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Abstract: A standard test for weak instruments compares the first-stage F-statistic to a table of critical
values obtained by Stock and Yogo (2005) using simulations. We derive a closed-form solution for
the expectation from which these critical values are derived, as well as present some second-order
asymptotic approximations that may be of value in the presence of multiple endogenous regressors.
Inspection of this new result provides insights not available from simulation, and will allow software
implementations to be generalised and improved. Finally, we explore the calculation of p-values for
the first-stage F-statistic weak instruments test.
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quadratic forms; p-values
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1. Introduction

In a seminal contribution, Phillips (1989) focussed the attention of the profession on the
distributional consequences of what has come to be known as the problem of weak instruments.
There followed a series of important papers that helped crystallise the consequences for
inference of this problem including, but not restricted to, Nelson and Startz (1990a, 1990b);
Buse (1992); Cragg and Donald (1993); Dufour (1997) and Kleibergen (2002). There have been many,
many responses seeking to address the issues raised in this literature, some with greater merit than
others. Phillips continues to make substantial contributions to this area of the literature. See, for
example, Phillips (2016, 2017); Phillips and Gao (2017). One development that, for better or worse,1

has had significant practical impact, as a consequence of its inclusion in widely used econometric
software, is that of Stock and Yogo (2005), hereafter SY. It is this latter development which is the focus
of this paper.

The fundamental contribution of SY was to develop quantitative definitions of weak instruments,
based on either IV estimator bias or Wald test size distortion, that were testable. Their idea was to
relate the first-stage F-statistic (or, when there are multiple endogenous regressors, the Cragg–Donald
(Cragg and Donald 1993) statistic) to a non-centrality parameter that, in turn, was related to the
aforementioned estimator bias or test size distortion. In this way, they were able to use this F-statistic
to test whether instruments were weak.2 That such tests have become part of the toolkit of many

1 Much of the later literature has focussed less on testing for the presence of weak instruments and more on the development
of techniques that are robust to the presence of weak instruments.

2 A heuristically appealing aspect of using the first-stage F-statistic as a measure of instrument weakness, in the case of a single
endogenous regressor, is its consistency with the well-known Staiger–Stock rule of thumb. Staiger and Stock (1997), p. 557,
suggested that instruments be deemed weak if the first-stage F is less than 10. SY (pp. 101–2) observe that 10 corresponds
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practitioners is evidenced by the fact that critical values for the SY tests are available within standard
computer software, such as STATA (StataCorp 2015, e.g.,) when using either the intrinsic ivregress
command or the ivreg2 package (Baum et al. 2010). The difficulty in the SY approach is that, in order to
compute appropriate critical values, it is necessary to evaluate a complicated integral as an intermediate
step. SY did this by Monte Carlo simulation and the tables of critical values they provided are widely
used in practice.

In this paper, we focus primarily on the two-stage least squares (2SLS) bias representation of weak
instruments for the single endogenous variable case, which we shall call the scalar case. Although the
SY tables allow for more endogenous regressors, Sanderson and Windmejer (2016) demonstrate how
these situations can all be mapped into the single endogenous regressor case, making it the case of
greatest interest and importance. We show that, for this case, the integral mentioned above need not
be estimated by simulation methods, as it can be resolved analytically and evaluated numerically
using the intrinsic functions of software such as MATLAB (MathWorks 2016). This result, Theorem 1,
is presented in the next section, in which we also provide complete details of the model in question
and the problem to be addressed.

From an empirical perspective, there are two important consequences of Theorem 1. First, it allows
us to examine the accuracy of the SY critical values that have become so important in empirical research.
For the most part, these critical values concord reasonably well with those that we derive analytically,
although the most substantial differences occur in regions that we would argue are of practical
significance.3 Second, it is now straightforward to generate more extensive sets of critical values,
something that we do in Table 1 (also in Section 2). In particular, we extend the SY tables to include
more values of both kz and B, where kz is the number of instruments and B denotes the bias of 2SLS
relative to that of ordinary least squares (OLS).

From a theoretical perspective, Theorem 1 provides a foundation that allows us to explore
analytically certain patterns that exist in the SY tables, something that can only be alluded to on the
basis of simulation results. These cases are explored in Section 3 of the paper. To further support the
discussion of Section 3, we present in Section 4 some Monte Carlo simulation results, where we explore
the sampling distributions of the F-statistics in relation to the bias of the 2SLS estimator relative to that
of the OLS estimator, for the kz = 2 and kz = 3 cases.

Key to the development of Theorem 1 is the expectation of the ratio of a bilinear form in perfectly
correlated normally distributed random variables, that differ only in their means, to a quadratic form
in one of these same random variables, which is of some independent interest. We note in passing
that the problem could be re-cast as one involving the expectation of a ratio of quadratic forms in
normal variables, although in this form the normal variables have a singular distribution and both the
numerator and the denominator weighting matrices are also singular, with the numerator weighting
matrix asymmetric. This observation explains the difficulty in evaluating the integral analytically,
but is also the reason that the expectation ultimately has such a simple structure. This expectation is
evaluated in Appendix A.

Given the recent statement on p-values issued by the American Statistical Association Board of
Directors (Wasserstein and Lazar 2016), it would be remiss of a paper such as this to be silent on the
matter. In Section 5, we extend our discussion to show how p-values can be readily calculated on the
basis of our earlier results.

Having extensively studied the scalar case, in Section 6, we turn our attention to analysing the
model when there are multiple endogenous regressors in the model of interest. We shall, hereafter,

closely to their tabulated critical values for a 5% test that the relative bias is 10% for all values of kz, and concluded that ‘this
provides a formal, and not unreasonable, testing interpretation of the the Staiger–Stock rule of thumb.’

3 Through the use of more extensive simulation results than those used originally by SY, we are able to support the proposition
that the numerical approximation errors inherent in the computation of our analytical results are less than those contained
in the original SY tables.
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refer to this as the general case. We find that we are able to draw on a variety of results developed
in the exact finite sample literature. Not that any of our results are exact, they are all asymptotic
in nature, but they do share a common structure with the earlier work that we are able to exploit.
In addition to obtaining results for the relative bias of 2SLS, in the general case, we also provide first-
and second-order asymptotic approximations to the relative bias, where the nesting sequence is the
number of instruments. Overall, the analysis of the general case is less favourable to the SY approach
than is the scalar case.

Final remarks appear in Section 8. For the most part, we have relegated technical developments
to the various appendices, as well as discussion of some matters deemed secondary to the main ideas
of the paper.

2. An Analytic Development of Stock–Yogo

Consider the simple model
y = xβ + u, (1)

where y = [y1, . . . , yn]
′, x = [x1, . . . , xn]

′ and u = [u1, . . . , un]
′ are n× 1 vectors, with n the number of

observations. The regressor x is assumed endogenous, so that E [u|x] 6= 0. Other exogenous regressors
in the model, including the constant, have been partialled out.

