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Abstract: This paper provides a new statistical model for repeated voluntary contribution mechanism
games. In a repeated public goods experiment, contributions in the first round are cross-sectionally
independent simply because subjects are randomly selected. Meanwhile, contributions to a public
account over rounds are serially and cross-sectionally correlated. Furthermore, the cross-sectional
average of the contributions across subjects usually decreases over rounds. By considering this
non-stationary initial condition—the initial contribution has a different distribution from the rest
of the contributions—we model statistically the time varying patterns of the average contribution
in repeated public goods experiments and then propose a simple but efficient method to test for
treatment effects. The suggested method has good finite sample performance and works well
in practice.
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1. Introduction

Experimental data from the laboratory have unique features. The most well known statistical
benefit from laboratory experiments is the randomized outcome: by selecting subjects randomly,
the difference between the treated and controlled groups can be directly measured. However, data
from laboratory experiments have properties that sometimes make the information contained in them
difficult to extract. Decisions in lab experiments are often repeated in order to give the subjects time to
gain familiarity with the environment and strategic context. As subjects learn, responses may change
considerably between the first and final periods of play. With repetition, subjects’ responses are highly
persistent and cross-sectionally correlated. The question is how to estimate the treatment effects from
such complicated data.

This paper aims to provide a simple and novel estimation method to analyze the treatment effect
in repeated public goods games with voluntary contribution mechanism (VCM). A VCM game is one
of the most popular experimental games, and its use has increased exponentially in the social and
natural sciences. Applications to economics, political sciences, marketing, finance, psychology, biology
and behavioral sciences are common. In each round, individuals are given a fixed amount of tokens
and asked to invest in either a private or group account. The invested tokens in the public account are
multiplied by a factor—which is usually greater than unity—and then are distributed evenly to all
individuals. The overall outcome or the fraction of tokens contributed to the public account becomes
the prime objective of experimentalists.

Let yit be the fraction of contributed tokens to a public account of the i-th subject at the round t.
As Ledyard (1995) points out, there are some common agreements among experimental studies: (i) the
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total amount of tokens does not influence on the overall outcomes. Hence, rather than the total amount
of contributed tokens, the fraction of contributed tokens, yit, becomes of interest. In other words, yit is
a bounded series between zero and unity; (ii) the average of initial contributions to a public account is
around half of endowed tokens; (iii) as a game repeats, the cross-sectional average of contributions
decreases usually over rounds; (iv) Even though an initial contribution, yi1, is not cross-sectionally
dependent—since subjects are randomly selected—, as a game repeats, yit is dependent on the previous
group account. In other words, yit is cross-sectionally correlated; (v) Lastly, yit is serially dependent
as well.

Another interesting feature is the existence of different subject types. Commonly assumed
types are free-riders, selfish contributors (or strategists), reciprocators, and altruists. Usually, it is
not feasible to identify each type statistically because subjects change their own types over rounds.
Instead, following Ambrus and Greiner (2012), we attempt to approximate heterogeneous behaviors
econometrically into three groups: increasing, decreasing and fluctuating. The increasing and
fluctuating groups are obtained by changing parameters in the decreasing model, which we propose in
this paper. If experimental outcomes are generated from a single group, the cross-sectional dispersion
of the outcome should not diverge over rounds. We will discuss how to test the homogeneity restriction
by using the notion of weak σ—convergence developed by Kong et al. (2018).

The purpose of this paper is to provide a simple but efficient method to analyze treatment effects
by utilizing stylized facts. To achieve this goal, we first build a simple time series model with a
nonstationary initial condition: the distribution of the first round outcomes is different from the
rest of outcomes. The nonstationary initial condition model generates a temporal time decaying
function. When experimental outcomes are generated from a decreasing (or increasing) group, the
unknown mean of the initial outcome and decay rate for each experiment can be measured directly
from estimating the following trend regression in the logarithm of the cross-sectional averages of
individual experimental outcomes, yit.1 That is,

log
(

1
N ∑N

i=1 yit

)
= log µ + (log ρ) (t− 1) + vN,t; i = 1, ..., N; t = 1, ..., T, (1)

where i and t index subject and round, log µ denotes the true log mean of the initial outcome, and log ρ

represents the log decay rate of the repeated experimental outcomes. After obtaining the estimates of
µ and ρ by running a regression of (1) for each experiment, the overall outcome in the long run, π, can
be estimated by

π̂ = µ̂/ (1− ρ̂) . (2)

The remainder of the paper is organized as follows: Section 2 presents empirical examples in
detail in order to motivate key issues and identify statistical problems. Section 3 builds a new statistical
model for repeated experiments. This section also explains how the trend regression in Label (1) and
the measurement of treatment effects in Label (2) are created, and provides the justification for why
such measures can be used in practice. Section 4 provides asymptotic properties of the trend regression
and discusses how to measure and test the treatment effects. Section 5 presents empirical evidence
establishing the effectiveness of the new regression and measures in practice. Section 6 examines the
finite sample performance of the suggested methods. Section 7 provides conclusions. The appendix
includes technical derivations.

1 When the cross-sectional average is increasing over rounds, (but yit is weakly σ−converging), the trend regression needs
to be modified as log (ynt − 1) = log (1− µ) + (log ρ) (t− 1) +error. Furthermore, the long run overall outcome becomes
T − (1− µ) / (1− ρ) .
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2. Canonical Examples

Throughout the paper, we use two sets of experimental data from Croson (1996) and
Keser and Van Winden (2000). The design of these experiments are very similar to each other. Both
papers aim to test the difference between Strangers Group and Partners Group in a repeated public
goods game. In a standard repeated public goods game, several subjects play the game together
as a group and the game is usually repeated for T rounds. The size of the group (number of
subjects in a group) is denoted as G. At the beginning of each round, every subject is given
some endowment tokens e to divide between a public account and a private account. Each token
contributed to the public account will be multiplied by M and then divided among all members in
the group. In this environment, the payoff function at each round for the subject i can be written as
πi = e− gi + (M/G)∑G

j=1 gj, where gi is the amount subject i contributes to the public account. M/G
is called marginal per capita return (MPCR). If subjects are rematched randomly into groups for each
iteration of the game, then it is a Strangers Group. If the composition of the group does not change
through all the rounds, then it is a Partners Group.

Since Andreoni (1988) found that the average contribution from Strangers group was relatively
larger than that from Partners group, there are lots of papers investigating the difference between
Strangers and Partners group, but the results are inconclusive. Andreoni and Croson (2008) summarize
the results from many replications and studies that have explored this question: ‘Nonetheless,
this summary of results does little to clear up the picture. In all, four studies find more cooperation
among Strangers, five find more by Partners, and four fail to find any difference at all.’ The answer
to whether partners group or strangers group contribute more is really mixed. We will re-examine
the treatment effect of rematching in this paper. Among all the replications of Partners vs. Strangers
Game, the experiments from Croson (1996) and Keser and Van Winden (2000) are identical except for
the number of rounds. Interestingly, both papers found that the average contribution from Partners
group was higher than that from Strangers group. Table 1 describes the data and various features of
the experiments, and Figure 1 shows the average contribution for each round in Croson (1996). Note
that it seems to be straightforward to compare two samples in Figure 1 if all samples are independently
distributed. In many experimental studies, however, this assumption is violated: usually, yit is
cross-sectionally and serially correlated. Under this circumstance, a conventional z-score test with yit
for each t, or with time series averages of yit becomes invalid unless the cross sectional dependence is
considered properly. For the same reason, other statistics used in practice become invalid as well.2

For each study, controlled and treated groups may be defined and then the treatment effects can
be measured. For all cases, the null hypothesis of interest becomes no treatment effect or the same
overall outcomes given by

H0 : Eπc = Eπτ , (3)

where πc and πτ are controlled and treated overall outcomes, respectively. Under the null hypothesis,
the overall outcomes become the same regardless of the number of rounds.

2 Note that dynamic panel regressions or dynamic truncated regressions are invalid since usually the decay rate—AR(1)
coefficient—is assumed to be homogeneous across different games. In addition, see Chao et al. (2014) for additional issues
regarding the estimation of the dynamic panel regression under non-stationary initial conditions.
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Table 1. Data description.

