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Abstract: This paper investigates the asymptotic properties of a penalized empirical likelihood
estimator for moment restriction models when the number of parameters (pn) and/or the number
of moment restrictions increases with the sample size. Our main result is that the SCAD-penalized
empirical likelihood estimator is

√
n/pn-consistent under a reasonable condition on the regularization

parameter. Our consistency rate is better than the existing ones. This paper also provides sufficient
conditions under which

√
n/pn-consistency and an oracle property are satisfied simultaneously. As

far as we know, this paper is the first to specify sufficient conditions for both
√

n/pn-consistency and
the oracle property of the penalized empirical likelihood estimator.
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1. Introduction

Recently, sparse regression models have received considerable attention in business, economics,
genetics, and various other fields. In these models, the number of possible regressors can be potentially
large; however, only a relatively small number of these regressors are relevant.

Penalization is an alternative to a classical subset selection. One of the drawbacks of subset
selection is lack of stability due to its discrete nature, meaning that variables are either retained or are
dropped from a model. As a result, a small perturbation in a sample may cause a drastic change in the
post-selection results (Breiman 1996). Penalization addresses this issue by achieving variable selection
and estimation simultaneously, through a continuous process.

Several penalization methods have been advocated for linear regression models. Examples
include the bridge penalty (Frank and Friedman 1993), LASSO (Tibshirani 1996), the smoothly clipped
absolute deviation (SCAD) penalty (Fan and Li 2001), and the elastic net penalty (Zou and Hastie 2005).
However, penalized least squares methods are not applicable when endogeneity exists (Fan and Liao
2014). When endogeneity exists, parameters of interest are identified often by moment restrictions,
using instrumental variables.

This study investigates the asymptotic properties of a penalized empirical likelihood (PEL)
estimator for moment restriction models, when the number of parameters and/or the number of
moment restrictions increases with the sample size. We extend the EL estimator of Qin and Lawless
(1994) by employing the SCAD penalty, so that we can achieve estimation and variable selection
simultaneously.

Some penalized estimators for moment restriction models have been proposed in the econometric
literature. Caner (2009) and Shi (2016b) considered the GMM estimator with a LASSO-type penalty.
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Caner and Zhang (2014) proposed the adaptive elastic net GMM estimator. Fan and Liao (2014)
proposed the penalized focused GMM estimator. Leng and Tang (2012) and Chang et al. (2015) studied
the asymptotic properties of the PEL estimator for independent and weakly dependent observations,
respectively. Tang et al. (2018) considered a penalized exponential tilting estimator.

This paper shows that the SCAD-penalized EL estimator is
√

n/pn-consistent, where pn is
the number of parameters. Leng and Tang (2012) showed that the non-penalized EL estimator is√

n/pn-consistent under the assumption that pn/rn → c ∈ (0, 1), where rn is the number of moment
restrictions. Thus, essentially, they only proved

√
n/rn-consistency. Chang et al. (2015) proved√

n/pn-consistency of the non-penalized EL estimator without imposing pn/rn → c ∈ (0, 1), but they
only obtained

√
n/rn-consistency for the PEL estimator. We prove

√
n/pn-consistency of the PEL

estimator under a reasonable condition on the regularization parameter of the penalty function. Our
result is important because it implies

√
n-consistency of the estimator when pn is fixed and only rn

increases with the sample size. This is consistent with previous results in the EL literature such as
Donald et al. (2003). In contrast,

√
n/rn-consistency implies that only a slow rate of convergence can

be achieved even when pn is finite and fixed.
This paper also shows that the PEL estimator satisfies the oracle property in the sense of

Fan and Peng (2004) when the truth is sparse. That is, if the true parameter vector has some zero
components, then they are estimated as zeros with probability approaching one, and the other nonzero
components are estimated well, similar to the case when the zero components are known a priori.
Although Leng and Tang (2012) and Chang et al. (2015) also discussed the oracle property of the PEL
estimator, they obtained their results under high-level assumptions. As far as we know, this paper is
the first to specify sufficient conditions for both

√
n/pn-consistency and the oracle property of the PEL

estimator.
Recently, Chang et al. (2018) proposed an alternative PEL estimator that regularizes both

parameters and Lagrange multipliers. Their estimator allows the case where rn and pn increase
at an exponential rate, while our PEL estimator allows a polynomial rate only. Their method is useful
when the truth is actually sparse. In contrast, our estimator is valid even when the truth is not sparse
because

√
n/pn-consistency can be established without imposing sparsity.

There is also a large literature on instrument (moment) selection that addresses the problem
of selecting/constructing optimal instruments when a large number of instruments are available
(e.g., Donald and Newey 2001; Bai and Ng 2009; Kuersteiner and Okui 2010; Belloni et al. 2012;
Caner and Fan 2015; Cheng and Liao 2015; Shi 2016a). In contrast to these papers, here we focus on
variable selection in a structural model.

This paper is organized as follows. We first show
√

n/pn-consistency of the SCAD-penalized EL
estimator and compare our assumptions with those of Leng and Tang (2012) and Chang et al. (2015).
Then, we obtain the asymptotic distribution. Our proofs are new in the EL literature. All the proofs are
found in the Appendix A.