We can implicitly define a set of instruments via the following linear projection

x = Zπ + v, (2)

where Z is an n× kz matrix of instruments (with full column rank), π a kz × 1 vector of parameters
and v is an n× 1 error vector. In this model, kz − 1 is the degree of over-identification. We assume that
individual observations are independently and identically distributed, and

[
ui
vi

]
| zi ∼ (0, Σ) , with Σ =

[
σ2

u σuv
σuv σ2

v

]
, i = 1, 2, . . . , n,

where z′i denotes the ith row of Z. A test for H0 : π = 0 against H1 : π 6= 0, is the so-called first-stage
F-statistic

F =
π̂′Z′Zπ̂

kzσ̂2
v

H0−→
d

χ2
kz

kz
, (3)

where π̂ = (Z′Z)−1Z′x and σ̂2
v = n−1x′(In − Z(Z′Z)−1Z′)x. Here, a large value of the statistic is

evidence against the null hypothesis, which is that the nominated instruments are irrelevant.
Following Staiger and Stock (1997), we consider values of π local to zero, as π = c/

√
n. We then

obtain for the concentration parameter µ2
n,

µ2
n =

π′Z′Zπ

σ2
v

−→
p

c′Qzzc

σ2
v
≡ µ2,

where Qzz = E
[
ziz
′
i

]
= plimn→∞ n−1Z′Z is positive definite by assumption. We see that kzF is a

sample analogue of µ2. With this formulation, the testing problem previously discussed is equivalent
to that of testing H′0 : µ2 = 0 against H′1 : µ2 > 0. Rather than testing for the irrelevance of instruments,
SY characterised weak instruments as a situation where µ2 was greater than zero but proximate to
it. Specifically, their testing problem can be thought of as H′′0 : µ2 = µ2

0 > 0 against H′′1 : µ2 > µ2
0,

for some suitably specified value of µ2
0. The statistic F is still a natural one in this problem; although,

of course, the null distribution is no longer the central distribution associated with µ2
0 = 0. Instead,

we have
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F
H0−→
d

χ ′ 2kz ,µ2
0

kz
, (4)

where χ ′ 2k,δ denotes a random variable following a non-central chi-squared distribution with k degrees
of freedom and non-centrality parameter δ ≥ 0.4 Let

χα = χ ′ 2kz ,µ2
0
(1− α)

denote the (1− α)100th quantile of a non-central chi-squared distribution with kz degrees of freedom
and non-centrality parameter µ2

0. Then, the relevant size α critical region is

{
F : F > cvα =

χα

kz

}
, (5)

where χα can be obtained, for given µ2
0 and kz, as the solution to either of the equations

1− α = e−µ2/2
∞

∑
j=0

(µ2/2)j

2kz/2+j j! Γ
(

kz
2 + j

)
∫ χα

0
e−s/2skz/2+j−1 ds (6a)

= e−µ2/2e−χα/2 ( χα
2
)kz/2

∞

∑
j=0

(χαµ2/4)j

j! Γ
(

kz+2
2 + j

) 1F1

(
1; kz+2

2 + j; χα
2

)
, (6b)

and where 1F1(·; ·; ·) denotes a confluent hypergeometric function (Slater 1960).
The aspect of the SY approach that remains outstanding is the choice of µ2

0. Their quantitative
definition of the weakness of a set of instruments is couched in terms of the impact that it has on
inference. They provided two possible definitions that variously reflect the known consequences
of weak instruments for (i) estimation, through the bias of the estimator, and (ii) hypothesis testing,
through the size of a particular Wald test relative to its nominal size. It is the former that is in most
common use and the approach of interest here.5

In particular, SY relate the bias of the 2SLS estimator of β, β̂2SLS, relative to that of the ordinary
least squares estimator of β, β̂OLS, to the first-stage F-statistic by showing that they are both related
to µ2. A value for µ2, denoted µ2

0, is then chosen to allow a certain level of relative bias. Specifically,
let Bn denote the relative bias for a given sample size n, i.e.,

|Bn| =
∣∣∣∣∣
E
[
β̂2SLS,n

]
− β

E
[
β̂OLS,n

]
− β

∣∣∣∣∣ .

As discussed in Chao and Swanson (2007), if there exists a positive integer N < ∞ such that6

sup
n≥N

E
[∣∣β̂2SLS,n − β

∣∣1+δ
]
< ∞ (7)

for some δ > 0, then the limit of the sequence of finite sample biases will coincide with the bias
computed from the local-to-zero asymptotic distribution. That is,

4 Some references specify the non-centrality parameter for a non-central chi-squared distribution as δ, whereas others specify
it as δ/2. We have adopted the former convention here.

5 The exact details of these arguments can be found in SY and will not be repeated here.
6 We thank an anonymous referee for bringing this subtlety to our attention. For a more complete discussion of this point,

we refer the reader to the discussion of (Chao and Swanson 2007, pp. 518–19) and the references cited therein.
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lim
n→∞

|Bn| =
∣∣∣∣∣E
[
(ξ − λ0)

′ξ
ξ ′ξ

]∣∣∣∣∣ ≡ |B|, (8)

where ξ ∼ N
(

λ0, Ikz

)
. The test for weak instruments then proceeds as follows:

1. The practitioner chooses a value for |B|, e.g., |B| = 0.1, if an asymptotic relative bias of less than
10% is deemed acceptable.

2. Given kz and |B|, µ2
0 = λ′0λ0 is obtained on solving (8).

3. Given µ2
0, critical values for F can be determined, which are proportional to those of the

non-central chi-squared distribution as specified in (4).
4. The null of weak instruments is then rejected for sufficiently large values of the first-stage

F-statistic, and we conclude that |B| is no larger than the value chosen in Step 1 above.

The difficulty in the procedure just described is that, at Step 2, there is an integral that must
be evaluated as part of a search for µ2

0. SY do this using a 20,000 draw Monte Carlo simulation.
This is unnecessary as the integral can be solved analytically. The result is summarised in the
following theorem.

Theorem 1. If B is as defined in Equation (8), then, provided kz ≥ 2,

B = 1F1

(
1;

kz
2

;−µ2
0

2

)
> 0, (9)

where, as noted following (6), 1F1(·; ·; ·) denotes a confluent hypergeometric function.

Proof. The result follows immediately from Theorem A1, in Appendix A, which establishes the
equality, and from the observation that if b ≥ a > 0 but s < 0 then 0 < 1F1(a; b; s) ≤ 1, which
establishes the inequality.7

That Theorem 1 involves a confluent hypergeometric function is not surprising as they have long
figured prominently in the finite sample literature; see, for example, Phillips (1980) and the papers cited
therein. These functions have been very intensively studied in the mathematics literature over a period
of hundreds of years and so an important consequence of Theorem 1 is that it allows the use of efficiently
programmed intrinsic functions in readily available software, such as MATLAB (MathWorks 2016),
at each step of a search for µ2

0 rather than having to estimate an integral by simulation.8 For the special
case of kz = 2,

1F1

(
1;

kz
2

;−µ2
0

2

)
= exp

{
−µ2

0
2

}
, (10)

making evaluation of the expression especially simple.

7 It should be noted that the proof provided is not the only one possible and we would like to thank helpful referees for drawing
various alternatives to our attention. For example, in an elegant paper, Chao and Swanson (2007), Proposition 3.1 and

Lemma 3.3, respectively, derive local to zero approximations for each of limn→∞ E
[

β̂2SLS,n − β
]

and limn→∞ E
[

β̂OLS,n − β
]
,

from whence derivation of the ratio is straightforward. Similarly, there are finite sample papers in the literature from which
it would be possible to start a proof along the lines of the one presented but at a more advanced point (see, for example,
Forchini and Hillier 2003, Equation B.13). However, we favour the proof presented for two reasons. First, it is a direct
continuation of the developments of Stock and Yogo (2005), Equation 3.1, and the discussion immediately thereafter. Second,
when viewed in the correct light, there are much earlier antecedents that take precedence over the two mentioned here.
We discuss this further in Section 6.

8 In the absence of such intrinsic functions, computational aspects of hypergeometric functions are discussed in
Johansson (2016).
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Using our result, we provide in Table 1 an extended version of that panel of SY Table 5.1
corresponding to a single endogenous variable, which is the set of critical values most commonly
used. We note that SY start their tables at kz = 3 even though, following the arguments of Kinal (1980),
finite biases will exist for all kz ≥ 2 if one is prepared to make a normality assumption. As this is a
practically relevant case, we include it in Table 1. However, such inclusion is not without controversy.
The mode of convergence leading to Label (8) is convergence in distribution. Existence of moments is
not sufficient to imply convergence in expectation, which is a stronger result (see Label (7) and the
accompanying discussion). Heuristically, (7) might be interpreted as meaning that a little more than
simply the existence of the moments of the estimators is required for the sequence of biases to converge
to the local-to-zero asymptotic results, and so this might be achieved by requiring kz ≥ 3 in the case
of a single endogenous regressor rather than just kz ≥ 2, although we note that (7) doesn’t actually
say this. In any event, the inclusion in Table 1 of the row kz = 2 may be viewed as something of an
ad hoc approximation. Some confidence in the value of the approximation may be garnered from the
simulation results presented in Section 4.