Authors Croson3 Keser and Winden

Strangers Partners Strangers Partners
subjects no. 24 24 120 40
MPCR 0.5 0.5 0.5 0.5
G 4 4 4 4
T 10 10 25 25
e 25 25 10 10

The overall outcomes can be measured by the area below of the cross sectional averages. Let πs,t

be the true, but unknown decay function for the sth experiment. Then, the overall outcome can be
defined as πs =

∫ ∞
0 πs,tdt.4 When the treated experimental outcome at time t is always greater or

equal to the controlled one for all t, that is, πτ,t > πc,t, then the overall treatment effects, Π = πτ − πc,
becomes positive. However, when πct is crossing over πτ,t, it is hard to judge whether or not the
treatment effects become positive or negative. Figure 2 demonstrates such an artificial case where
the null hypothesis is not easy to be tested.5 Panel A in Figure 2 shows the hypothetical average of
the controlled and treated outcomes for each round. The decay rate for the controlled group is faster
than that for the treated group, but the initial average outcome for the controlled group is higher than
that for the treated group. The overall effects can be measured by the areas below the average of the
outcomes which are displayed in Panel B in Figure 2. Evidently, the treatment effect is depending on
the number of rounds. The treatment effect becomes negative, zero and positive when the final round
T becomes T < 11, T = 11, and T > 11.

outcome can be de�ned as �s =
R1
0
�s;tdt:

4 When the treated experimental outcome at time
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4Assume that the sample cross sectional average estimates the unknown common stochastic function

�s consistently for every t as N ! 1: Then by using a conventional spline method, we can approximate
the unknown �s: The the overall e¤ects can be estimated by the sum of the approximated function �̂s; and

statistically evaluate it by using a HAC estimator de�ned by Newey and West (1987). However this technical

approach does not provide any statistical advantage over the AR(1) �tting which we will discuss in the next

section.
5The decay function for the controlled and treated experiments are set as �c;t = 0:6� 0:8t�1 and ��;t =

0:4� 0:9t�1; respectively.

6

Figure 1. Average contributions over rounds from Croson (1996).

4 Assume that the sample cross-sectional average estimates the unknown common stochastic function πs consistently for
every t as N → ∞. Then, by using a conventional spline method, we can approximate the unknown πs. The overall effects
can be estimated by the sum of the approximated function π̂s, and statistically evaluate it by using an HAC estimator
defined by Newey and West (1987). However, this technical approach does not provide any statistical advantage over the
AR(1) fitting, which we will discuss in the next section.

5 The decay function for the controlled and treated experiments are set as πc,t = 0.6 × 0.8t−1 and πτ,t = 0.4 ×
0.9t−1, respectively.
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Panel A: Cross Sectional Average Panel B: Cumulative Sum of Averages
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Figure 2: Overall Treatment E¤ects

3 Statistical Model

There is one important and distinctive feature of the repeated lab-experimental data: a

nonstationary initial condition. This unique feature is rarely seen in conventional data,

and more importantly, the estimation without accounting for this feature is invalid, which

consequently leads to wrong judgements. This section provides a new statistical model for
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3.1 Statistical Modelling Nonstationary Initial Condition

Here we statistically approximate the decay rate in Figures 1 and 2 as an exponential decay
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De�ne yN;t be the cross sectional average of yit at time t: When t = 1; we let

yN;1 = �+ �n;1: (4)
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3. Statistical Model

There is one important and distinctive feature of the repeated lab-experimental data:
a nonstationary initial condition. This unique feature is rarely seen in conventional data, and,
more importantly, the estimation without accounting for this feature is invalid, which consequently
leads to wrong judgements. This section provides a new statistical model for this nonstationary
initial condition.

3.1. Statistical Modelling Nonstationary Initial Condition

Here, we statistically approximate the decay rate in Figures 1 and 2 as an exponential decay
function. We do not aim to model or explain the unknown decay function theoretically but rather
approximate it. In other words, we model it statistically. In repeated experiments, subjects are
randomly selected but exhibit common behavior. Typically, responses decrease over successive rounds
as shown in Figure 1. Interestingly, such common behavior, or highly cross-sectionally correlated
behavior, can be generated if the true mean of the initial contributions is different from the mean
of the contributions in the long run. Note that, in this subsection, we will ignore the subscript s for
notational convenience.

Define yN,t to be the cross-sectional average of yit at time t. When t = 1, we let

yN,1 = µ + εn,1. (4)

Meanwhile, t > 1, we assume that the cross-sectionally aggregated series follows AR(1) process:

yN,t = a (1− ρ) + ρyN,t−1 + εN,t, for t ≥ 2, (5)

where a can be treated as the long run value of yN,t in the sense that

lim
t→∞

EyN,t = a (1− ρ) + ρ lim
t→∞

EyN,t−1, (6)

so that
lim
t→∞

EyN,t = a, (7)

since limt→∞ EyN,t−1 = limt→∞ EyN,t. Usually, the expected value of initial outcome is not the same
as the long run outcome. That is, µ 6= a. Statistically, the transitory behavior of yNt due to the
nonstationary initial condition in (4) can be modeled by

yN,t = a + (µ− a) ρt−1 + eN,t, for t = 1, ..., T, (8)
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where the error follows an AR(1) process with the nonstationary initial condition.

eN,t = ρeN,t−1 + εN,t with eN,1 = εN,1.

If the initial mean, µ, is different from the long run mean, a, then yNt have a time decay function
ρt−1 as it is shown in (8).

One of the most interesting features of the repeated games is the convergent behavior. As t
approaches the last round, the fraction of free riders increases and, for some games, this fraction
becomes one.6 That is, the average outcome, yN,t, is converging to the long run equilibrium.
This implies that the variance of the random error should be decreasing over time as well. Otherwise,
the fraction of free riders does not converge to unity as t increases. To reflect this fact, we assume that
the variance of eN,t is shrinking at the rate ρt−1 over time.7

eN,t = uN,tρ
t−1 for 0 ≤ ρ ≤ 1. (9)

This implies that at t = 1, εN,1 = uN,1. Since yN,t is bounded between zero and one, the initial
error term, uN,1, should be bounded between −µ and 1− µ. We assume that this restricted condition
holds with t > 1 as well. That is, uN,t is independently distributed but bounded between −µ and
1− µ. Statistically, we write as

uN,t ∼ idB
(

0, σ2
)1−µ

−µ
, (10)

where id stands for ‘independently distributed’, B implies boundedness, and the superscript and
subscript show the upper and lower bounds.

3.2. Features of New Statistical Model

In the previous subsection, we assume that the nonstationary initial condition model can
approximate well the cross-sectional average of individual outcomes. In this subsection, we consider
the possibility that the aggregated model in (8) through (10) holds for all subjects. That is, we further
assume that the stochastic process for yit can be written as

yit = ai + (µi − ai) ρt−1 + eit for eit = uitρ
t−1, and uit ∼ idB

(
0, σ2

i

)1−µi

−µi
, (11)

where the experimental outcome yit is normalized by the maximum number of tokens so that 0 ≤
yit ≤ 1 always for all i and t. The long run value of yit is ai, µi is the unknown initial mean of yi1, ρ is
the decay rate and eit is the approximation error. Note that uit is a bounded, but independent random
variable with mean zero and variance σ̃2

i , or uit ∼ iB
(
0, σ̃2

i
)1−µi
−µi

. As t increases, the unconditional
mean of individual outcome, yit, converges ai which can be interpreted as a long run steady state.

If the assumption in (11) holds, then the simple stochastic process for yit may explain the temporal
cross-sectional dependence. When t = 1 (initial round), the individual outcome, yi1, is not cross
sectionally dependent since subjects are randomly selected. However, when t ≥ 2, the individual
outcome becomes cross-sectionally dependent due to the time varying mean part, (µi − ai) ρt−1.
The common factor model captures the kind of behavior described in Ashley et al. (2010): the
previous group outcome affects the experimental outcome for each subject. To see this, consider
the fact that the group means excluding the ith subject outcome, (G− 1)−1 ∑G

j 6=i yit, is similar to the

6 However, it is not always the case. More recent experimental studies show widely heterogeneous divergent behaviors.
See Kong and Sul (2013) for detailed discussion.

7 Note that if the condition in (9) does not hold, then it implies that the variance of eN,t is increasing over time if the variance
of εN,t is time invariant. To be specific, let EεN,t = σ2

ε for all t. Then Ee2
N,t = σ2

ε

[
1− ρt] / [1− ρ] , which is an increasing

function over t.
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group mean of G−1 ∑G
i=1 yit. In addition, the group mean is similar to the cross sectional average:

G−1 ∑G
i=1 yit ' N−1 ∑N

i=1 yit = µNρt−1 + eN,t where µN and eN,t are the cross-sectional averages of
µi and eit. Note that with large N, eN,t is close to zero, so that this term can be ignored. Statistically

eN,t = Op

(
N−1/2

)
for any t. Hence, the subject’s outcome at time t can be rewritten as

yit =
µi
µN

ρ×
(

µNρt−2
)
+ eit + Op

(
N−1/2

)
.

The first term represents the marginal rate of the relative contribution of each subject, and the
second term is the group average in the previous round, and the last two terms are random errors.