2. PEL Estimator and Asymptotic Results

Let {y1, . . . , yn} be a random sample from an unknown distribution on Rdn . This study considers
the moment restriction model

E [m(yi, θ0)] = 0,

where θ0 = (θ10, . . . , θpn0)
′ ∈ Θn is a pn-dimensional true parameter and

m(y, θ) = (m1(y, θ), . . . , mrn(y, θ))′

is an rn-dimensional moment function. For instance, the model includes the linear instrumental
variable model
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E[zi(yi − x′iθ0)] = 0,

where zi is an rn × 1 vector of instrumental variables and xi is a pn × 1 vector of explanatory variables.
We consider the case where rn ≥ pn. The subscript indicates that dn, pn, and rn may increase with the
sample size.

The PEL estimator for θ0 is

θ̂n = arg min
θ∈Θn

max
λ∈Λ̂n(θ)

{
1
n

n

∑
i=1

log(1− λ′m(yi, θ)) +
pn

∑
j=1

pκn(θj)

}
,

where Λ̂n(θ) = {λ ∈ Rrn : λ′m(yi, θ) < 1, i = 1, . . . , n} and pκ(·) is a penalty function with a
regularization parameter κ. Thus, the estimator is the same as that of Leng and Tang (2012).

For concreteness, we employ the SCAD penalty of Fan and Li (2001):

pκ(u) =


κ|u| |u| ≤ κ

−(u2 − 2aκ|u|+ κ2)/[2(a− 1)] κ < |u| ≤ aκ

(a + 1)κ2/2 |u| > aκ

for some a > 2. Similar asymptotic results are obtained also by using a different penalty function, such
as the minimax concave penalty of Zhang (2010).

The true model may be sparse, that is, some elements of θ0 may be zero. Let qn be the number
of nonzero elements in θ0. Without loss of generality, we can write θ0 = (θ′10, θ′20)

′ = (θ10
′, 0′)′ with

θ1 = (θ1, . . . , θqn)
′ ∈ Rqn and θ2 = (θqn+1, . . . , θpn)

′ ∈ Rpn−qn . For now, the sparsity assumption is not
crucial. It is possible that qn = pn.

Let mi(θ) = m(yi, θ) and Mi(θ) = ∂mi(θ)/∂θ′. Also, let mi = mi(θ0) and Mi = Mi(θ0). We
define Qn(θ, λ) = E[log(1− λ′mi(θ))] and Q̂n(θ, λ) = n−1 ∑n

i=1 log(1− λ′mi(θ)). Moreover, we use
λ(θ) and λ̂(θ) to denote arg maxλ∈Λn(θ) Qn(θ, λ) and arg maxλ∈Λ̂n(θ)

Q̂n(θ, λ), respectively, where
Λn(θ) is a subset in Rrn , such that 0 ∈ int(Λn(θ)). Let λmin(A) and λmax(A) denote the minimum and
maximum eigenvalues of a matrix A. Also, let ‖ · ‖ denote the Euclidean (Frobenius) norm.

We impose the following conditions for
√

n/pn-consistency.

Assumption 1. (i) The true parameter vector θ0 is the unique minimizer of Qn(θ, λ(θ)) and belongs to the
interior of Θn; (ii) There are positive functions ∆1(r, p) and ∆2(ε) such that for any ε > 0

inf
{θ∈Θn :‖θ−θ0‖>ε}

Qn(θ, λ(θ)) ≥ ∆1(rn, pn)∆2(ε) > 0,

where lim infn→∞ ∆1(rn, pn) > 0; (iii) supθ∈Θn

∣∣Q̂n(θ, λ(θ))−Qn(θ, λ(θ))
∣∣ = op(∆1(rn, pn)).

Assumption 2. (i) E[supθ∈Θn
(‖mi(θ)‖r−1/2

n )α] < ∞ for some α > 4; (ii) limn→∞ r4
n/n = 0.

Assumption 3. (i) There exists C such that 0 < 1/C ≤ λmin(E[mi(θ)mi(θ)
′]) ≤ λmax(E[mi(θ)mi(θ)

′]) <

C < ∞ in a neighborhood of θ0; (ii) There exists C such that λmax(E[Mi]
′E[Mi]) < C < ∞; (iii) There exists

C such that λmax(E[Mi(θ)Mi(θ)
′]) < C < ∞ in a neighborhood of θ0.

Assumption 4. (i) The moment function m(y, θ) is twice continuously differentiable in θ for all y in a

neighborhood of θ0; (ii) There exists C such that λmin

(
d2Q̂n(θ,λ̂(θ))

dθdθ′

)
≥ C > 0 in a neighborhood of θ0 with

probability approaching one.

Assumption 5. limn→∞
√

qnκn/ min1≤j≤qn |θj0| = 0.
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Assumption 1 is similar to condition 2.1 of Chang et al. (2015). Assumption 1 (iii) is an
extension of the uniform convergence. If we restrict the parameter space such that Θn is compact
and E[supθ∈Θn

log(1 − λ(θ)′mi(θ))] < ∞, then Assumption 1 (iii) is satisfied with ∆1(r, p) = 1.
Assumption 1 is used to show that ‖θ̂n − θ0‖ = op(1). Any condition that guarantees consistency of
the estimator can replace 1.

Assumptions 2 (i) and (ii) are similar to Assumptions 2 and 4 in Leng and Tang (2012). However,
we do not assume that pn/rn → c ∈ (0, 1). Thus, rn can grow faster than pn. We can allow the case
where pn is fixed and only rn increases with the sample size.

Assumption 4 states that the objective function of the EL estimator is strictly convex in θ in a
neighborhood of θ0. When rn and pn are fixed, this condition is satisfied under fairly weak conditions.