Where Table 1 overlaps with SY (Table 5.1), we are able to provide an indication of the difference
made by the analytical evaluation of the expectation in (8). As shown in Table 2, the differences are
typically small, with the largest differences when kz and B are themselves small, which we would
argue is the most important case in practice.9

Table 1. 5% Critical values (cvSW
0.05) for single endogenous regressor, 2SLS bias.

kz \ B 0.01 0.05 0.1 0.15 0.2 0.25 0.3

2 11.57 9.02 7.85 7.14 6.61 6.19 5.83
3 46.32 13.76 9.18 7.52 6.60 5.96 5.49
4 63.10 16.72 10.23 7.91 6.67 5.88 5.32
5 72.55 18.27 10.78 8.11 6.71 5.82 5.19
6 78.59 19.19 11.08 8.21 6.70 5.75 5.09
7 82.75 19.79 11.25 8.25 6.67 5.69 5.01
8 85.78 20.20 11.36 8.26 6.64 5.63 4.93
9 88.07 20.49 11.42 8.25 6.60 5.58 4.87

10 89.86 20.70 11.46 8.24 6.56 5.52 4.81
11 91.30 20.86 11.49 8.22 6.53 5.48 4.76
12 92.47 20.99 11.50 8.20 6.49 5.43 4.71
13 93.43 21.08 11.50 8.17 6.46 5.39 4.67
14 94.25 21.16 11.50 8.15 6.42 5.36 4.63
15 94.94 21.22 11.49 8.13 6.39 5.32 4.59
16 95.54 21.26 11.49 8.11 6.36 5.29 4.56
17 96.05 21.30 11.48 8.08 6.34 5.26 4.53
18 96.50 21.33 11.46 8.06 6.31 5.23 4.50
19 96.09 21.35 11.45 8.04 6.29 5.21 4.47
20 97.25 21.37 11.44 8.02 6.26 5.18 4.45
21 97.56 21.39 11.43 8.00 6.24 5.16 4.43
22 97.84 21.40 11.41 7.98 6.22 5.14 4.40
23 98.09 21.41 11.40 7.96 6.20 5.12 4.38
24 98.32 21.41 11.39 7.94 6.18 5.10 4.36
25 98.53 21.42 11.38 7.93 6.16 5.08 4.35
26 98.71 21.42 11.36 7.91 6.15 5.06 4.33
27 98.88 21.42 11.35 7.90 6.13 5.05 4.31
28 99.04 21.42 11.34 7.88 6.11 5.03 4.30
29 99.18 21.42 11.32 7.87 6.10 5.02 4.28
30 99.31 21.42 11.31 7.85 6.08 5.00 4.27

9 We have also computed simulated critical values from 20,000 random draws as in SY, but repeating the exercise 1000 times.
The resulting mean critical values are virtually identical to those in Table 1, with the maximum difference being 0.02.
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Table 2. Differences: cvSW
0.05 − cvSY

0.05.

kz \ B 0.05 0.10 0.20 0.30

3 0.15 −0.10 −0.14 −0.10
4 0.13 0.04 0.04 0.02
5 0.10 0.05 0.06 0.06
6 0.09 0.04 0.06 0.06
7 0.07 0.04 0.06 0.07
8 0.05 0.03 0.05 0.06
9 0.04 0.04 0.05 0.05
10 0.04 0.03 0.05 0.05
11 0.04 0.01 0.03 0.04
12 0.02 0.02 0.04 0.04
13 0.02 0.02 0.03 0.04
14 0.02 0.02 0.03 0.04
15 0.01 0.02 0.03 0.04
16 0.02 0.01 0.03 0.03
17 0.01 0.01 0.02 0.03
18 0.01 0.02 0.02 0.03
19 0.01 0.01 0.02 0.04
20 0.01 0.01 0.02 0.03
21 0.00 0.01 0.02 0.03
22 0.00 0.01 0.02 0.03
23 0.00 0.01 0.02 0.03
24 0.00 0.01 0.02 0.03
25 0.00 0.00 0.02 0.02
26 0.00 0.01 0.01 0.02
27 0.00 0.01 0.01 0.03
28 0.00 0.02 0.02 0.02
29 0.00 0.01 0.01 0.03
30 0.00 0.01 0.01 0.02

Note: The values of cvSY
0.05 are taken from Stock and Yogo (2005), Table 5.1.

3. Some Further Consequences of Theorem 1

Theorem 1 allows us to prove a variety of further results that can only be speculated about on the
basis of simulation results.

Remark 1. Implicit in Theorem 1 is the observation that, whenever kz ≥ 2, OLS and 2SLS are always
asymptotically biased in the same direction, making the absolute value function of |B| in (8) redundant.

Remark 2. The values of the limiting relative biases of β̂2SLS and β̂OLS are explored in Figure 1 for different
values of the parameters kz and µ2/2. The figure illustrates that, for kz ≥ 2, the function is increasing in its
argument, which is −µ2/2. Note also that, as µ2 → 0, the information in the instruments approaches zero,
and so the local-to-zero asymptotic bias of β̂2SLS approaches that of β̂OLS from below. Hence, the limit of the
relative asymptotic biases at µ2 = 0 is unity, which is the value of 1F1

(
1; kz

2 ; 0
)

.

Remark 3. Certain patterns in Table 1 are readily established, as illustrated by the following result.10

Theorem 2. The critical values cvα are decreasing functions of B for given kz.

10 Theorem 2 is similar in spirit to Das Gupta and Perlman (1974), p. 180, Remark 4.1, although they only address the numerator
of the ratio in Equation (5). Consequently, Das Gupta and Perlman are silent on the relative magnitudes of χα and kz which,
in essence, is the content of Theorem 2.
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Proof. See Appendix B.2.
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Theorem 2 explains the row behaviour of Table 1. Explaining the column behaviour is much more
complicated. Observation suggests the following to be true.

Conjecture 1. For given B, the critical values cvα, presented in Table 1, are increasing functions of kz up to
some value, k say, whereafter they are decreasing functions of kz. k is a decreasing function of B.

Some intuition for Conjecture 1 is available from the definition of cvα, see (5), if one considers the
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Heuristically, Theorem 2 states that the critical values will necessarily decrease as one moves from
left to right across any given row of Table 1; that is, the critical values decrease as the practitioner
is willing to accept increasing amounts of 2SLS bias relative to that of OLS. The intuition behind
the results is as follows. An increase in B for fixed kz implies that the argument of the confluent
hypergeometric function in (9) must increase, i.e., that µ2/2 must decrease. As µ2 approaches zero,
the non-central chi-squared distribution from which critical values are drawn approaches a central
chi-squared and the corresponding quantiles become smaller. Hence, as one moves across columns
from left to right in Table 1, the cvα become smaller.

Theorem 2 explains the row behaviour of Table 1. Explaining the column behaviour is much more
complicated. Observation suggests the following to be true.

Conjecture 1. For given B, the critical values cvα, presented in Table 1, are increasing functions of kz up to
some value, k say, whereafter they are decreasing functions of kz. k is a decreasing function of B.

Some intuition for Conjecture 1 is available from the definition of cvα, see (5), if one considers the
impact of increasing the number of instruments by one, from kz to kz + 1, with superscripts ‘0’ and ‘1’
distinguishing the two cases, respectively. For given B and α,

cv1
α − cv0

α T 0 as
χ1

α − χ0
α

χ0
α

T 1
kz

.

k is then that value of kz after which the cvα start diminishing.

Remark 4. Although B does not exist when kz = 1, the confluent hypergeometric function of Theorem 1

remains well-defined. In Appendix D, we analyse the properties of 1F1

(
1; 1

2 ;− µ2

2

)
.



Econometrics 2018, 6, 44 9 of 23

4. Some Monte Carlo Results

We follow Sanderson and Windmejer (2016) and specify the model is as in (1) and (2),
with β = 1 and [

ui
vi

]
∼ N

([
0
0

]
,

[
1 0.5

0.5 1

])
.

