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Abstract: In forecasting a variable (forecast target) using many predictors, a factor model with
principal components (PC) is often used. When the predictors are the yield curve (a set of many
yields), the Nelson–Siegel (NS) factor model is used in place of the PC factors. These PC or NS
factors are combining information (CI) in the predictors (yields). However, these CI factors are not
“supervised” for a specific forecast target in that they are constructed by using only the predictors but
not using a particular forecast target. In order to “supervise” factors for a forecast target, we follow
Chan et al. (1999) and Stock and Watson (2004) to compute PC or NS factors of many forecasts (not
of the predictors), with each of the many forecasts being computed using one predictor at a time.
These PC or NS factors of forecasts are combining forecasts (CF). The CF factors are supervised for
a specific forecast target. We demonstrate the advantage of the supervised CF factor models over
the unsupervised CI factor models via simple numerical examples and Monte Carlo simulation.
In out-of-sample forecasting of monthly US output growth and inflation, it is found that the CF factor
models outperform the CI factor models especially at longer forecast horizons.

Keywords: level, slope, and curvature of the yield curve; Nelson-Siegel factors; supervised factor
models; combining forecasts; principal components

JEL Classification: C5; E4; G1

1. Introduction

The predictive power of the yield curve for macroeconomic variables has been documented
in the literature for a long time. Many different points on the yield curve have been used and
various methodologies have been examined. For example, Stock and Watson (1989) find that two
interest rate spreads, the difference between the six-month commercial paper rate and the six-month
Treasury bill rate, and the difference between the ten-year and one-year Treasury bond rates, are good
predictors of real activity, thus contributing to their index of leading indicators. Bernanke (1990),
Friedman and Kuttner (1993), Estrella and Hardouvelis (1991), and Kozicki (1997), among many
others, have investigated a variety of yields and yield spreads individually on their ability to forecast
macroeconomic variables. Hamilton and Kim (2002) as well as Diebold et al. (2005) provide a brief
summary of this line of research and the link between the yield curve and macroeconomic variables.

Various macroeconomic models for exploring the yield curve information for real activity
prediction are proposed. Ang and Piazzesi (2003) and Piazzesi (2005) study the role of macroeconomic
variables in an arbitrage-free affine yield curve model. Estrella (2005) constructs an analytical rational
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expectations model to investigate the reasons for the success of the slope of the yield curve (the spread
between long-term and short-term government bond rates) in predicting real economic activity and
inflation. The model in Ang et al. (2006), Piazzesi and Wei is an arbitrage-free dynamic model
(using lags of GDP growth and yields as regressors) that characterizes expectations of GDP growth.
Rudebusch and Wu (2008) provide an example of a macro-finance specification that employs more
macroeconomic structure and includes both rational expectations and inertial elements.

Stock and Watson (1999, 2002) investigate forecasts of output growth and inflation using
over a hundred of economic indicators, including many interest rates and yield spreads.
Stock and Watson (2002, 2012) advocate methods that aim at solving the large-N predictor problem,
particularly those using principal components (PC). Ang et al. (2006) suggest the use of the short
rate, the five-year to three-month yield spread, and lagged GDP growth in forecasting GDP growth
out-of-sample. The choice of these two yield curve characteristics, as they argue, is because they have
almost one-to-one correspondence with the first two principal components of the short rate and five
yield spreads that account for 99.7% of quarterly yield curve variation.

Alternatively to the PC factor approach on the large-N predictor information set,
Diebold and Li (2006) propose the Nelson and Siegel (1987) (NS) factors for the large-N yields. They
use a modified three-factor NS model to capture the dynamics of the yield curve and show that the
three NS factors may be interpreted as level, slope, and curvature. Diebold et al. (2006) examine the
correlations between NS yield factors and macroeconomic variables. They find that the level factor is
highly correlated with inflation and that the slope factor is highly correlated with real activity. For more
on the yield curve background and the three characteristics of the yield curve, see Litterman and
Scheinkman (1991) and Diebold and Li (2006).

In this paper, we utilize the yield curve information for prediction of macro-economic variables.
Using a large number of yield curve points with different maturities yields a large-N problem in
the predictive regression. The PC factors or the NS factors of the yield curve may be used to reduce
the large dimension of the predictors. However, the PC and NS factors of the yield curve are not
supervised for a specific variable to forecast. These factors simply combine information (CI) of many
predictors (yields) without having to look at a forecast target. Hence, the conventional CI factor models
(using factors of the predictors) are unsupervised for any forecast target.

Our goal in this paper is to consider factor models where the factors are computed with a particular
forecast target in mind. Specifically, we consider the PC or NS factors of forecasts (not of predictors),
with each of the forecasts formed using one predictor at a time. (It could be generalized to make each
forecast from using more than one predictor, e.g., a subset of the N predictors, in which case there can
be as many as 2N forecasts to combine.) These factors will combine the forecasts (CF). The PC factors
of forecasts are combined forecasts using the combining weights that solves a singular value problem
for a set of forecasts, while the NS factors of forecasts are combined forecasts using the combining
weights obtained from orthogornal polynomials that emulate the shape of a yield curve (in level, slope,
and curvature). The PC or NS factors of the many forecasts are supervised for a forecasting target.
The main idea of the CF-factor model is to focus on the space spanned by forecasts rather than the
space spanned by predictors. The factorization of forecasts (CF-factor model) can substantially improve
forecasting performance compared to the factorization of predictors (CI-factor model). This is because
the CF-factor model takes the forecast target into the factorization, while the conventional CI-factor
model is blind to the forecast target because the factorization uses only information on predictors.

For both CI and CF schemes, the NS factor model can be relevant only when the yield curve is
used as predictors while the PC factor model can be used in general. The NS factors are specific to
the yield curve factors such as level, slope, and curvature factors. When the predictors are from the
points on the yield curve, the NS factor models proposed here is nearly the same as the PC factors.
Given the similarity of NS and PC and the generality of PC, we begin the paper with the PC models
to understand the mechanism of the supervision in CF-factor models. We demonstrate how the
supervised CF factor models outperform the unsupervised CI factor model, under the presence of
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many predictors (50 points on the yield curve at each time). The empirical work shows that there are
potentially big gains in the CF-factor models. In out-of-sample forecasting of U.S. monthly output
growth and inflation, it is found that the CF factor models (CF-NS and CF-PC) are substantially better
than the conventional CI factors models (CI-NS and CI-PC). The advantage of supervised factors is
even greater for longer forecast horizons.

The paper is organized as follows: in Section 2, we describe the CI and CF frameworks and
principal component approaches for their estimation, present theoretical results about supervision,
and an example to provide intuition. Section 3 provides simulations of supervision under different
noise, predictor correlation, and predictor persistence conditions. In Section 4, we introduce the NS
component approaches for the CI and CF frameworks. In Section 5, we show the out-of-sample
performance of the proposed methods in forecasting U.S. monthly output growth and inflation.
Section 6 presents the conclusions.

2. Supervising Factors

2.1. Factor Models

Let yt+h denote the variable to be forecast (output growth or inflation) using yield curve
information stamped at time t, where h denotes the forecast horizon. The predictor vector xt contains
information about the yield curve at various maturities: xt := (x1t, x2t, . . . , xNt)

′, where xit := xt(τi)

denotes the yield at time t with maturity τi (i = 1, 2, . . . , N).
Consider the CI model when N is large

yt+h = (1 x′t)α + εt+h, (t = 1, 2, . . . , T) (1)

for which the forecast at time T is
ŷCI-OLS

T+h = (1 x′T)α̂, (2)

with α̂ estimated by OLS using the information up to time T. A problem is that here the mean-squared
forecast error (MSFE) is of order O

(
N
T

)
increasing with N.1 A solution to this problem is to reduce

the dimension either by selecting a subset of the N predictors, e.g., by Lasso type regression
(Tibshirani 1996) or by using factor models of, e.g., Stock and Watson (2002). In this paper, we focus
on using the factor model rather than selecting a subset of the N predictors.2

2.1.1. CI-Factor Model

The conventional factor model is the CI factor model for xt of the form

xt = ΛCI fCI,t + vCI,t, (t = 1, . . . , T), (3)

where ΛCI is N × kCI and fCI,t is kCI × 1. The estimated factor loadings Λ̂CI are obtained either by
following Stock and Watson (2002) and Bai (2003), or by following Nelson and Siegel (1987) and
Diebold and Li (2006). The latter approach is discussed in Section 4. The factors are then estimated by

f̂CI,t = Λ̂′CIxt. (4)

As this model computes the factors from all N predictors of xt directly, it will be called “CI-factor”.
The forecast ŷT+h = (1 f̂ ′CI,T)α̂CI can be formed using α̂CI estimated at time T from the regression

yt = (1 f̂ ′CI,t−h)αCI + uCI,t, (t = h + 1, . . . , T). (5)

1 This is explained in Bai and Ng 2008; Huang and Lee 2010; Stock and Watson 2002.
2 Bai and Ng (2008) consider CI factor models with a selected subset (targeted predictors).
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In matrix form, we write the factor model (3) and (5) for the vector of forecast target observations
y and for the T × N matrix of predictors X as follows:3

X = FCIΛ′CI + vCI, (6)

y = FCIαCI + uCI, (7)

where y is the T × 1 vector of observations, FCI is a T × kCI matrix of factors, ΛCI is an N × kCI matrix
of factor loadings, αCI is a kCI × 1 parameter vector, vCI is a T× N random matrix, and uCI is a T× 1
vector of random errors.