We can also relax the condition so that λmin

(
d2Q̂n(θ,λ̂(θ))

dθdθ′

)
≥ ρn with a positive sequence ρn such that

ρn → 0. In that case, we obtain a different convergence rate of the estimator. Under certain conditions,
we have ‖θ̂n − θ0‖ = Op(

√
pn/n/ρn).

Assumption 5 is similar to condition (B2) in Huang and Xie (2007), who obtained the convergence
rate of the SCAD-penalized least squares estimator. Assumption 5 states that the minimum of nonzero
elements in θ0 may converge to 0, but the convergence rate must be sufficiently slow. If nonzero
elements are too small compared to κn, then the PEL estimator cannot distinguish between zero
and nonzero elements. Following Huang and Xie (2007), we prove

√
n/pn-consistency of the PEL

estimator in two steps. We first prove ‖θ̂n − θ0‖ = Op(
√

pn/n +
√

qnκn) under Assumptions 1–4
and qnκ2

n → 0 (see Lemma A3 in the Appendix A). Then, we improve the convergence rate by using
Assumption 5. Notice that if we assume

√
qnκn = O(

√
pn/n), then

√
n/pn-consistency of the PEL

estimator is obtained immediately from Lemma A3. However, as we will see later, this condition
contradicts Assumption 6 (i), which is a key condition for the oracle property. Assumption 5 is imposed
so that

√
n/pn-consistency and the oracle property are satisfied simultaneously.

Theorem 1. Suppose that Assumptions 1–5 hold. Then, we have ‖θ̂n − θ0‖ = Op(
√

pn/n).

The sparsity assumption is not necessary for this theorem. The same result is obtained even if all
elements in θ0 are nonzero. Moreover, because Assumption 5 does not exclude κn = 0, the theorem
also applies to the non-penalized EL estimator, whose

√
n/pn-consistency has been established

by Chang et al. (2015). As we will see in the next theorem, if the truth is sparse, then we obtain√
n/qn-consistency of the PEL estimator under certain additional assumptions.

Our convergence rate of the PEL estimator is better than that of Chang et al. (2015). Roughly
speaking, different convergence rates are based on different equalities. The asymptotic analyses of
Leng and Tang (2012) and Chang et al. (2015) are based on the moment equality E[mi] = 0, which
implies ‖n−1 ∑n

i=1 mi‖ = Op(
√

rn/n). Leng and Tang (2012) obtained
√

n/pn-consistency of the
non-penalized EL estimator by assuming rn = O(pn) and hence ‖n−1 ∑n

i=1 mi‖ = Op(
√

pn/n). On the

other hand, our asymptotic analysis is based on the first-order condition E
[

d log(1−λ(θ0)
′mi(θ0))

dθ

]
= 0,

which implies
∥∥∥ dQ̂n(θ0,λ̂n(θ0))

dθ

∥∥∥ = Op(
√

pn/n). Therefore, our proof is not a straightforward extension
of that of Leng and Tang (2012) and Chang et al. (2015).

To obtain a convergence rate in line with the proof of Leng and Tang (2012) and Chang et al. (2015),
we need a rather strong condition on the regularization parameter. For instance, Chang et al. (2015)
assumed that qnκnr−1

n nM−1 = O(1) to prove
√

n/rn-consistency, where M is the block length,
which is equal to unity when the observations are independent. The condition of Chang et al. (2015)
corresponds to the condition that

√
qnκn = o(

√
pn/n) in our case. As stated before, although this

condition simplifies the proof of
√

n/pn-consistency, it causes a problem for the oracle property of
the estimator.
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Next, we show sparsity and asymptotic normality of the PEL estimator. Let θ̂1n and θ̂2n be the
corresponding estimators of θ10 and θ20, respectively. Furthermore, let M1i = ∂mi(θ10, 0)/∂θ′1. We
define Vn = (E[Mi]

′E[mim′i]
−1E[Mi])

−1 and V1n = (E[M1i]
′E[mim′i]

−1E[M1i])
−1.

We impose additional conditions.

Assumption 6. (i) limn→∞
√

n/pnκn = ∞; (ii) limn→∞ rn p3/2
n /
√

n = 0

Assumption 7. There exists Bjkl(y) such that |∂2ml(y, θ)/∂θj∂θk| ≤ Bjkl(y) and E[B2
jkl(yi)] < ∞ for all

j, k = 1, . . . , pn and l = 1, . . . , rn in a neighborhood of θ0.

Assumption 8. There exists C such that 0 < 1/C ≤ λmin(Vn) ≤ λmax(Vn) ≤ C < ∞.

Assumption 6 (i) is a key condition for sparsity of the PEL estimator. It requires that the
regularization parameter is not too small so that zero elements in θ0 are estimated as zero. The same
condition is also employed by Leng and Tang (2012).

Theorem 2. Suppose that Assumptions 1–8 hold. Let Bn be an l× qn matrix such that BnB′n → G, where G is
an l × l matrix with fixed l. Then, the PEL estimator satisfies the following:

1. Sparsity: θ̂2n = 0 with probability approaching one.
2.

√
n/qn-consistency: ‖θ̂1n − θ10‖ = Op(

√
qn/n).

3. Asymptotic normality:
√

nBnV−1/2
1n (θ̂1n − θ10)

d→ N(0, G).