Nonetheless, we do not attempt to model the implicit behaviors of individuals, such as selfish,
reciprocal and altruistic behaviors. Instead, we model the time varying patterns of the outcome
(contribution to group account) statistically. By following Ambrus and Greiner (2012), we approximate
heterogeneous behaviors of subjects econometrically into three groups: increasing, decreasing and
fluctuating. The increasing group includes two subgroups of subjects: subjects contribute all tokens
to the public account for all rounds or contribute more tokens over successive rounds. Similarly,
the decreasing group includes the two subgroups of subjects: Subjects do not contribute at all, or
subjects contribute fewer tokens over rounds. Lastly, a fluctuating or confused subject is neither in the
decreasing or increasing group.

In public goods games, if the long run Nash equilibrium occurs (or if ai = 0 and 0 < ρ < 1),
the fraction of free riders increases over rounds. Meanwhile, if ai = 1 and 0 < ρ < 1, then
the unconditional mean of the individual outcome, yit, converges to the Pareto optimum (ai = 1).
Furthermore, except for the initial round, the experimental outcomes are cross-sectionally dependent
so that individual’s decision depends on the overall group outcome. Lastly, if the decay rate becomes
unity or ρ = 1, then the individual outcome becomes purely random.

To be specific, we can consider the following three dynamic patterns:

yit =


µiρ

t−1 + e1,it if i ∈ G1, or ai = 0 and 0 < ρ < 1,
µi + e2,it if i ∈ G2, or ρ = 1,
1− (1− µi) ρt−1 + e3,it if i ∈ G3, or ai = 1 and 0 < ρ < 1.

(12)

For groups G1 and G3, the contribution is decaying each round at the same rate, ρ. If a subject
belongs to G1, the contribution is decreasing over rounds and, if she belongs to G3, the contribution is
increasing. The remaining subjects are classified together in a ‘fluctuating’ group. For non-fluctuating
groups (G1 and G3), the random errors can be rewritten as es,it = us,itρ

t−1 for s = 1, 3. Hence, as round
increases, the variance of es,it decreases and eventually converges to zero. Meanwhile, the random
error for G2 is not time varying since ρ is always unity.

Let N1 be the number of subjects in G1 and n1 = N1/N. Similarly, we can define N2 and N3 as
the numbers of subjects in G2 and G3, and n2 and n3 as their fractions, respectively. The sample
cross-sectional averages for each round under homogeneity (only G1 exists) and heterogeneity can be
written as

1
N ∑N

i=1 yit =

{
µρt−1 + e†

Nt if all i ∈ G1,
τ + ϕρt−1 + e∗Nt if some i /∈ G1,

(13)

where τ = n2µ + n3, ϕ = µ− τ, and

e†
Nt = N−1 ∑N

i=1 eit + ρt−1N−1 ∑N
i=1 (µi − µ) ,

e∗Nt = ρt−1N−1 ∑N
i=1 (µi − µ) +

(
1− ρt−1

)
N−1 ∑N2

i=1 (µi − µ) + N−1 ∑N
i=1 eit.

Therefore, the time varying behavior of the cross-sectional averages under homogeneity become
very different from those under heterogeneity. First, under homogeneity, the average outcome
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decreases each round and converges to zero. However under heterogeneity, depending on the value
of ϕ, the average outcome may decrease (ϕ > 0), increase (ϕ < 0) or does not change at all (ϕ = 0)
over rounds. Second, the variance of the random part of the cross-sectional average, e†

Nt, under
homogeneity is much smaller than that under heterogeneity. In other words, the cross-sectional
averages under heterogeneity become much more volatile than those under homogeneity. Third, both
random errors, e†

Nt and e∗Nt, are serially correlated. However, the serial correlation of the random errors
under homogeneity, Ee†

Nte
†
Nt−s, goes away quickly as s increases, meanwhile the serial correlation

under heterogeneity, Ee∗Nte
∗
Nt−s never goes to zero even when s→ ∞ as long as n2 6= 0.

It is not hard to show that under heterogeneity the cross-sectional variance of yit diverges over
rounds. In this case, the estimation of the treatment effects is not straightforward since τ and ϕ in (13)
cannot be identified in some cases.8 We leave the case of heterogeneity for future work, and mainly
focus on the estimation of the treatment effects under homogeneity. The homogeneity assumption is
testable. One may test the convergence directly by using Phillips and Sul (2007) or Kong et al. (2018).
Particularly the weak σ—convergence test proposed by Kong et al. (2018) is more suitable for the
convergence test since the relative convergence test by Phillips and Sul (2007) requires somewhat more
restrictive conditions than the weak σ−convergence test by Kong et al. (2018).

The contributions to the public account up to the last round T can be measured by the
following statistic.

∑T
t=1

1
N ∑N

i=1 yit = µN
1− ρT

1− ρ
+ eN,T ,

where
eN,T = ∑T

t=1
1
N ∑N

i=1 eit = ∑T
t=1

1
N ∑N

i=1 uitρ
t−1 = Op

(
N−1/2

)
,

since the sum of ρ2t−2 over T is O (1) .9 The estimation of the overall treatment can be done simply
by comparing the two means, provided the subjects in the two experiments are independently and
randomly selected. Let N = min [Nc, Nτ ] , where Nc and Nτ are the total numbers of subjects for the
controlled and treated experiments, respectively. Then, from (11), the probability limit of the average
difference becomes the treatments effect (TE) given by

TE = plimN→∞

[
∑T

t=1
1

Nc
∑Nc

i=1 yc,it −∑T
t=1

1
Nτ

∑Nτ

i=1 yτ,it

]
= µc

1− ρT
c

1− ρc
− µτ

1− ρT
τ

1− ρτ
, (14)

where µc and µτ are the cross-sectional mean of the initial contributions. When µc = µτ , the overall
treatment effect with the slower decay rate is higher than the treatment effect with the faster decay
rate. When two experimental outcomes cross over each other, the overall effect becomes ambiguous.
Mathematically, this case can be written as µc > µτ but ρc < ρτ . Suppose that, with a fixed T
(say T = 10), the overall effect in the crossing-over case is identical between the two experiments.
Then, such a result does not become robust since, with more repetitions, the experimental outcome
with the slower decay rate must be higher than that with the faster decay rate. Hence, for a such case,
the following asymptotic treatment effect can measure the two outcomes robustly and effectively:

Asy. TE = Π = lim
T→∞

TE =
µc

1− ρc
− µτ

1− ρτ
= πc − πτ , let’s say. (15)

8 If ρ = 0, τ can be identified as long as n3 is known, but ϕ cannot be identified. If ρ = 1, both τ and ϕ cannot be
identified jointly.

9 Since limN,T→∞ EN−1
[
∑N

i=1 ∑T
t=1 uitρ

t−1
]2

= σ2/
(
1− ρ2) where σ2 = N−1 ∑N

i=1 σ2
i , under (11),

√
NeN,T →d

N
(

0, σ2 (1− ρ2)−1
)

as N, T → ∞ jointly.
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3.3. Estimation of Overall Treatment Effects

The experimental outcomes will converge to zero when the dominant strategy is Nash
bargaining.10 It is better to use this convergence result in the estimation of the asymptotic treatment
effect. That is, the percentage of free-riding is assumed to become one as the total number of rounds
increases.11 If there are multiple dominant strategies in a game, then the experimental outcomes do
not need to converge to a certain value. In this case, the outcome for each round may be volatile and,
more importantly, the cross-sectional variance will increase over rounds.

The estimation of the asymptotic treatment effects requires the estimation of two unknown
parameters; µ and ρ. There are two ways to estimate both parameters jointly: nonlinear least squares
estimators (NLS) and log transformed least squares estimation with the cross-sectionally averaged
data. Below, we first discuss the potential problems associated with NLS estimation, and then go on to
show the simple log trend regression.

Nonlinear Least Squares (NLS) Estimation

To estimate µ, one may consider estimating µi first by running the following NLS regression for
each i:

yit = f (µi, ρ) + eit = µiρ
t−1 + eit, let’s say.

It is well known that the NLS estimators for µi and ρ are inconsistent as T → ∞ because

∑∞
t=1
(

f (µi, ρ)−mt
(
µ+

i , ρ+
))2

= M < ∞ for µi 6= µ+
i and ρ 6= ρ+. See Malinvaud (1970) and

Wu (1981) for more detailed discussions. However, there is a way to estimate µ and ρ by using cross
sectional averages. Consider the following regression with cross-sectional averages

yN,t = µNρt−1 + eN,t. (16)

For a given T, as N → ∞, ∑N
i=1 ∑T

t=1

(
µiρ

t−1 − µ+
i [ρ+]

t−1
)2
→ ∞ for µi 6= µ+

i and ρ 6= ρ+.
Therefore, both µN and ρ can be estimated consistently as N → ∞. Denote the resulting estimators
as µ̂nls and ρ̂nls. We will discuss the underlying asymptotic theory in the next section, but, in the
meantime, we want to emphasize here that the fastest convergence rate for ρ̂nls is

√
N even when

T, N → ∞ jointly.

