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Abstract: The analysis and modeling of categorical time series requires quantifying the extent of
dispersion and serial dependence. The dispersion of categorical data is commonly measured by
Gini index or entropy, but also the recently proposed extropy measure can be used for this purpose.
Regarding signed serial dependence in categorical time series, we consider three types of κ-measures.
By analyzing bias properties, it is shown that always one of the κ-measures is related to one of
the above-mentioned dispersion measures. For doing statistical inference based on the sample
versions of these dispersion and dependence measures, knowledge on their distribution is required.
Therefore, we study the asymptotic distributions and bias corrections of the considered dispersion and
dependence measures, and we investigate the finite-sample performance of the resulting asymptotic
approximations with simulations. The application of the measures is illustrated with real-data
examples from politics, economics and biology.
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1. Introduction

In many applications, the available data are not of quantitative nature (e.g., real numbers or
counts) but consist of observations from a given finite set of categories. In the present article, we are
concerned with data about political goals in Germany, fear states in the stock market, and phrases
in a bird’s song. For stochastic modeling, we use a categorical random variable X, i.e. a qualitative
random variable taking one of a finite number of categories, e.g. m + 1 categories with some m ∈ N.
If these categories are unordered, X is said to be a nominal random variable, whereas an ordinal random
variable requires a natural order of the categories (Agresti 2002). To simplify notations, we always
assume the possible outcomes to be arranged in a certain order (either lexicographical or natural order),
i.e. we denote the range (state space) as S = {s0, s1, . . . , sm}. The stochastic properties of X can be
determined based on the vector of marginal probabilities by p = (p0, . . . , pm)> ∈ [0; 1]m+1, where
pi = P(X = si) (probability mass function, PMF). We abbreviate sk(p) := ∑m

j=0 pk
j for k ∈ N, where

s1(p) = 1 has to hold. The subscripts “0, 1, . . . , m” are used for S and p to emphasize that only m of
the probabilities can be freely chosen because of the constraint p0 = 1− p1 − . . .− pm.

Well-established dispersion measures for quantitative data, such as variance or inter quartile range,
cannot be applied to qualitative data. For a categorical random variable X, one commonly defines
dispersion with respect to the uncertainty in predicting the outcome of X (Kvålseth 2011b; Rao 1982;
Weiß and Göb 2008). This uncertainty is maximal for a uniform distribution puni = ( 1

m+1 , . . . , 1
m+1 )

>

on S (a reasonable prediction is impossible if all states are equally probable, thus maximal dispersion),
whereas it is minimal for a one-point distribution pone (i.e., all probability mass concentrates on one
category, so a perfect prediction is possible). Obviously, categorical dispersion is just the opposite
concept to the concentration of a categorical distribution. To measure the dispersion of the categorical
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random variable X, the most common approach is to use either the (normalized) Gini index (also index
of qualitative variation, IQV) (Kvålseth 1995; Rao 1982) defined as

νG = m+1
m
(
1− s2(p)

)
, (1)

or the (normalized) entropy (Blyth 1959; Shannon 1948) given by

νEn = −1
ln (m+1) ∑m

i=0 pi ln pi with 0 · ln 0 := 0. (2)

Both measures are minimized by a one-point distribution pone and maximized by the uniform
distribution puni on S . While nominal dispersion is always expressed with respect to these extreme
cases, it has to be mentioned that there is an alternative scenario of maximal ordinal variation, namely
the extreme two-point distribution; however, this is not further considered here.

If considering a (stationary) categorical process (Xt)Z instead of a single random variable,
then not only marginal properties are relevant but also information about the serial dependence
structure (Weiß 2018). The (signed) autocorrelation function (ACF), as it is commonly applied in case
of real-valued processes, cannot be used for categorical data. However, one may use a type of Cohen’s κ

instead (Cohen 1960). A κ-measure of signed serial dependence in categorical time series is given by
(see Weiß 2011, 2013; Weiß and Göb 2008);

κ(h) =
m

∑
i=0

pii(h)− p2
i

1− s2(p)
∈
[ −s2(p)

1− s2(p)
; 1
]

for lags h ∈ N. (3)

Equation (3) is based on the lagged bivariate probabilities pij(h) = P(Xt = i, Xt−h = j) for
i, j = 0, . . . , m. κ(h) = 0 for serial independence at lag h, and the strongest degree of positive (negative)
dependence is indicated if all pii(h) = pi (pii(h) = 0), i.e. if the event Xt−h = si is necessarily followed
by Xt = si (Xt 6= si).

Motivated by a mobility index discussed by Shorrocks (1978), a simplified type of κ-measure,
referred to as the modified κ, was defined by Weiß (2011, 2013):

κ∗(h) =
1
m

m

∑
i=0

pii(h)− p2
i

pi
∈
[
− 1

m
; 1
]

for lags h ∈ N. (4)

Except the fact that the lower bound of the range differs from the one in Equation (3) (note that
this lower bound is free of distributional parameters), we have the same properties as stated before
for κ(h). The computation of κ∗(h) is simplified compared to the one of κ(h) and, in particular, its
sample version κ̂∗(h) has a more simple asymptotic normal distribution, see Section 5 for details.
Unfortunately, κ∗(h) is not defined if only one of the pi equals 0, whereas κ(h) is well defined for any
marginal distribution not being a one-point distribution. This issue may happen quite frequently for
the sample version κ̂∗(h) if the given time series is short (a possible circumvention is to replace all
summands with pi = 0 by 0). For this reason, κ∗(h), κ̂∗(h) appear to be of limited use for practice
as a way of quantifying signed serial dependence. It should be noted that a similar “zero problem”
happens with the entropy νEn in Equation (2), and, actually, we work out a further relation between νEn

and κ̂∗(h) below.
In the recent work by Lad et al. (2015), extropy was introduced as a complementary dual to the

entropy. Its normalized version is given by

νEx = −1
m ln (m+1

m )
∑m

i=0 (1− pi) ln (1− pi). (5)

Here, the zero problem obviously only happens if one of the pi equals 1 (i.e., in the case of
a one-point distribution). Similar to the Gini index in Equation (1) and the entropy in Equation (2),
the extropy takes its minimal (maximal) value 0 (1) for p = pone (p = puni), thus also Equation (5)
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constitutes a normalized measure of nominal variation. In Section 2, we analyze its properties in
comparison to Gini index and entropy. In particular, we focus on the respective sample versions ν̂Ex, ν̂G

and ν̂En (see Section 3). To be able to do statistical inference based on ν̂Ex, ν̂G and ν̂En, knowledge about
their distribution is required. Up to now, only the asymptotic distribution of ν̂G and (to some part)
of ν̂En has been derived; in Section 3, comprehensive results for all considered dispersion measures
are provided. These asymptotic distributions are then used as approximations to the true sample
distributions of ν̂Ex, ν̂G and ν̂En, which is further investigated with simulations and a real application
(see Section 4).

The second part of this paper is dedicated to the analysis of serial dependence. As a novel
competitor to the measures in Equations (3) and (4), a new type of modified κ is proposed, namely

κ?(h) =
m

∑
i=0

pii(h)− p2
i

1− pi
∈
[ m

∑
i=0

−p2
i

1− pi
; 1
]

for lags h ∈ N. (6)

Again, this constitutes a measure of signed serial dependence, which shares the before-mentioned
(in)dependence properties with κ(h), κ∗(h). However, in contrast to κ∗(h), the newly proposed κ?(h)
does not have a division-by-zero problem: except for the case of a one-point distribution, κ?(h)
is well defined. Note that, in Section 3.2, it turns out that κ?(h) is related to νEx in some sense,
e.g. κ(h) is related to νG and κ∗(h) to νEn. In Section 5, we analyze the sample version of κ?(h) in
comparison to those of κ(h), κ∗(h), and we derive its asymptotic distribution under the null hypothesis
of serial independence. This allows us to test for significant dependence in categorical time series.
The performance of this κ̂?-test, in comparison to those based on κ̂, κ̂∗, is analyzed in Section 6, where
also two further real applications are presented. Finally, we conclude in Section 7.

2. Extropy, Entropy and Gini Index

As extropy, entropy and Gini index all serve for the same task, it is interesting to know their
relations and differences. An important practical issue is the “0 ln 0”-problem, as mentioned above,
which never occurs for the Gini index, only occurs in the case of a (deterministic) one-point distribution
for the extropy, and always occurs for the entropy if only one pi = 0. Lad et al. (2015) further compared
the non-normalized versions of extropy and entropy, and they showed that the first is never smaller
than the latter. Actually, using the inequality ln (1 + x) > x/(1 + x/2) for x > 0 from Love (1980),
it follows that

−∑m
i=0(1− pi) ln (1− pi) ≥ −∑m

i=0 pi ln pi ≥ 1− s2(p), (7)

(see Appendix B.1 for further details).
Things change, however, if considering the normalized versions νEx, νEn and νG. For illustration,

assume an underlying Lambda distribution Lm(λ) with λ ∈ (0; 1) defined by the probability vector
pm; λ = (1 − λ + λ

m+1 , λ
m+1 , . . . , λ

m+1 )
> (Kvålseth 2011a). Note that λ → 0 leads to a one-point

distribution, whereas λ→ 1 leads to the uniform distribution; actually, Lm(λ) can be understood as
a mixture of these boundary cases. For Lm(λ), the Gini index satisfies νG = λ(2− λ) for all m ∈ N (see
Kvålseth (2011a)). In addition, the extropy νEx has rather stable values for varying m (see Figure 1a),
whereas the entropy values in Figure 1b change greatly. This complicates the interpretation of the
actual level of normalized entropy.