The instruments in Z are kz independent standard normally distributed random variables and
π =

(
cBkz

ιkz

)
/
√

n, where ιkz
is a kz vector of ones, and with cBkz

chosen such that the relative bias B
is equal to 0.01, 0.05, 0.10 or 0.20, for values of kz = 3 and kz = 2. The sample size n = 10,000 and the
results are presented in Table 3 for 100,000 Monte Carlo replications.

Table 3. Simulation results for kz = 3 and kz = 2.

B

0.01 0.05 0.10 0.20

kz = 3 mean std dev mean std dev mean std dev mean std dev
β̂OLS 1.4950 0.0086 1.4989 0.0087 1.4994 0.0087 1.4997 0.0087
β̂2SLS 1.0054 0.0998 1.0241 0.2222 1.0506 0.3161 1.1025 0.4276

F 34.713 6.7626 8.0336 3.1828 4.7849 2.3952 3.0948 1.8630
rel bias 0.0108 0.0482 0.1014 0.2052
µ2

0/kz 33.674 7.0445 3.7754 2.0902
cv F 46.316 13.765 9.1815 6.5960

rej freq F 0.0515 0.0505 0.0508 0.0511

kz = 2 mean std dev mean std dev mean std dev mean std dev
β̂OLS 1.4996 0.0087 1.4997 0.0087 1.4997 0.0087 1.4998 0.0087
β̂2SLS 1.0056 0.4398 1.0256 0.7195 1.0519 0.9651 1.0981 1.1404

F 5.6124 3.1989 4.0004 2.6492 3.2963 2.3746 2.6011 2.0502
rel bias 0.0111 0.0513 0.1039 0.1962
µ2

0/kz 4.6052 2.9957 2.3026 1.6094
cv F 11.572 9.0232 7.8521 6.6087

rej freq F 0.0509 0.0507 0.0505 0.0498
Notes: Sample size n = 10,000, number of Monte Carlo replications is 100,000.

For kz = 3, the results are exactly in line with the theory: the Monte Carlo relative biases are equal
to B and the rejection frequencies of the first-stage F-test are 5% at the 5% nominal level, using the
critical values reported in Table 1.

The results for kz = 2 are also in line with the theory, although we see here that the standard
deviations of β̂2SLS are much larger than those of the kz = 3 case at the same values of B. This is
due to the fact that the information needed to obtain the same relative bias is much smaller for the
kz = 2 case than for the kz = 3 case , as reflected by their smaller µ2

0/kz values, but it also reflects the
problem that the second moment does not exist when the degree of over-identification is equal to 1.
The interquartile ranges for the 2SLS estimator when kz = 2 are 0.3296, 0.4170, 0.4811 and 0.5570 for
B = 0.01, 0.05, 0.10 and 0.20, respectively. These Monte Carlo results therefore confirm our theoretical
findings for the kz = 2 case. Clearly some caution should be exercised when working with 2SLS in this
case because it possesses no second moment.

5. p-Values

p-values are readily available as a straightforward extension of our earlier analysis. Specifically,
from (4), we have the limiting result

kz × F
H0−→
d

χ ′ 2kz ,µ2
0
. (11)
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For any particular sample value of the F-test, say F̂, if X ∼ χ ′ 2kz ,µ2
0
, then the p-value for the SY weak

instruments test considered in this paper is simply Pr
(

X ≥ kz × F̂
)

. Of course, the problem here

is the determination of µ2
0. Table 4 reports those values of µ2

0/kz that were calculated in order to
construct Table 1. For those values of B considered in Table 1, we now have the parameters kz and
µ2

0/kz. Consequently, any computer software that can evaluate a non-central chi-squared cdf can
readily calculate p-values for the test for weak instruments considered here.

Table 4. Values for µ2
0/kz corresponding to Table 1.

kz \ B 0.01 0.05 0.1 0.15 0.2 0.25 0.3

2 4.605 2.996 2.303 1.897 1.609 1.386 1.204
3 33.674 7.045 3.775 2.677 2.090 1.706 1.426
4 50.000 10.000 5.000 3.329 2.483 1.960 1.599
5 59.799 11.793 5.784 3.774 2.761 2.144 1.724
6 66.332 12.991 6.315 4.081 2.958 2.277 1.816
7 70.998 13.848 6.696 4.304 3.102 2.375 1.885
8 74.498 14.491 6.982 4.472 3.212 2.450 1.938
9 77.221 14.992 7.205 4.604 3.298 2.510 1.980

10 79.398 15.392 7.384 4.709 3.367 2.558 2.014
11 81.180 15.720 7.531 4.796 3.424 2.597 2.043
12 82.665 15.993 7.653 4.868 3.471 2.630 2.066
13 83.922 16.224 7.756 4.929 3.511 2.658 2.086
14 84.999 16.423 7.845 4.981 3.546 2.682 2.104
15 85.932 16.594 7.922 5.027 3.576 2.703 2.119
16 86.749 16.745 7.989 5.067 3.602 2.721 2.132
17 87.470 16.877 8.048 5.102 3.626 2.738 2.144
18 88.110 16.995 8.101 5.133 3.646 2.752 2.154
19 88.683 17.101 8.148 5.161 3.665 2.765 2.163
20 89.199 17.196 8.191 5.186 3.681 2.777 2.172
21 89.666 17.281 8.229 5.209 3.697 2.787 2.179
22 90.090 17.360 8.264 5.230 3.710 2.797 2.186
23 90.477 17.431 8.296 5.249 3.723 2.806 2.193
24 90.833 17.496 8.326 5.266 3.734 2.814 2.198
25 91.159 17.556 8.353 5.282 3.745 2.821 2.204
26 91.461 17.612 8.377 5.297 3.755 2.828 2.209
27 91.740 17.663 8.400 5.311 3.764 2.834 2.213
28 91.999 17.711 8.422 5.323 3.772 2.840 2.217
29 92.241 17.755 8.442 5.335 3.780 2.846 2.221
30 92.466 17.797 8.460 5.346 3.787 2.851 2.225

6. Multiple Endogenous Regressors

The general case is obtained by defining x in (1) to be a matrix of endogenous regressors of
dimension n× kx, say, so that β is kx × 1. Then, (2) becomes a multivariate regression model with π

of dimension kz × kx and v of dimension n× kx. The rows of [u, v] are independent with common
covariance matrix Σ. All other aspects of the model described in (1) and (2) remain essentially
unchanged.11

In terms of the SY analysis, it clearly makes no sense to proceed in terms of the ratio

E
[
β̂2SLS

]
− β

E
[
β̂OLS

]
− β

,

11 The complete set of assumptions are presented in SY (Section 2.4).
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given that β is now a vector rather than a scalar quantity. Thus, instead, they focus attention on the
quadratic form (SY, Equation 3.8)

B2 =
ρ′h′hρ

ρ′ρ
= γ′h′hγ,

where h is a matrix analogue of the expectation explored in Theorem 1 and γ = ρ(ρ′ρ)−1/2, with ρ

defined in SY (p. 85). The essential feature of γ is that it is not a function of λ. Despite being somewhat
more tractable, the quadratic form tells us no more about the non-centrality parameter determining
the bias of the 2SLS estimator than does

hγ = E
[
(ξ ′ξ)−1ξ ′(ξ − λ)

]
γ = γ−J , (12)

say, where the elements of the kz × kx matrix ξ are jointly distributed according to

vec (ξ) ∼ N(vec (λ) , Ikz×kx
), (13)

with λ as defined in SY (p. 85).12 Again, we should stress that the normality of ξ is a consequence of the
local-to-zero asymptotic analysis and is not a strong distributional assumption. As γ is independent of
λ, it is sufficient to focus attention on the vector of expectations J . If we let e′i denote the ith row of the
identity matrix Ikx

, then we have immediately13

J = E
[
(ξ ′ξ)−1ξ ′λγ

]
= etr{Λ}

∞

∑
j=0

∑
φ

∑
ψ∈φ·[1]

(
kz
2

)
φ

j!
(

kz
2

)
ψ

θ
φ,1
ψ C(Λ, γ, kz), (14)

where the ith element of the kx × 1 vector C(λ, γ, kz) is Cφ,1
ψ

(
kzΛ, kzΛγe′i

)
, with Λ = λ′λ/(2kz).