Logarithm Transformation

Alternatively, the nonlinear regression in (16) can be transformed into a linear regression by taking
the logarithm in yN,t.12 Observe this:

log yN,t = log µN + (log ρ) (t− 1) + log
(

1 +
eN,t

µNρt−1

)
. (17)

From (9), the last term can be rewritten as

log
(

1 +
eN,t

µNρt−1

)
= log

(
1 +

uN,t

µN

)
=

uN,t

µN
+ Op

(
N−1

)
= v∗N,t + Op

(
N−1

)
, (18)

10 If subjects do not know the number of repeated games, the dominant strategy could change to Pareto-optimum in an
infinitely repeated game. See Dal Bó and Fréchette (2011) for a more detailed discussion.

11 More precisely speaking, we assume that the fraction of free riders in the long run becomes unity as the number of subjects
goes to infinity. This assumption allows a few outliers such as altruists. As long as the number of altruists does not increase
as the number of subjects increases, the asymptotics studied in the next section are valid.

12 Taking logarithm in both sides of Equation (16) yields log yN,t = log
(
µNρt−1 + eN,t

)
= log[µNρt−1 × {1 + eN,t/

(
µNρt−1)}]

= log µN + log ρt−1 + log
(
1 + eN,t/

(
µNρt−1)) = log µN+ (log ρ) (t− 1) + log

(
1 + eN,t/

(
µNρt−1)) .
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where uN,t = N−1 ∑N
i=1 uit. Hence, the following simple trend regression can be used to estimate

log µN and log ρ:

log
(

1
N ∑N

i=1 yit

)
= log µN + (log ρ) (t− 1) + vN,t; t = 1, ..., T. (19)

Taking the exponential function of l̂og µN and l̂og ρ provides consistent estimators for µ̂N and
ρ̂, respectively. The asymptotic properties of the trend regression in (19) will be discussed in detail
shortly, but here note that the convergence rate for ρ̂ is much faster than ρ̂nls. However, this does not
always imply that ρ̂ is more accurate than ρ̂nls, especially with small N. It is possible that the minimum
value of the cross-sectional averages of yit can be near-zero or zero. In this case, the dependent variable
in (19) is not well-defined.

4. Asymptotic Theory

This section provides the asymptotic theory for the proposed estimators in (16) and (19). We make
the following assumptions.

Assumption A: Bounded Distributions

(A.1) µi is independent and identically distributed with mean µ and variance σ2
µ, but it is bounded between 0

and 1: µi ∼ iidB
(

µ, σ2
µ

)1

0
(A.2) eit = uitρ

t−1 for 0 ≤ ρ ≤ 1 where uit is independently distributed with mean zero and variance σ2
i , but

it is bounded between −µi and 1− µi. That is, uit ∼ idB
(
0, σ2

i
)1−µi
−µi

.

Assumption B: Data Generating Process

The data generating process is given by yit = µiρ
t−1 + eit.

Under Assumptions A and B, it is easy to show that, if 0 ≤ ρ < 1, all subjects’ outcomes become zero
in the long run:

lim
t→T∗

yit = 0 for all i.

In other words, yit converges to zero. Assumption A.2 implies no serial dependence in uit for the
sake of simplicity. We will show later that we cannot find any empirical evidence suggesting that uit
is serially correlated. In addition, see Remark 5 and 6 for more discussion of the ramifications of the
violation of Assumption A.2.

Define the nonlinear least squares estimator in (16) as the minimizer of the following loss function:

arg min
µN ,ρ ∑T

t=1

(
yN,t − µNρt−1

)2
.

Meanwhile, the ordinary least squares estimator in (19) is defined as[
l̂og µN

l̂og ρ

]
=

[
∑T

t=1 1 ∑T−1
t=0 t

∑T−1
t=0 t ∑T−1

t=0 t2

]−1 [
∑T

t=1 log yN,t

∑T
t=1 (t− 1) log yN,t

]
. (20)

Since the point estimates are obtained by running either nonlinear or linear time series regression,
the initial mean, µi, for each subject is not directly estimated, but the cross-sectional mean, µN ,
is estimated. Define µ̃N as an estimator for µN . Then, the deviation from its true mean µ can be
decomposed as

µ̃N − µ = (µ̃N − µN) + (µN − µ) . (21)
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Since µN − µ = Op

(
N−1/2

)
, µ̃N − µ also becomes Op

(
N−1/2

)
as long as µ̃N − µN =

Op

(
N−1/2T−κ

)
for κ > 0. There are two ways to derive the limiting distribution for µ̃N , depending

on the definition of the regression errors or the definition of the regression coefficients. First, the error
terms can be defined as in (16) and (19). Then, the limiting distribution of µ̃N − µN can be derived,
which is the first term in (21). After that, the limiting distribution of µ̃N − µ can be obtained by adding
the limiting distribution of µN − µ to that of µ̃N − µN .

Second, the error terms or the coefficient terms may be re-defined as follows:

yN,t = µρt−1 + εN,t, for εN,t = [uN,t + (µN − µ)] ρt−1, (22)

log yN,t = log µ + (log ρ) (t− 1) + vN,t for vN,t =
[
v∗N,t + (µN − µ)

]
/µ. (23)

Of course, the limiting distributions of the estimators in (16) and (19) are identical to those in
(22) and (23). Nonetheless, it is important to address how to estimate the variance of µi consistently.
We will discuss this later but now provide the limiting distributions for the estimators of µ and ρ

in (22) and (23) here first. Let µ̂ = exp(l̂og µN) and ρ̂ = exp(l̂og ρ), where l̂og µN and l̂og ρ are LS
estimators of the coefficients given in (23).

Theorem 1. Limiting Distributions

Under Assumption A and B, as N, T → ∞ jointly,
(i) the limiting distributions of the NLS estimators in (22) are given by[ √

N (µ̂nls − µ)√
N (ρ̂nls − ρ)

]
→d N

([
0
0

]
,

[
Ω11 Ω12

Ω12 Ω22

])
, (24)

where

Ω11 =
3ρ2 + ρ4 − 5ρ6 + 1

(1 + ρ2)
3 σ2 +

[(
1 + 2ρ2

)
− (2− ρ) ρ3

(
1 + ρ2

)]
σ2

µ,

Ω12 = −ρ
(

1− ρ2
)2 (

1 + 3ρ2
) σ2

µ (1 + ρ2)
3 −

(
1 + ρ2 − ρ3

)
(1− ρ)

1− ρ2

µ
σ2

µρ,

Ω22 =
2
(
1− ρ2)3

ρ2

µ2 (1 + ρ2)
3 σ2 + (1− ρ)2

(
1− ρ2

)2 ρ2σ2
µ

µ2 .

(ii) The limiting distributions of the LS estimators in (23) are given by[ √
N (µ̂− µ)√

NT3/2 (ρ̂− ρ)

]
→d N

([
0
0

]
, Σ

)
where Σ =

[
σ2

µ 0
0 12ρ2σ2/µ2

]
. (25)

See Appendix A for the detailed proof of Theorem 1. Here, we provide an intuitive explanation of the
results, especially regarding the convergence rate. The convergence rate of the NLS estimators is

√
N

even under the condition of N, T → ∞ jointly. The underlying reason is as follows. The first derivative
of µρt−1 with respect to ρ, fρ,t, is µ (t− 1) ρt−2, so that ∑T

t=1 f 2
ρ,t = O (1) since limt→∞ tρt = 0. However,

the order in probability of the regression errors is Op

(
N−1/2

)
, which determines the convergence

rate of ρ̂nls. Meanwhile, the LS estimators with the logged cross-sectional averages in (23) are free
from this problem. That is why the convergence rate of the estimator for log ρ is

√
NT3/2. From the

delta method, ρ̂− ρ = ρ(l̂og ρ− log ρ) + Op
(

N−1T−3) . Hence, the convergence rate of ρ̂− ρ is also√
NT3/2. As we discussed under (21), the convergence rate of µ̂ is totally dependent on that of µN − µ,
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which is
√

N. We will show later by means of Monte Carlo simulation that the LS estimators have
better finite sample performance than NLS estimators.

Here are some important remarks regarding the properties of the considered estimators.

Remark 1. Limiting Distributions for Fixed T

Define θ̂nls = (µ̂nls ρ̂nls)
′ , θ̂ = (µ̂ ρ̂)′ and θ = (µ ρ)′ . Under Assumption A and B, as N → ∞ with

fixed T, the limiting distributions are given by

√
N
(
θ̂nls − θ

)
→d N (0, ΩT) ,

√
N
(
θ̂ − θ

)
→d N (0, ΣT) .

