poor decisions and may even inflict serious social harm.

4.1. Reporting p-Values

First, it is useful to define what a p-value is. A p-value is the probability of observing a value of
the test statistic that is as extreme as, or more extreme, than the value resulting from the sample, given
that the null hypothesis is true. It is both a conditional probability and a statistic with a sampling
distribution. Our view of p-values’ contribution to the research in accounting is best captured by
the following quotation: “Misinterpretations and abuse of statistical tests, confidence intervals, and
statistical power have been decried for decades, yet remain rampant. A key problem is that there are
no interpretations of these concepts that are at once simple, intuitive, correct, and foolproof. Instead,
correct use and interpretation of these statistics requires an attention to detail which seems to tax
the patience of working scientists. This high cognitive demand has led to an epidemic of shortcut
definitions and interpretations that are simply wrong, sometimes disastrously so—and yet these
misinterpretations dominate much of the scientific literature” (Greenland et al. 2016, p. 337). Authors
of publications in accounting and related fields invariably report and rely on small p-values (0.01, 0.05,
0.10) as an indication of the importance of their work. Yet, there is no theoretical justification to guide
researchers in selecting a specific p-value to justify the conclusion that significance has been in fact
attained or, if so, whether it matters. The smaller the calculated p-value, the more comfortable the
researcher may feel in rejecting the null hypothesis. However, this information alone considers neither
the importance of the results nor the costs of an incorrect rejection. Johnstone and Lindley (1995) argue
that significance at 0.05 is meaningless without knowing the sample size, the magnitude of the observed
effect, and the operational importance of that effect. Alone, it fails to assure readers that the analysis
has even uncovered a useful result. Indeed, the p-value, so endemic to much of accounting research,
is useless by itself. Without some measure of the impact (size effect) or economic importance of the
result, little if anything has been learned. Ziliak and McCloskey (2004), after reviewing the literature in
several fields, found that nine out of 10 published articles make this mistake. If, in the accounting
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literature for example, the reported results suggest that a specific behavior reduces audit delays, little
is gained unless a reasonably accurate determination of the economic impact of the revealed delay to
an identified clientele is determined. Authors, then, must identify in advance the user of the research
result who would find the size or impact important. We note that several distinguished journals in other
fields, including Basic and Applied Social Psychology, have banned the use of p-values, while others,
including PLOS Medicine and the Journal of Allergy and Clinical Immunology, actively discourage its
use. The American Statistical Association has recently urged caution in relying on statistical significance
at the traditional 0.05 level as a basis for claims (Wasserstein et al. 2019). We continue to be dismayed
that editors or reviewers in our field appear to require a reported p-value of 0.10 or less as a necessary
condition for publishing the results of a study relying on statistical research in accounting. Perhaps the
recent final appeal to renounce relying on p-values was sounded by a recent paper published in The
American Statistician in which Wasserstein et al. (2019, p. 1) state: “Don’t conclude anything about
scientific or practical importance based on statistical significance (or lack thereof).” The same issue
of the American Statistician includes 43 additional papers that addresses statistical Inference in the
twenty-first century.

An improvement would be to report the Bayes factor, as suggested in the context of accounting
research by Kim et al. (2018). This is the ratio of the observed value, or a lesser value under the null
hypothesis, to the probability of the observed value or a lesser value under the alternate hypothesis.
The approach is a Bayesian concept and reflects the ratio of the new knowledge to what was previously
presumed. This concept is consistent with using new information to update one’s prior beliefs,
a common accounting objective. The calculation necessitates that the researcher initially specifies the
denominator of the likelihood ratio. Furthermore, reporting a confidence interval is an improvement
over reporting a p-value and provides more information.

Yet, it is wrong to conclude that p-values are useless. A p-value from a well-executed study could
provide useful information. For example, such a value could indicate that there is something unusual
or interesting in the analysis, justifying further study. Alternatively, a review of the process may
indicate a flaw in the analysis. Perhaps the data or the data-carpentry activity was faulty. The model
may be inappropriate. There could have been an error in the computer program. And well-done
studies could suggest further potential regardless of the resulting p-value.

4.2. Effect Size (ES) or Economic Importance (EI)

Determining the effect size (Cohen 1990; Stone 2018) or the economic importance (Basu 2012;
Dyckman 2016) of the results should be the sought-after objective of research. One way of presenting
the result is to use a confidence interval measure to capture the impact on the specific costs or benefits
suggested by the research. Yet we could locate very few articles in the accounting literature that
have rcct size. Judd et al. (2017, p. 34) provide an example that does addresses this issue. “In terms
of economic significance, we find on average, a one standard deviation increase in CEO narcissism
[proxied by the CEO’s picture size in the annual report and the CEO’s relative cash and non-cash
pay] is associated with a 2.4 percent to 3.3 percent increase in external audit fees, which equates to
approximately $116,497 to $160,183 for our sample mean firms.” We note here that the authors elect, not
to emphasize the economic significance by reporting their findings in either the Synopsis or Conclusion.
Their approach may be explained in part by the studies limitations described in their footnote two.