Finally, the example m = 10 plotted in Figure 1c shows that, in contrast to Equation (7), there
is no fixed order between the normalized entropy νEn and Gini index νG. In this and many further
numerical experiments, however, it could be observed that the inequalities νEx ≥ νEn and νEx ≥ νG

hold. These inequalities are formulated as a general conjecture here.
From now on, we turn towards the sample versions ν̂Ex, ν̂En, ν̂G of νEx, νEn, νG. These are obtained

by replacing the probabilities pi, p by the respective estimates p̂i, p̂, which are computed as relative
frequencies from the given sample data x1, . . . , xn. As detailed in Section 3, x1, . . . , xn are assumed as
time series data, but we also consider the case of independent and identically distributed (i.i.d.) data.
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Figure 1. Normalized dispersion measures for Lambda distribution Lm(λ) against λ: νEx, νG in (a), νEn

in (b), comparison for m = 10 in (c).

3. Distribution of Sample Dispersion Measures

To be able to derive the asymptotic distribution of statistics computed from X1, . . . , Xn, Weiß (2013)
assumed that the nominal process is φ-mixing with exponentially decreasing weights such that the
CLT on p. 200 in Billingsley (1999) is applicable. This condition is not only satisfied in the i.i.d.-case,
but also for, among others, the so-called NDARMA models as introduced by Jacobs and Lewis (1983)
(see Appendix A.1 for details). Then, Weiß (2013) derived the asymptotic distribution of

√
n
(

p̂− p
)
,

which is the normal distribution N(0, Σ) with Σ = (σij)i,j=0,...,m given by

σij = pj (δi,j − pi) + ∑∞
h=1

(
pij(h) + pji(h)− 2 pi pj

)
. (8)

Using this result, the asymptotic properties of ν̂G, ν̂En and ν̂Ex can be derived, as shown in
Appendix B.2. The following subsections present and compare these properties in detail.

3.1. Asymptotic Normality

As shown in Appendix B.2, provided that p 6= pone, puni, all variation measures ν̂G, ν̂En and ν̂Ex

are asymptotically normally distributed. More precisely,
√

n (ν̂G − νG) is asymptotically normally
distributed with variance

σ2
G = 4 (m+1

m )2 ∑m
i,j=0 pi pj σij

Equation (8)
= 4 (m+1

m )2 (s3(p)− s2
2(p)

) (
1 + 2

∞
∑

h=1

m

∑
i,j=0

(
pij(h)− pi pj

)
pi pj

s3(p)− s2
2(p)︸ ︷︷ ︸

=:ϑ(h)

)
, (9)

a result already known from Weiß (2013). Here, ϑ(h) might be understood as a measure of serial
dependence, in analogy to the measures in Equations (3), (4) and (6). In particular, ϑ(h) = 0 in the
i.i.d.-case, and ϑ(h) = κ(h) for NDARMA processes (Appendix A.1).

Analogously,
√

n (ν̂En − νEn) is asymptotically normally distributed with variance

σ2
En = ∑m

i,j=0
1+ln pi

ln (m+1)
1+ln pj

ln (m+1) σij

Equation (8)
= 1

(ln (m+1))2

(
∑m

i=0 pi (ln pi)
2 −

(
∑m

i=0 pi ln pi
)2
)

·
(

1 + 2
∞

∑
h=1

∑m
i,j=0(1 + ln pi)(1 + ln pj)

(
pij(h)− pi pj

)
∑m

i=0 pi (ln pi)2 −
(

∑m
i=0 pi ln pi

)2︸ ︷︷ ︸
=:ϑ∗(h)

)
.

(10)

In the i.i.d.-case, where the last factor becomes 1 (cf. Appendix A.1), this result was given by Blyth
(1959), whereas the general expression in Equation (10) can be found in the work of Weiß (2013).
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A novel result follows for the extropy, where
√

n (ν̂Ex− νEx) is asymptotically normally distributed
with variance

σ2
Ex = ∑m

i,j=0
1+ln (1−pi)

m ln (m+1
m )

1+ln (1−pj)

m ln (m+1
m )

σij

Equation (8)
= 1

(m ln (m+1
m ))

2

(
∑m

i=0 pi
(

ln (1− pi)
)2 −

(
∑m

i=0 pi ln (1− pi)
)2
)

·
(

1 + 2
∞

∑
h=1

∑m
i,j=0

(
1 + ln (1− pi)

)(
1 + ln (1− pj)

) (
pij(h)− pi pj

)
∑m

i=0 pi
(

ln (1− pi)
)2 −

(
∑m

i=0 pi ln (1− pi)
)2︸ ︷︷ ︸

=:ϑ?(h)

)
.

(11)

Again, the last factor becomes 1 in the i.i.d.-case as ϑ?(h) = 0, and ϑ?(h) = κ(h) for NDARMA
processes (Appendix A.1).

In Equations (9)–(11), the notations ϑ(h), ϑ∗(h) and ϑ?(h) have been introduced (see the respective
expressions covered by the curly bracket) to highlight the similar structure of the asymptotic variances,
and to locate the effect of serial dependence. Actually, one might use ϑ(h), ϑ∗(h) and ϑ?(h) as measures
of serial dependence in categorical time series, although their definition is probably too complex for
practical use. In Section 3.2, when analyzing the bias of ν̂G, ν̂En and ν̂Ex, analogous relations to the
κ-measures defined in Section 1 are established.

3.2. Asymptotic Bias

In Appendix B.2, we express the variation measures ν̂G, ν̂En and ν̂Ex as centered quadratic
polynomials (at least approximately), and subsequently derive a bias formula. For the sample Gini
index, it follows that

E[ν̂G] ≈ νG − 1
n

m+1
m ∑m

i=0 σii
Equation (8)

= νG

(
1 − 1

n
(
1 + 2 ∑∞

h=1 κ(h)
))

. (12)

This formula was also derived by Weiß (2013), and it leads to the exact corrective factor (1− 1
n )

in the i.i.d.-case. For ν̂En, ν̂Ex, such bias formulae do not exist yet. However, from our derivations in
Appendix B.2, we newly obtain that

E[ν̂En] ≈ νEn − 1
2n ∑m

i=0
p−1

i
ln (m+1) σii

Equation (8)
= νEn − 1

2n
m

ln (m+1)

(
1 + 2 ∑∞

h=1 κ∗(h)
)
. (13)

In the i.i.d.-case, the last factor reduces to 1, and κ∗(h) = κ(h) for NDARMA processes
(Appendix A.1). Comparing Equations (12) and (13), we see that the effect of serial dependence
on the bias is always expressed in terms of a κ-measure, using the ordinary κ (Equation (3)) for the
Gini index, and the modified κ (Equation (4)) for the entropy. Concerning the extropy, it turns out that
the newly proposed κ-measure from Equation (6) takes this role:

E[ν̂Ex] ≈ νEx − 1
2n ∑m

i=0
(1−pi)

−1

m ln (m+1
m )

σii
Equation (8)

= νEx − 1
2n

1
m ln (m+1

m )

(
1 + 2 ∑∞

h=1 κ?(h)
)
. (14)

In the i.i.d.-case, the last factor again reduces to 1, and also κ?(h) = κ(h) holds for NDARMA
processes (Appendix A.1). Altogether, Equations (12)–(14) show a unique structure regarding the
effect of serial dependence. Furthermore, the computed bias corrections imply the relations νG ↔ κ,
νEn ↔ κ∗ and νEx ↔ κ?. The sample versions of κ, κ∗, κ? are analyzed later in Section 5.

3.3. Asymptotic Properties for Uniform Distribution

The asymptotic normality established in Section 3.1 certainly does not apply to the deterministic
case p = pone, but we also have to exclude the boundary case of a uniform distribution puni. As shown
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in Appendix B.2, the asymptotic distribution of ν̂G, ν̂En and ν̂Ex in the uniform case is not a normal
distribution but a quadratic-form one. All three statistics can be related to the Pearson’s χ2-statistic:

n m (1− ν̂G) =

2n ln (m + 1) · (1− ν̂En) ≈

2n m2 ln (m+1
m ) · (1− ν̂Ex) ≈

 n
m

∑
j=0

( p̂j − 1
m+1 )

2

1
m+1

. (15)

The actual asymptotic distribution can now be derived by applying Theorem 3.1 in Tan (1977)
to the asymptotic result in Equation (8), which requires computing the eigenvalues of Σ. In special
cases, however, one is not faced with a general quadratic-form distribution but with a χ2

m-distribution;
this happens for NDARMA processes and certainly in the i.i.d.-case (see Weiß (2013)). Then, defining
c = 1 + 2 ∑∞

h=1 κ(h), it holds that Equation (15) asymptotically follows c times a χ2
m-distribution (with

c = 1 in the i.i.d.-case).

4. Simulations and Applications

Section 4.1 presents some simulation results regarding the quality of the asymptotic
approximations for ν̂G, ν̂En and ν̂Ex as derived in Section 3. Section 4.2 then applies these measures
within a longitudinal study about the most important goals in politics in Germany.