The variances ΩT and ΣT are finite constants but are not expressed explicitly since their formulae
are very complicated. To evaluate and compare the two variances analytically, we set T = 10 and
ρ = 0.9.13 With these values, the relative variance, ΩT/ΣT , becomes a function of the relative variance
of σ2

µ/σ2. Figure 3 displays the relative variance of ΩT/ΣT to σ2
µ/σ2. Obviously, the LS estimators are

more efficient than the NLS estimators because the variance of the LS estimator is always smaller than
that of the NLS estimator for all σ2

µ/σ2 ≥ 0. Interestingly, as σ2
µ/σ2 increases, ΩT/ΣT also increases.

which is
p
N:We will show later by means of Monte Carlo simulation that the LS estimators

have better �nite sample performance than NLS estimators.

Here are some important remarks regarding the properties of the considered estimators.
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p
N
�
�̂nls � �

�
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T ) ;

p
N
�
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�
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Figure 3. Overall treatment effects.

Remark 2. Consistent Estimator of σ2
µ

There are several ways to construct consistent estimators for σ2
µ by utilizing the LS estimator ρ̂. To save

space, we do not report all consistent estimators. By means of (unreported) Monte Carlo simulation, we find that
the following estimator for σ2

µ provides the smallest variance among several estimators. The individual fixed
effects, µi, can be estimated by running yit on ρ̂t−1. Note that, for any t,

ρ̂t−1 = ρt−1 + (t− 1) ρt−2 (ρ̂− ρ) + Op

(
N−1T−3

)
,

so that yit can be rewritten as

yit = µi ρ̂
t−1 + e+it for e+it = eit + (t− 1) ρt−2 (ρ̂− ρ) µi + Op

(
N−1T−3

)
. (26)

13 We will show later that the point estimates of ρ for all three empirical examples are around 0.9. However, the choice of ρ
does not matter much when comparing the two variances.
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Rewrite the LS estimator of µ̂i in (26) as

µ̂i = µi +
(
∑T

t=1 ρ̂2t−2
)−1

∑T
t=1 ρ̂t−1e+it .

By direct calculation, it is easy to show that this estimator is almost unbiased. Specifically,

E
(
∑T

t=1 ρ̂t−1e+it
)
=

µ2
i

µ2
12ρ2 (ρ2 + ρ4)
(1− ρ2)

3 NT3
σ2.

Note that the convergence rate of µ̂i over T is not
√

T but O (1) since the denominator term, ∑T
t=1 ρ̂2t−2,

becomes Op (1) . However, the sample variance of µ̂i estimates σ2
µ consistently. As N → ∞, the probability

limit of the sample mean of µ̂i becomes

plimN→∞
1
N ∑N

i=1 µ̂i = µ +

(
1− ρ2T

1− ρ2

)−1

plimN→∞
1
N ∑N

i=1 ∑T
t=1 ρ̂t−1e+it = µ.

In addition, the probability limit of its variance is given by

plimN→∞
1
N ∑N

i=1

(
µ̂i −

1
N ∑N

i=1 µ̂i

)2
= σ2

µ.

Remark 3. Limiting Distribution of Asymptotic Treatment Effects

Let the overall average individual outcome be

π̂ =
µ̂

1− ρ̂
.

To derive its limiting distribution, define R =
[
(1− ρ)−1 , −µ (1− ρ)−2

]
. Then, by using the delta

method, the limiting distribution of π̂ can be obtained from (25) directly:

√
N (π̂ − π)→d N (0, Ωπ) , (27)

where Ωπ = RΣR′ and Σ is defined in (25). The variance can be estimated by replacing the true parameters by
the point estimates since

Ω̂π →p Ωπ .

Further note that the average treatment effect between the controlled and treated outcomes, Π = πc − πτ ,
can be estimated by Π̂ = π̂c − π̂τ , and its limiting distribution is

√
N
(
Π̂−Π

)
→d N (0, Ωπ,c + Ωπ,τ) .

Remark 4. Heterogeneity of ρ

If the decay rate is heterogeneous across subjects, both parameters should be estimated for each i. However,
as T → ∞, the NLS estimators are inconsistent, as we discussed before. In addition, the logarithm approximation
for each subject’s outcome cannot be calculated for any i such that yit = 0 for some t. Moreover, the cross-sectional
average of yit yields

N−1 ∑N
i=1 yit 6=

(
N−1 ∑N

i=1 µi

) (
N−1 ∑N

i=1 ρi

)t−1
+ N−1 ∑N

i=1 eit,
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even when µi is assumed to be independent from ρi. To see this, let ρi ∼ iid
(

ρ, σ2
ρ

)
and take Taylor expansion

of ρt−1
i around ρ :

ρt−1
i − ρt−1 = (t− 1) ρt−2 (ρi − ρ) + (t− 1) (t− 2) ρt−3 (ρi − ρ)2 + Rρ,

where Rρ is the higher order term. Since the second term does not have zero mean, E
(

ρt−1
i

)
= ρt−1 +

(t− 1) (t− 2) ρt−3σ2
ρ+ ERρ 6= ρt−1 for t > 2.

Remark 5. Violation of Assumption A.2 and Serial Dependence in Error

The error term can be serially dependent if subjects do not form rational expectation. In addition, if
Assumption A.2 does not hold, then the logarithm approximation in (17) and (18) does not hold. To accommodate
such situations, we change Assumption A.2 as follows:

Assumption A.3:

eit = uitt−β for 0 ≤ ρ ≤ 1 and β > 0 where uit has a finite fourth moment over i for each t and follows
autoregressive process of order 1. In particular uit = φuit−1 + wit for 0 ≤ φ ≤ ρ < 1 where wit ∼ iid

(
0, σ2

i
)

,
and limN→∞ N−1 ∑N

i=1 σ2
i = σ2.

Under Assumption A.3, the convergence rate of eit is slower than that of µiρ
t−1 since tβρt → 0 for all β > 0

and 0 < ρ < 1. In this case, the error v∗Nt should be re-defined as uN,tt−βρ1−t/µN . Therefore, the variance of

v∗Nt diverges to infinity since
(
tβρt)−1 → ∞ as t → ∞. This problem can be avoided by considering only N

asymptotics with fixed T. Under Assumption A.3, as N → ∞ with fixed T, the limiting distribution is given by √N
(

l̂og µ− log µ
)

√
N
(

l̂og ρ− log ρ
) →d N

([
0
0

]
, Ω∗

)
for Ω∗ =

[
ω11 + σ2

µ/µ2 ω12

ω12 ω22

]
.

The definition of Ω∗ is given in Appendix B.

Remark 6. Violation of Assumption A.2 under Local to Unity

Next, consider the local to unity setting which allows tβρt
T → ∞ as t → ∞. In this case, the faster

convergence rate can be restored. We replace Assumption A.3 with

Assumption A.4:

uit has a finite fourth moment over i for each t, and is weakly dependent and stationary over t. Define the
autocovariance sequence of uit as E (uituit+k) = ϕi (k) where ∑∞

k=1 k |ϕi (k)| < ∞. Partial sums of uit over t
satisfy the panel functional limit laws

1√
T

[Tr]

∑
t=1

uit →d Bi (r) as T → ∞ for all i,

where Bi is an independent Brownian motion with variance ω2
ii over i. Moreover, the limit, limN→∞

N−1 ∑N
i=1 ω2

ii = ω2 < ∞. The decay rate becomes a function of T. Particularly, ρT = exp
( η

T

)
where

ε < η < 0 for any small |ε| > 0.
Under Assumption A.1, A.4 and B, as N, T → ∞ jointly the limiting distribution is given by √N

(
l̂og µ− log µ

)
√

NT3+2βs
(

l̂og ρ− log ρ
) →d N

(
0, Ω+

)
, for Ω+ =

[
Ω+

11 0
0 Ω+

22

]
, (28)
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where Ω+
11 = σ2

µ/µ2, Ω+
22 = 36

ω2

µ2

∫ 1
0

r−2β (1− 2r)2

1 + 2ηr
dr, ω2 is the long run variance of uit. See Appendix C

for the detailed proof.

5. Return to Empirical Examples

As we discussed early, the estimation of the treatment effects based on (27) requires the pretesting
for homogeneity. We use the weak σ−convergence test proposed by Kong et al. (2018) to examine the
homogeneity restriction. Here, we briefly discuss how to test the weak σ−convergence. Define σ̂2

t as
the sample cross-sectional variance of yit at time t. That is,

σ̂2
t =

1
N ∑N

i=1

(
yit −

1
N ∑N

i=1 yit

)2
.

Next, run σ̂2
t on a constant and a linear trend

σ̂2
t = a + γt + ut.