The selection of the matrix Bn depends on the parameter of interest. For instance, suppose that
the parameter of interest is the first element of θ10. Let θ̂1n,1 and θ10,1 denote first elements of θ̂1n and

θ10, respectively. Then, we choose Bn = (1, 0, . . . , 0) and obtain
√

n(θ̂1n,1 − θ10,1)
d→ N(0, v11), where

v11 is the limit of the first diagonal element of V1n.
Although a detailed proof is given in the Appendix A, we give a sketch of the proof for asymptotic

normality here. If λ(θ) were known, then θ0 can be estimated by

θ̃n = arg min
θ∈Θn

{
1
n

n

∑
i=1

log(1− λ(θ)′mi(θ)) +
pn

∑
j=1

pκn(θj)

}
,

which is a penalized maximum likelihood estimator using a least favorable submodel of the moment
restriction model (see Sueishi 2016, for instance). Because θ̃n is the penalized maximum likelihood
estimator, its distribution can be obtained in a manner similar to Fan and Peng (2004). We derive the
asymptotic distribution of θ̂n by showing that θ̂n is asymptotically equivalent to θ̃n.

By modifying the proof of Theorem 2, we can obtain easily the asymptotic distribution of the
non-penalized EL estimator. Because the asymptotic distribution of the non-penalized EL estimator
has already been derived by Leng and Tang (2012), we omit the derivation. We see that the efficiency of
the PEL estimator for θ10 is the same as that of the non-penalized EL estimator for which it is known a
priori that θ20 = 0. Thus, our estimator satisfies the oracle property in the sense of Fan and Peng (2004).

Theorem 2 is similar to Theorem 3 of Leng and Tang (2012). However, they proved sparsity by
assuming that the PEL estimator is

√
n/pn-consistent. They did not state explicitly the conditions

under which the non-penalized and penalized EL estimators have the same convergence rate.
Chang et al. (2015) showed a similar result to Theorem 2 for weakly dependent observations. They

obtained
√

n/rn-consistency and sparsity under two separate κn rate conditions. Specifically, they
assume: (i) qnκnr−1

n nM−1 = O(1) for
√

n/rn-consistency and (ii) κn
√

n/rn M−1 → ∞ for sparsity. If
condition (ii) is satisfied, however, condition (i) requires that qn

√
n/rn → 0, which is clearly impossible.

This causes a trouble because their proof of sparsity requires
√

n/rn-consistency of the estimator. We
relaxed condition (i) and obtained sufficient conditions under which both

√
n/pn-consistency and

sparsity are satisfied.
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3. Conclusions

We investigated the asymptotic properties of the PEL estimator when the number of parameters
and/or the number of moment restrictions increases with the sample size. In particular, we showed that
the PEL estimator is

√
n/pn-consistent under a reasonable condition on the regularization parameter.

Although we cannot compare our results directly to those of Chang et al. (2015) because they allow
weakly dependent observations, our convergence rate is improved over the existing ones. In terms of
converge rate, our result is even better than Tang et al. (2018) and Chang et al. (2018), because their
convergence rates depend also on the number of moment restrictions.

A crucial issue with the PEL estimation concerns selecting the size of the regularization
parameter. The asymptotic theory does not tell us how to select the regularization parameter in
practice. Although some selection methods are considered by Leng and Tang (2012), Shi (2016b), and
Ando and Sueishi (2019), this is still an underdeveloped area of research.
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Appendix A

Throughout the Appendix, C denotes a generic positive constant which may vary according to
context. The qualifier “with probability approaching one” is abbreviated as w.p.a.1. We define

H11(θ, λ) = E
[

∂2 log(1− λ′mi(θ))

∂θ∂θ′

]
= −E

[
∂

∂θ′
(Mi(θ)

′λ)

1− λ′mi(θ)

]
− E

[
Mi(θ)

′λλ′Mi(θ)

(1− λ′mi(θ))2

]
H12(θ, λ) = E

[
∂2 log(1− λ′mi(θ))

∂θ∂λ′

]
= −E

[
Mi(θ)

′

1− λ′mi(θ)

]
− E

[
Mi(θ)

′λmi(θ)
′

(1− λ′mi(θ))2

]
H22(θ, λ) = E

[
∂2 log(1− λ′mi(θ))

∂λ∂λ′

]
= −E

[
mi(θ)mi(θ)

′

(1− λ′mi(θ))2

]
.

We use Ĥij(θ, λ) to denote the sample analog of Hij(θ, λ). Moreover, we define Q̂n(θ) =

Q̂n(θ, λ̂(θ)) and Qn(θ) = Qn(θ, λ(θ)).
We prepare some lemmas to prove Theorems 1 and 2.

Lemma A1. Suppose that Assumptions 1, 2 and 3 (i) hold. Then, we have ‖θ̂n − θ0‖ = op(1) if qnκ2
n → 0.