14

Here, φ denotes ordered partitions of j into no more than kx parts, so that φ = (φ1, φ2, . . . , φp) where
the integers φ1, φ2, . . . , φp satisfy the restrictions (i) φ1 ≥ φ2 ≥ · · · ≥ φp, (ii) ∑

p
i=1 φi = j, and (iii) p ≤ kx.

The symbol ∑φ then denotes the sum over all such partitions of j. For example, the ordered partitions

of 2 are the so-called top partition [2] and (1, 1).15 The invariant polynomials Cφ,1
ψ (·, ·) and the symbol

∑ψ∈φ·[1] are defined in Davis (1979), p. 465, with θ
φ,1
ψ = Cφ,1

ψ (Ikz
, Ikz

)/Cψ(Ikz
) a constant that may be

zero. These were developed as extensions (to two matrix arguments) of the zonal polynomials Cψ(·)
originally due to James (1961).16 Finally, the generalised hypergeometric coefficients are defined as
(Constantine 1963, Equation (26))

(a)κ =
m

∏
i=1

(
a− 1

2 (i− 1)
)

ki
, κ = (k1, . . . , km),

where (b)n = b(b + 1) · · · (b + n− 1), (b)0 = 1 is the usual Pochhammer symbol or forward factorial
(see Slater 1966, Appendix I).

Expressions like (14) are computationally problematic. The available evidence suggests that the
series are typically slow to converge (Phillips 1983a, 1983b). Unfortunately, the invariant polynomials

12 In (13), vec (·) is the usual matrix operator that stacks all of the columns of its matrix argument into a single column vector;
see, for example, Muirhead (1982), p. 17.

13 Make the substitutions {ei , γ, kz} for {α, β, ν}, respectively, in Hillier et al. (1984), Equation (30).
14 Please note that the definition of Λ adopted here is slightly different from the definitions used in either Hillier et al. (1984)

and SY.
15 See Muirhead (1982), Section 7.2.1, for a much more complete treatment of ordered partitions.
16 The zonal polynomials appearing in (14) adopt a normalisation due to Constantine (1963), which typically leads to more

compact expressions than do the polynomials originally proposed by James (1961).
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of Davis are tabulated only to low order and, to date, no algorithms have been derived for their
computation.17 Consequently, until such time as the computational restrictions are lifted, the practical
relevance of the result is limited and is offered here only for completeness. Better progress might be
made working with one of the various approximation techniques that are available, e.g., the Laplace
approximation used by Phillips (1983b) to extract approximate marginal distributions for IV estimators
in this more general setting. In this case, however, we can further adapt the results of Hillier et al. (1984)
to obtain many instrument approximations to (14). Specifically, analogous to their Equations (32)
and (33), we have

Ji = e′iγ− (kz − kx − 1)e′i(λ
′λ)−1γ + O(k−2

z ), (15)

and

Ji = e′iγ− (kz − kx − 1)[1 + tr{(λ′λ)−1}] e′i(λ
′λ)−1γ

+ (kz − kx − 1)(kz − kx − 2) e′i(λ
′λ)−2γ + O(k−3

z ),
(16)

where Ji denotes the ith element of J .18

Although these approximations are operational, in the presence of multiple endogenous
regressors, we question whether the approach of SY is as sound as it is in the single endogenous
regressor case. Our concern is rooted in the structure of the Davis polynomials themselves. For matrix
arguments, X and Y with given indices k and l, respectively, the polynomials are ‘linear combinations
of the distinct products of traces

(tr Xa1Yb1 Xc1 · · · )r1(tr Xa2Yb2 Xc2 · · · )r2 · · ·

of total degree k, l in the elements of X, Y, respectively (Davis 1979, p. 468). It is immediately apparent
that local-to-zero asymptotic expression for the bias of 2SLS is not a function of the eigenvalues of
the concentration parameter or, at least, not a function of them alone. Stock and Yogo (2005), p. 90,
remark on this themselves when discussing certain numerical results, where they observe that 2SLS
bias is decreasing in all eigenvalues of the concentration parameter for all values of (what we call) kz.
To focus on the smallest eigenvalue, as the Cragg–Donald statistic does, is, consequently, problematic.
Another way of thinking of this problem is to consider the problem of determining the magnitude of a
matrix and to ask which of the following three matrices is either largest or smallest:

diag (1, 2, 3) , diag (2, 2, 2) , diag (0, 0, 6) .

While consideration of the smallest eigenvalue will lead to a particular choice, it is not clear that
that choice actually has that much to do with the exact behaviour of the IV estimator, except in the
scalar case. Indeed, for this reason, the SY results for multiple endogenous variable cases are only
approximate and provide upper bounds on critical values for the Cragg–Donald minimum eigenvalue
test. That the SY approach works in the case of a single endogenous regressor is a consequence of the
commutative law of multiplication that allows us to extract scalars from products in ways that we can’t
in more general matrix situations. In summary, the SY approach results in a well-posed problem in the
case of a single endogenous regressor but a somewhat poorly-posed problem in the case of multiple
endogenous regressors.

If one must deal with multiple endogenous regressors, then we prefer the approach of Sanderson
and Windmejer (2016), who define weak identification as the rank of Π being local to a rank reduction
of one, which is essentially a scalar problem. By reducing the problem in this way, the approach is

17 Some progress towards addressing the computational aspects of these polynomials has been made by Hillier et al. (2009, 2014).
18 Although the derivation of (15) is straightforward, this is less true for (16). A derivation of the terms in (16) that are in

addition to those in (15) is provided in Appendix E.
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reduced to a well-posed problem for which the single endogenous variable results apply, only the
degrees of freedom need to be adjusted for the number of endogenous variables (see Sanderson and
Windmejer (2016) for details).

7. The Wisdom of Hindsight: Some Historical Remarks

As discussed in Footnote 7, helpful referees drew our attention to the fact that there are other ways
that we might have approached this problem than the one that we initially chose. Indeed, once one
recognises the the structure of the problem, many results become available. However, before discussing
some of these, we will again stress that the results derived in the previous sections are all asymptotic
in nature, there are no underlying exact distributional assumptions beyond those originally made in
Staiger and Stock (1997). What these results share with the exact distribution literature is integrals with
similar structures and a common approach to resolving them. Furthermore, the parameterisations
adopted here are different from the canonical forms underlying the exact distributional results and so
the resultant expressions are different even if their structures are reminiscent of earlier results. A prime
example of this is given by the similarities between the many, local-to zero, instrument approximations
of Equations (15) and (16) and the large-sample approximations of Hillier et al. (1984, Equations (32)
and (33)).

It was noted in Footnote 7 that Chao and Swanson (2007) had derived local-to-zero asymptotic
expressions for the bias of both 2SLS and OLS in the scalar case, so that they might bias correct the
estimators, and that these provide an alternate path to Theorem 1. If moments were the focus of our
attention, then we should note that the results of Chao and Swanson (2007) have the same structure as
do those of Richardson (1968) and references cited therein, who first derived moments in the scalar case
with arbitrary numbers of instruments and proved Basmann’s conjecture (Richardson 1968, Section 4.3)
for the existence of moments. In the general case, we should, of course, be looking to Hillier et al. (1984)
for results with the same structure as presented here and to Kinal (1980), who established existence
criteria in the general case. Noting that the distributions of interest in the exact finite sample
literature are different from the distributions thrown up by the local-to zero asymptotics, with different
parameters, it might be argued that the exact results for misspecified models are closer in spirit to what
we have here. In this event, we might argue that results for moments are implicit (but unrecognisable) in
Hale et al. (1980) or, in a far more recognisable form in Knight (1982), for the scalar case, or Skeels (1995)
in the general case. However, here moments are only of interest as an intermediate result to obtain
the relative bias that is used to obtain a non-centrality parameter that determines the non-central
chi-squared distribution of interest in step 3 of the procedure given following (8). Perhaps of greater
historical interest, in the scalar case, are the results of Richardson and Wu (1971) who explore the
properties of the relative bias. However, these results are of limited interest for two reasons. First,
and probably most important, because the parameterisation of their model differs from that generated
by the local-to-zero asymptotics, their tabulated results are not comparable with what is done here.
Second, to reiterate, the relative bias is only of interest to us inasmuch as it allows us, given certain
other information, to chose a non-centrality parameter useful in determining SY critical values in the
scalar case. That is, unlike for all of the above-mentioned papers, moments are only of tangential
interest to us, as this is not a study of the estimators themselves. To the best of our knowledge, Section 6
provides the first treatment of the (local-to-zero asymptotic) relative bias in the general case.