Denote the t-ratio of γ̂ as

tγ̂ = γ̂/
√

V (γ̂),

where V (γ̂) is the heteroskedasticity autocorrelation consistent (HAC) estimator for the long run
variance of γ̂. Kong et al. (2018) suggest to use Newey and West (1987)’s HAC estimator with the
window length of int

(
T1/3

)
, where int(·) is an integer function.

Table 2 reports the number of pure altruistic subjects—those who contribute all tokens for all
rounds—for each experimental setting, the homogeneity test, and the estimation of the trend regression.
It is important to note that the weak σ−convergence holds even when a few yit does not converge
into the cross-sectional average. For example, in Croson (1996)’s data, one subject in the Partner game
always contributes all tokens, so that the fraction of pure altruistic subjects is around 4%. In addition
to Keser and Van Winden (2000)’s data, one subject in the Stranger game always contributes all tokens
as well. Since the fraction of the pure altruistic subjects is too small, the homogeneity test is influenced
very little. The estimation of the treatment effects is influenced very little by an outlier as well. In all
cases, the point estimates of γ become significantly negative statistically, which implies that there is
only a single group of subjects asymptotically.

Table 2 also reports the point estimates of µ and ρ and their standard errors. These estimates can
be used to construct the long run treatment effects, Π. In addition, note that the point estimates of µ

and their standard errors can be used to test the treatment effect in the initial round. Here, we show
how to calculate them. Consider Croson’s case as example. The treatment effect in the initial round
becomes µ̂p − µ̂s where the control group becomes Strangers, but the treated group becomes Partners.
Then, the difference becomes

µ̂p − µ̂s = 0.614− 0.459 = 0.155,

but its standard error becomes√
V
(
µ̂p − µ̂s

)
=
√

0.082 + 0.0812 = 0.114.

Hence, the t-ratio is not big enough to conclude that the Partners game provides more
contributions. Meanwhile, the initial treatment in Keser and Van Winden (2000)’s case becomes
significant. The resulting t-ratio becomes 4.853. Hence, the Partners game provides more contributions
in the first round.
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Table 2. Estimation of trend regressions and homogeneity Tests.

Croson Keser & Winden
Partner Strangers Partner Strangers

Total Number of Subjects 24 24 120 40
Number of Pure Altruistic 1 0 0 1

γ̂× 10 −0.098 −0.043 −0.049 −0.016
(s.e × 10) 0.007 0.020 0.007 0.009

µ̂ 0.614 0.459 0.618 0.381
(s.e) 0.080 0.081 0.033 0.036

ρ̂ 0.912 0.884 0.972 0.934
(s.e) 0.021 0.018 0.014 0.002

Next, we estimate the long run treatment effects, and the null hypothesis of the same asymptotic
treatment of Strangers and Partners:

H0 : πp − πs = Π = 0,

where πs and πp stand for the asymptotic contribution from Strangers and Partners groups, respectively.
Note that the asymptotic or long run contribution can be calculated by summing up all contributions
across rounds as it shown in Figure 2.

The estimates of πs and πp are given in Table 3. As it is shown in Figure 1, in both cases,
the asymptotic contribution from Partners game (π̂p) is larger than that from Strangers game (π̂s).
The difference between π̂p and π̂s, Π̂, is the treatment effect. In Croson’s case, the estimated asymptotic
treatment effect is around 3.1, but its standard error is too big, so that the null hypothesis of no difference
cannot be rejected. In Keser and Winden’s case, the estimated asymptotic treatment effect becomes
around 15, but again its standard error is also very large. Hence, in both cases, the null hypothesis
cannot be rejected. Partners appear to contribute more than Strangers in both of the studies, but large
standard errors result in insignificant differences.

Table 3. Asymptotic treatment effects.

Group/Treatment Croson Keser & Winden

π̂p (s.e) 7.000 (2.309) 20.74 (12.18)
π̂s (s.e) 3.951 (1.051) 5.798 (0.617)
Π̂ (s.e) 3.050 (2.537) 14.94 (12.20)

6. Monte Carlo Study

This section examines the finite sample performance of the proposed estimators and tests.
The data generating process is given by

yit = µiρ
t−1 + eit, eit = uitρ

t−1, uit ∼ iidB
(

0, σ2
)µi

−µi
, µi ∼ iidB

(
0.5, σ2

µ

)1

0
.

In addition, we impose the restriction of 0 ≤ yit ≤ 1. The parameters are set based on the results
in Table 2, as follows: ρ = [0.85, 0.9, 0.95], σ2

µ =[0.15, 0.12, 0.10], σ2 = [0.05, 0.03, 0.01], T = [10, 20] and
N = [20, 40, 100, 200]. All errors are generated from a truncated normal distribution. The total number
of replications is 2000. Note that uit is assumed to be serially independent here, but allowing serial
dependence does not alter the main findings in this section. To be specific, we allow uit = φiuit−1 + εit
where φi ∼ iidU [−0.99, 0.99]. Under this setting, the results of the Monte Carlo simulation become
slightly better compared to those under serial independence. To save space, only a few highlighted
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results under serial independence are reported here, but the rest of results are available on the
authors’ website.

Table 4 reports the finite sample performance of the NLS and LS estimators given in (16) and (19).
Both estimators do not show any bias at all. The variances of µ̂nls and µ̂ are similar, but the variance
of µ̂ is slightly smaller than that of µ̂nls as our theory predicts. Meanwhile, the variance of ρ̂ is much
smaller than that of ρ̂nls, and the efficiency gain of ρ̂ over ρ̂nls becomes dominant as T becomes bigger.
When T = 10, the variance of NLS estimator is approximately 1.3 times larger than that of the LS
estimator. However, as T approaches 20, the variance of the NLS estimator becomes about three times
larger than that of the LS estimator. Hence, asymptotic theory established in Theorem 1 also explains
the finite sample properties of both estimators very well.

Table 5 exhibits the size and power of the test. Under the null of no treatment effect, we set
µ1 = µ2 = 0.5 and ρ1 = ρ2 = 0.9, but σ2

µ and σ2vary. Overall, when T is small or σ2 is large,
the proposed test suffers from a mild size distortion. However, the distortion goes away very quickly
either as T increases or if σ2 is small. Under the alternative, we decrease the decay rate for the second
game from 0.9 to 0.85: ρ2 = 0.85. Even with such a small change, the proposed test captures the
treatment effects very well. Regardless of the values of σ2

µ, σ2 and T, the power of the test becomes
perfect as long as N ≥ 100. Even with N = 50, the power of the test approximately reaches 90%.

Table 4. Comparison between NLS and LS estimators.

(σ2 = 0.03, ρ = 0.9, µ = 0.5)

E (µ̃) E (ρ̃) V(µ̃)× 103 V(ρ̃)× 105

σ2
µ N T µ̂nls µ̂ ρ̂nls ρ̂ µ̂nls µ̂ ρ̂nls ρ̂

0.15 25 10 0.499 0.499 0.900 0.900 4.205 4.188 4.927 3.891
0.15 50 10 0.500 0.500 0.900 0.900 2.262 2.252 2.466 1.910
0.15 100 10 0.500 0.500 0.900 0.900 1.169 1.159 1.150 0.900
0.15 200 10 0.500 0.500 0.900 0.900 0.567 0.557 0.600 0.455
0.15 25 20 0.501 0.500 0.900 0.900 4.518 4.442 1.259 0.502
0.15 50 20 0.501 0.500 0.900 0.900 2.328 2.261 0.588 0.224
0.15 100 20 0.500 0.500 0.900 0.900 1.132 1.109 0.296 0.116
0.15 200 20 0.501 0.500 0.900 0.900 0.549 0.535 0.149 0.056
0.12 25 10 0.500 0.499 0.900 0.900 3.752 3.736 5.030 3.977
0.12 50 10 0.500 0.500 0.900 0.900 2.025 2.014 2.535 1.958
0.12 100 10 0.500 0.500 0.900 0.900 1.050 1.038 1.186 0.931
0.12 200 10 0.500 0.500 0.900 0.900 0.510 0.499 0.620 0.470
0.12 25 20 0.501 0.500 0.900 0.900 4.041 3.964 1.286 0.516
0.12 50 20 0.501 0.500 0.900 0.900 2.076 2.008 0.607 0.231
0.12 100 20 0.500 0.500 0.900 0.900 1.012 0.987 0.307 0.120
0.12 200 20 0.501 0.500 0.900 0.900 0.491 0.476 0.155 0.058
0.1 25 10 0.500 0.499 0.900 0.900 3.392 3.376 5.118 4.056
0.1 50 10 0.500 0.500 0.900 0.900 1.834 1.822 2.591 1.996
0.1 100 10 0.500 0.500 0.900 0.900 0.951 0.939 1.218 0.958
0.1 200 10 0.500 0.500 0.900 0.900 0.463 0.453 0.636 0.482
0.1 25 20 0.501 0.500 0.900 0.900 3.655 3.576 1.311 0.526
0.1 50 20 0.501 0.500 0.900 0.900 1.872 1.802 0.620 0.237
0.1 100 20 0.500 0.500 0.900 0.900 0.915 0.889 0.313 0.122
0.1 200 20 0.501 0.500 0.900 0.900 0.444 0.430 0.158 0.060
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Table 5. Size and power of test.