Proof of Lemma A1. Let ξ satisfy 1/α + 1/8 ≤ ξ < 3/8 and let Λ̄n = {λ ∈ Rrn : ‖λ‖ ≤ n−ξ}. Then,
by Assumption 2, we have

max
1≤i≤n

sup
θ∈Θn

|λ′mi(θ)| ≤ n−ξ max
1≤i≤n

sup
θ∈Θn

‖mi(θ)‖ = op(n−ξ+1/αr1/2
n ) = op(1)

for all λ ∈ Λ̄n. Let λ̃ = arg maxλ∈Λ̄n
Q̂n(θ0, λ). Because Assumptions 2 (ii) and 3 (i) imply

λmin(n−1 ∑n
i=1 mim′i) > C w.p.a.1, by expanding log(1− x) around x = 0, we have

0 ≤ Q̂n(θ0, λ̃) ≤ −λ̃
′m̄n −

1
2

λ̃
′
{

1
n

n

∑
i=1

mim′i
(1− λ̇

′mi)2

}
λ̃ ≤ ‖λ̃‖‖m̄n‖ − C‖λ̃‖2, (A1)
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where m̄n = n−1 ∑n
i=1 mi and λ̇ lies between 0 and λ̃. Therefore, we obtain ‖λ̃‖ = Op(‖m̄n‖) =

Op(
√

rn/n) = op(n−3/8) by Assumption 2 (ii), and hence λ̃ ∈ int(Λ̄n). Because Λ̄n ⊂ Λ̂n(θ0), the
concavity of Q̂n(θ0, λ) implies λ̃ = λ̂(θ0). Moreover, we obtain

Q̂n(θ̂n, λ(θ̂n)) ≤ Q̂n(θ̂n) ≤ Q̂n(θ0) +
pn

∑
j=1

pκn(θj0) = op(1). (A2)

Now, suppose that θ̂n is not consistent. Then, there exists a subsequence {nk} such that
‖θ̂nk − θ0‖ > ε for some ε > 0 almost surely. By Assumption 1 (iii) and Equation (A2), we
have ‖Qnk (θ̂nk )‖ = op(∆1(rnk , pnk )) + op(1). In contrast, Assumption 1 (ii) implies ‖Qnk (θ̂nk )‖ >

∆1(rnk , pnk )∆2(ε). Because lim infn→∞ ∆(rn, pn) > 0, it is a contradiction. Therefore, we have
‖θ̂n − θ0‖ = op(1).

Lemma A2. Suppose that Assumptions 1–3 hold. Then, we have∥∥∥∥∥dQ̂n(θ0)

dθ
− dQ̂n(θ0, λ(θ0)))

dθ

∥∥∥∥∥ = op

(
1√
n

)
.

Proof of Lemma A2. Let Hij(θ) = Hij(θ, λ(θ)) and Ĥij(θ) = Ĥij(θ, λ̂(θ)) for i, j = 1, 2. Also, let
Hij = Hij(θ0) and Ĥij = Ĥij(θ0). Because λ(θ0) = 0, we have

‖Ĥ12 − H12‖ ≤
∥∥∥∥∥ 1

n

n

∑
i=1

M′i λ̂(θ0)m′i
(1− λ̂(θ0)′mi)2

∥∥∥∥∥+
∥∥∥∥∥ 1

n

n

∑
i=1

Mi

1− λ̂(θ0)′mi
− E[Mi]

∥∥∥∥∥ .

From the proof of Lemma A1, we see that ‖λ̂(θ0)‖ = Op(
√

rn/n). In addition, it follows from
Assumptions 2 (ii) and 3 (iii) that λmax(n−1 ∑n

i=1 Mi M′i) < C w.p.a.1. Because n−1 ∑n
i=1 ‖mi‖2 = Op(rn)

by Assumption 2 (i), we have

∥∥∥∥∥ 1
n

n

∑
i=1

M′i λ̂(θ0)m′i
(1− λ̂(θ0)′mi)2

∥∥∥∥∥ ≤ C

√√√√λ̂(θ0)′

(
1
n

n

∑
i=1

Mi M′i

)
λ̂(θ0)

√
1
n

n

∑
i=1
‖mi‖2

= Op

(
rn√

n

)
.

Furthermore, because, |λ̂(θ0)
′mi| = op(1) for all i, we have (1− λ̂(θ0)

′mi)
−1 = 1 + λ̂(θ0)

′mi +

op(|λ̂(θ0)
′mi|). Hence, we have∥∥∥∥∥ 1

n

n

∑
i=1

Mi

1− λ̂(θ0)′mi
− E[Mi]

∥∥∥∥∥
≤
∥∥∥∥∥ 1

n

n

∑
i=1

Mi − E[Mi]

∥∥∥∥∥+ C

∥∥∥∥∥ 1
n

n

∑
i=1

λ̂(θ0)
′mi Mi

∥∥∥∥∥ = Op

(
rn√

n

)
,

which implies ‖Ĥ12 − H12‖ = Op(rn/
√

n). Similarly, we have
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∥∥Ĥ22 − H22
∥∥ ≤

∥∥∥∥∥ 1
n

n

∑
i=1

mim′i − E[mim′i]

∥∥∥∥∥+ C

∥∥∥∥∥ 1
n

n

∑
i=1

(λ̂(θ0)
′mi)mim′i

∥∥∥∥∥
≤

∥∥∥∥∥ 1
n

n

∑
i=1

mim′i − E[mim′i]

∥∥∥∥∥
+ C

√√√√λ̂(θ0)′

(
1
n

n

∑
i=1

mim′i

)
λ̂(θ0)

√
1
n

n

∑
i=1
‖mi‖4

= Op

(
r3/2

n√
n

)
. (A3)

By the Taylor expansion,

dQ̂n(θ0)

dθ
− dQ̂n(θ0, λ(θ0))

dθ

=
d

dθ

∂Q̂n(θ, λ̇(θ))

∂λ′

∣∣∣∣∣
θ=θn0

λ̂(θ0) +

(
∂λ̂(θ0)

∂θ′
− ∂λ(θ0)