4.1. Finite-Sample Performance of Dispersion Measures

In applications, the normal and χ2-distributions derived in Section 3 were used as an
approximation to the true distribution of ν̂G, ν̂En and ν̂Ex. Therefore, the finite-sample performance
of these approximations had to be analyzed, which was done by simulation (with 10,000 replications
per scenario). In the tables provided by Appendix C, the simulated means (Table A1) and standard
deviations (Table A2) for ν̂G, ν̂En and ν̂Ex are reported and compared to the respective asymptotic
approximations. Then, a common application scenario was considered, the computation of two-sided
95% confidence intervals (CIs) for ν̂G, ν̂En and ν̂Ex. Since the true parameter values are not known
in practice, one has to plug-in estimated parameters into the formulae for mean and variance given
in Section 3. The simulated coverage rates reported in Table A3 refer to such plug-in CIs. For
these simulations, we either used an i.i.d. data-generating process (DGP) or an NDARMA DGP (see
Appendix A.1): a DMA(1) process with ϕ1 = 0.25 or a DAR(1) process with φ1 = 0.40. These were
combined with the marginal distributions (m = 3) summarized in Table 1: p1 and p2 were used
before by Weiß (2011, 2013), p3 by Kvålseth (2011b), and p4 to p6 are Lambda distributions Lm(λ) with
λ ∈ {0.25, 0.50, 0.75} (see Kvålseth 2011a).

Table 1. Marginal distributions considered in Section 4.1 together with the corresponding dispersion values.

PMF νG νEn νEx

p1 = (0.2, 0.2, 0.25, 0.35)> 0.980 0.979 0.988
p2 = (0.05, 0.1, 0.15, 0.7)> 0.633 0.660 0.745
p3 = (0.2, 0.15, 0.05, 0.6)> 0.767 0.767 0.848
p4 = (0.8125, 0.0625, 0.0625, 0.0625)> 0.438 0.497 0.574
p5 = (0.625, 0.125, 0.125, 0.125)> 0.750 0.774 0.832
p6 = (0.4375, 0.1875, 0.1875, 0.1875)> 0.938 0.940 0.961

Finally, we used the results in Section 3.3 to test the null hypothesis (level 5%) of the uniform
distribution L3(1) (νG = νEn = νEx = 1) based on ν̂G, ν̂En and ν̂Ex. The considered alternatives were
Lm(λ) with λ ∈ {0.98, 0.96, 0.94, 0.92, 0.90}, and the DGPs were as presented above. The simulated
rejection rates are summarized in Table A4. Note that the required factor c = 1 + 2 ∑∞

h=1 κ(h) equald
c = (1 + φ1)/(1− φ1) with φ1 = κ(1) in the DAR(1) case, and c = 1 + 2 κ(1) = 1 + 2 ϕ1(1− ϕ1) in the
DMA(1) case, and was thus easy to estimate from the given time series data.
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Let us now investigate the simulation results. Comparing the simulated mean values in Table A1
with the true dispersion values in Table 1, we realized a considerable negative bias for small sample
sizes, which became even larger with increasing serial dependence. Fortunately, this bias is explained
very well by the asymptotic bias correction, in any of the considered scenarios. With some limitations,
this conclusion also applies to the standard deviations reported in Table A2; however, for sample size
n = 100 and increasing serial dependence, the discrepancy between asymptotic and simulated values
increased. As a result, the coverage rates in Table A3 performed rather poorly for sample size 100; thus,
reliable CIs generally required a sample of size at least 250. It should also be noted that Gini index
and extropy performed very similarly and often slightly worse than the entropy. Finally, the rejection
rates in Table A4 concerning the tests for uniformity showed similar sizes (columns “1.00”; slightly
above 0.05 for n = 100) but little different power values: best for extropy and worst for entropy.

4.2. Application: Goals in Politics

The monitoring of public mood and political attitudes over time is important for decision makers
as well as for social scientists. Since 1980, the German General Social Survey (“ALLBUS”) is carried out
by the “GESIS—Leibniz Institute for the Social Sciences” in every second year (exception: there was
an additional survey in 1991 after the German reunification). In the years before and including 1990,
the survey was done only in Western Germany, but in all Germany for the years 1991 and later. In what
follows, we consider the cumulative report for 1980–2016 in GESIS—Leibniz Institute for the Social
Sciences (2018), and there the question “If you had to choose between these different goals, which one
would seem to you personally to be the most important?”. The four possible (nominal) answers are

• s0: “To maintain law and order in this country”;
• s1: “To give citizens more influence on government decisions”;
• s2: “To fight rising prices”; and
• s3: “To protect the right of freedom of speech”.

The sample sizes of this longitudinal study varied between 2795 and 3754, and are thus sufficiently
large for the asymptotics derived in Section 3. If just looking at the mode as a summary measure
(location), there is not much change in time: from 1980 to 2000 and again in 2016, the majority of
respondents considered s0 (law and order) as the most important goal in politics, whereas s1 (influence)
was judged most important between 2002 and 2014.

Much more fluctuations are visible if looking at the dispersion measures in Figure 2a. Although
the absolute values of the measures differ, the general shapes of the graphs are quite similar. Usually,
the dispersion measures take rather large values (≥0.90 in most of the years), which shows that any
of the possible goals is considered as being most important by a large part of the population. On the
other hand, the different goals never have the same popularity. Even in 2008, where all measures
give a value very close to 1, the corresponding uniformity tests lead to a clear rejection of the null of
a uniform distribution (p-values approximately 0 throughout).

Let us now analyze the development of the importance of the political goals in some more detail,
by looking at the extropy for illustration. Figure 2b shows the approximate 95%-CIs in time (a bias
correction does not have a visible effect because of the large sample sizes). There are phases where
successive CIs overlap, and these are interrupted by breaks in the dispersion behavior. Such breaks
happen, e.g., in 1984 (possibly related to a change of government in Germany in 1982/83), in 2002
(perhaps related to 9/11), or in 2008 and 2010 (Lehman bankruptcy and economic crisis). These changes
in dispersion go along with reallocations of probability masses, as can be seen from Figure 2c. From the
frequency curves of s0 and s1, we can see the above-mentioned change in mode, where the switch back
to s0 (law and order) might be caused by the refugee crisis. In addition, the curve for s2 (fight rising
prices) helps for explanation, as it shows that s2 is important for the respondents in the beginning of
the 1980s (where Germany suffered from very high inflation) and in 2008 (economic crisis), but not
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otherwise. Thus, altogether, the dispersion measures together with their approximate CIs give a very
good summary of the distributional changes over time.
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Figure 2. ALLBUS data from Section 4.2: (a) dispersion measures; (b) extropy with 95% CIs; and (c)
relative frequencies; plotted against year of survey.

5. Measures of Signed Serial Dependence

After having discussed the analysis of marginal properties of a categorical time series, we now turn
to the analysis of serial dependencies. In Section 1, two known measures of signed serial dependence,
Cohen’s κ(h) in Equation (3) and a modification of it, κ∗(h) in Equation (4), are briefly surveyed,
and, in Section 3.2, we realize a connection to νG and νEn, respectively. Motivated by a zero problem
with κ∗(h), a new type of modified κ is proposed in Equation (6), the measure κ?(h), and this turns out
to be related to νEx.

If replacing the (bivariate) probabilities in Equations (3), (4) and (6) by the respective (bivariate)
relative frequencies computed from x1, . . . , xn, we end up with sample versions of these dependence
measures. Knowledge of their asymptotic distribution is particularly relevant for the i.i.d.-case,
because this allows us to test for significant serial dependence in the given time series. As shown
by Weiß (2011, 2013), κ̂(h) then has an asymptotic normal distribution, and it holds approximately that

E
[
κ̂(h)

]
≈ − 1

n
, V

[
κ̂(h)

]
≈ 1

n

(
1 − 1 + 2s3(p)− 3s2(p)

(1− s2(p))2

)
. (16)

The sample version of κ∗(h) has a more simple asymptotic normal distribution with Weiß (2011, 2013)

E
[
κ̂∗(h)

]
≈ − 1

n
, V

[
κ̂∗(h)

]
≈ 1

m n
, (17)

but it suffers from the before-mentioned zero problem, especially for short time series.
Thus, it remains to derive the asymptotics of the novel κ̂?(h) under the null of an i.i.d. sample

X1, . . . , Xn. The starting point is an extension of the limiting result in Equation (8). Under appropriate
mixing assumptions (see Section 3), Weiß (2013) derived the joint asymptotic distribution of all
univariate and equal-bivariate relative frequencies, i.e. of all

√
n
(

p̂i − pi
)

and
√

n
(

p̂jj(h)− pjj(h)
)
,

which is the 2 (m + 1)-dimensional normal distribution N(0, Σ(h)). The covariance matrix Σ(h) consists
of four blocks with entries

σi,j = pj (δi,j − pi) + ∑∞
k=1

(
pij(k) + pji(k)− 2 pi pj

)
,

σ
(h)
i,m+1+j = 2(δi,j − pi) pjj(h) + ∑∞

k=1
(

pijj(k, h)− pi pjj(h)
)

+ ∑∞
k=h+1

(
pjji(h, k− h)− pi pjj(h)

)
+ ∑h−1

k=1

(
pjij(k, h− k)− pi pjj(h)

)
= σ

(h)
m+1+j,i,

σ
(h)
m+1+i,m+1+j =

(
δi,j − pjj(h)

)
pii(h) + 2

(
δi,j pijj(h, h)− pii(h)pjj(h)

)
+ ∑h−1

k=1

(
pjiji(k, h− k, k) + pijij(k, h− k, k)− 2pii(h)pjj(h)

)
+ ∑∞

k=h+1
(

pjjii(h, k− h, h) + piijj(h, k− h, h)− 2pii(h)pjj(h)
)
,

(18)
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where always i, j = 0, . . . , m, and where

pabc(k, l) = P(Xt = a, Xt−k = b, Xt−k−l = c),

pabcd(k, l, m) = P(Xt = a, Xt−k = b, Xt−k−l = c, Xt−k−l−m = d).