8. Conclusions

The main contribution of this paper has been to resolve analytically an integral as a special
function, obviating the need to resolve it by simulation. This integral is of independent interest in the
theory of ratios of quadratic forms in normal variables. Here, it is of primary interest because it provides
a functional relationship between the bias in the 2SLS estimator and the limiting sampling distribution
of a test statistic that SY proposed for testing the presence of weak instruments, when the null of weak
instruments is true. Analysis of this special function provides theoretical foundations for the remarks
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of Section 3, which explore patterns observed in Table 1 as the parameters B and kz vary. This analysis
required the derivation of certain results that are of independent interest in the theory of confluent
hypergeometric functions. We have also explored the problem of p-values of the aforementioned test
for weak instruments, on the basis of our earlier theoretical developments. We provide information
such that any computer software that can then evaluate a non-central chi-squared cdf can readily
compute p-values in essentially all practical circumstances. The final contribution of this paper has
been the analysis of the general case characterised by an arbitrary number of endogenous regressors.
Here, we find that the analysis is able to draw heavily on the foundations laid down in the literature on
exact sampling distributions. This allows us to provide expressions for both the expectation of interest
and also first- and second-order many-instrument expansions of this expectation. The exact expression
obtained for the integral of interest in the general case is not of great practical interest, as it involves
invariant polynomials with two matrix arguments for which, at the time of writing, there exist no
algorithms for their computation, except in special cases. Nevertheless, the asymptotic expansions
obtained are readily computable and potentially of practical importance. Given our reservations about
the usefulness of the overall procedure in the general case, we leave such explorations to others.

One aspect of the SY tables that we have not addressed relates to those tables based on size
distortions of a Wald statistic. This is a much more difficult analytical problem than has been addressed
here and it is not clear that there is much benefit in tackling it as, in our estimation, the bias tables are
in much more frequent use, making them of greater practical relevance.

Finally, in support of the results presented in the paper, we provide two MATLAB programs on an
‘as is’ basis. The first of these, Table1.m, provides the body of Table 1. The second program, entitled
sypval.m, provides p-values. Appendix C provides some discussion on the contents of these programs.
The programs are available at https://sites.google.com/site/skeelscv/.
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Appendix A. The Expectation of a Particular Function of Normal Random Variables

Theorem A1. Suppose that ξ ∼ N (λ, Ik). Then,

E

[
(ξ − λ)′ξ

ξ ′ξ

]
=





1F1

(
1;

k
2

;−µ2

2

)
, k ≥ 2,

diverges, k = 1,

where µ2 = λ′λ.

Proof. It is straightforward to demonstrate that the expectation is unbounded when k = 1 and so we
shall assume hereafter that k > 1. Given the normality assumption on ξ, we can write

E

[
(ξ − λ)′ξ

ξ ′ξ

]
=

exp{−λ′λ/2}
(2π)k/2

∫ ∞

−∞

[
1− λ′ξ

ξ ′ξ

]
exp

{
− ξ ′ξ

2

}
exp

{
λ′ξ
}

dξ = I (say).

https://sites.google.com/site/skeelscv/
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In accordance with Herz (1955), Lemma 1.4, we can decompose almost all k-vectors ξ into
ξ = hr1/2, where h = ξ(ξ ′ξ)−1/2, so that h′h = 1, and r = ξ ′ξ > 0, with volume elements

dξ = 2−1r(k−2)/2 dh dr. (A1)

This is essentially a transformation to polar coordinates. The resulting expression is

I =
exp{−λ′λ/2}

2(2π)k/2

∫

r>0
exp{−r/2}r(k−2)/2

×
{ ∫

h′h=1
exp{λ′hr1/2}dh− r−1

∫

h′h=1
λ′hr1/2 exp{λ′hr1/2}dh

}
dr

almost everywhere. Next, write

λ′hr1/2 exp{λ′hr1/2} =
d exp

{
(1 + t)λ′hr1/2

}

dt

∣∣∣∣∣∣
t=0

and evaluate the integrals over h′h = 1 using Hillier et al. (1984), Equation (6):

∫

h′h=1
exp

{
r1/2λ′h

}
dh =

2πk/2

Γ
(

k
2

) 0F1

(
k
2

;
µ2r
4

)
. (A2)

This yields, on replacing λ′λ by µ2,

I =
exp{−µ2/2}

2k/2Γ
(

k
2

)
∫

r>0
exp

{
− r

2

}
r(k−2)/2

×
{

0F1

(
k
2

;
µ2r
4

)
− r−1

[
d
dt 0F1

(
k
2

;
(1 + t)2µ2r

4

)]

t=0

}
dr,

where pFq(a1, . . . , ap; b1, . . . , bq; ξ) denotes a generalised hypergeometric function. Finally, differentiating
with respect to t, using say NIST (2015, Equation 16.3.1), evaluating the derivative at t = 0, and then
resolving the resulting Laplace transforms using

1

Γ
(

k
2

)
∫

r>0
exp

{
− r

2

}
r(k−3)/2

0F1

(
k
2

;
µ2r
4

)
dr = 2(k−1)/2

1F1

(
k− 1

2
;

k
2

;
µ2

2

)

yields

I = exp{−µ2/2}
[

1F1

(
k
2

;
k
2

;
µ2

2

)
− µ2

k 1F1

(
k
2

;
k + 2

2
;

µ2

2

)]

= exp{−µ2/2} 1F1

(
k− 2

2
;

k
2

;
µ2

2

)
(A3)

= 1F1

(
1;

k
2

;−µ2

2

)
,

where the second to last equality exploits one of the relationships for contiguous confluent
hypergeometric functions (NIST 2015, Equation 13.3.4) and the final equality is another application of
Kummer’s transformation.

http://dlmf.nist.gov/16.3E1
http://dlmf.nist.gov/13.3E4
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Appendix B. Analysis of Table 1

Appendix B.1. Preliminaries

In this appendix, we analyse how the critical values cvα, presented in Table 1, change in response
to changes in one of either kz or B when the other is held fixed; that is, as one either moves down
columns of the table or across rows, from left to right, respectively. Some additional analysis is available
in Skeels and Windmeijer (2016).

From Equation (5),

cvα =
χα

kz
, (A4)

with χα the solution to the equation

1− α =
∫ χα

0
f (s | kz, µ2) ds, (A5)

where f (s | kz, µ2) denotes the density function of a non-central chi-squared random variable;
specifically

f (s | kz, µ2) = e−µ2/2 ∑∞
j=0

(µ2/2)j

j!2(kz+2j)/2Γ
( kz+2j

2

) e−s/2s(kz+2j−2)/2

= ∑∞
j=0 κj(kz, µ2) e−s/2s(kz+2j−2)/2,

(A6)

where

κj(kz, µ2) =
e−µ2/2(µ2/2)j

j!2(kz+2j)/2Γ
(

kz+2j
2

) . (A7)

The parameter µ2 is chosen to satisfy

B = 1F1

(
1;

kz
2

;−µ2

2

)
. (A8)

The absolute values can be ignored as the confluent hypergeometric function is positive for all
µ2 ≥ 0 whenever kz ≥ 2, which shall be assumed for the rest of this appendix unless indicated
otherwise.