Remark 1. (No supervision in CI-factor model): Consider the joint density of (yt+h, xt)

D(yt+h, xt; θ) = D1(yt+h|xt; θ)D2(xt; θ), (8)

where D1 is the conditional density of yt+h given xt, and D2 is the marginal density of xt. The CI-factor model
assumes a situation where the joint density operates a “cut” in the terminology of Barndorff-Nielsen (1978) and
Engle et al. (1983), such that

D(yt+h, xt; θ) = D1(yt+h|xt; θ1)D2(xt; θ2), (9)

where θ = (θ1 θ′2)
′, and θ1 = α, θ2 = (F, Λ)′ are “variation-free”. Under this situation, the forecasting

equation in (5) is obtained from the conditional model D1 and the factor equation in (3) is solely obtained from
the marginal model D2 of the predictors. The computation of the factors is entirely from the marginal model D2

that is blind to the forecast target yt+h.

While the CI factor analysis of a large predictor matrix X solves the dimensionality problem,
it computes the factors using information in X only, without accounting for the variable y to be forecast,
and therefore the factors are not supervised for the forecast target. Our goal in this paper is to improve
this approach by accounting for the forecast target in the computation of the factors. The procedure
will be called supervision.

There are some attempts in the literature to supervise factor computation for a given forecast
target. For example, Bair et al. (2006) and Bai and Ng (2008) consider factors of selected predictors that
are informative for a specified forecast target; Zou et al. (2006) consider sparse loadings of principal
components; De Jong (1993) and Groen and Kapetanios (2016) consider partial least squares regression;
De Jong and Kiers (1992) consider principal covariate regression; Armah and Swanson (2010) select
variables for factor proxies that have the maximum predictive power for the variable being forecast;
and some weighted principal components have been used to downweight noisier series.

In this paper, we consider the CF-factor model that computes factors from forecasts rather than
from predictors. This approach has been proposed in Chan et al. (1999) and in Stock and Watson (2004),
there labeled “principal component forecast combination”. We will refer to this approach as CF-PC
(combining forecasts principal components). The details are as follows.

3 The suppressed time stamp of y and X captures the h-lag relation for the forecast horizon and we treat the data centered so
that we do not include a constant term explicitly in the regression for notational simplicity.
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2.1.2. CF-Factor Model

The forecasts from a CF-factor model are computed in two steps. The first step is to estimate the
factors of the individual forecasts. Let the individual forecasts be formed by regressing the forecast
target yt+h using the ith individual predictor xit:

ŷ(i)T+h := ai,T + bi,TxiT (i = 1, 2, . . . , N). (10)

Stack the N individual forecasts into a vector ŷt+h := (ŷ(1)t+h, ŷ(2)t+h, . . . , ŷ(N)
t+h)

′ and consider a factor
model of ŷt+h:

ŷt+h = ΛCF fCF,t+h + vCF,t+h. (11)

The CF-factor is estimated from
f̂CF,t+h := Λ̂′CFŷt+h. (12)

The second step is to estimate the forecasting equation (for which the estimated CF-factors from
the first step are used as regressors)4

yt+h = f̂ ′CF,t+hαCF + uCF,t+h. (13)

Then, the CF-factor forecast at time T is

ŷCF
T+h = f̂ ′CF,T+hα̂CF, (14)

where α̂CF is estimated. See (Chan et al. 1999; Huang and Lee 2010; Stock and Watson 2004).
To write the CF-factor model in matrix form, we assume for notational simplicity that the data

has been centered so that we do not include a constant term. We regress y on the columns xi of X,
i = 1, . . . , N, one at a time, and write the fitted values in (10) as

ŷ(i) = xi(x′i xi)
−1x′iy =: xibi. (15)

Collect the fitted values in the matrix

Ŷ = [ŷ(1) ŷ(2) · · · ŷ(N)] := XB ∈ RT×N , (16)

where B = diag(b1, . . . , bN) ∈ RN×N is a diagonal matrix containing the regression coefficients. We call
B the supervision matrix. Then, the CF-factor model is

Ŷ = FCFΛ′CF + vCF, (17)

y = FCFαCF + uCF, (18)

where FCF is a T × kCF matrix of factors of Ŷ = XB, ΛCF is an N × kCF matrix of factor loadings, αCF is
an kCF × 1 parameter vector, vCF is a T× N random matrix, and uCF is a T× 1 vector of random errors.
In the rest of the paper, the subscripts CI and CF may be omitted for simplicity.

We use principal components (PC) as discussed in Stock and Watson (2002), Bai (2003), and
Bai and Ng (2006). For the specific case of yield curve data, we use NS components as discussed in
Nelson and Siegel (1987) and Diebold and Li (2006). We use both CF and CI approaches together with
PC factors and NS factors. Our goal is to show that forecasts using supervised factor models (CF-PC
and CF-NS) are better than forecasts from conventional unsupervised factor models (CI-PC and CI-NS).

4 Given the dependent nature of macroeconomic and financial time series, the forecasting equation can be extended to allow
the supervision to be based on the relation between yt and some predictors after controlling for lagged dependent variables
and to allow the dynamic factor structure, which we leave for future work.
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We show analytically and in simulations how supervision works to improve factor computation with
respect to a specified forecast target. In Section 5, we present empirical evidence.

Remark 2. (Estimation of B): The CF-factor model in (17) and (18) with B = IN (identity matrix) is a
special case when there is no supervision. In this case, the CF-factor model collapses to the CI-factor model. If B
were consistently estimated by minimizing the forecast error loss, then the CF-factor model with the “optimal”
B would outperform the CI-factor model. However, as the dimension of the supervision matrix B grows with
N2, B is an “incidental parameter” matrix and can not be estimated consistently. See Neyman and Scott (1948)
and Lancaster (2000). Any estimation error in B translates into forecast error in the CF-factor model. Whether
there is any virtue in considering Bayesian methods of estimating B, while still avoiding this problem, is left for
future research. Instead, in this paper, we circumvent this difficulty by imposing that B = diag(b1, . . . , bN) be a
diagonal matrix and by estimating the diagonal elements bi’s from the ordinary least squares regression in (10)
or (15) with one predictor xi at a time. The supervision matrix B can be non-diagonal in general. As imposing
the diagonality on B may be restrictive, it would be an interesting empirical question to examine if the CF-factor
forecast with this restriction and the estimation strategy of B can still outperform the CI-factor forecast with
B = IN . Our empirical results in Section 5 (Table 1) support this simple estimation strategy for the diagonal
matrix B, in favor of the CF-factor model.

Remark 3. (Combining forecasts with many predictors): It is generally believed that it is difficult to
estimate the forecast combination weights when N is large. Therefore, the equal weights

(
1
N

)
have been widely

used instead of estimating weights.5 It is often found in the literature that equally-weighted combined forecasts
are often the best. Stock and Watson (2004) call this the “forecast combination puzzle”. See also Timmermann
(2006). Smith and Wallis (2009) explore a possible explanation of the forecast combination puzzle and conclude
that it is due to estimation error of the combining weights.

Now, we note that, in the CF-factor model described above, we can consistently estimate the combining
weights. From the CF-factor forecast (14) and the estimated factor (12),

ŷT+h = f̂ ′CF,T+hα̂CF =
(
ŷ′T+hΛ̂CF

)
α̂CF := ŷ′T+hŵ, (19)

where
ŵ := Λ̂CFα̂CF (20)

is estimated consistently as long as Λ̂CF and α̂CF are estimated consistently.

2.2. Singular Value Decomposition

In this section, we formalize the concept of supervision and explain how it improves factor
extraction. We compare the two different approaches CI-PC (Combining Information—Principal
Components) and CF-PC (Combining Forecasts—Principal Components) in a linear forecast problem
of the time series y given predictor data X. We explain the advantage of the CF-PC approach over
CI-PC in Section 2.3 and give some examples in Section 2.4. We explore the advantage of supervision
in simulations in Section 3.2. As an alternative to PC factors, we propose the use of NS factors in
Section 4.