This rather complex general result simplifies greatly special cases such as an NDARMA-
DGP (Weiß 2013) and, in particular, for an i.i.d. DGP:

σi,j = pj (δi,j − pi),

σi,m+1+j = 2 (δi,j − pi) p2
j = σm+1+j,i,

σm+1+i,m+1+j = δi,j p2
i (1 + 2 pi) − 3 p2

i p2
j .

(19)

Now, the asymptotic properties of κ̂?(h) can be derived, as done in Appendix B.3.
√

n
(
κ̂?(h)−

κ?(h)
)

is asymptotically normally distributed, and mean and variance can be approximated by
plugging Equation (18) into

E
[
κ̂?(h)

]
≈ κ?(h) +

1
n

m

∑
j=0

(1− pj) σ
(h)
j,m+1+j −

(
1− pjj(h)

)
σjj

(1− pj)3 ,

V
[
κ̂?(h)

]
≈ 1

n

m

∑
i,j=0

pii(h)− 2pi + p2
i

(1− pi)2

pjj(h)− 2pj + p2
j

(1− pj)2 σi,j

+
m

∑
i,j=0

σ
(h)
m+1+i,m+1+j

(1− pi)(1− pj)
+ 2

m

∑
i,j=0

pii(h)− 2pi + p2
i

(1− pi)2

σ
(h)
i,m+1+j

1− pj
.

(20)

In the i.i.d.-case, we simply have

E
[
κ̂?(h)

]
≈ − 1

n
, V

[
κ̂?(h)

]
≈ 1

n

(
s2(p) −

m

∑
i=0

( p2
i

1− pi

)2
+
( m

∑
i=0

p2
i

1− pi

)2
)

. (21)

Comparing Equations (16), (17) and (21), we see that all three measures have the same asymptotic
bias −1/n, but their asymptotic variances generally differ. An exception to the latter statement
is obtained in the case of a uniform distribution, then also the asymptotic variances coincide (see
Appendix B.3).

6. Simulations and Applications

Section 6.1 presents some simulation results, where the quality of the asymptotic approximations
for κ̂(h), κ̂∗(h), κ̂?(h) according to Section 5 is investigated, as well as the power if testing against
different types of serial dependence. Two real-data examples are discussed in Sections 6.2 and 6.3, first
an ordinal time series with rather strong positive dependence, then a nominal time series exhibiting
negative dependencies.

6.1. Finite-Sample Performance of Serial Dependence Measures

In analogy to Section 4.1, we compared the finite-sample performance of the normal
approximations in Equations (16), (17) and (21) via simulations1. As the power scenarios, we not
only included NDARMA models but also the NegMarkov model described in Appendix A.2. These

1 The “zero problem” for κ∗(h) described after Equation (4) happened mainly for n = 100 and for distributions with low
dispersion such as p2 to p4, in about 0.5% of the i.i.d. simulation runs. It increased with positive dependence, to about 2%
for the DAR(1) simulation runs. This problem was circumvented by replacing all affected summands by 0.
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models were combined with the marginal distributions p1 to p6 in Table 1 plus p7 = puni; for the
NegMarkov model, it was not possible to have the marginals p2 and p4 with very low dispersion. The
full simulation results are available from the author upon request, but excerpts thereof are shown in
the sequel to illustrate the main findings. As before, all tables are collected in Appendix C.

First, we discuss the distributional properties of κ̂(h), κ̂∗(h), κ̂?(h) under the null of an i.i.d. DGP.
The unique mean approximation −1/n worked very well without exceptions. The quality of the
standard deviations’ approximations is investigated in Table A5. Generally, the actual marginal
dispersion was of great influence. For large dispersion (e.g., p6, p7 in Table A5), we had a very good
agreement between asymptotic and simulated standard deviation, where deviations were typically not
larger than ±0.001. For low dispersion (e.g., p5 in Table A5), we found some discrepancy for n = 100
and increasing h: the asymptotic approximation resulted in lower values for κ̂(h), κ̂?(h) (discrepancy
up to 0.004), and in larger values for κ̂∗(h) (discrepancy up to 0.002). Consequently, if testing for serial
independence, we expect the size for κ̂∗(h) to be smaller than the nominal 5%-level, and to be larger
for κ̂(h), κ̂?(h). This was roughly confirmed by the results in Table A6 (and by further simulations),
with the smallest size values for κ̂∗(h) (might be smaller by up to 0.01) and the largest for κ̂?(h). The
sizes of κ̂(h) tended to be smaller than 0.05 for h = 1 (discrepancies ≤ 0.003), while those of κ̂?(h) were
always rather close to 5%.

A more complex picture was observed with regard to the power of κ̂(h), κ̂∗(h), κ̂?(h) (see Table A6).
For positive dependence (DMA(1) and DAR(1)), κ̂(h), κ̂?(h) performed best if being close to a marginal
uniform distribution, whereas κ̂∗(h) had superior power for lower marginal dispersion levels (and κ̂(h)
performed second-best). For negative dependence (NegMarkov), in contrast, κ̂?(h) was the optimal
choice, and κ̂∗(h) might have a rather poor power, especially for low dispersion. Thus, while κ̂(h), κ̂?(h)
both showed a more-or-less balanced performance with respect to positive and negative dependence,
we had a sharp contrast for κ̂∗(h).

6.2. Application: Fear Index

The Volatility Index (VIX) serves as a benchmark for U.S. stock market volatility, and increasing
VIX values are interpreted as indications of greater fear in the market (Hancock 2012). Hancock (2012)
distinguished between the m + 1 = 13 ordinal fear states given in Table 2. From the historical closing
rates of the VIX offered by the website https://finance.yahoo.com/, a time series of daily fear states
was computed for the n = 4287 trading days in the period 1990–2006 (before the beginning of the
financial crisis). The obtained time series is plotted in Figure 3.

Table 2. Definition of fear states for Volatility Index (VIX) according to Hancock (2012).

State and Explanation VIX State and Explanation VIX

s0 extreme complacency [0; 10) s7 extremely high anx. [40; 45)
s1 very low anx. = high compl. [10; 15) s8 near panic [45; 50)
s2 low anx. = moderate compl. [15; 20) s9 moderate panic [50; 55)
s3 moderate anx. = low compl. [20; 25) s10 panic [55; 60)
s4 moderately high anxiety [25; 30) s11 intense panic [60; 65)
s5 high anxiety [30; 35) s12 extreme panic [65; 100]
s6 very high anxiety [35; 40)

As shown in the plots in the top panel of Figure 3, the states s9–s12 are never observed during
1990–2006, thus we have zero frequencies affecting the computation of ν̂En and κ̂∗(h). The marginal
distribution itself deviates visibly from a uniform distribution, thus it is reasonable that the dispersion
measures ν̂G, ν̂En and ν̂Ex are clearly below 1. Actually, the PMF mainly concentrates on the low
to moderate fear states, high anxiety (or more) only happened for few of the trading days. Even
more important is to investigate the development of these fear states over time. While negative
serial dependence would indicate a permanent fluctuation between the states, positive dependence
would imply some kind of inertia regarding the respective states. The serial dependence structure

https://finance.yahoo.com/
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was analyzed, as shown in the bottom panel of Figure 3, where the critical values for level 5%
(dashed lines) were computed according to the asymptotics in Section 5. All measures indicated
significantly positive dependence, thus the U.S. stock market has a tendency to stay in a state once
attained. However, κ̂∗(h) (Figure 3, center) produced notably smaller values than κ̂(h), κ̂?(h) (Figure 3,
left and right). Considering that the time series plot with its long runs of single states implies a
rather strong positive dependence, the values produced by κ̂∗(h) did not appear to be that plausible.
Thus, κ̂(h), κ̂?(h), which resulted in very similar values, appeared to be better interpretable in the given
example. Note that the discrepancy between κ̂∗(h) and κ̂(h), κ̂?(h) went along with the discrepancy
between ν̂En and ν̂G, ν̂Ex.
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Figure 3. Fear states time series plot and PMF (top); and plots of κ̂(h), κ̂∗(h), κ̂?(h) (bottom).

6.3. Application: Wood Pewee

Animal behavior studies are an integral part of research in biology and psychology. The time
series example to be studied in the present section dates back to one of the pioneers of ethology,
to Wallace Craig. The data were originally presented by Craig (1943) and further analyzed (among
others) in Chapter 6 of the work by Weiß (2018). They constitute a nominal time series of length
n = 1327, where the three states s0, s1, s2 express the different phrases in the morning twilight song of
the Wood Pewee (“pee-ah-wee”, “pee-oh” and “ah-di-dee”, respectively). Since the range of a nominal
time series lacks a natural order, a time series plot is not possible. Thus, Figure 4 shows a rate evolution
graph as a substitute, where the cumulative frequencies of the individual states are plotted against
time t. From the roughly linear increase, we conclude on a stable behavior of the time series (Weiß
2018).