Appendix B.2. The Consequence of Varying B for Fixed kz ≥ 2

With kz held fixed we have, from (A4),

dcvα

dB
=

1
kz

dχα

dµ2

/
dB

dµ2 . (A9)

First,
dB

dµ2 =
dB

d(−µ2/2)

d(−µ2/2)

dµ2 = − 1
kz

1F1

(
2;

kz + 2
2

;−µ2

2

)
< 0, (A10)

for all µ2 and kz. Second, using Leibniz’s Rule for the differentiation of integrals, we can differentiate
both sides of (A5) with respect to µ2 to obtain,

0 =
∫ χα

0
∂ f (s|kz ,µ2)

∂µ2 ds + f (χα | kz, µ2)
dχα

dµ2

⇒ dχα

dµ2 = − 1
f (χα |kz ,µ2)

∫ χα
0

∂ f (s|kz ,µ2)

∂µ2 ds.
(A11)
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Note that (A11) implicitly assumes 0 < χα < ∞, so that 0 < α < 1. In the event that either
χα = 0 or χα is infinite, then f (s | kz, µ2) = 0, as does its derivative with respect to µ2, making the
representation (A11) invalid. Indeed, as these cases are on the boundaries of support of a non-central
chi-squared random variable, the ordinary derivative is not well-defined and so the approach taken
above would require modification. For this reason, hereafter, we shall assume that 0 < α < 1.

From (A6), the integrand in (A11) is (Cohen 1988, Equation (2))

∂ f (s | kz, µ2)

∂µ2 =
1
2

[
f (s | kz + 2, µ2)− f (s | kz, µ2)

]
.

Integrating by parts allows us to write

∫ χα

0
e−s/2s(kz+2j)/2 ds =

[
−2e−s/2s(kz+2j)/2

]χα

0
+ (kz + 2j)

∫ χα

0
e−s/2s(kz+2j−2)/2 ds

= −2e−χα/2χ(kz+2j)/2
α + (kz + 2j)

∫ χα

0
e−s/2s(kz+2j−2)/2 ds,

and so (A11) becomes

dχα

dµ2 = − 1
2 f (χα |kz ,µ2)

∑∞
j=0

{
κj(kz + 2, µ2)

[
−2e−χα/2χ(kz+2j)/2

α

+ (kz + 2j)
∫ χα

0 e−s/2s(kz+2j−2)/2 ds
]
− κj(kz, µ2)

∫ χα
0 e−s/2s(kz+2j−2)/2 ds

}

=
f (χα |kz+2,µ2)

f (χα |kz ,µ2)

−∑∞
j=0

κj(kz+2,µ2)(kz+2j)−κj(kz ,µ2)

2 f (χα |kz ,µ2)

∫ χα
0 e−s/2s(kz+2j−2)/2 ds

=
f (χα |kz+2,µ2)

f (χα |kz ,µ2)
> 0,

(A12)

as κj(kz + 2, µ2)(kz + 2j) − κj(kz, µ2) = 0. The positivity of the ratio follows because each of the
functions f are values of non-central chi-squared density functions which differ only in their degrees
of freedom, kz versus kz + 2 respectively, and so are both everywhere positive for all 0 < χα < ∞, as is
assumed above. As an aside, we know that as degrees of freedom increase for given µ2 these functions
cross, which means that sometimes f (χα | kz, µ2) > f (χα | kz + 2, µ2) and sometimes the converse is
true. That is, we are unable to bound dχα/ dµ2 from above.

Combining (A9), (A10), and (A12), we find that

dcvα

dB
= − f (χα | kz + 2, µ2)

f (χα | kz, µ2) 1F1

(
2; kz+2

2 ;− µ2

2

) < 0, (A13)

which confirms the behaviour observed in Table 1. That is, for given values of kz, the critical values cvα

are decreasing functions of the asymptotic bias B.

Appendix C. Some Remarks on Computational Aspects

For the most part, both the programs Table1.m and sypval.m rely on intrinsic MATLAB functions.
Once the relevant inputs are available then the structure of the programs is immediately apparent.
Specifically, for given values of kz and B, it is necessary to obtain the corresponding value for µ2

0 from
the nonlinear Equation (9). We adopt a fairly simple-minded approach to this, by iterating from a
starting value to the correct solution using a bisection algorithm.

Our starting values are chosen as follows. When kz = 2, we know from (10) that the values of µ2
0

can be calculated exactly as µ2
0 = −2 ln B and so no search is required. When kz > 2, we exploit an

approximation asymptotic in µ2
0 (Slater 1960, Equation (4.1.8)) that reduces to µ2

0 ≈ (kz − 2)/B.
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As expected, the performance of the approximation improves as B decreases which, for fixed
kz, corresponds to increasing µ2

0 (see Appendix B.2). Nevertheless, for all cases where kz > 2,
this approximation provides much better starting values in the search for µ2

0 than do naive alternatives,
such as starting the search from zero (say). Moreover, this approximation performs best under exactly
the same circumstances that naive methods are at their slowest, affording considerable computational
time savings. As the values of µ2

0/kz are much more stable for any given B than the µ2
0, as can be

deduced from Table 4, we use this parameterisation in our search algorithm.

Appendix D. Some Remarks on the Just-Identified Scalar Case

The SY approach is not available if kz = 1 because the bias of 2SLS does not exist, hence |B| is
undefined.19 Nevertheless, given the difficulties often encountered in finding appropriate instruments,
the exactly identified model is one of considerable practical relevance. As the confluent hypergeometric
function of Theorem 1 remains well-defined when kz = 1, one might ask if it could provide an ad hoc
basis for a test for weak instruments in this case, based on F, in the spirit of the SY approach.

The function 1F1

(
1; 1

2 ;− µ2

2

)
displays behaviours that are quite different to what was observed in

over-identified models. These behaviours are displayed in Figure A1 where we plot both the confluent
hypergeometric function and its absolute value against µ2/2, when kz = 1. Note that in the figure we

use the symbol B to represent the confluent hypergeometric function 1F1

(
1; 1

2 ;− µ2

2

)
, rather than the

expectation E
[
(ξ − λ)′ξ/ξ ′ξ

]
, with the latter unbounded when kz = 1.

In Figure A1, we see that neither B nor |B| are monotonic in µ2/2 when kz = 1, in contrast
to the over-identified cases. That the confluent hypergeometric function can take negative values
when kz = 1 means that this case is the only one considered where taking the absolute value of
the hypergeometric function has any material impact on observed behaviour. We can establish
numerically that B, and hence |B|, both have a zero at µ2/2 ≈ 0.8540. As this is in the region where
the hypergeometric function is a decreasing value of its argument, we see that, as B moves through
its zero to the right, so that µ2 is increasing, it becomes negative and appears to stay that way, with a
minimum of approximately −0.2847 occurring at µ2/2 ≈ 2.2559. Clearly, |B| cannot become negative
and so, at µ2/2 ≈ 2.2559, it has a local maximum of approximately 0.2847. Consequently, there are
three values of µ2 that yield the same value of |B| for 0 < |B| < 0.2847, there are two values of µ2

corresponding to |B| = 0.2847, and for |B| ∈ {0} ∩ (0.2847, 1] there is a one-to-one mapping between
|B| and µ2 < ∞.