Principal components of predictors X (CI-PC): Let X ∈ RT×N be a matrix of regressors and let

X = RΣW ′ ∈ RT×N (21)

5 An exception is Wright (2009), who uses Bayesian model averaging (BMA) for pseudo out-of-sample prediction of U.S.
inflation, and finds that it generally gives more accurate forecasts than simple equal-weighted averaging. He uses
N = 107 predictors.
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be the singular value decomposition of X, with Σ ∈ RT×N diagonal rectangular, that is, diagonal
square matrix padded with zero rows below the square if min(T, N) = N or padded with zero columns
next to the square if min(T, N) = T, R ∈ RT×T , and W ∈ RN×N is unitary. Write

X′X = WΣ′R′RΣW ′ = WΣ′ΣW ′, (22)

where Σ′Σ := diag(σ2
1 , . . . , σ2

N) is diagonal and square. Therefore, W contains the eigenvectors of X′X.
For a matrix A ∈ RT×N , denote by Ak ∈ RT×k the matrix consisting of the first k ≤ N columns of A.
Then, Wk is the matrix containing the singular vectors corresponding to the k = kCI largest singular
values (σ1, . . . , σk). The first k principal components are given by

FCI := XWk = RΣW ′Wk = RΣ

[
Ik
0

]
= RΣk = RkΣkk, (23)

where Ik is the k× k identity matrix, 0 is an (N − k)× k matrix of zeros, and Σkk is the k× k upper-left
diagonal block of Σ. Note that the first k principal components FCI of X are constant multiples of
columns of Rk as Σkk is diagonal. The projection (forecast) of y onto FCI is given by

ŷCI-PC := FCI(F′CIFCI)
−1F′CIy = XWk(W ′kX′XWk)

−1W ′kX′y

= RkΣkk(Σ
′
kkR′kRkΣkk)

−1Σ′kkR′ky = Rk(R′kRk)
−1R′ky = RkR′ky, (24)

as R′kRk = Ik. Therefore, the CI forecast, ŷCI-PC, is the projection of y onto Rk. The CI forecast error and
the CI sum of squared error (SSE) are

y− ŷCI-PC = y− RkR′ky = (IT − RkR′k)y, (25)

SSECI-PC = ||y− ŷCI-PC||2 = y′(IT − RkR′k)y, (26)

as (IT − RkR′k) is symmetric idempotent.
Bai (2003) shows that, under general assumptions on the factor and error structure, FCI is a

consistent and asymptotically normal estimator of FCIH, where H is an invertible k × k matrix.6

This identification problem is also clear from Equation (24), and it conveniently allows us to identify
the principal components FCI = RkΣkk as FCI = Rk since Σkk is diagonal. The principal components
are scalar multiples of the first k columns of R. Bai’s result shows that principal components can be
estimated consistently only up to linear combinations. Bai and Ng (2006) show that the parameter
vector α in the forecast equation can be estimated consistently for α′H−1 with an asymptotically
normal distribution.

Principal components of forecasts Ŷ (CF-PC): To generate forecasts in a CF-factor scheme, we regress
y on the columns xi of X, i = 1, . . . , N, one at a time, and calculate the fitted values of (15). Collect the
fitted values in the matrix as in (16), with B = diag(b1, . . . , bN) containing the regression coefficients in
its diagonal. Compute the singular value decomposition of Ŷ:

Ŷ = SΘV′, (27)

6 In order for the objects in Bai’s (2003) analysis to converge, he introduces scaling such that the singular values are the
eigenvalues of the matrix X′X/T. Then, the singular vectors are multiplied by

√
T. In our notation, the singular value

decomposition becomes X =
√

TR Σ√
T

W ′.
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with Θ ∈ RT×N is diagonal rectangular, and S ∈ RT×T , V ∈ RN×N unitary. Pick the first k = kCF

principal components of Ŷ,

FCF := ŶVk = SΘV′Vk = SΘ

[
Ik
0

]
= SΘk = SkΘkk, (28)

where Vk is the N × k matrix of the singular vectors corresponding to the k largest singular values
(θ1, . . . , θk) and Θkk is the k× k upper-left diagonal block of Θ. Again, we can identify the estimated k
principal components of Ŷ with FCF = Sk, where FCF is the T× kCF matrix of factors of Ŷ. The projection
(forecast) of y onto FCF is given by:

ŷCF-PC := FCF(F′CFFCF)
−1F′CFy = ŶVk(V′kŶ′ŶVk)

−1V′kŶ′y

= SkΘkk(Θ
′
kkS′kSkΘkk)

−1Θ′kkS′ky = Sk(S′kSk)
−1S′ky = SkS′ky (29)

as S′kSk = Ik. The CF forecast, ŷCF-PC, is the projection of y onto Sk. The CF forecast error and the CF
SSE are

y− ŷCF-PC = y− SkS′ky = (IT − SkS′k)y, (30)

SSECF-PC = ||y− ŷCF-PC||2 = y′(IT − SkS′k)y, (31)

as (IT − SkS′k) is symmetric idempotent.

2.3. Supervision

In this sub-section, we explain the advantage of CF-PC over CI-PC in factor computation. We call
the advantage “supervision”, which is defined as follows:

Definition 1. (Supervision). The advantage of CF-PC over CI-PC, called supervision, is the selection of
principal components according to their contribution to variation in y, as opposed to selection of principal
components according to their contribution to variation in the columns of X. This is achieved by selecting
principal components from a matrix of forecasts of y.

We use the following measures of supervision of CF-PC in comparison with CI-PC.

Definition 2. (Absolute Supervision). Absolute supervision is the difference of the sums of squared errors (SSE)
of CI-PC and CF-PC:

sabs(X, y, kCI, kCF) := ||y− ŷCI-PC||2 − ||y− ŷCF-PC||2 = y′(SkCF S′kCF
− RkCI R

′
kCI

)y. (32)

Definition 3. (Relative Supervision). Relative supervision is the ratio of the sums of squared errors of CI-PC
over CF-PC:

srel(X, y, kCI, kCF) :=
||y− ŷCI-PC||2
||y− ŷCF-PC||2

=
y′(IT − RkCI R

′
kCI

)y

y′(IT − SkCF S′kCF
)y

. (33)

Remark 4. When kCI = kCF = N, there is no room for supervision

sabs(X, y, N, N) = y′(SS′ − RR′)y = y′(IT − IT)y = 0 (34)

because SS′ = RR′ = IT . Relative supervision is defined only for kCF < N.

For the sake of simplifying the notation and presentation, we consider the same number of factors
in CI and CF factor models with kCI = kCF = k for the rest of the paper.
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Remark 5. Sk is a block of a basis change matrix that in the expression y′Sk returns the first k coordinates of y
with respect to the new basis. This new basis is the one with respect to which the mapping ŶŶ′ = XBBX′ =
SΘΘ′S′ becomes diagonal, with singular values in descending order such that the first k columns of S correspond
to the k largest singular values. Therefore, y′SkS′ky is the sum of the squares of these coordinates. Broadly
speaking, the Sk are the k largest components of y in the sense of Ŷ and its construction from the single regression
coefficients. Thus, y′SkS′ky is the sum of the squares of the k coefficients in y that contributes most to the
variation in the columns of Ŷ.

Analogously, Rk is a block of a basis change matrix that for y′Rk returns the first k coordinates of y with
respect to the basis that diagonalizes the mapping XX′ = RΣΣ′R′. Therefore, y′RkR′ky is the sum of squares of
the k coordinates of y selected according to their contribution to variation in the columns of X.

We emphasize the factors that explain most of the variation of the columns of X, i.e., the eigenvectors
associated with the largest eigenvalues of XX′, which are selected in the principal component analysis of X, may
have little to do with the factors that explain most of the variation of y, however. The relation between X and
y in the data-generating process can, at worst, completely reverse the order of principal components in
the columns of X and in y. We demonstrate this in the following Example 1.

2.4. Example 1

In this subsection, we give a small example to facilitate intuition for the supervision mechanics
of CF-PC. Example 1 illustrates how the supervision of factor computation defined in Definition 1
operates. In Example 2 in the next section, we add randomness to Example 1 to explore the effect of
stochasticity in a well-understood problem.

Let

X =



0 0 1 0 0
1/2 0 0 0 0

0 1/3 0 0 0
0 0 0 0 1/4
0 0 0 1/5 0
0 0 0 0 0


, (35)

with T = 6 and N = 5. The singular value decomposition of X = RΣW is

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1





1 0 0 0 0
0 1

2 0 0 0
0 0 1

3 0 0
0 0 0 1

4 0
0 0 0 0 1

5
0 0 0 0 0





0 1 0 0 0
0 0 1 0 0
1 0 0 0 0
0 0 0 0 1
0 0 0 1 0


. (36)

Let
y = (1, 2, 3, 4, 5, 0)′. (37)

Then, the diagonal matrix B that contains the coefficients of y w.r.t. each column of X is

B = diag(4, 9, 1, 25, 16), (38)

and

Ŷ := XB =



0 0 1 0 0
2 0 0 0 0
0 3 0 0 0
0 0 0 0 4
0 0 0 5 0
0 0 0 0 0


. (39)
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The singular value decomposition of Ŷ = XB = SΘV is

0 0 0 0 1 0
0 0 0 1 0 0
0 0 1 0 0 0
0 1 0 0 0 0
1 0 0 0 0 0
0 0 0 0 0 1





5 0 0 0 0
0 4 0 0 0
0 0 3 0 0
0 0 0 2 0
0 0 0 0 1
0 0 0 0 0





0 0 0 1 0
0 0 1 0 0
0 0 0 0 1
1 0 0 0 0
0 1 0 0 0


. (40)

We set kCI = kCF = k and compare CI-PC and CF-PC with the same number of principal
components. Recall from (23) that FCI = RΣk and from (28) that FCF = SΘk. The absolute supervision
and relative supervision, defined in (32) and (33), are computed for each k :

sabs(X, y, kCI, kCF) srel(X, y, kCI, kCF)

k = 1 24 1.8
k = 2 36 3.6
k = 3 36 8.2
k = 4 24 25.0
k = 5 0 N/A

See Appendix A for the calculation. The absolute supervision is all positive and the relative supervision
is larger than 1 for all k < N.