The dispersion measures ν̂G, ν̂En and ν̂Ex all led to values between 0.90 and 0.95, indicating that
all three phrases are frequently used (but not equally often) within the morning twilight song of the
Wood Pewee. This is confirmed by the PMF plot in Figure 4, where we found some preference for
the phrase s0. From the serial dependence plots in the bottom panel of Figure 4, a quite complex
serial dependence structure becomes visible, with both positive and negative dependence values and
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with a periodic pattern. Positive values happen for even lags h (and particularly large values for
multiples of 4), and negative values for odd lags. The positive values indicate a tendency for repeating
a phrase, and such repetitions seem to be particularly likely after every fourth phrase. Negative values,
in contrast, indicate a change of the phrase, e.g., it will rarely happen that the same phrase is presented
twice in a row. While κ̂(h), κ̂?(h) gave a very clear (and similar) picture of the rhythmic structure,
it was again κ̂∗(h) that caused some implausible values, e.g., the non-significant value at lag 2. Thus,
both data examples indicate that κ̂∗(h) should be used with caution in practice (also because of the zero
problem). A decision between κ̂(h) and κ̂?(h) is more difficult; κ̂(h) is well established and slightly
advantageous for uncovering positive dependencies, whereas κ̂?(h) is computationally simpler and
shows a very good performance regarding negative dependencies.
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Figure 4. Wood Pewee time series: rate evolution graph and PMF plot (top); and plots of
κ̂(h), κ̂∗(h), κ̂?(h) (bottom).

7. Conclusions

This work discusses approaches for measuring dispersion and serial dependence in categorical
time series. Asymptotic properties of the novel extropy measure for categorical dispersion are derived
and compared to those of Gini index and entropy. Simulations showed that all three measures
performed quite well, with slightly better coverage rates for the entropy but computational advantages
for Gini index and extropy. The extropy was most reliable if testing the null hypothesis of a uniform
distribution. The application and interpretation of these measures was illustrated with a longitudinal
study about the most important political goals in Germany.

The analysis of the asymptotic bias of Gini index, entropy and extropy uncovered a relation
between these three measures and three types of κ-measures for signed serial dependence. While
two of these measures, namely κ(h) and κ∗(h), have already been discussed in the literature, the
“κ-counterpart” to the extropy turned out to be a new type of modified Cohen’s κ, denoted by κ?(h).
The asymptotics of κ̂?(h) were investigated and utilized for testing for serial dependence. A simulation
study as well as two real-data examples (time series of fear states and song of the Wood Pewee)
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showed that κ̂∗(h) has several drawbacks, while both κ̂(h) and κ̂?(h) work very well in practice. The
advantages of κ̂?(h) are computational simplicity and a superior performance regarding negative
dependencies.

Funding: This research received no external funding.

Acknowledgments: The author thanks the editors and the three referees for their useful comments on an earlier
draft of this article.

Conflicts of Interest: The author declares no conflict of interest.

Appendix A. Some Models for Categorical Processes

This appendix provides a brief summary of those models for categorical processes that are used
for simulations and illustrative computations in this article. More background on these and further
models for categorical processes can be found in the book by Weiß (2018).

Appendix A.1. NDARMA Models for Categorical Processes

The NDARMA model (“new” discrete autoregressive moving-average model) was proposed by
Jacobs and Lewis (1983), and its definition might be given as follows (Weiß and Göb 2008):

Let (Xt)Z and (εt)Z be categorical processes with state space S , where (εt)Z is i.i.d. with marginal
distribution p, and where εt is independent of (Xs)s<t. Let

(αt,1, . . . , αt,p, βt,0, . . . , βt,q) ∼ MULT(1; φ1, . . . , φp, ϕ0, . . . , ϕq)

be i.i.d. multinomial random vectors, which are independent of (εt)Z and of (Xs)s<t. Then, (Xt)Z
is said to be an NDARMA(p, q) process (and the cases q = 0 and p = 0 are referred to as a DAR(p)
process and DMA(q) process, respectively) if it follows the recursion

Xt = αt,1 · Xt−1 + . . . + αt,p · Xt−p + βt,0 · εt + . . . + βt,q · εt−q. (A1)

(Here, if the state space S is not numerically coded, we assume 0 · s = 0, 1 · s = s and s + 0 = s
for each s ∈ S .)

NDARMA processes have several attractive properties, e.g. Xt and εt have the same stationary
marginal distribution: P(Xt = si) = pi = P(εt = si) for all i ∈ S . Their serial dependence structure
is characterized by a set of Yule–Walker-type equations for the serial dependence measure Cohen’s κ

from Equation (3) (Weiß and Göb 2008):

κ(h) = ∑
p
j=1 φj κ(|h− j|) + ∑

q−h
i=0 ϕi+h r(i) for h ≥ 1, (A2)

where the r(i) satisfy r(i) = ∑i−1
j=max {0,i−p} φi−j · r(j) + ϕi 1(0 ≤ i ≤ q). It should be noted that

NDARMA processes satisfy κ(h) ≥ 0, i.e. they can only handle positive serial dependence. Another
important property is that the bivariate distributions at lag h are pi|j(h) = pi + κ(h) (δi,j − pi). This
implies that pij(h)− pi pj = κ(h) (δi,j − pi) pj and, as a consequence, that all of the serial dependence
measures mentioned in this work coincide for NDARMA processes: ϑ(h) = ϑ∗(h) = ϑ?(h) = κ(h) =
κ∗(h) = κ?(h).

Finally, Weiß (2013) showed that an NDARMA process is φ-mixing with exponentially decreasing
weights such that the CLT on p. 200 in Billingsley (1999) is applicable.

Appendix A.2. Markov Chains for Categorical Processes

A discrete-valued Markov process (Xt)Z is characterized by a “memory of length p ∈ N”, in the
sense that

P(Xt = xt | Xt−1 = xt−1, . . .) = P(Xt = xt | Xt−1 = xt−1, . . . , Xt−p = xt−p)
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has to hold for all xi ∈ S . In the case p = 1, (Xt)Z is commonly called a Markov chain. If the
transition probabilities P(Xt = i | Xt−1 = j) of the Markov chain do not change with time t, i.e.,
if P(Xt = i | Xt−1 = j) = pi|j for all t ∈ N, it is said to be homogeneous (analogously for higher-order
Markov processes). An example of a parsimoniously parametrized homogeneous Markov chain
(Markov process) is the DAR(1) process (DAR(p) process) according to Appendix A.1, which always
exhibits positive serial dependence.

A parsimoniously parametrized Markov model with negative serial dependence was proposed
by Weiß (2011), the “Negative Markov model” (NegMarkov model). For a given probability vector
π ∈ (0; 1)m+1 and some α ∈ (0; 1], its transition probabilities are defined by

pi|j =

{
α πj if i = j,

β j πi if i 6= j,
where β j =

1− α πj

1− πj
≥ 1.

The resulting ergodic Markov chain has the stationary marginal distribution

pj =
πj/β j

∑m
i=0 πi/βi

for j = 0, . . . , m.

As an example, if π = puni, then the β j become 1 + (1− α)/m such that p is also a uniform
distribution. However, the conditional distribution given Xt−1 = j is not uniform:

pi|j =

{
α

m+1 if i = j,

(1 + 1−α
m ) 1

m+1 if i 6= j.

Appendix B. Proofs

Appendix B.1. Derivation of the inequality in Equation (7)

The first inequality in Equation (7) was shown by Lad et al. (2015). Using the inequality
ln (1 + x) > x/(1 + x/2) for x > 0 from Love (1980), it follows for pi ∈ (0; 1) that

− ln (1− pi) = ln
(
1 + pi

1−pi

)
> 2pi

2−pi
, − ln pi = ln

(
1 + 1−pi

pi

)
> 2 1−pi

1+pi
.

Consequently, we have

−∑m
i=0(1− pi) ln (1− pi) ≥ ∑m

i=0 pi(1− pi)
2

2−pi
≥ 1− s2(p),

as well as
−∑m

i=0 pi ln pi ≥ ∑m
i=0 pi(1− pi)

2
1+pi

≥ 1− s2(p).

Appendix B.2. Derivations for Sample Dispersion Measures

For studying the asymptotic properties of the sample Gini index according to Equation (1), it is
important to know that ν̂G can be exactly rewritten as the centered quadratic polynomial

ν̂G = νG − 2 m+1
m ∑m

i=0 pi ( p̂i − pi) − m+1
m ∑m

i=0( p̂i − pi)
2. (A3)

Since E[p̂] = p holds exactly, this representation immediately implies an exact way of bias
computation, n

(
E[ν̂G]− νG

)
= m+1

m ∑m
i=0 V

[√
n ( p̂i − pi)

]
, where V

[√
n ( p̂i − pi)

]
is approximately

given by σii according to Equation (8). Furthermore, provided that p 6= puni, the resulting linear
approximation together with the asymptotic normality of

√
n
(

p̂ − p
)

can be used to derive the
asymptotic result (Equation (9)) (Delta method). Here, p = puni has to be excluded, because then
the linear term in Equation (A3) vanishes. Hence, in the boundary case p = puni, we end up with
an asymptotic quadratic-form distribution instead of a normal one. Actually, it is easily seen that
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n m (1− ν̂G) then coincides with the Pearson’s χ2-statistic with respect to puni; see Section 4 in Weiß
(2013) for the asymptotics.

For the entropy in Equation (2), an exact polynomial representation such as in Equation (A3) does
not exist, thus we have to use a Taylor approximation instead:

ν̂En ≈ νEn − ∑m
j=0

1+ln pj
ln (m+1) ( p̂j − pj) − 1

2 ∑m
j=0

p−1
j

ln (m+1) ( p̂j − pj)
2. (A4)

However, then, one can proceed as before. Thus, an approximate bias formula follows from

n
(
E[ν̂En]− νEn

)
≈ − 1

2 ∑m
j=0

p−1
j

ln (m+1) V
[√

n ( p̂j − pj)
]
≈ − 1

2 ∑m
j=0

p−1
j

ln (m+1) σjj.