Size (5%): ρ1 = ρ2 = 0.9, µ1 = µ2 = 0.5

σ2 =0.05 σ2 =0.03 σ2 =0.01
σ2

µ N\T 10 15 20 10 15 20 10 15 20

0.15 25 0.018 0.040 0.042 0.028 0.051 0.050 0.041 0.062 0.058
0.15 50 0.018 0.023 0.035 0.025 0.031 0.044 0.043 0.042 0.052
0.15 100 0.018 0.027 0.040 0.024 0.034 0.045 0.038 0.047 0.051
0.15 200 0.016 0.028 0.036 0.023 0.032 0.043 0.040 0.039 0.051
0.12 25 0.015 0.035 0.041 0.026 0.047 0.048 0.038 0.062 0.056
0.12 50 0.016 0.020 0.034 0.022 0.027 0.041 0.040 0.042 0.052
0.12 100 0.014 0.025 0.038 0.021 0.032 0.045 0.036 0.048 0.051
0.12 200 0.012 0.024 0.033 0.022 0.030 0.038 0.038 0.041 0.052
0.10 25 0.013 0.030 0.039 0.022 0.041 0.046 0.038 0.061 0.054
0.10 50 0.014 0.020 0.031 0.021 0.024 0.037 0.038 0.039 0.049
0.10 100 0.012 0.023 0.033 0.019 0.031 0.042 0.036 0.047 0.050
0.10 200 0.010 0.020 0.031 0.018 0.028 0.036 0.037 0.040 0.049

Power (5%): ρ1 = 0.9, ρ2 = 0.85, µ1 = µ2 = 0.5
0.15 25 0.392 0.476 0.534 0.472 0.517 0.562 0.566 0.558 0.597
0.15 50 0.715 0.801 0.812 0.769 0.828 0.829 0.841 0.853 0.845
0.15 100 0.960 0.980 0.983 0.971 0.986 0.986 0.985 0.989 0.990
0.15 200 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
0.12 25 0.422 0.516 0.571 0.509 0.556 0.604 0.612 0.606 0.632
0.12 50 0.743 0.835 0.845 0.806 0.860 0.859 0.872 0.893 0.877
0.12 100 0.967 0.990 0.990 0.982 0.993 0.993 0.993 0.994 0.996
0.12 200 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
0.10 25 0.446 0.546 0.603 0.537 0.599 0.642 0.647 0.656 0.677
0.10 50 0.776 0.865 0.873 0.839 0.895 0.890 0.904 0.929 0.909
0.10 100 0.979 0.994 0.996 0.988 0.995 0.998 0.998 0.999 0.998
0.10 200 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

7. Conclusions

This paper deals with the repeated public donation games and provides a simple but efficient
method to test overall treatment effects. We assume that the cross-sectional average of experimental
outcomes follows AR(1) process. In the initial round, subjects do not have any information on other
players. Over rounds, subjects are learning about the game and other subjects’ behaviors. Hence, the
distribution of the initial average differs from the rest of averages. When the initial average differs
from the long run mean, this nonstationary initial condition model generates a temporal time decay
function. We use the simple nonstationary initial condition model to approximate the cross-sectional
averages over time. The nonstationary initial condition model is a nonlinear function of three key
parameters: initial average (µ), time decay rate or AR(1) coefficient (ρ) , and long run average (a). The
long run average is not identifiable unless a game repeats many times. Hence, we had to assume that
this value is known. Under this restrictive assumption, we provide a logarithm approximation of the
nonlinear function, which becomes a simple log trend regression. Comparing with previous methods,
the newly suggested method takes statistical inference very seriously.

By means of Monte Carlo simulations, we showed that the finite sample performance of the
suggested method is reasonably good. We applied the new estimation method to Croson (1996)
and Keser and Van Winden (2000)’s experiments. The estimates of the overall outcomes in Partners
games are larger than those in Strangers games. However, due to large standard errors, which come
from persistent values of the time decay functions, the difference between the two games is not
statistically significant.
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Appendix A. Proofs of Theorem

Theorem 1 (i)

Let f (µ, ρ) = µρt−1. Then, the first derivatives with respect to µ and ρ are given by[
fµ = ∂ f /∂µ

fρ = ∂ f /∂ρ

]
=

[
ρt−1

µ (t− 1) ρt−2

]
.

Next, consider the following covariance and variance matrix:

E
[

∑T
t=1 fµεNt

∑T
t=1 fρεNt

] [
∑T

t=1 fµεNt

∑T
t=1 fρεNt

]′
=

[
Σ11 Σ12

Σ12 Σ22

]
,

where

Σ11 =
1
N

1− ρ4T

1− ρ4 σ2 +

(
1− ρ2T

1− ρ2

)2 1
N

σ2
µ =

1
N

(
σ2

1− ρ4 +
σ2

µ

(1− ρ2)
2

)
for a large T.

Σ12 =
µ

N

[
ρ3 1− ρ4T − Tρ4T−4 (1− ρ4)

(1− ρ4)
2 σ2 + σ2

µ

(
1− ρ2T

1− ρ2

)(
ρ2 − ρ2T+2 − ρ2TT

(
1− ρ2)

(1− ρ2)
2

)]

=
µ

N
ρ2

(
ρ

(1− ρ4)
2 σ2 +

1

(1− ρ2)
3 σ2

µ

)
for a large T.

Σ22 =
µ2

N

[
ρ2 (1− ρ4T) (1 + ρ4)

(1− ρ4)
3 −

ρ2 (T (1− ρ4)+ 2ρ4) ρ4T−4T

(1− ρ4)
2

]
σ2

+
µ2

N

(
ρ2 (1− ρ2T)− ρ2TT

(
1− ρ2)

(1− ρ2)
2

)2

σ2
µ

=
µ2

N

(
1 + ρ4

(1− ρ4)
3 ρ2σ2 +

ρ4

(1− ρ2)
4 σ2

µ

)
for a large T.

Hence, it is straightforward to show that as N, T → ∞ jointly, the limiting distribution of NLS
estimators are given by[ √

N (µ̂nls − µ)√
N (ρ̂nls − ρ)

]
→d N

([
0
0

]
,

[
Ω11 Ω12

Ω12 Ω22

])
,
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where

Ω11 =
3ρ2 + ρ4 − 5ρ6 + 1

(1 + ρ2)
3 σ2 +

[(
1 + 2ρ2

)
− (2− ρ) ρ3

(
1 + ρ2

)]
σ2

µ,

Ω12 = −ρ
(

1− ρ2
)2 (

1 + 3ρ2
) σ2

µ (1 + ρ2)
3 −

(
1 + ρ2 − ρ3

)
(1− ρ)

1− ρ2

µ
σ2

µρ,

Ω22 =
2
(
1− ρ2)3

ρ2

µ2 (1 + ρ2)
3 σ2 + (1− ρ)2

(
1− ρ2

)2 ρ2σ2
µ

µ2 .

Theorem 1 (ii)

Let
log yNt = log µ + (log ρ) (t− 1) + vNt,

where
vNt =

uNt
µ

+
µN − µ

µ
+ Op

(
N−1

)
.

Let the expectation of the covariance and variance matrix as

E
[

∑T
t=1 vNt

∑T
t=1 (t− 1) vNt

] [
∑T

t=1 vNt

∑T
t=1 (t− 1) vNt

]′
=

[
σ11 σ12

σ12 σ22

]
,

where

σ11 =
1

Nµ2

(
Tσ2 + T2σ2

µ

)
,

σ12 =
1

Nµ2

[(
1
2

T2 − 1
2

T
)

σ2 +

(
1
2

T2 − 1
2

T
)

Tσ2
µ

]
,

σ22 =
1

Nµ2

[(
1
6

T − 1
2

T2 +
1
3

T3
)

σ2 +

(
1
2

T2 − 1
2

T
)2

σ2
µ

]
.

Therefore, the limiting distribution of the LS estimators in the logged trend regression is given by √
N
(

l̂og µ− log µ
)

√
NT3/2

(
l̂og ρ− log ρ

) →d N
([

0
0

]
,

1
µ2

[
σ2

µ 0
0 12σ2

])
.