As noted in Remarks 1 and 5, the relation between X and y is crucial. In this example,
the magnitude of the components in y is reversed from the order in X. For X, the ordering of
the columns of X with respect to the largest eigenvalues of XX′ is {3, 1, 2, 5, 4}. For y, the ordering
of the columns of X with respect to the largest eigenvalues of ŶŶ′ is {4, 5, 2, 1, 3}. For example,
consider the case k = 2, i.e., we choose two out of five factors in the principal component analysis.
CI-PC, the analysis of X, will pick the columns 3 and 1 of X, that is, the vectors (1, 0, 0, 0, 0, 0)′ and
(0, 1/2, 0, 0, 0, 0)′. These correspond to the two largest singular values 1 and 1/2 of X. CF-PC,
the analysis of Ŷ, will pick columns 4 and 5 of X, that is, the vectors (0, 0, 0, 0, 1/5, 0)′ and
(0, 0, 0, 1/4, 0, 0)′. These correspond to the two largest singular values 5 and 4 of Ŷ. The regression
coefficients in B = diag(4, 9, 1, 25, 16) de-emphasize columns 3 and 1 of X and emphasize columns 4
and 5 of X.

3. Monte Carlo

There are several simplifications in the construction of Example 1, which we relax by the
following extensions:

(a) Adding randomness makes the estimation of the regression coefficients in B a statistical
problem. The sampling errors influence the selection of the components of Ŷ. (b) Adding correlation
among regressors (columns of X) introduces correlation among individual forecasts (columns of
Ŷ), increasing the effect of sampling error in the selection of the components of Ŷ. (c) Increasing N
to realistic magnitudes, in particular in the presence of highly correlated regressors, will increase
estimation error in the principal components due to collinearity.

We address the first extension (a) in Example 2. All three extensions (a), (b), (c) are addressed in
Example 3 of Section 3.2.

3.1. Example 2

Consider adding some noise to X, y in Example 1. Let v be a T×N matrix of independent random
numbers, each entry distributed as N(0, σ2

v ), and u be a vector of independent random numbers,
each distributed as N(0, σ2

u). In this example, the new regressor matrix X is the sum of X in Example 1
and the noise term v, and the new y is the sum of y in Example 1 and the noise term u. For simplicity,
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we set σv = σu in the simulations and let both range from 0.01 to 3. This covers a substantial range of
randomness given the magnitude of the numbers in X and y. For each scenario of σv = σu, we generate
1000 random matrices v and random vectors u and calculate the Monte Carlo average of the sums of
squared errors (SSE).

Figure 1 plots the Monte Carlo average of the SSEs for selection of k = 1 to k = 4 components.
For standard deviations σv = σu close to zero, the sum of squared errors are as calculated in Example 1.
As the noise increases, the advantage of CF over CI decreases but remains substantial, in particular for
smaller numbers of principal components. For k = 5 estimated components (not shown), the SSEs of
CI-PC and CF-PC coincide because k = N.
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Figure 1. For Example 2. Monte Carlo averages of the sum of squared errors (SSE) against a grid of
standard deviations σu = σv ranging from 0.01 to 3 in factor and forecast equations, for a selection
of k = 1 to k = 4 components. When the standard deviation is close to zero, the SSE are close to the
ones reported in Example 1. With increasing noise, the advantage of CF over CI decreases but remains
substantial, in particular for few components. For k = 5 = N (not shown), the SSE of CI-PC and CF-PC
coincide, as shown in Remark 4.

3.2. Example 3

We consider the data-generating process (DGP)

X = FΛ′ + v, (41)

y = Fα + u, (42)

where y is the T× 1 vector of observations, F is a T× r matrix of factors, Λ is an N × r matrix of factor
loadings, α is an r× 1 parameter vector, v is a T× N random matrix, and u is a T× 1 vector of random
errors. We set T = 200, N = 50 and consider r = 3 data-generating factors.

Note that, under this DGP, the CI-PC model in Equations (6) and (7) is correctly specified if the
correct number of factors is identified, i.e., kCI = r. Even under this DGP, however, an insufficient
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number of factors, kCI < r, can still result in an advantage of the CF-PC model over the CI-PC model.
We will explore this question in this section.

Factors and persistence: For each run in the simulation, we generate the r factors in F as
independent AR(1) processes with zero mean and a normally distributed error with mean zero
and variance one:

Ft,i = φFt−1,i + εt,i, t = 2, . . . , T, i = 1, . . . , r. (43)

We consider a grid of 19 different AR(1) coefficients φ, equidistant between 0 and 0.90. We consider
r = 3 data-generating factors and k ∈ {1, 2, 3, 4} estimated factors.

Contemporaneous factor correlation: Given a correlation coefficient ρ for adjacent regressors,
the N× r matrix Λ of factor loadings is obtained from the first r columns of an upper triangular matrix
from a Cholesky decomposition of

1 ρ ρ2 · · · ρN−1

ρ 1 ρ · · · ρN−2

ρ2 ρ 1 · · · ρN−3

...
...

...
. . .

...
ρN−1 ρN−2 ρN−3 · · · 1

 . (44)

We consider a grid of 19 different values for ρ, equidistant between the points −0.998 and 0.998. In this
setup, the 10th value is very close to ρ = 0. Then, the covariance matrix of the regressors is given by

EX′X = E[(ΛF′ + v′)(FΛ′ + v)] = ΩF + Ωv, (45)

where ΩF = ΛΛ′ and Ωv = Ev′v is given by the identity matrix in our simulations. The relation
EF′F = I is due to the independence of the factors, but may be subject to substantial finite sample
error, in particular for φ close to one, for well-known reasons.

Relation of X and y: The r× 1 parameter vector α is drawn randomly from a standard normal
distribution for each run in the simulation. This allows α to randomly shuffle which factors are
important for y.

Noise level: We set σu = σv and let it range between 0.1 and 3 in steps of 0.1. We add the case of
0.01 that essentially corresponds to a deterministic factor model.

For a given number r = 3 of data-generating factors, the simulation setup varies along the
dimensions φ (19 points), k (4 points), ρ (19 points), σu = σv (31 points). For every single scenario,
we run 1000 simulations and calculate the SSEs of CI-PC and CF-PC, and the relative supervision
srel(X, y, k, k). Then, we take the Monte Carlo average of the SSEs and srel(X, y, k, k) over the
1000 simulations.7

The Monte Carlo results are presented in Figures 2–4. Each figure contains four panels that plot
the situation for k = 1, 2, 3, 4 estimated number of factors. The main findings from the figures can be
summarized as follows:

1. Figure 2: If the number of estimated factors k is below the true number r = 3, as shown in top
panels, the supervision becomes smaller with increasing noise. If the correct number of factors or

7 In relation to the empirical application using the yield data in Section 5, we could have calibrated the simulation design to
make the Monte Carlo more realistic for the empirical application in Section 5. Nevertheless, our Monte Carlo design covers
wide ranges of the parameter values for the noise levels, correlation structures (ρ and φ) in the yield data. Figure 2 shows
that the supervision is smaller with larger noise levels, which may be rather obvious intuitively. Figure 4 shows that the
advantage of supervision when the factors are persistence, which depends on the number of factors k relative to the true
number of factors r. Particularly interesting is Figure 3 which shows that the advantage of supervision is smaller when the
contemporaneous correlation ρ between predictors is larger, which may be relevant for the yield data because the yields
with different maturities may be moderately contemporaneously correlated. We thank a referee for pointing this out.
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more are estimated (k ≥ r), as in bottom panels, the advantage of supervision increases with the
noise level σu = σv, Even in this case when the CI-PC is the correct model (k ≥ r), supervision
becomes larger as the noise increases.

2. Figure 3: The advantage of supervision is greatest when the contemporaneous correlation ρ

between predictors is minimal. For almost perfect correlation, the advantage of supervision
disappears. This is true regardless of whether the correct number of factors is estimated or not.
Intuitively, for near-perfect factor correlation, the difference between those factors that explain
variation in the columns of X and those that explain variation in Ŷ vanishes, and so supervision
becomes meaningless.