For p 6= puni, we can use the linear approximation implied by Equation (A4) to conclude on the
asymptotic normality of

√
n (ν̂En − νEn) with variance

σ2
En =

m

∑
i,j=0

( 1 + ln pi
ln (m + 1)

) ( 1 + ln pj

ln (m + 1)

)
σij,

also see the results in (Blyth 1959; Weiß 2013). Note that, in the i.i.d.-case, where σij = pj (δi,j − pi), one
computes

∑m
i,j=0(1 + ln pi)(1 + ln pj) pj (δi,j − pi)

= ∑m
i=0(1 + ln pi)

2 pi −
(

∑m
i=0(1 + ln pi) pi

)2

= 1 + 2 ∑m
i=0 pi ln pi + ∑m

i=0 pi (ln pi)
2 −

(
1 + ∑m

i=0 pi ln pi
)2

= ∑m
i=0 pi (ln pi)

2 −
(

∑m
i=0 pi ln pi

)2.

Finally, in the boundary case p = puni, again the linear term vanishes such that

2n ln (m + 1) · (1− ν̂En) ≈ n
m

∑
j=0

( p̂j − 1
m+1 )

2

1
m+1

equals the Pearson’s χ2-statistic.
Finally, we do analogous derivations concerning the extropy in Equation (5). Starting with the

Taylor approximation

ν̂Ex ≈ νEx + ∑m
j=0

1+ln (1−pj)

m ln (m+1
m )

( p̂j − pj) − 1
2 ∑m

j=0
(1−pj)

−1

m ln (m+1
m )

( p̂j − pj)
2, (A5)

it follows that
n
(
E[ν̂Ex]− νEx

)
≈ − 1

2 ∑m
j=0

(1−pj)
−1

m ln (m+1
m )

σjj.

For p 6= puni, we can use the linear approximation implied by Equation (A5) to conclude on the
asymptotic normality of

√
n (ν̂Ex − νEx) with variance

σ2
Ex =

m

∑
i,j=0

1 + ln (1− pi)

m ln (m+1
m )

1 + ln (1− pj)

m ln (m+1
m )

σij.

Note that, in the i.i.d.-case, where σij = pj (δi,j − pi), one computes

∑m
i,j=0

(
1 + ln (1− pi)

)(
1 + ln (1− pj)

)
pj (δi,j − pi)

= ∑m
i=0 pi

(
ln (1− pi)

)2 −
(

∑m
i=0 pi ln (1− pi)

)2
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as before. Finally, in the boundary case p = puni, again the linear term vanishes such that

2n m2 ln (m+1
m ) · (1− ν̂Ex) ≈ n

m

∑
j=0

( p̂j − 1
m+1 )

2

1
m+1

equals the Pearson’s χ2-statistic.

Appendix B.3. Derivations for Measures of Signed Serial Dependence

We partition x ∈ (0; 1)2(m+1) as x = (x0, . . . , xm, xm+1+0, . . . , xm+1+m)
>, and we define

f (x) =
m

∑
j=0

xm+1+j − x2
j

1− xj
.

Then,

∂
∂xj

f (x) =
xm+1+j − 2xj + x2

j

(1− xj)2 , ∂
∂xm+1+j

f (x) =
1

1− xj
,

and
∂2

∂xj
2 f (x) =

−2(1− xm+1+j)

(1− xj)3 , ∂2

∂xj ∂xm+1+j
f (x) =

1
(1− xj)2 ,

all other second-order derivatives equal 0. Thus, a second-order Taylor approximation of κ̂?(h) =

f
(

. . . , p̂j, . . . , p̂jj(h), . . .
)

is given by

κ̂?(h) ≈ κ?(h) +
m

∑
j=0

pjj(h)− 2pj + p2
j

(1− pj)2

(
p̂j − pj

)
+

m

∑
j=0

1
1− pj

(
p̂jj(h)− pjj(h)

)
−

m

∑
j=0

1− pjj(h)
(1− pj)3

(
p̂j − pj

)2
+

m

∑
j=0

1
(1− pj)2

(
p̂j − pj

) (
p̂jj(h)− pjj(h)

)
.

Hence, using Equation (18), it follows that

n
(
E
[
κ̂?(h)

]
− κ?(h)

)
≈

m

∑
j=0

1
(1− pj)2 σ

(h)
j,m+1+j −

m

∑
j=0

1− pjj(h)
(1− pj)3 σjj

=
m

∑
j=0

(1− pj) σ
(h)
j,m+1+j −

(
1− pjj(h)

)
σjj

(1− pj)3 .

Furthermore, the Delta method implies that
√

n
(
κ̂?(h)− κ?(h)

)
∼ N(0, σ2) with

σ2 =
m

∑
i,j=0

pii(h)− 2pi + p2
i

(1− pi)2

pjj(h)− 2pj + p2
j

(1− pj)2 σi,j

+
m

∑
i,j=0

σ
(h)
m+1+i,m+1+j

(1− pi)(1− pj)
+ 2

m

∑
i,j=0

pii(h)− 2pi + p2
i

(1− pi)2

σ
(h)
i,m+1+j

1− pj
.

Note that, under the null of an i.i.d. DGP, we have the simplifications

pjj(h)− 2pj + p2
j

(1− pj)2 =
−2pj

1− pj
,

1− pjj(h)
(1− pj)3 =

1 + pj

(1− pj)2 .
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Thus, the second-order Taylor approximation of κ̂?(h) then simplifies to

κ̂?(h) ≈ κ?(h) +
m

∑
j=0

−2pj

1− pj

(
p̂j − pj

)
+

m

∑
j=0

1
1− pj

(
p̂jj(h)− p2

j
)

−
m

∑
j=0

1 + pj

(1− pj)2

(
p̂j − pj

)2
+

m

∑
j=0

1
(1− pj)2

(
p̂j − pj

) (
p̂jj(h)− p2

j
)
.

Furthermore,

σi,j = pj (δi,j − pi), σi,m+1+j = 2p2
j (δi,j − pi), σm+1+i,m+1+j = δi,j p2

i (1 + 2pi)− 3p2
i p2

j ,

according to Equation (19). Thus, for an i.i.d. DGP, it follows that

n
(
E
[
κ̂?(h)

]
− κ?(h)

)
= n E

[
κ̂?(h)

]
≈

m

∑
j=0

σj,m+1+j − (1 + pj) σjj

(1− pj)2

=
m

∑
j=0

2p2
j (1− pj) − (1 + pj) pj(1− pj)

(1− pj)2

=
m

∑
j=0

−pj(1− pj) (1 + pj − 2pj)

(1− pj)2 = −1.

Furthermore,

σ2 =
m

∑
i,j=0

−2pi
1− pi

−2pj

1− pj
pj (δi,j − pi) + 2

m

∑
i,j=0

−2pi
1− pi

1
1− pj

2p2
j (δi,j − pi)

+
m

∑
i,j=0

1
1− pi

1
1− pj

(
δi,j p2

i (1 + 2pi)− 3p2
i p2

j
)

= 4
m

∑
i=0

p3
i

(1− pi)2 − 8
m

∑
i=0

p3
i

(1− pi)2 +
m

∑
i=0

p2
i (1 + 2pi)

(1− pi)2

− 4
m

∑
i,j=0

p2
i

1− pi

p2
j

1− pj
+ 8

m

∑
i,j=0

p2
i

1− pi

p2
j

1− pj
− 3

m

∑
i,j=0

p2
i

1− pi

p2
j

1− pj

=
m

∑
i=0

p2
i (1− 2pi)

(1− pi)2 +

( m

∑
i=0

p2
i

1− pi

)2

.

This leads to Equation (21).
In the special case of a uniform distribution, i.e. where all pi =

1
m+1 , the asymptotic variances

according to Equations (16), (17) and (21) coincide. Then, we have in Equation (16) that

1 − 1+2s3(p)−3s2(p)

(1−s2(p))2 = 1 −
1+ 2

(m+1)2
− 3

m+1

(1− 1
m+1 )

2 = 1 − (m+1)2+2−3 (m+1)
m2 = 1 − m2−m

m2 = 1
m ,

which corresponds to Equation (17). However, the same expression also follows in Equation (21):

s2(p) − ∑m
i=0

(
p2

i
1−pi

)2
+
(

∑m
i=0

p2
i

1−pi

)2
= 1

m+1 −
1

m2 (m+1) + 1
m2 = 1

m .
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Appendix C. Tables

Table A1. Asymptotic vs. simulated mean (M·-a vs. M·-s) of ν̂G, ν̂En, ν̂Ex for DGPs i.i.d., DMA(1) with ϕ1 = 0.25, and DAR(1) with φ1 = 0.40.