∂θ′

)′
∂Q̂n(θ0, λ̇(θ0))

∂λ
,

where λ̇(θ) locates between λ̂(θ) and λ(θ). By applying the implicit function theorem to the first-order
conditions, we obtain

∂λ̂(θ0)

∂θ′
= −Ĥ−1

22 Ĥ21 and
∂λ(θ0)

∂θ′
= −H−1

22 H21.

Here we have 1/C ≤ λmin(Ĥ22) ≤ λmax(Ĥ22) < C by Assumptions 2 (ii) and 3 (i) and
Equation (A3) w.p.a.1. Thus, by Assumption 3 (ii), we have∥∥∥∥∥∂λ̂(θ0)

∂θ′
− ∂λ(θ0)

∂θ′

∥∥∥∥∥ ≤ ∥∥∥Ĥ−1
22 (Ĥ21 − H21)

∥∥∥+ ∥∥∥(Ĥ−1
22 − H−1

22 )H21

∥∥∥ = Op

(
r3/2

n√
n

)
.

Moreover, some calculation yields∥∥∥∥∥∥ d
dθ

∂Q̂n(θ, λ̇(θ))

∂λ′

∣∣∣∣∣
θ=θn0

∥∥∥∥∥∥
=

∥∥∥∥∥Ĥ12(θ0, λ̇(θ0)) +

(
∂λ̇(θ0)

∂θ′

)′
Ĥ22(θ0, λ̇(θ0))

∥∥∥∥∥
≤

∥∥Ĥ12(θ0, λ̇(θ0))− H12
∥∥+ ∥∥∥∥∥

(
∂λ̇(θ0)

∂θ′
− ∂λ(θ0)

∂θ′

)′
Ĥ22(θ0, λ̇(θ0))

∥∥∥∥∥
+
∥∥∥H12H−1

22
(

Ĥ22(θ0, λ̇(θ0))− H22
)∥∥∥

= Op

(
r3/2

n√
n

)
.

Combining these results, we obtain∥∥∥∥∥dQ̂n(θ0)

dθ
− dQ̂n(θ0, λ(θ0))

dθ

∥∥∥∥∥ = Op

(
r2

n
n

)
,
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which implies the desired result by Assumption 2 (ii).

Lemma A3. Suppose that Assumptions 1–4 hold. Then, we have ‖θ̂n − θ0‖ = Op(
√

pn/n +
√

qnκn).

Proof of Lemma A3. We denote ∇2Q̂n(θ) = d2Q̂n(θ)/dθdθ′. By Assumption 4, ∇2Q̂n(θ) is positive
definite in a neighborhood of θ0 w.p.a.1. By the definition of the PEL estimator, we have

Q̂n(θ0) +
pn

∑
j=1

pκn(θj0) ≥ Q̂n(θ̂n). (A4)

Because pκn(θj0) ≤ (a+ 1)κ2/2 for j = 1, . . . , qn and pκn(θj0) = 0 for j = qn + 1, . . . , pn, expanding
Equation (A4) yields

0 ≥ 2
dQ̂n(θ0)

dθ′
(θ̂n − θ0) + (θ̂n − θ0)

′∇2Q̂n(θ̇n)(θ̂n − θ0)− (a + 1)qnκ2
n

=

∥∥∥∥∥∇2Q̂1/2
n (θ̇n)(θ̂n − θ0) +∇2Q̂−1/2

n (θ̇n)
dQ̂n(θ0)

dθ

∥∥∥∥∥
2

− dQ̂n(θ0)

dθ′
∇2Q̂−1

n (θ̇n)
dQ̂n(θ0)

dθ

−(a + 1)qnκ2
n

for some θ̇n located between θ̂n and θ0. Therefore, by the Loève’s C2-inequality, we obtain∥∥∥∇2Q̂1/2
n (θ̇n)(θ̂n − θ0)

∥∥∥2

≤ 2

∥∥∥∥∥∇2Q̂1/2
n (θ̇n)(θ̂n − θ0) +∇2Q̂−1/2

n (θ̇n)
dQ̂n(θ0)

dθ

∥∥∥∥∥
2

+ 2
dQ̂n(θ0)

dθ′
∇2Q̂−1

n (θ̇n)
dQ̂n(θ0)

dθ

≤ 4
dQ̂n(θ0)

dθ′
∇2Q̂−1

n (θ̇n)
dQ̂n(θ0)

dθ
+ 2(a + 1)qnκ2

n.

By Lemma A2, we obtain
∥∥∥ dQ̂n(θ0)

dθ

∥∥∥ = Op(
√

pn/n), and hence

C‖θ̂n − θ0‖2 ≤
∥∥∥∇2Q̂1/2

n (θ̇n)(θ̂n − θ0)
∥∥∥2

= Op

( pn

n
+ qnκ2

n

)
by Assumption 4 (ii).

Proof of Theorem 1. If
√

qnκn = O(
√

pn/n), then we trivially have ‖θ̂n − θ0‖ = Op(
√

pn/n) by
Lemma A3. Thus, we only consider the case where

√
qnκn/

√
pn/n→ ∞.

By Lemma A3, we have

‖θ̂n − θ0‖ = Op(un) with un =

√
pn

n
+
√

qnκn.

Furthermore, for any M and for any θ such that ‖θ− θ0‖ ≤ 2Mun, we have

min
1≤j≤qn

|θj| ≥ min
1≤j≤qn

|θj0| − 2Mun.