3. Figure 4: If the correct number of factors or more are estimated (k ≥ r), the advantage
of supervision decreases with factor persistence φ. High persistence induces spurious
contemporaneous correlation, and in this sense the situation is related to the result in No. 2. If the
number of estimated factors is below the true number of factors (k < r), however, the advantage
of supervision increases with factor persistence.
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Figure 2. Supervision dependent on noise. Relative supervision against a grid of standard deviations
in factor and forecast equation σu = σv, ranging from 0.01 to 3, while the factor serial correlation is
fixed at φ = 0 and the contemporaneous factor correlation is ρ = 0.
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Figure 3. Supervision dependent on contemporaneous factor correlation ρ. Relative supervision against
a grid of contemporaneous correlation coefficients ρ ranging from −0.998 to 0.998, while the factor
serial correlation φ is fixed at zero and the noise level is fixed at σu = σv = 1.
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Figure 4. Supervision dependent on factor persistence φ. Relative supervision against a grid of
AR(1) coefficients φ ranging from 0 to 0.9, while the noise level is fixed at σu = σv = 1 and the
contemporaneous regressor correlation is ρ = 0.
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4. Supervising Nelson–Siegel Factors

In the previous section, we have examined the factor model based on principal components.
When the predictors are points on the yield curve, an alternative factor model can be constructed
based on Nelson–Siegel (NS) components. We introduce two new factor models, CF-NS and CI-NS,
by replacing principal components with NS components in CF-PC and CI-PC models. Like CI-PC,
CI-NS is unsupervised. Like CF-PC, CF-NS is supervised for the particular forecast target of interest.

4.1. Nelson–Siegel Components of the Yield Curve

As an alternative to using principal components in the factor model, one can apply the modified
Nelson–Siegel (NS) three-factor framework of Diebold and Li (2006) to factorize the yield curve.
Nelson and Siegel (1987) propose Laguerre polynomials Ln(z) = ez

n!
dn

dzn (zne−z) with weight function
w(z) = e−z to model the instantaneous nominal forward rate (forward rate curve)

ft(τ) = β1 + (β2 + β3)
(

L0(z)e−θτ
)
− β3

(
L1(z)e−θτ

)
(46)

= β1 + (β2 + β3)e−θτ − β3(1− θτ)e−θτ

= β1 + β2e−θτ + β3θτe−θτ ,

where z = θτ, L0(z) = 1, L1(z) = 1− θτ, and β j ∈ R for all j. The decay parameter θ may change over
time, but we fixed θ = 0.0609 for all t following Diebold and Li (2006).8

Then, the continuously compounded zero-coupon nominal yield xt(τ) of the bond with maturity
τ months at time t is

xt(τ) =
1
τ

∫ τ

0
ft(s)ds = β1 + β2

(
1− e−θτ

θτ

)
+ β3

(
1− e−θτ

θτ
− e−θτ

)
. (47)

Allowing the β j’s to change over time and adding the approximation error vit, we obtain the following
approximate NS factor model for the yield curve for i = 1, . . . , N:

xt(τi) = β1t + β2t

(
1− e−θτi

θτi

)
+ β3t

(
1− e−θτi

θτi
− e−θτi

)
+ vit

=

[
1
(

1− e−θτi

θτi

) (
1− e−θτi

θτi
− e−θτi

)] β1t
β2t
β3t

+ vit

= λ′i ft + vit, (48)

where ft = (β1t, β2t, β3t)
′ are the three NS factors and λ′i =

[
1
(

1−e−θτi
θτi

) (
1−e−θτi

θτi
− e−θτi

)]
are

the factor loadings. Because xt(∞) = β1t, xt(∞)− xt(0) = −β2t, and [xt(0) + xt(∞)]− 2xt(τm) with
τm = 24 (say) is proportional to −β3t, the three NS factors (β1t, β2t, β3t)

′ are associated with level,
slope, and curvature of the yield curve.

8 Diebold and Li (2006) show that fixing Nelson–Siegel decay parameter at θ = 0.0609 maximizes the curvature loading at the
two-year bond maturity and allows better identifications of the three NS factors. They also show that allowing the θ to be
a free parameter does not improve the forecasting performance. Therefore, following their advice, we fix θ = 0.0609 and
did not estimate it. A small θ (for a slow decaying curve) fits the curve for long maturities better and a large θ (for a fast
decaying curve) fits the curve for short maturities better.
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4.2. CI-NS and CF-NS

4.2.1. NS Components of Predictors X (CI-NS)

We have N predictors of yields xt = (x1t, x2t, . . . , xNt)
′ where xit = xt(τi) denotes the yield to

maturity τi months at time t, (i = 1, 2, . . . , N). Stacking xit for i = 1, 2, . . . , N, (48) can be written as

xt = ΛCI fCI,t + vCI,t, (49)

or
xit = λ′CI,i fCI,t + vCI,it, (50)

where λi denotes the i-th row of

ΛCI =


1 1−e−θτ1

θτ1
( 1−e−θτ1

θτ1
− e−θτ1)

...
...

...
1 1−e−θτN

θτN
( 1−e−θτN

θτN
− e−θτN )

 , (51)

which is the N × 3 matrix of known factor loadings because we fix θ = 0.0609 following Diebold
and Li (2006). The NS factors f̂CI,t = (β̂1t, β̂2t, β̂3t)

′ are estimated from regressing xit on λ′CI,i (over
i = 1, . . . , N) by fitting the yield curve period by period for each t.

Then, we consider a linear forecast equation

yt = (1 f̂ ′CI,t−h)αCI + uCI,t, t = h + 1, . . . , T, (52)

in order to forecast yt+h (such as output growth or inflation). We first estimate α̂CI using the information
up to time T and then form the forecast we call CI-NS by

ŷCI-NS
T+h = (1 f̂ ′CI,T)α̂CI. (53)

This method is comparable to CI-PC with number of factors fixed at k = 3. It differs from CI-PC,
however, in that the three NS factors (β̂1t, β̂2t, β̂3t) have intuitive interpretations as level, slope
and curvature of the yield curve, while the first three principal components may not have a clear
interpretation. In the empirical section, we also consider two alternative CI-NS forecasts by including
only the level factor β̂1t (denoted CI-NS (k = 1)), and only the level and slope factors (β̂1t, β̂2t)

(denoted CI-NS (k = 2)) to see whether the level factor or the combination of level and slope factors
have dominant contribution in forecasting output growth and inflation.

4.2.2. NS Components of Forecasts Ŷ (CF-NS)

While CI-NS solves the large-N dimensionality problem by reducing the N yields to three factors
f̂CI,t = (β̂1t, β̂2t, β̂3t)

′, it computes the factors entirely from yield curve information xt only, without
accounting for the variable yt+h to be forecast. Similar in spirit to CF-PC, here we can improve CI-NS
by supervising the factor computation, which we term as CF-NS.

The CF-NS forecast is based on the NS factors of ŷt+h := (ŷ(1)t+h, ŷ(2)t+h, . . . , ŷ(N)
t+h)

′, a vector of the
N individual forecasts as in (10) and (11),

ŷt+h = ΛCF fCF,t+h + vCF,t+h, (54)
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with ΛCF = ΛCI in (51). Hence, ΛCI = ΛCF = Λ for the NS factor models. Note that, when the NS
factors loadings are normalized to sum up to one, the three CF-NS factors

f̂CF,t+h = Λ′ŷt+h (55)

=
(

1
s1

∑N
i=1 ŷ(i)T+h

1
s2

∑N
i=1

(
1−e−θτi

θτi

)
ŷ(i)T+h

1
s3

∑N
i=1

(
1−e−θτi

θτi
− e−θτi

)
ŷ(i)T+h

)′
are weighted individual forecasts with the three normalized NS loadings, with s1 = N, s2 =

∑N
i=1

(
1−e−θτi

θτi

)
, and s3 = ∑N

i=1

(
1−e−θτi

θτi
− e−θτi

)
. The CF-NS forecast can be obtained from the

forecasting equation

yt+h = f̂ ′CF,t+hαCF + uCF,t+h, (56)

ŷCF-NS
T+h = f̂ ′CF,T+hα̂CF,

which is denoted CF-NS(k = 3). The parameter vector α̂T is estimated using information up to time
T. Using only the first factor or the first two factors, one can obtain the forecasts CF-NS(k = 1) and
CF-NS(k = 2).

Note that, while the CF-PC method can be used for data of many kinds, the CF-NS method we
propose is tailored to forecasting using the yield curve. It uses fixed factor loadings in Λ that are the
NS exponential factor loadings for yield curve modeling, and hence avoids the estimation of factor
loadings. In contrast, CF-PC needs to estimate Λ.

Also note that, by construction, CF-NS(k = 1) is the equally weighted combined forecast
1
N ∑N

i=1 ŷ(i)T+h.

5. Forecasting Output Growth and Inflation

This section presents the empirical analysis where we describe the data, implement forecasting
methods introduced in the previous sections on forecasting output growth and inflation, and analyze
out-of-sample forecasting performances. This allows us to analyze the differences between output
growth and inflation forecasting using the same yield curve information and to compare the strengths
of different methods.

5.1. Data

Let yt+h denote the variable to be forecast (output growth or inflation) using yield information up
to time t, where h denotes the forecast horizon. The predictor vector xt = (xt(τ1), xt(τ2), . . . , xt(τN))

′

contains the information about the yield curve at various maturities: xt(τi) denotes the zero coupon
yield of maturity τi months at time t (i = 1, 2, . . . , N).