Irani et al. (2015, p. 847) provide a recent example of explicitly addressing the statistical
significance/economic importance issue. They state, “We recognize the small magnitude of the
univariate market reaction, which, although statistically significant, is arguably not economically significant”
[emphasis added]. It is essential to identify the importance of a study’s results and not just rely on
whether one or more hypotheses are statistically significant at a specific reported p-value. Furthermore,
as noted earlier, not finding a variable to be statistically significant does not necessarily mean it is
unimportant. Eshleman and Lawson (2017, p. 75) report that they “find a positive association between
audit market concentration and audit fees.” Their main conclusion was, “As a whole, our findings
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suggest that U.S. audit market concentration is associated with both higher audit fees and higher
audit quality” (p. 76). Unfortunately, we are not informed of the importance of the impact that the
concentration had on audit fees.

A more recent accounting study by Brown et al. (2018) recognizes the limitation of research that
stops with the reporting of a significant p-value, yet the authors fail to deal with the economic importance.

5. Replication Studies

Researchers quite understandably seek to explore new questions in their research. Thus, it is
not surprising that replication studies are rare. Yet, regardless of a study’s results, whether it is an
important finding or an unsuspected failure to support an expected finding, replication studies are
relevant and important. Replications are, however, decidedly difficult to perform satisfactorily and are
not welcomed by many journals across the accounting research landscape. Replications therefore must
pass rigorous scrutiny. Several new journals have been launched, and a few existing outlets now do
consider replication papers. New journals have been initiated recently that do consider replication
papers. There are also existing journals that have published replications for some time. The American
Economic Review and the Journal of Applied Econometrics are leaders in their field, and they publish about
a 30 percent of the replications in economics (Reed 2018). The Replication Network is an excellent
source for information on replication studies.

A few replication studies have begun to appear in accounting journals. The ability to fully replicate
depends on an agreed theory. Stories do not provide ideal bases for replications. An early, well
executed replication study in accounting that deserved and ultimately achieved publication was done
by Bamber et al. (2000), who replicated Beaver (2000) Seminal Award-winning paper. It is interesting
to note that the authors’ work was published in Accounting, Organizations and Society, not in one of the
journals noted for empirical/archival research. This is not where one would expect to find it, because it
was rejected by the journal that published Beaver’s article.

Mayo (2018, preface) sets a high bar when applied to any study, including replications. She
advises that the results of any study need to be “severely tested.” She writes, “The [severe] testing
metaphor grows out of the idea that before we have evidence for a claim, it must have passed an
analysis that could have found it flawed.” In other words, as Mayo states, “a hypothesis must have
passed an analysis that could have found it flawed” (Mayo 2018, preface). We are unable to locate
an accounting paper that currently meets this or a similar rigorous standard. We would encourage
researchers to consider applying this test.

The rewards for attempting replications are currently not enticing. Furthermore, precise
replications have seldom been possible, in part because the necessary information to perform such
studies is not ordinarily made available by authors. Nevertheless, we encourage replications because
they provide the test that what has been found matters. This could be the case if a study were to
identify a potential measurable and meaningful size effect. Unfortunately, in accounting, we are
left with a sparse landscape of replication studies that provide confirmation of important results or
which encourage the publication of synopses of important replications (particularly of effect size or
economic importance) that are well-executed. Fortunately, journals do exist that consider replications.
One relatively new journal is The International Journal for Re-Views in Empirical Economics (IREE).

A recent study by Peng (2015) concludes that a high proportion of published results across fields
were not reproducible by replication. This does not reflect well on the academic community. Studies of
reproducible results lend credence to the value of the exercise. On the other hand, failed replications cast
doubt on the original results. Brodeur et al. (2018, abstract) report that in “Applying multiple methods to
13,440 hypothesis tests reported in 25 top economics journals in 2015, we show that selective publication
and p-hacking is a substantial problem in research employing DID [differences-in-differences] and (in
particular) IV [instrumental variables].” A large study reported in Science describes the results of 270
researchers replicating 100 experiments reported in papers published in 2008 in three high-ranking
psychology journals (Aarts et al. 2015). The replications yielded the same results according to several
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criteria. They showed that only 39% of the original findings could be replicated unambiguously. This
information is not encouraging.

Recently, we came across an announcement of a new e-journal, SURE (for The Series of
Unsurprising Results in Economics), which commits to publishing high-quality research even with
unsurprising findings. The journal emphasizes scientifically important and carefully executed studies
with statistically insignificant results or otherwise unsurprising findings. Studies from all fields of
economics will be considered. As a bonus, there are no submission fees.