By Assumption 5, we have un/ min1≤j≤qn |θj0| < 2−M−1 for sufficiently large n, and hence

min
1≤j≤qn

|θj| ≥
1
2

min
1≤j≤qn

|θj0|.

This implies that min1≤j≤qn |θj| > aκn for sufficiently large n.
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Let {hn} be a positive sequence that converges to 0 as n→ ∞. Following Huang and Xie (2007),
we decompose Θn \ {0} into shells Sn,k = {θ : 2k−1hn ≤ ‖θ− θ0‖ ≤ 2khn} for k = 1, 2, . . . . For θ ∈ Sn,k
such that 2khn ≤ 2Mun, we obtain

Q̂n(θ)− Q̂n(θ0) =
dQ̂n(θ0)

dθ′
(θ− θ0) +

1
2
(θ− θ0)

′∇2Q̂n(θ̇n)(θ− θ0)

and

1
2
(θ− θ0)

′∇2Q̂n(θ̇n)(θ− θ0) ≥ 22k−3Ch2
n (A5)

w.p.a.1. Let En be the event such that Equation (A5) is satisfied. Because Lemma A2 implies that the

difference between dQ̂n(θ0)
dθ and dQ̂n(θ0,λ(θ0))

dθ is asymptotically negligible, we have

P
(
‖θ̂n − θ0‖ > 2Lhn

)
≤ P

(
‖θ̂n − θ0‖ > 2Mun

)
+ P

({
2Lhn < ‖θ̂n − θ0‖ ≤ 2Mun

}
∩ En

)
= o(1) + ∑

k
P
({

θ̂n ∈ Sn,k
}
∩ En

)
≤ o(1) + ∑

k
P

({
inf

θ∈Sn,k
Q̂n(θ) +

pn

∑
j=1

pκn(θj) ≤ Q̂n(θ0) +
pn

∑
j=1

pκn(θj0)

}
∩ En

)

≤ o(1) + ∑
k

P

(
sup

θ∈Sn,k

−dQ̂n(θ0, λ(θ0))

dθ′
(θ− θ0) ≥ 22k−3Ch2

n

)
,

where ∑k stands for ∑k:k>L,2khn≤2Mun
. Moreover, some calculation yields that

dQ̂n(θ0, λ(θ0))

dθ
=

1
n

n

∑
i=1

E[Mi]
′E[mimi]

−1mi.

Thus, it follows from the Markov and Cauchy-Schwarz inequalities that

∑
k

P

({
sup

θ∈Sn,k

−dQ̂n(θ0, λ(θ0))

dθ′
(θ− θ0) ≥ 22k−3Ch2

n

})

≤ C ∑
k

E
[
supθ∈Sn,k

∣∣∣ dQ̂n(θ0,λ(θ0))
dθ′

(θ− θ0)
∣∣∣]

22k−3h2
n

≤ C ∑
k:k>L

2khn(tr{E[Mi]
′E[mim′i]

−1E[Mi]}/n)1/2

22k−3h2
n

≤ C ∑
k:k>L

√
pn/n

2k−3hn
.

Notice that ∑k is changed to ∑k:k>L in the second inequality. By choosing hn =
√

pn/n, we obtain
the desired result.

Lemma A4. Suppose that Assumptions 2, 3, 4 (i) and 7 hold. Then, for any θ such that ‖θ− θ0‖ =

Op(
√

pn/n), we have

∥∥∥∇2Q̂n(θ)−∇2Qn(θ0)
∥∥∥ = Op

(
r3/2

n√
n

)
+ Op

(
rn pn√

n

)
.
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Proof of Lemma A4. Let θ satisfy ‖θ− θ0‖ = Op(
√

pn/n). By a simple calculation, we obtain

∇2Q̂n(θ) = Ĥ11(θ)− Ĥ12(θ)Ĥ−1
22 (θ)Ĥ21(θ)

and

∇2Qn(θ0) = H11 − H12H−1
22 H21 = E[Mi]

′E[mim′i]
−1E[Mi].

Thus, it is sufficient to show that

∥∥Ĥ11(θ)
∥∥+ ∥∥∥−Ĥ12(θ)Ĥ22(θ)

−1Ĥ21(θ)− E[Mi]
′E[mim′i]

−1E[Mi]
∥∥∥ = Op

(
r3/2

n√
n

)
+ Op

(
rn pn√

n

)
.

By using a similar argument as in Equation (A1), we have ‖λ̂(θ)‖ = Op(
√

rn/n). Also, the (j, k)
element of ∂

∂θ′
(Mi(θ)

′λ̂(θ)) is given by ∑rn
l=1 ∂2ml(yi, θ)/∂θj∂θkλ̂l(θ) and∣∣∣∣∣ 1n n

∑
i=1

rn

∑
l=1

∂2ml(yi, θ)

∂θj∂θk
λ̂l(θ)

∣∣∣∣∣ ≤
√

1
n

n

∑
i=1

rn

∑
l=1

B2
jkl(yi)‖λ̂(θ)‖ = Op

(
rn√

n

)
by Assumption 7. Therefore, we have

∥∥Ĥ11(θ)
∥∥ ≤ C

∥∥∥∥∥ 1
n

n

∑
i=1

∂

∂θ′
(Mi(θ) ˆ′λ(θ))

∥∥∥∥∥+ C

∥∥∥∥∥ 1
n

n

∑
i=1

Mi(θ)
′λ̂(θ)λ̂(θ)′Mi(θ)

∥∥∥∥∥
= Op

(
rn pn√

n

)
.