Two forecast targets, output growth and inflation, are constructed respectively as monthly growth
rate of Personal Income (PI, seasonally adjusted annual rate) and monthly change in CPI (Consumer
Price Index for all urban consumers: all items, seasonally adjusted) from 1970:01 to 2010:01. PI and
CPI data are obtained from the web site of the Federal Reserve Bank of St. Louis (FRED2).

We apply the following data transformations. For the monthly growth rate of PI, we set yt+h =

1200[(1/h) ln(PIt+h/PIt)] as the forecast target (as used in Ang et al. (2006)). For the consumer price
index (CPI), we set yt+h = 1200[(1/h) ln(CPIt+h/CPIt)] as the forecast target (as used in Stock and
Watson (2007)).9

9 yt+h = 1200[(1/h) ln(CPIt+h/CPIt)− ln(CPIt/CPIt−1)] is used in Bai and Ng (2008).
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Our yield curve data consist of U.S. government bond prices, coupon rates, and coupon structures,
as well as issue and redemption dates from 1970:01 to 2009:12.10 We calculate zero-coupon bond yields
using the unsmoothed Fama and Bliss (1987) approach. We measure bond yields on the second day of
each month. We also apply several data filters designed to enhance data quality and focus attention
on maturities with good liquidity. First, we exclude floating rate bonds, callable bonds and bonds
extended beyond the original redemption date. Second, we exclude outlying bond prices less than
50 or greater than 130 because their price discounts/premium are too high and imply thin trading,
and we exclude yields that differ greatly from yields at nearby maturities. Finally, we use only bonds
with maturity greater than one month and less than fifteen years because other bonds are not actively
traded. Indeed, to simplify our subsequent estimation, using linear interpolation we pool the bond
yields into fixed maturities of 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24,
25, 26, 27, 28, 29, 30, 33, 36, 39, 42, 45, 48, 51, 54, 57, 60, 63, 66, 72, 78, 84, 90, 96, 102, 108, and 120 months,
where a month is defined as 30.4375 days.11

We examine some descriptive statistics (not reported for space) of the two forecast targets and
yield curve level, slope, and curvature (empirical measures), over the full sample from 1970:01 to
2009:12 and the out-of-sample evaluation period from 1995:02 to 2010:01. We observe that both PI
growth and CPI inflation become more moderate and less volatile from around the mid-1980s. This
has become a stylized fact known as the “Great Moderation”. In particular, there is a substantial drop
in persistency of CPI inflation. The volatility and persistency of the yield curve slope and curvature do
not change much. The yield curve level, however, decreases and stabilizes.

In predicting macroeconomic variables using the term structure, yield spreads between yields
with various maturities and the short rate are commonly used in the literature. One possible reason
for this practice is that yield levels are treated as I(1) processes, so yield spreads will likely be I(0).
Similarly, macroeconomic variables are typically assumed to be I(1) and transformed properly into I(0),
so that, in using yield spreads to forecast macro targets, issues such as spurious regression are avoided.
In this paper, however, we use yield levels (not spreads) to predict PI growth and CPI inflation (not
change in inflation), for the following reasons. First, whether yields and inflation are I(1) or I(0) is
still arguable. Stock and Watson (1999, 2012) use yield spreads and treat inflation as I(1), so they
forecast change in inflation. Inoue and Kilian (2008), however, treat inflation as I(0). Since our target is
forecasting inflation, not change in inflation, we will treat CPI inflation as well as yields as I(0) in our
empirical analysis. Second, we emphasize real-time, out-of-sample forecasting performance more than
in-sample concerns. As long as out-of-sample forecast performance is unaltered or even improved,
we think the choice of treating the variables as I(1) or I(0) variables does not matter much.12 Third,
using yield levels will allow us to provide clearer interpretations for questions such as what part of the
yield curve contributes the most towards predicting PI growth or CPI inflation, and how the different
parts of the yield curve interact in the prediction, etc.

5.2. Out-of-Sample Forecasting

All forecasting models are estimated in a rolling window scheme with window size R =

300 months ending at month t (starting at t − R + 1). In the evaluation period from t = 1995:02

10 As a robust check, we apply our method to the original yield data of Diebold and Li (2006) and also to the sub-samples in
our data set. The results are essentially the same as those summarized at the end of Section 5.

11 It may be interesting to explore whether different maturity yields might have different effects on the forecast outcome.
However, the present paper is focused on the comparison between CF and CI, rather than a detailed CI-only analysis, e.g.,
to find the best maturity yield for the forecast outcome. Nevertheless, our CI-NS model has reflected such effects as the
three NS factors (level, slope, and curvature) are different combinations of bond maturities as shown in Equation (55).
The different coefficients on the NS factors suggest that different bond maturities have different effects on the forecast
outcome, as Gogas et al. (2015) has found.

12 While not reported for space, we tried forecasting change in inflation and found forecasting inflation directly using all yield
levels improves out-of-sample performances of most forecasting methods by a large margin.



Econometrics 2018, 6, 40 19 of 27

to t = 2010:01 (180 months), the first rolling sample to estimate models begins at 1970:02 and ends
at 1995:01, the second rolling sample is for 1970:03–1995:02, the third 1970:04–1995:03, and so on.
The out-of-sample evaluation period is from 1995:02 to 2010:01 (hence out-of-sample size P = 180).13

In all NS-related methods (CI and CF), we set θ, the parameter that governs the exponential decay rate,
at 0.0609 for reasons discussed in Diebold and Li (2006).14 We compare h-months-ahead out-of-sample
forecasting results of those methods introduced so far for h = 1, 3, 6, 12, 18, 24, 30, 36 months ahead.

Figure 5 illustrates what economic contents these factors in CF-PC may bear. It shows that the
first PC assigns about equal weights to all N = 50 individual forecasts that use yields at various
maturities (in months) so that it may be interpreted as the factor that captures the level of the yield
curve; the second PC assigns roughly increasing weights so that it may be interpreted as the factor
capturing the slope; and the third PC assigns roughly first decreasing then increasing weights, so that
it may be interpreted as factor capturing curvature.

Tables 1 and 2 present the root mean squared forecast errors (RMSFE) of PC methods with
k = 1, 2, 3, 4, 5, and of NS methods with k = 1, 2, 3, for PI growth (Table 1A) and for CPI inflation
(Table 2A) forecasts using all 50 yield levels.15 In Panel A of Tables 1 and 2, we report the Root Mean
Squared Forecast Errors (RMSFE, which is the squared root of the MSFE of a model).16 In Panel
B of Tables 1 and 2, we report Relative Supervision of CI-PC vs. CF-PC and Relative Supervision
of CI-NS vs. CF-NS, according to Definition 3, which is the ratio of the MSFEs of two CI and CF
models. The relative supervision in Panel B can be obtained from RMSFEs in Panel A. For simplicity
of presentation in Panel B, we present the relative supervision only with the same number of factors
(kCI = kCF and kNS = kNS).
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Figure 5. Cont.

13 As a robust check, we have also tried with different sample splits for the estimation and prediction periods, i.e., the number
of in-sample regression observations and the out-of-sample evaluation observations. We find that the results are similar.

14 For different values of θ, the performances of CI-NS and CF-NS change only marginally.
15 While we report the results for k = 4, 5 for CF-PC, we do not report for k = 4, 5 for CF-NS. Svennsson (1995) and

Christensen et al. (2009) (CDR 2009) extend the three factor NS model to four or five factor NS models. CDR’s dynamic
generalized NS model has five factors with one level factor, two slope factors and two curvature factors. The Svensson
and CDR extensions are useful to fit the yield curve at longer maturities (>10 years). Because we only used yields with
maturities ≤10 years, the second curvature factor loadings will look similar to the slope factor loadings and we will have
collinearity problem. CDR use yields up to 30 years. The 4th and 5th factors have no clear economic intrepretations and are
hard to explain. For these reasons, we report results for k = 1, 2, 3 for the CF-NS model.

16 For the statistical significance of the loss-difference (see Definition 2), the asymptotic p-values of the Diebold–Mariano
statistics are all very close to zero especially for larger values of the forecast horizon h.



Econometrics 2018, 6, 40 20 of 27

0 20 40 60 80 100 120
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

Maturity (months)

F
a

c
to

r 
L

o
a

d
in

g
s

Normalized NS Factor Loadings

Figure 5. Factor loadings of principal components and Nelson–Siegel factors. The first two panels:
factor loadings of the first three principal components in CF-PC (k = 3) averaged over the out-of-sample
period (02/1995–01/2010), for both PI growth (first panel) and CPI inflation (second panel). The
abscissa refers to the 50 individual forecasts that use yields at the 50 maturities (in months). The
loading of the first principal component has the circle-symbol, the second the cross-symbol, and
the third the square-symbol. The third panel: three normalized Nelson–Siegel (NS) exponential
loadings in CF-NS that correspond to the three NS factors, respectively. The abscissa refers to the
50 individual forecasts that use yields at the 50 maturities (in months). The circled line denotes the first
normalized NS factor loading 1/N, the crossed line denotes the second normalized NS factor loading
(1− e−θτ)/(θτ), divided by the sum, and the squared line denotes the third normalized NS factor
loading (1− e−θτ)/(θτ)− e−θτ , divided by the sum, where τ denotes maturity and θ is fixed at 0.0609.