An additional process that can increase our confidence in results, and one that merits consideration,
is meta-analysis (Dyckman 2016; Hay and Knechel 2017; Stone 2018). An advantage of meta-analysis is
that it suggests the integration of current and future investigations of a given phenomenon. Using this
technique reflects a cumulative approach to a specified hypothesis by which a triangulation on the topic
can lead to a better understanding of a common research objective. This approach allows competing
explanations of a given phenomenon to be merged to produce a result depicted, for example, by a
confidence interval. Opting for a meta-analysis approach provides an opportunity for researchers to
reexamine and perhaps reinforce important past results. The adoption of meta-analysis in accounting
remains exceedingly rare, perhaps partially reflecting editor reluctance to publish replications.

6. A Critical Evaluation and a Way Forward

We believe that a healthy skepticism should abide from the beginning and then remain with
the authors throughout the process. This attitude must extend to the apparent confirmation of any
basic hypotheses. Asking why and how the authors could be wrong, or whether they have missed an
important influence on the analysis, should accompany the entire investigation. We fear, however, that
authors may not expend the time and human capital to critique their work sufficiently. Readers are
often not sufficiently familiar with the authors’ subject to discover a study’s short-comings. Indeed,
the authors themselves are the most likely to be conscious of their study’s limitations and potential
extensions. They should advise readers on where additional analysis would be most fruitful, including
the known or suspected limitations to their own work. Essentially all studies have limitations, and
that alone provides ample reason for encouraging disclosure, and in important situations, replications.
Access to all that went into the original analysis should be available, on request if necessary.

The process begins with the selection of an important question or issue. A relevant and available
data source will need to be identified or created in order to proceed. Once these are determined,
we suggest that the investigation concentrate on operationalizing the dependent variable, identifying
the independent variables, including their interrelationships, and how they can best be operationalized.
This approach then allows the research team to craft the model. The research team should keep a record
of all assumptions and decisions made in this process. Attention will need to be given to variable
interactions, and whether the conditions affecting the observations are different in a way, or ways, that
could have an impact upon the findings.

The primary objective is to reveal an important result, one that is based on an important economic
or behavioral impact. If no such impact was revealed, the authors should take what has been learned,
pack their bags and move on to a new project. If the process has been appropriate, the authors should
take what has been learned and seek a new topic worthy of investigation. There is no reason to attempt
to resurrect a deceased patient.

Authors should avoid placing reliance on p-values, concentrating instead on the economic or
behavioral implications of the work. If the result is controversial and the analysis is well done, so
much the better. Reporting confidence intervals instead of p-values should be the common practice.
(Dyckman 2016; Stone 2018).

Our discipline, and others as well, will benefit from applying new approaches to establishing the
importance of the phenomena being studied. Stone (2018, p. 113), has recently suggested exploring
triangulation, a complementary approach that could, for example, combine a quantitative and a
behavioral approach to a problem. Also see Jick 1979. Such studies can provide insights not otherwise
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apparent. Combining methodologies has limitations, one being that replications are extremely difficult
to execute. The adoption or reliance on new methodologies or pirating them from other disciplines is
also to be encouraged.

Thus, we are in accord with Johnstone (1990) and with Kim et al. (2018, p. 14) that a Bayesian
approach to statistical hypothesis testing, which recognizes the importance of the power of the test,
offers a means of dealing with the inherent bias introduced by the conventional hypothesis testing
currently prevalent in accounting. Furthermore, we encourage authors, as a few have done, to consider
areas and methodologies from sister disciplines, including medicine and even philosophy. In this
paper, we have relied on medicine (Ioannidis 2005), epidemiology (Greenland et al. 2016), and on
philosophy (Mayo 2018). We maintain that there is much to be learned from these and other disciplines.

The ultimate importance of a study is the economic or behavioral consequences of the research
findings, not the statistical significance as reflected in a calculated p-value. Investigators should be
looking for a size or economic Importance measure. The p-value may provide some information, as
described above. However, it should not be considered the study’s goal or a measure of its contribution.

Finally, we would encourage accounting professors to improve their statistical knowledge.
The resources are immediately available. In addition, universities hold excellent summer programs. One
current example is an August program under the auspicious of Northwestern and Duke Universities.

7. Conclusions

Our purpose in this paper has been to encourage authors to consider ways to improve their
research. Our paper began by emphasizing the importance of careful model building, data selection, and
carpentry as well as the disclosures essential to assuring the integrity and reproducibility of the work.
The choice of topic should be based on its relevance to practice or on improving research techniques.

Researchers must understand the limitation of relying on p-values as the sole or even primary
support for their findings. Confidence intervals should replace reporting p-values. Until the reader
is informed of the importance of the results, framed by the economic or behavioral consequences of
the findings, the research objective has not been achieved. The issues addressed in this paper are
advanced as a means of accomplishing this objective. To assist in the mission, we strongly encourage
researchers to read the paper by Greenland et al. 2016, which offers a tutorial on statistical tests,
p-values, confidence intervals, and power. (Greenland et al. 2016 is also available through Dave Giles’
Blog of 2 May 2019 (Giles 2019) and Bob Jensen’s Blog 2 September 2019 (Jensen 2018). The Jensen blog
includes the article).
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