Moreover, by doing similar calculations as in the proof of Lemma A2, we obtain

∥∥−Ĥ12(θ)− E[Mi]
∥∥ ≤

∥∥∥∥∥ 1
n

n

∑
i=1

Mi(θ)−
1
n

n

∑
i=1

Mi

∥∥∥∥∥+ Op

(
rn√

n

)

≤

√√√√ 1
n

n

∑
i=1

pn

∑
j=1

∥∥∥∥∥∂Mi(θ̇)

∂θj

∥∥∥∥∥
2

‖θ− θ0‖+ Op

(
rn√

n

)

= Op

(
r1/2

n p3/2
n√

n

)
+ Op

(
rn√

n

)
and ∥∥−Ĥ22(θ)− E[mim′i]

∥∥
≤

∥∥∥∥∥ 1
n

n

∑
i=1

mi(θ)mi(θ)
′ − 1

n

n

∑
i=1

mim′i

∥∥∥∥∥+ Op

(
r3/2

n√
n

)

≤ 2

∥∥∥∥∥ 1
n

n

∑
i=1

m′i Mi(θ̇)(θ− θ0)

∥∥∥∥∥+ (θ− θ0)
′
(

1
n

n

∑
i=1

Mi(θ̇)M′i(θ̇)

)
(θ− θ0) + Op

(
r3/2

n√
n

)

= Op

(
r3/2

n√
n

)

for some θ̇ that is located between θ and θ0. Hence, we obtain the result.
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Proof of Theorem 2. We first prove sparsity. Theorem 1 and Assumption 6 (i) imply that ‖θ̂n − θ0‖ ≤
κn w.p.a.1. Thus, it is sufficient to show that w.p.a.1,

dQ̂n(θ0 + v)
dθj

+ p′κn(vj) > 0 (0 < vj < κn)

dQ̂n(θ0 + v)
dθj

+ p′κn(vj) < 0 (−κn < vj < 0)

for any v = (v1, . . . , vpn)
′ such that ‖v‖ = O(

√
pn/n) and for j = qn + 1, . . . , pn. Because p′κn(u) =

κnsgn(u) for |u| ≤ κn, we have

dQ̂n(θ0 + v)
dθj

+ p′κn(vj) =
dQ̂n(θ0)

dθj
+

d2Q̂n(θ0 + v̇)
dθjdθ′

v + κnsgn(vj)

≡ I1 + I2 + I3

for j = qn + 1, . . . , pn and for some v̇ such that ‖v̇‖ = Op(
√

pn/n). By Lemma A2, we have |I1| =
Op(

√
pn/n). Moreover, by Assumption 8 and Lemma A4, we have∥∥∥∥∥d2Q̂n(θ0 + v̇)

dθjdθ′

∥∥∥∥∥ = Op(1),

and thus |I2| = Op(
√

pn/n). Therefore, I1 and I2 are asymptotically dominated by I3. The sign of
dQ̂n(θ0 + v)/dθj + p′κn(vj) is determined by the sign of vj.

Next, we show asymptotic normality. Let Q̂1n(θ1) = Q̂n(θ1, 0). Lemma A3 and Assumption 5
imply that min1≤j≤qn |θ̂j| > aκn w.p.a.1. Moreover, we have P(θ̂2n = 0) → 1. Thus, expanding the
first-order condition for θ̂1n yields

0 =
dQ̂1n(θ10)

dθ1
+

d2Q̂1n(θ̇1n)

dθ1dθ′1
(θ̂1n − θ10)

for some θ̇1n that is located between θ̂1n and θ10. Combining this with Lemmas A2 and A4 and
Assumptions 2 (ii) and 6 (ii), we have

V−1
1n (θ̂1n − θ10) = −

dQ̂n(θ0, λ(θ0))

dθ1
+ op

(
1√
n

)
,

which immediately implies that ‖θ̂1n − θ10‖ = Op(
√

qn/n). Moreover, because tr(BnV1nB′n) <

Ctr(BnB′n) < C by the assumption of Theorem 2 and Assumption 8, we have

√
nBnV−1/2

1n (θ̂1n − θ10) = −
√

nBnV1/2
1n

dQ̂n(θ0, λ(θ0))

dθ1
+ op(‖BnV1/2

1n ‖)

=
n

∑
i=1

zni + op(1),

where

zni = −
1√
n

BnV1/2
1n E[M1i]

′E[mim′i]
−1mi.
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Here, by Assumptions 2 (i) and 8, we have

E
[
‖zni‖4

]
=

1
n2 E

[{
m′iE[mim′i]

−1E[M1i]V
1/2
1n B′nBnV1/2

1n E[M1i]
′E[mim′i]

−1mi

}2
]

≤ C
n2 E

[
{m′imi}2

]
= O

(
r2

n
n2

)
.

Furthermore, because BnB′n → G, we have ∑n
i=1 E[zniz′ni]→ G and

P(‖zni‖ > ε) ≤
E[z′nizni]

ε2 = O
(

1
n

)
.

Therefore, we obtain

n

∑
i=1

E
[
‖zni‖21{‖zni‖2 > ε}

]
≤ nE

[
‖zni‖4

]1/2
P(‖zni‖ > ε)1/2 = o(1),

and thus ∑n
i=1 zni

d→ N(0, G) by the Lindeberg-Feller central limit theorem.
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