We find that, in general, supervised factorization performs better. The CF schemes (CF-PC and
CF-NS) perform substantially better than the CI schemes (CI-PC and CI-NS). Within the same CF or CI
schemes, two alternative factorizations work similarly: CF-PC and CF-NS are about the same, and
CI-PC and CI-NS are about the same. We summarize our findings from Figure 5 and Tables 1 and 2
as follows.

1. Supervision is similar for CF-PC and CF-NS. The factor loadings for CF-NS and for CF-PC are similar
as shown in Figure 5. Panel (c) of the figure plots three normalized NS exponential loadings
in CF-NS that correspond respectively to the three NS factors. Note that the factor loadings in
CF-NS are pre-specified while those in CF-PC are estimated from the N individual forecasts.
Nevertheless, their shapes in panel (a) look very similar to those of the CF-PC loadings in panels
(a) and (b) (apart from the signs). Accordingly, out-of-sample forecasting performance of CF-PC
and CF-NS are very similar as shown in Panel A of Tables 1 and 2.

2. Supervision is substantial. Supervised factor models perform better than unsupervised factor
models in forecasting. Both CF-PC and CF-NS are much better than CI-PC and CI-NS models as
shown in Panel B of Tables 1 and 2.

3. Supervision is generally stronger for a longer forecast horizon h. The advantage of CF-PC over CI-PC
generally increases with forecast horizon h, as shown in Panel B of Tables 1 and 2.17

17 We conducted a Monte Carlo (not reported), which are consistent with the empirical results that the supervision is stronger
for a longer forecast horizon h.
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4. We often get the best supervised predictions with a single factor (k = 1) with the CF-factor models.18

Since CF-NS(k = 1) is the equally weighted combined forecast as noted in Section 4.2.2, this is
another case of the forecast combination puzzle discussed in Remark 3 that the equal-weighted
forecast combination is hard to beat. Since CF-PC(k = 1) is numerically identical to CF-NS(k = 1)
as shown in Figure 5, CF-PC(k = 1) is also effectively equally weighted forecast averaging.19

Table 1. Out-of-sample forecasting of personal income growth.

Panel A. Root Mean Squared Forecast Errors

h = 1 h = 3 h = 6 h = 12 h = 18 h = 24 h = 30 h = 36

CI-PC(k = 1) 5.64 3.56 2.99 2.78 2.61 2.50 2.46 2.42
CI-PC(k = 2) 5.67 3.64 3.12 3.00 2.81 2.66 2.55 2.45
CI-PC(k = 3) 5.71 3.69 3.19 3.08 2.92 2.77 2.63 2.49
CI-PC(k = 4) 5.72 3.76 3.23 3.12 2.93 2.77 2.58 2.36
CI-PC(k = 5) 5.74 3.78 3.26 3.15 2.98 2.81 2.61 2.38
CI-NS(k = 1) 5.84 3.84 3.28 3.06 2.86 2.69 2.53 2.41
CI-NS(k = 2) 5.71 3.71 3.20 3.11 2.93 2.77 2.62 2.48
CI-NS(k = 3) 5.72 3.69 3.19 3.09 2.93 2.78 2.63 2.47
CF-PC(k = 1) 5.60 3.45 2.83 2.54 2.24 1.95 1.75 1.58
CF-PC(k = 2) 5.56 3.43 2.83 2.62 2.31 1.93 1.76 1.61
CF-PC(k = 3) 5.60 3.44 2.94 2.78 2.47 2.02 1.65 1.48
CF-PC(k = 4) 5.63 3.60 3.08 2.83 2.39 1.97 1.67 1.45
CF-PC(k = 5) 5.63 3.60 3.05 2.87 2.41 2.05 1.69 1.51
CF-NS(k = 1) 5.60 3.45 2.83 2.54 2.24 1.95 1.75 1.58
CF-NS(k = 2) 5.56 3.43 2.84 2.62 2.30 1.95 1.76 1.62
CF-NS(k = 3) 5.59 3.44 2.94 2.79 2.47 2.02 1.64 1.48

18 Figlewski and Urich (1983) talked about various constrained models in forming a combination of forecasts and examined
when we need more than the simple averaging combined forecast. They discussed a sufficient condition when the simple
average of forecasts is the optimal forecast combination: “Under the most extensive set of constraints, forecast errors are
assumed to have zero mean and to be independent and identically distributed. In this case the optimal forecast is the simple
average.” This corresponds to CF-PC(k = 1) and CF-NS(k = 1) when the first factor (k = 1) in PC or NS is sufficient for the
CF factor model. It is clearly the case in CF-NS as shown in Equation (55). One can show that the first PC (corresponding to
the largest singular value) would also be the simple average. Hence, in terms of the CF-factor model, the forecast combination
puzzle amounts to the fact that we often do not need the second PC factor. Interestingly, (Figlewski and Urich 1983, p. 696)
continued to note the cases when the simple average is not optimal: “However, the hypothesis of independence among
forecast errors is overwhelmingly rejected for our data-errors are highly positively correlated with one another.” On the other
hand, they also noted other reasons why the simple average may still be preferred, as they wrote, “Because the estimated
error structure was not completely stable over time, the models which adjusted for correlation did not achieve lower mean
squared forecast error than the simple average in out-of-sample tests. Even so, we find...that forecasts from these models,
while less accurate than the simple mean, do contain information which is not fully reflected in prices in the money market,
and is therefore economically valuable.” We thank a referee for letting us know on this from Figlewski and Urich (1983).

19 While the simple equally weighted forecast combination can be implemented without the use of PCA or without making
reference to the NS model, it is important to note that the simple average combined forecast indeed corresponds the first
CF-PC factor (CF-PC(k = 1)) or the first CF-NS factor (CF-NS(k = 1)). In view of Figlewski and Urich (1983), it will be useful
to know when the first factor (k = 1) is enough so that the simple average is good or when the higher order factors (k > 1)
may be necessary as they contain more information in addition to the first CF-factor. This is important in understanding the
forecast combination puzzle. The forecast combination puzzle is about whether to include only the first CF factor or more.
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Table 1. Cont.

Panel B. Relative Supervision srel(X, y, kCI, kCF)

h = 1 h = 3 h = 6 h = 12 h = 18 h = 24 h = 30 h = 36

CI-PC(k = 1) vs. CF-PC(k = 1) 1.01 1.06 1.12 1.20 1.36 1.64 1.98 2.35
CI-PC(k = 2) vs. CF-PC(k = 2) 1.04 1.13 1.22 1.31 1.48 1.90 2.10 2.32
CI-PC(k = 3) vs. CF-PC(k = 3) 1.04 1.15 1.18 1.23 1.40 1.88 2.54 2.83
CI-PC(k = 4) vs. CF-PC(k = 4) 1.03 1.09 1.10 1.22 1.50 1.98 2.39 2.65
CI-PC(k = 5) vs. CF-PC(k = 5) 1.04 1.10 1.14 1.20 1.53 1.88 2.39 2.48
CI-NS(k = 1) vs. CF-NS(k = 1) 1.09 1.24 1.34 1.45 1.63 1.90 2.09 2.33
CI-NS(k = 2) vs. CF-NS(k = 2) 1.05 1.17 1.27 1.41 1.62 2.02 2.22 2.34
CI-NS(k = 3) vs. CF-NS(k = 3) 1.05 1.15 1.18 1.23 1.41 1.89 2.57 2.79

The forecast target is Output Growth yt+h = 1200× log(PIt+h/PIt)÷ h. Out-of-sample forecasting period
is 02/1995–01/2010. In Panel A, reported are the Root Mean Squared Forecast Errors (which is the squared
root of the MSFE of a model). In Panel B, reported are Relative Supervision of CI-PC vs. CF-PC and Relative
Supervision of CI-NS vs. CF-NS, according to Definition 3, which is the ratio of the MSFEs of the two models.
For simplicity of presentation, we present the relative supervision in Panel B only with the same number of
factors (kCI = kCF = k and kNS = kNS = k).

Table 2. Out-of-sample forecasting of CPI inflation.