DGP i.i.d. DMA(1), 0.25 DAR(1), 0.40 i.i.d. DMA(1), 0.25 DAR(1), 0.40 i.i.d. DMA(1), 0.25 DAR(1), 0.40

PMF n MG-a MG-s MG-a MG-s MG-a MG-s MEn-a MEn-s MEn-a MEn-s MEn-a MEn-s MEx-a MEx-s MEx-a MEx-s MEx-a MEx-s

p1 100 0.970 0.970 0.967 0.967 0.957 0.957 0.969 0.968 0.965 0.964 0.954 0.954 0.982 0.982 0.980 0.980 0.975 0.975
250 0.976 0.976 0.975 0.975 0.971 0.971 0.975 0.975 0.973 0.973 0.969 0.969 0.986 0.986 0.985 0.985 0.983 0.983
500 0.978 0.978 0.977 0.977 0.975 0.975 0.977 0.977 0.976 0.976 0.974 0.974 0.987 0.987 0.987 0.987 0.985 0.985
1000 0.979 0.979 0.979 0.979 0.978 0.978 0.978 0.978 0.978 0.978 0.977 0.977 0.988 0.988 0.987 0.987 0.987 0.987

p2 100 0.627 0.627 0.625 0.625 0.619 0.619 0.649 0.649 0.645 0.644 0.634 0.634 0.739 0.739 0.737 0.737 0.731 0.731
250 0.631 0.631 0.630 0.630 0.627 0.627 0.655 0.655 0.654 0.654 0.649 0.649 0.743 0.743 0.742 0.742 0.739 0.739
500 0.632 0.632 0.632 0.631 0.630 0.630 0.657 0.657 0.657 0.656 0.654 0.654 0.744 0.744 0.743 0.743 0.742 0.742
1000 0.633 0.633 0.632 0.633 0.632 0.632 0.658 0.658 0.658 0.658 0.657 0.657 0.744 0.744 0.744 0.744 0.744 0.743

p3 100 0.759 0.759 0.756 0.756 0.749 0.749 0.756 0.755 0.752 0.751 0.741 0.741 0.842 0.842 0.840 0.840 0.835 0.835
250 0.764 0.764 0.762 0.762 0.760 0.760 0.762 0.762 0.761 0.761 0.757 0.757 0.846 0.846 0.845 0.845 0.843 0.843
500 0.765 0.765 0.765 0.765 0.763 0.763 0.764 0.764 0.764 0.764 0.762 0.762 0.847 0.847 0.846 0.847 0.845 0.845
1000 0.766 0.766 0.766 0.766 0.765 0.765 0.766 0.765 0.765 0.765 0.764 0.764 0.847 0.847 0.847 0.847 0.847 0.847

p4 100 0.433 0.433 0.431 0.431 0.427 0.428 0.486 0.486 0.482 0.481 0.471 0.471 0.568 0.568 0.566 0.566 0.560 0.561
250 0.436 0.436 0.435 0.435 0.433 0.434 0.492 0.492 0.491 0.491 0.487 0.487 0.572 0.572 0.571 0.571 0.569 0.569
500 0.437 0.437 0.436 0.436 0.435 0.436 0.495 0.495 0.494 0.494 0.492 0.492 0.573 0.573 0.572 0.572 0.571 0.571
1000 0.437 0.437 0.437 0.437 0.436 0.436 0.496 0.496 0.495 0.495 0.494 0.494 0.573 0.573 0.573 0.573 0.573 0.573

p5 100 0.743 0.743 0.740 0.740 0.733 0.733 0.764 0.764 0.760 0.759 0.749 0.749 0.827 0.827 0.824 0.824 0.819 0.819
250 0.747 0.747 0.746 0.746 0.743 0.743 0.770 0.770 0.768 0.769 0.764 0.765 0.830 0.830 0.829 0.829 0.827 0.827
500 0.749 0.749 0.748 0.748 0.747 0.747 0.772 0.772 0.771 0.772 0.769 0.769 0.831 0.831 0.831 0.831 0.830 0.830
1000 0.749 0.749 0.749 0.749 0.748 0.748 0.773 0.773 0.773 0.773 0.772 0.772 0.832 0.832 0.832 0.832 0.831 0.831

p6 100 0.928 0.928 0.925 0.925 0.916 0.916 0.929 0.929 0.925 0.925 0.915 0.915 0.956 0.956 0.953 0.954 0.948 0.948
250 0.934 0.934 0.932 0.932 0.929 0.929 0.936 0.936 0.934 0.934 0.930 0.930 0.959 0.959 0.958 0.958 0.956 0.956
500 0.936 0.936 0.935 0.935 0.933 0.933 0.938 0.938 0.937 0.937 0.935 0.935 0.960 0.960 0.960 0.960 0.959 0.959
1000 0.937 0.937 0.936 0.936 0.935 0.935 0.939 0.939 0.939 0.939 0.938 0.938 0.961 0.961 0.961 0.961 0.960 0.960
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Table A2. Asymptotic vs. simulated standard deviation (S·-a vs. S·-s) of ν̂G, ν̂En, ν̂Ex for DGPs i.i.d., DMA(1) with ϕ1 = 0.25, and DAR(1) with φ1 = 0.40.

DGP i.i.d. DMA(1), 0.25 DAR(1), 0.40 i.i.d. DMA(1), 0.25 DAR(1), 0.40 i.i.d. DMA(1), 0.25 DAR(1), 0.40

PMF n SG-a SG-s SG-a SG-s SG-a SG-s SEn-a SEn-s SEn-a SEn-s SEn-a SEn-s SEx-a SEx-s SEx-a SEx-s SEx-a SEx-s

p1 100 0.017 0.019 0.020 0.023 0.027 0.032 0.017 0.020 0.020 0.024 0.027 0.033 0.011 0.012 0.012 0.014 0.016 0.020
250 0.011 0.011 0.013 0.014 0.017 0.018 0.011 0.012 0.013 0.014 0.017 0.019 0.007 0.007 0.008 0.008 0.010 0.011
500 0.008 0.008 0.009 0.009 0.012 0.012 0.008 0.008 0.009 0.009 0.012 0.013 0.005 0.005 0.006 0.006 0.007 0.008
1000 0.006 0.006 0.006 0.007 0.008 0.009 0.006 0.006 0.006 0.007 0.008 0.009 0.003 0.003 0.004 0.004 0.005 0.005

p2 100 0.071 0.071 0.084 0.083 0.109 0.106 0.063 0.064 0.074 0.075 0.097 0.096 0.057 0.058 0.067 0.068 0.088 0.088
250 0.045 0.045 0.053 0.053 0.069 0.068 0.040 0.040 0.047 0.047 0.061 0.061 0.036 0.036 0.043 0.043 0.055 0.055
500 0.032 0.032 0.037 0.037 0.049 0.049 0.028 0.029 0.033 0.033 0.043 0.043 0.026 0.026 0.030 0.030 0.039 0.039
1000 0.023 0.023 0.027 0.027 0.035 0.035 0.020 0.020 0.024 0.024 0.031 0.031 0.018 0.018 0.021 0.021 0.028 0.028

p3 100 0.058 0.058 0.068 0.068 0.088 0.086 0.053 0.054 0.062 0.063 0.081 0.081 0.042 0.043 0.049 0.050 0.064 0.065
250 0.037 0.037 0.043 0.043 0.056 0.055 0.033 0.034 0.039 0.039 0.051 0.051 0.027 0.027 0.031 0.031 0.041 0.041
500 0.026 0.026 0.030 0.030 0.039 0.039 0.024 0.024 0.028 0.028 0.036 0.036 0.019 0.019 0.022 0.022 0.029 0.029
1000 0.018 0.018 0.021 0.021 0.028 0.028 0.017 0.017 0.020 0.020 0.025 0.025 0.013 0.013 0.016 0.016 0.020 0.020

p4 100 0.078 0.077 0.092 0.090 0.119 0.115 0.072 0.073 0.085 0.085 0.110 0.109 0.073 0.073 0.085 0.086 0.111 0.110
250 0.049 0.049 0.058 0.058 0.075 0.075 0.046 0.046 0.054 0.054 0.070 0.070 0.046 0.046 0.054 0.054 0.070 0.071
500 0.035 0.035 0.041 0.041 0.053 0.053 0.032 0.032 0.038 0.038 0.049 0.049 0.033 0.033 0.038 0.038 0.050 0.050
1000 0.025 0.025 0.029 0.029 0.038 0.038 0.023 0.023 0.027 0.027 0.035 0.035 0.023 0.023 0.027 0.027 0.035 0.035

p5 100 0.065 0.064 0.076 0.075 0.099 0.096 0.056 0.057 0.066 0.067 0.086 0.086 0.048 0.048 0.056 0.056 0.073 0.073
250 0.041 0.041 0.048 0.048 0.062 0.062 0.036 0.036 0.042 0.042 0.054 0.054 0.030 0.030 0.035 0.035 0.046 0.046
500 0.029 0.029 0.034 0.034 0.044 0.044 0.025 0.025 0.029 0.029 0.038 0.038 0.021 0.021 0.025 0.025 0.032 0.033
1000 0.020 0.020 0.024 0.024 0.031 0.031 0.018 0.018 0.021 0.021 0.027 0.027 0.015 0.015 0.018 0.018 0.023 0.023

p6 100 0.033 0.034 0.039 0.040 0.051 0.052 0.030 0.032 0.036 0.037 0.046 0.050 0.021 0.022 0.025 0.026 0.032 0.034
250 0.021 0.021 0.025 0.025 0.032 0.032 0.019 0.019 0.022 0.023 0.029 0.030 0.013 0.013 0.016 0.016 0.020 0.021
500 0.015 0.015 0.017 0.017 0.023 0.023 0.014 0.014 0.016 0.016 0.021 0.021 0.009 0.010 0.011 0.011 0.014 0.015
1000 0.010 0.011 0.012 0.012 0.016 0.016 0.010 0.010 0.011 0.011 0.015 0.015 0.007 0.007 0.008 0.008 0.010 0.010
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Table A3. Simulated coverage rate for 95% CIs of ν̂G, ν̂En, ν̂Ex for DGPs i.i.d., DMA(1) with ϕ1 = 0.25, and DAR(1) with φ1 = 0.40.