By using Delta method, it is easy to show that[ √
N (µ̂− µ)√

NT3/2 (ρ̂− ρ)

]
→d N

([
0
0

]
,

[
σ2

µ 0
0 12ρ2σ2/µ2

])
.

Alternatively, the same limiting distribution can be derived by redefining the regression
parameters as

log yNt = log µN + (log ρ) (t− 1) + v∗Nt,

where
v∗Nt =

eNt
µN

+ Op

(
N−1

)
.

Note that

E
(
∑T

t=1 v∗Nt

)2
= E

(
1
N ∑N

i=1 ∑T
t=1 eit

)2 ( 1
N ∑N

i=1 µi

)−2
=

1
Nµ2 Tσ2,
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E
(
∑T

t=1 v∗Nt

) (
∑T

t=1 (t− 1) v∗Nt

)
=

1
Nµ2

(
1
2

T2 − 1
2

T
)

σ2,

E
(
∑T

t=1 (t− 1) v∗Nt

)2
=

1
Nµ2

(
1
6

T − 1
2

T2 +
1
3

T3
)

σ2,

so that the limiting distributions can be rewritten as √NT
(

l̂og µN − log µ
)

√
NT3/2

(
l̂og ρ− log ρ

) →d N
([

0
0

]
,

1
µ2

[
4σ2 −6σ2

−6σ2 12σ2

])
.

By using the delta method, the limiting distributions of µ̂N − µN and ρ̂− ρ can be rewritten as[ √
NT (µ̂N − µN)√
NT3/2 (ρ̂− ρ)

]
→d N

([
0
0

]
,

[
4σ2 −6σ2/µ2

−6σ2/µ2 12σ2ρ2/µ2

])
.

Finally, since µ̂N − µN = µ̂N − µ− (µN − µ) , the limiting distributions of µ̂N − µ and ρ̂− ρ are
given by (25).

Appendix B. Proof of Remark 5

Note that the initial condition for the expectation error is nonstationary. That is, the second
moments of uit become dependent on t :

Eu2
it =

1− φ2t

1− φ2 σ2, Euituit−j = φj 1− φ2(t−j)

1− φ2 σ2.

Define

Ω∗1 = N ×E
[

T−1 ∑T
t=1 v∗Nt

T−1 ∑T
t=1 (t− 1) v∗Nt

] [
T−1 ∑T

t=1 v∗Nt
T−1 ∑T

t=1 (t− 1) v∗Nt

]′
=

[
ω11 ω12

ω12 ω22

]
,

where v∗Nt = uN,tt−βρ1−t/µN .
Each element of the covariance matrix Ω1 is defined as

ω11 : = N ×E
(

T−1 ∑T
t=1 v∗Nt

)2
=

1
µ2E

1
T2N

(
∑N

i=1 ∑T−1
t=0

uit
ρt

)2

=
1

µ2
1

T2 ∑T
t=1

1− φ2t

1− φ2
t−2β

ρ2t−2 σ2 +
1

µ2
2

T2 ∑T
j=1 ∑T

t=j+1 φj 1− φ2(t−j)

1− φ2
t−β j−β

ρt+j σ2, (A1)

since

E
(

∑T−1
t=0

uitt−β

ρt

)2

= ∑T
t=1

1− φ2t

1− φ2
t−2β

ρ2t−2 σ2 + 2E∑T
j=1 ∑T

t=j+1

(
uitt−β

ρt

)(uij j−β

ρj

)

= ∑T
t=1

1− φ2t

1− φ2
t−2β

ρ2t−2 σ2 + 2 ∑T
j=1 ∑T

t=j+1 φj 1− φ2(t−j)

1− φ2
t−β j−β

ρt+j−2 σ2.
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In addition,

ω12 = N ×E
(

T−1 ∑T
t=1 v∗NtT

−1 ∑T
t=1 (t− 1) v∗Nt

)
=

1
µ2

1
T2N

E
(

∑N
i=1 ∑T

t=1 (t− 1)
εitt−β

ρt−1

)(
∑N

i=1 ∑T
t=1

εitt−β

ρt−1

)
=

1
T2

σ2

µ2

[
∑T

t=1 (t− 1)
1− φ2t

1− φ2
t−2β

ρ2t−2 + 2 ∑T
j=1 ∑T

t=j+1 (t− j) φj 1− φ2(t−j)

1− φ2
t−β j−β

ρt+j−2

]
,

ω22 = N ×E
(

T−1
T

∑
t=1

(t− 1) v∗Nt

)2

=
1

T2N
1

µ2E
(

∑N
i=1 ∑T

t=1 (t− 1)
uitt−β

ρ2t−2

)2

=
1

T2
σ2

µ2

[
∑T

t=1 (t− 1)2 1− φ2t

1− φ2
t−2β

ρ2t−2 + 2 ∑T
j=1 ∑T

t=j+1 (t− 1) (t− j) φj 1− φ2(t−j)

1− φ2
t−β j−β

ρt+j−2

]
.

Then, the limiting distribution of l̂og µN is given by

√
N
(

l̂og µN − log µ
)
→d N

(
0, ω11 + σ2

µ/µ2
)

.

Hence, the joint limiting distribution can be written as √N
(

l̂og µN − log µ
)

√
N
(

l̂og ρ− log ρ
) →d N

([
0
0

]
, Ω∗

)
for Ω∗ =

[
ω11 + σ2

µ/µ2 ω12

ω12 ω22

]
.

Appendix C. Proof of Remark 6

As t→ ∞, the effect of the nonstationary initial condition, or the ρt term, goes away very quickly.
Assumption B1 ensures that the decay rate does not go away even when t→ ∞. The following two
lemmas are helpful in deriving the limiting distribution. Let r ∈ [0, 1] and then t/T → r as T → ∞.

Lemma A1. Let ρT = exp (η/T) for 0 < η < ε for any small |ε| > 0. Then, ρ2t
T = 1 + 2ηr + o

(
r2)

Proof of Lemma A1. By definition, ln ρT = η
T , so that the following hold:

2t ln ρT = 2η
t
T

= 2ηr = ln (1 + 2ηr) + o
(

η2r2
)

.

Hence,

ρ2t
T = 1 + 2ηr + o

(
r2
)

and ρ−2t
T =

1
1 + 2ηr

+ o
(

η2r2
)

.

Proof of Remark 6. Let (
l̂og µN − log µ

)(
l̂og ρ− log ρ

)  =

[
T−1 ∑T

t=1 1 T−1 ∑T−1
t=0 t

T−1 ∑T−1
t=0 t T−1 ∑T−1

t=0 t2

]−1 [
T−1 ∑T

t=1 vNt
T−1 ∑T

t=1 (t− 1) vNt

]
.
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Since µi is independent of uit, the asymptotic variances of the denominator term are given by

E
(

T−1 ∑T
t=1 vNt

)2
= E

(
1
N ∑N

i=1
µi − µ

µ
+

1
TN ∑N

i=1 ∑T
t=1 v∗Nt

)2

=
1
N

σ2
µ

µ2 +
1

T2N2 ∑N
i=1

ω2
ii

µ2 ∑T−1
t=0

(
t−β

ρt

)2

→ 1
N

σ2
µ

µ2 +
T−2β

N
ω2

µ2

∫ 1

0

r−2β

1 + 2ηr
dr,

since

1
T2 ∑T

t=0

(
t−β

ρt

)2

= T−1−2β ∑T−1
t=0

(
t
T

)−2β

ρ−2t 1
T

= T−1−2β ∑T−1
t=0

(
t
T

)−2β 1
1 + 2ηr

1
T
→ T−1−2β

∫ 1

0

r−2β

1 + 2ηr
dr.

In addition,

E
(

T−1 ∑T
t=1 vNtT−1 ∑T

t=1 (t− 1) vNt

)
=

T
2N

σ2
µ

µ2 +
1

T2N2 ∑N
i=1

ω2
ii

µ2 ∑T−1
t=0

t1−2β

ρ2t

→ T
2N

σ2
µ

µ2 +
T−2β

N
ω2

µ2

∫ 1

0

r1−2β

1 + 2ηr
dr,

E
(

T−1
T

∑
t=1

(t− 1) vNt

)2

=
T2

4N
σ2

µ

µ2 +
1

T2N2 ∑N
i=1

ω2
ii

µ2 ∑T−1
t=0

t2−2β

ρ2t

→ T2

4N
σ2

µ

µ2 +
T1−2β

N
ω2

µ2

∫ 1

0

r2−2β

1 + 2ηr
dr.

Therefore, √
N
(

l̂og µN − log µ
)

√
NT3+2β

(
l̂og ρ− log ρ

) →d N

[ 0
0

]
,

 σ2
µ/µ2 0

0 36
ω2

µ2

∫ 1
0

r−2β (1− 2r)2

1 + 2ηr
dr
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