19 Similarly, in the proof of Theorem A1, we established that E
[
(ξ − λ0)

′ξ/ξ ′ξ
]

was unbounded when kz = 1.
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Observe in Figure A1 that there are three values of µ2 corresponding to |B| = 0.1. Setting
µ2

0 = 13.83, the largest of these numbers, we find a critical value for the first-stage F-test of 28.77. At
this level of information, the 2SLS estimator appears well-behaved. This is shown in Table A1, which
shows the estimation result of a Monte Carlo analysis as in Section 4 for kz = 1. Even though it has
no moments as the model is just-identified, we find that the Monte Carlo relative bias is indeed 10%
with the rejection frequency of the F-test again 5%. The same holds at the smaller values of |B| of 0.05
and 0.01, for which the largest implied values of µ2

0 are 23.41 and 103.06, with the estimation results
very similar to those for kz = 3. However, when we consider the |B| = 0.20 case, for which µ2

0 is 8.198,
the lack of moments of the 2SLS estimator becomes apparent, with the standard deviation now very
large at 6.05. These results suggest that the approximation might be useful for the smaller values of |B|,
if one works with the largest implied values of µ2

0, even though the 2SLS estimator does not possess
any moments in this case.

Figure A1. Plots of B = 1F1
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Observe in Figure A1 that there are three values of µ2 corresponding to |B| = 0.1. Setting
µ2

0 = 13.83, the largest of these numbers, we find a critical value for the first-stage F-test of 28.77. At
this level of information, the 2SLS estimator appears well-behaved. This is shown in Table A1, which
shows the estimation result of a Monte Carlo analysis as in Section 4 for kz = 1. Even though it has
no moments as the model is just-identified, we find that the Monte Carlo relative bias is indeed 10%
with the rejection frequency of the F-test again 5%. The same holds at the smaller values of |B| of 0.05
and 0.01, for which the largest implied values of µ2

0 are 23.41 and 103.06, with the estimation results
very similar to those for kz = 3. However, when we consider the |B| = 0.20 case, for which µ2

0 is 8.198,
the lack of moments of the 2SLS estimator becomes apparent, with the standard deviation now very
large at 6.05. These results suggest that the approximation might be useful for the smaller values of |B|,
if one works with the largest implied values of µ2

0, even though the 2SLS estimator does not possess
any moments in this case.

Table A1. Simulation results for kz = 1.

B
−0.01 −0.05 −0.10 −0.20

mean std dev mean std dev mean std dev mean std dev
β̂OLS 1.4949 0.0086 1.4988 0.0086 1.4993 0.0086 1.4996 0.0087
β̂2SLS 0.9954 0.1003 0.9753 0.2327 0.9495 0.4389 0.8936 6.0492

F 104.11 20.411 24.429 9.8352 14.821 7.5732 9.1757 5.8671
relbias −0.0092 −0.0496 −0.1011 −0.2130

µ2
0 103.06 23.412 13.830 8.198

cv F 139.17 42.035 28.769 20.323
rej freq F 0.0496 0.0507 0.0485 0.0489

Notes: Sample size n = 10,000, number of Monte Carlo replications is 100,000.
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Confirming the approximate median unbiasedness of the just-identified 2SLS estimator (see,
for example, the discussion in Angrist and Pischke (2009), p. 209), we find that the median biases,
not reported in the table, are very close to 0 at all values of µ2.

Appendix E. Derivation of the O(k−2
z ) Term in (16)

The following derivation is due to Grant Hillier, via private communication, and we thank him for
allowing us to include it here.

By analogy with Hillier et al. (1984), Equation (31), the O(k2
z) term in (16) requires the resolution

of an integral of the form

Gi(Λ, γ, kz, kx) = Γkx

(
kz
2

)
ckx

∫

Re(W)>0
etr{W}|W|−kz/2 e′iΛ

−1/2WΛ−1WΛ−1/2γ dW,

where ei denotes the ith column of an identity matrix, cp = 2p(p−1)/2/(2πı)p(p+1)/2, with ı2 = −1,
and the range of integration is the set of complex, symmetric matrices of dimension p× p with fixed,
positive definite real part. Noting that

e′iΛ
−1/2WΛ−1WΛ−1/2γ =

1
2

tr{(γe′i + eiγ
′)Λ−1/2WΛ−1WΛ−1/2}

= tr{( f1η1η′1 + f2η2η′2)Λ
−1/2WΛ−1WΛ−1/2},

where f1 and f2 are the non-zero eigenvalues of (γe′i + eiγ
′)/2, and η1 and η2 are the corresponding

eigenvectors, respectively. Making this substitution, the integral of interest reduces a weighted sum of
integrals of the form Gi(Λ, γ, kz, kx) = f1 I(Λ−1/2, η1, kz, kx) + f2 I(Λ−1/2, η2, kz, kx), where

I(S, η, m, p) = Γp
(m

2
)

cp

∫

Re(W)>0
etr{W}|W|−m/2 η′SWS2WSη dW. (A14)

We shall present the key result in the following lemma.

Lemma A1. Let W be a p× p complex, symmetric matrix whose real part is fixed and positive definite, i.e.,
Re(W) > 0, let S denote a non-singular, symmetric matrix of the same dimension, and let η denote a fixed
p-vector. Then, the inverse Laplace transform of

g(W) = Γp
(m

2
)
|W|−m/2 η′SWS2WSη, m > p + 1,

is

f (S) =
(m− p− 1)

4

[
(m− p− 2)η′S4η − η′S2η tr{S2}

]
.

Proof. Noting that

0F1

(
p
2 ; t2

4 η′SWS2WSη
)
=

∞

∑
k=0

1( p
2
)

κ

(
t2

4 η′SWS2WSη
)k

k!

= 1 +
t2 η′SWS2WSη

2p
+ higher order terms in t,

we see that f (S) is 2p times the coefficient on t2 in

I(t) = Γp
(m

2
)

cp

∫

Re(W)>0
etr{W}|W|−m/2

0F1

(
m
2 ; t2

4 η′SWS2WSη
)

dW. (A15)
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That is,

f (S) = 2p× 1
2

d2I(t)
dt2

∣∣∣∣∣
t=0

= p
d2I(t)

dt2

∣∣∣∣∣
t=0

.

The hypergeometric function in (A15) has the integral representation (James 1961, Theorem 5)

0F1

(
m
2 ; t2

4 η′SWS2WSη
)
=
∫

h′h=1
exp

{
th′SWSη

}
(dh),

where (dh) denotes the normalised invariant Haar measure on the unit sphere, and so

I(t) = Γp
(m

2
)

cp

∫

Re(W)>0
etr{W}|W|−m/2

∫

h′h=1
exp

{
th′SWSη

}
(dh)dW

= Γp
(m

2
)

cp

∫

h′h=1

∫

Re(W)>0
etr{R(t)W}|W|−m/2 dW(dh),

=
∫

h′h=1
|R(t)|(m−p−1)/2(dh),

where
R(t) = Ip +

t
2

S(hη′ + ηh′)S

is symmetric and positive definite for small enough t,and the final equality in (A15) follows from
Muirhead (1982), pp. 252–53. Now

|R(t)| =
∣∣∣∣I2 +

t
2
(η, h)′S2(h, η)

∣∣∣∣ =
(

1 +
t
2

η′S2h
)2
− t2

4
h′S2hη′S2η = 1 + c1t + c2t2,

say, where c1 = η′S2h and c2 = 1
4 h′[S2ηη′S2 − (η′S2η)S2]h. Hence,

d2I(t)
dt2

∣∣∣∣∣
t=0

= (m− p− 1)c2 +
(m− p− 1)(m− p− 3)

4
c2

1

=
(m− p− 1)

4
h′[(m− p− 2)S2ηη′S2 − (η′S2η)S2]h.

Finally, noting that, for symmetric p× p matrix B,20

∫

h′h=1
h′Bh(dh) =

1
p

tr{B},

we find that

f (S) =
(m− p− 1)

4

[
(m− p− 2)η′S4η − (η′S2η) tr{S2}

]
,

as required.

Applying Lemma A1 to (A14), and re-combining the spectral decomposition, we find that

Gi(Λ, γ, kz, kx) =
kz − kx − 1

4
[(kz − kx − 2)η′Λ−2η − (η′Λ−1η) tr{Λ−1}].

Equation (16) follows directly on substituting λ′λ/(2ν) for Λ.

20 This is an application of James (1964), Equation (23), where, in his notation S ≡ B, T ≡ e1e′1, κ = [1] and H ≡ [h, H2] is an
orthogonal p× p matrix.
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