Coverage ν̂G, DGP: Coverage ν̂En, DGP: Coverage ν̂Ex, DGP:

PMF n i.i.d. DMA(1), 0.25 DAR(1), 0.40 i.i.d. DMA(1), 0.25 DAR(1), 0.40 i.i.d. DMA(1), 0.25 DAR(1), 0.40

p1 100 0.895 0.893 0.899 0.904 0.901 0.905 0.892 0.890 0.897
250 0.914 0.909 0.898 0.920 0.915 0.905 0.912 0.907 0.896
500 0.931 0.922 0.912 0.935 0.927 0.918 0.930 0.921 0.910

1000 0.938 0.935 0.926 0.940 0.937 0.930 0.938 0.934 0.925

p2 100 0.936 0.926 0.908 0.937 0.929 0.915 0.931 0.928 0.911
250 0.944 0.941 0.933 0.945 0.942 0.937 0.944 0.941 0.935
500 0.947 0.946 0.941 0.947 0.946 0.943 0.947 0.946 0.941

1000 0.949 0.947 0.944 0.949 0.948 0.946 0.949 0.947 0.945

p3 100 0.931 0.920 0.904 0.936 0.926 0.918 0.930 0.919 0.901
250 0.941 0.938 0.930 0.943 0.943 0.937 0.940 0.937 0.929
500 0.945 0.945 0.940 0.946 0.946 0.943 0.944 0.944 0.939

1000 0.948 0.947 0.945 0.948 0.948 0.947 0.948 0.947 0.945

p4 100 0.941 0.925 0.904 0.938 0.925 0.905 0.938 0.931 0.913
250 0.947 0.939 0.929 0.943 0.940 0.931 0.948 0.942 0.934
500 0.949 0.946 0.941 0.948 0.946 0.942 0.950 0.947 0.943

1000 0.952 0.945 0.946 0.949 0.946 0.947 0.949 0.946 0.947

p5 100 0.933 0.922 0.904 0.938 0.928 0.915 0.939 0.923 0.906
250 0.945 0.939 0.931 0.947 0.942 0.935 0.944 0.940 0.931
500 0.946 0.945 0.941 0.947 0.946 0.943 0.947 0.945 0.941

1000 0.948 0.947 0.945 0.949 0.948 0.946 0.949 0.947 0.945

p6 100 0.909 0.894 0.884 0.920 0.908 0.901 0.906 0.890 0.877
250 0.933 0.923 0.908 0.936 0.929 0.919 0.931 0.921 0.905
500 0.938 0.935 0.927 0.940 0.938 0.933 0.937 0.934 0.925

1000 0.943 0.941 0.939 0.945 0.943 0.942 0.943 0.941 0.938
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Table A4. Rejection rate if testing null hypothesis of uniform distribution (m = 3) on 5%-level based on ν̂G, ν̂En, ν̂Ex. DGPs i.i.d., DMA(1) with ϕ1 = 0.25, and DAR(1)
with φ1 = 0.40, with marginal distribution Lm(λ).

λ 1.00 0.98 0.96 0.94 0.92 0.90 1.00 0.98 0.96 0.94 0.92 0.90 1.00 0.98 0.96 0.94 0.92 0.90

DGP n Rejection rate ν̂G Rejection rate ν̂En Rejection rate ν̂Ex

i.i.d. 100 0.049 0.056 0.081 0.122 0.183 0.271 0.050 0.057 0.082 0.120 0.178 0.262 0.050 0.058 0.084 0.127 0.190 0.281
250 0.052 0.068 0.132 0.250 0.421 0.605 0.051 0.068 0.129 0.243 0.407 0.590 0.051 0.068 0.132 0.252 0.423 0.608
500 0.050 0.088 0.223 0.465 0.723 0.899 0.050 0.087 0.219 0.455 0.712 0.893 0.050 0.088 0.225 0.468 0.727 0.901

1000 0.051 0.132 0.420 0.782 0.961 0.997 0.051 0.132 0.414 0.775 0.959 0.997 0.051 0.133 0.423 0.785 0.962 0.997

DMA(1), 0.25 100 0.054 0.060 0.076 0.109 0.150 0.213 0.057 0.063 0.079 0.109 0.150 0.210 0.055 0.062 0.078 0.112 0.155 0.219
250 0.052 0.065 0.108 0.194 0.317 0.467 0.052 0.067 0.108 0.190 0.309 0.455 0.052 0.066 0.110 0.197 0.322 0.474
500 0.051 0.077 0.172 0.350 0.575 0.778 0.052 0.077 0.169 0.343 0.564 0.769 0.051 0.078 0.174 0.354 0.579 0.782

1000 0.049 0.106 0.315 0.634 0.879 0.978 0.050 0.106 0.310 0.625 0.873 0.976 0.050 0.107 0.317 0.638 0.881 0.978

DAR(1), 0.4 100 0.056 0.059 0.067 0.088 0.112 0.146 0.059 0.062 0.071 0.091 0.115 0.147 0.059 0.062 0.071 0.092 0.118 0.153
250 0.053 0.060 0.085 0.132 0.199 0.294 0.054 0.062 0.085 0.131 0.195 0.286 0.054 0.062 0.087 0.135 0.205 0.301
500 0.050 0.066 0.120 0.218 0.366 0.535 0.051 0.067 0.119 0.213 0.356 0.522 0.051 0.067 0.121 0.221 0.371 0.542

1000 0.050 0.083 0.199 0.404 0.647 0.846 0.050 0.083 0.195 0.396 0.636 0.838 0.050 0.084 0.200 0.408 0.651 0.850
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Table A5. Asymptotic vs. simulated standard deviation (S·-a vs. S·-s) of κ̂(h), κ̂∗(h), κ̂?(h) for i.i.d.
DGPs with m = 3.

Sκ̂-a Sκ̂-s, h = Sκ̂∗ -a Sκ̂∗ -s, h = Sκ̂? -a Sκ̂? -s, h =

PMF n 1 2 3 1 2 3 1 2 3

p5 100 0.064 0.064 0.065 0.066 0.058 0.056 0.057 0.057 0.074 0.075 0.077 0.078
250 0.040 0.041 0.041 0.041 0.037 0.036 0.036 0.036 0.047 0.047 0.048 0.048
500 0.029 0.029 0.029 0.029 0.026 0.026 0.026 0.026 0.033 0.033 0.033 0.034
1000 0.020 0.020 0.020 0.020 0.018 0.018 0.018 0.018 0.023 0.023 0.024 0.024

p6 100 0.060 0.060 0.061 0.061 0.058 0.057 0.057 0.058 0.063 0.064 0.064 0.065
250 0.038 0.038 0.038 0.038 0.037 0.036 0.036 0.037 0.040 0.040 0.040 0.040
500 0.027 0.027 0.027 0.027 0.026 0.026 0.026 0.026 0.028 0.028 0.028 0.028
1000 0.019 0.019 0.019 0.019 0.018 0.018 0.018 0.018 0.020 0.020 0.020 0.020

p7 100 0.058 0.058 0.059 0.059 0.058 0.057 0.058 0.058 0.058 0.058 0.059 0.059
250 0.037 0.036 0.037 0.037 0.037 0.036 0.037 0.036 0.037 0.037 0.037 0.037
500 0.026 0.026 0.026 0.026 0.026 0.026 0.026 0.026 0.026 0.026 0.026 0.026
1000 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018

Table A6. Rejection rate (RR) if testing null hypothesis of i.i.d. data on 5%-level based on κ̂(1), κ̂∗(1),
κ̂?(1). DGPs i.i.d., DMA(1) with ϕ1 = 0.15, DAR(1) with φ1 = 0.15, and NegMarkov with α = 0.75.

DGP i.i.d., RR for DMA(1), 0.15, RR for DAR(1), 0.15, RR for NMark, 0.75, RR for

PMF n κ̂(1) κ̂∗(1) κ̂?(1) κ̂(1) κ̂∗(1) κ̂?(1) κ̂(1) κ̂∗(1) κ̂?(1) κ̂(1) κ̂∗(1) κ̂?(1)

p5 100 0.047 0.042 0.051 0.484 0.537 0.400 0.594 0.634 0.507 0.478 0.235 0.521
250 0.049 0.048 0.049 0.851 0.896 0.756 0.925 0.947 0.861 0.886 0.654 0.908
500 0.049 0.049 0.050 0.988 0.994 0.961 0.997 0.999 0.989 0.995 0.936 0.997
1000 0.049 0.048 0.049 1.000 1.000 0.999 1.000 1.000 1.000 1.000 0.999 1.000

p6 100 0.048 0.047 0.049 0.540 0.559 0.509 0.662 0.673 0.631 0.338 0.268 0.353
250 0.050 0.049 0.049 0.903 0.916 0.878 0.960 0.966 0.947 0.725 0.636 0.735
500 0.050 0.049 0.051 0.996 0.997 0.992 0.999 1.000 0.999 0.958 0.920 0.961
1000 0.049 0.050 0.050 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.998 1.000

p7 100 0.048 0.047 0.048 0.577 0.569 0.573 0.699 0.688 0.697 0.275 0.269 0.276
250 0.047 0.048 0.048 0.925 0.924 0.924 0.973 0.972 0.973 0.640 0.636 0.641
500 0.049 0.049 0.049 0.998 0.998 0.998 1.000 1.000 1.000 0.918 0.916 0.918
1000 0.050 0.050 0.050 1.000 1.000 1.000 1.000 1.000 1.000 0.998 0.998 0.998
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