Panel A. Root Mean Squared Forecast Errors

h = 1 h = 3 h = 6 h = 12 h = 18 h = 24 h = 30 h = 36

CI-PC(k = 1) 3.77 2.86 2.25 1.92 1.94 2.16 2.47 2.75
CI-PC(k = 2) 4.21 3.45 2.96 2.76 2.77 2.84 2.96 3.08
CI-PC(k = 3) 4.24 3.50 3.00 2.82 2.88 2.98 3.10 3.19
CI-PC(k = 4) 4.31 3.57 3.05 2.87 2.91 3.00 3.12 3.18
CI-PC(k = 5) 4.30 3.58 3.07 2.93 3.00 3.10 3.20 3.23
CI-NS(k = 1) 3.95 3.12 2.62 2.48 2.60 2.79 2.97 3.10
CI-NS(k = 2) 4.22 3.46 2.98 2.82 2.88 2.98 3.09 3.18
CI-NS(k = 3) 4.24 3.50 3.01 2.83 2.89 2.99 3.11 3.20
CF-PC(k = 1) 3.65 2.67 1.91 1.31 1.01 0.90 0.96 1.08
CF-PC(k = 2) 3.66 2.70 1.93 1.35 1.10 1.05 1.11 1.19
CF-PC(k = 3) 3.68 2.72 1.97 1.47 1.29 1.19 1.19 1.20
CF-PC(k = 4) 3.74 2.80 2.01 1.47 1.22 1.14 1.15 1.17
CF-PC(k = 5) 3.74 2.79 1.98 1.45 1.20 1.12 1.18 1.20
CF-NS(k = 1) 3.65 2.68 1.91 1.31 1.02 0.90 0.96 1.08
CF-NS(k = 2) 3.66 2.70 1.93 1.35 1.10 1.05 1.10 1.19
CF-NS(k = 3) 3.68 2.73 1.97 1.47 1.29 1.20 1.19 1.20

Panel B. Relative Supervision srel(X, y, kCI, kCF)

h = 1 h = 3 h = 6 h = 12 h = 18 h = 24 h = 30 h = 36

CI-PC(k = 1) vs. CF-PC(k = 1) 1.07 1.15 1.39 2.15 3.69 5.76 6.62 6.48
CI-PC(k = 2) vs. CF-PC(k = 2) 1.32 1.63 2.35 4.18 6.34 7.32 7.11 6.70
CI-PC(k = 3) vs. CF-PC(k = 3) 1.33 1.66 2.32 3.68 4.98 6.27 6.79 7.07
CI-PC(k = 4) vs. CF-PC(k = 4) 1.33 1.63 2.30 3.81 5.69 6.93 7.36 7.39
CI-PC(k = 5) vs. CF-PC(k = 5) 1.32 1.65 2.40 4.08 6.25 7.66 7.35 7.25
CI-NS(k = 1) vs. CF-NS(k = 1) 1.17 1.36 1.88 3.58 6.50 9.61 9.57 8.24
CI-NS(k = 2) vs. CF-NS(k = 2) 1.33 1.64 2.38 4.36 6.85 8.05 7.89 7.14
CI-NS(k = 3) vs. CF-NS(k = 3) 1.33 1.64 2.33 3.71 5.02 6.21 6.83 7.11

The forecast target is Inflation yt+h = 1200× log(CPIt+h/CPIt) ÷ h. Out-of-sample forecasting period is
02/1995–01/2010. In Panel A, reported are the Root Mean Squared Forecast Errors (which is the squared
root of the MSFE of a model). In Panel B, reported are Relative Supervision of CI-PC vs. CF-PC and Relative
Supervision of CI-NS vs. CF-NS, according to Definition 3, which is the ratio of the MSFEs of the two models.
For simplicity of presentation, we present the relative supervision in Panel B only with the same number of
factors (kCI = kCF = k and kNS = kNS = k).
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6. Conclusions

For forecasting in the presence of many predictors, it is often useful to reduce the dimension
by a factor model (in a dense case) or by variable selection (in a sparse case). In this paper,
we consider a factor model. In particular, we examine the supervised principal component analysis of
Chan et al. (1999). The model is called CF-PC, as the principal components of many forecasts are the
combined forecasts.

The CF-PC extracts factors from the space spanned by forecasts rather than from the space
spanned by predictors. This factorization of the forecasts improves forecast performance compared to
factor analysis of the predictors. We extend the CF-PC to CF-NS, which uses the NS factor model in
place of the PC factor model, for the application where the predictors are the yield curve. While the
yield curve is a functional data consisting of many different maturity points on a curve at each time,
the NS factors can parsimoniously capture the shapes of the curve.

We have applied the CF-PC and CF-NS models in forecasting output growth and inflation using a
large number of bond yields to examine if the supervised factorization improves forecast performance.
In general, we have found that CF-PC and CF-NS perform substantially better than CI-PC and CI-NS,
that the advantage of supervised factor models is even larger for longer forecast horizons, and that the
two alternative factor models based on PC and NS factors are similar and perform similarly.
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Appendix A. Calculation of Absolute and Relative Supervision in Example 1

Using R and Σk obtained from the SVD for CI in (36), and S and Θk obtained from the SVD for CF
in (40), we calculate the absolute supervision and relative supervision for each k. The CI factors are
FCI = RΣk from (23), and the CF factors FCF = SΘk from (28).

For k = 1,

FCI =



1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1





1
0
0
0
0
0


=



1
0
0
0
0
0


, FCF =



0 0 0 0 1 0
0 0 0 1 0 0
0 0 1 0 0 0
0 1 0 0 0 0
1 0 0 0 0 0
0 0 0 0 0 1





5
0
0
0
0
0


=



0
0
0
0
5
0


, (A1)

ŷCI-PC = R1R′1y = (1, 0, 0, 0, 0, 0)′, (A2)

ŷCF-PC = S1S′1y = (0, 0, 0, 0, 5, 0)′, (A3)

||y− ŷCI-PC||2 = ||(1, 2, 3, 4, 5, 0)′ − (1, 0, 0, 0, 0, 0)′||2 = 54, (A4)

||y− ŷCF-PC||2 = ||(1, 2, 3, 4, 5, 0)′ − (0, 0, 0, 0, 5, 0)′||2 = 30. (A5)

Hence, sabs(X, y, 1, 1) = ||y− ŷCI-PC||2 − ||y− ŷCF-PC||2 = 54− 30 = 24, and srel(X, y, 1, 1) = ||y−
ŷCI-PC||2/||y− ŷCF-PC||2 = 54/30 = 1.8.
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For k = 2,

FCI =



1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1





1 0
0 1

2
0 0
0 0
0 0
0 0


=



1 0
0 1

2
0 0
0 0
0 0
0 0


, FCF =



0 0 0 0 1 0
0 0 0 1 0 0
0 0 1 0 0 0
0 1 0 0 0 0
1 0 0 0 0 0
0 0 0 0 0 1





5 0
0 4
0 0
0 0
0 0
0 0


=



0 0
0 0
0 0
0 4
5 0
0 0


, (A6)

ŷCI-PC = R2R′2y = (1, 2, 0, 0, 0, 0)′, (A7)

ŷCF-PC = S2S′2y = (0, 0, 0, 4, 5, 0)′, (A8)

||y− ŷCI-PC||2 = ||(1, 2, 3, 4, 5, 0)′ − (1, 2, 0, 0, 0, 0)′||2 = 50, (A9)

||y− ŷCF-PC||2 = ||(1, 2, 3, 4, 5, 0)′ − (0, 0, 0, 4, 5, 0)′||2 = 14. (A10)

Hence, sabs(X, y, 2, 2) = ||y− ŷCI-PC||2 − ||y− ŷCF-PC||2 = 50− 14 = 36, and srel(X, y, 2, 2) = ||y−
ŷCI-PC||2/||y− ŷCF-PC||2 = 50/14 = 3.6.

For k = 3,

FCI =



1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1





1 0 0
0 1

2 0
0 0 1

3
0 0 0
0 0 0
0 0 0


=



1 0 0
0 1

2 0
0 0 1

3
0 0 0
0 0 0
0 0 0


, FCF =



0 0 0 0 1 0
0 0 0 1 0 0
0 0 1 0 0 0
0 1 0 0 0 0
1 0 0 0 0 0
0 0 0 0 0 1





5 0 0
0 4 0
0 0 3
0 0 0
0 0 0
0 0 0


=



0 0 0
0 0 0
0 0 3
0 4 0
5 0 0
0 0 0


, (A11)

ŷCI-PC = R3R′3y = (1, 2, 3, 0, 0, 0)′, (A12)

ŷCF-PC = S3S′3y = (0, 0, 3, 4, 5, 0)′, (A13)

||y− ŷCI-PC||2 = ||(1, 2, 3, 4, 5, 0)′ − (1, 2, 3, 0, 0, 0)′||2 = 41, (A14)

||y− ŷCF-PC||2 = ||(1, 2, 3, 4, 5, 0)′ − (0, 0, 3, 4, 5, 0)′||2 = 5. (A15)

Hence, sabs(X, y, 3, 3) = ||y − ŷCI-PC||2 − ||y − ŷCF-PC||2 = 41− 5 = 36, and srel(X, y, 3, 3) = ||y −
ŷCI-PC||2/||y− ŷCF-PC||2 = 41/5 = 8.2.

For k = 4,

FCI =



1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1





1 0 0 0
0 1

2 0 0
0 0 1

3 0
0 0 0 1

4
0 0 0 0
0 0 0 0


=



1 0 0 0
0 1

2 0 0
0 0 1

3 0
0 0 0 1

4
0 0 0 0
0 0 0 0


, FCF =



0 0 0 0 1 0
0 0 0 1 0 0
0 0 1 0 0 0
0 1 0 0 0 0
1 0 0 0 0 0
0 0 0 0 0 1





5 0 0 0
0 4 0 0
0 0 3 0
0 0 0 2
0 0 0 0
0 0 0 0


=



0 0 0 0
0 0 0 2
0 0 3 0
0 4 0 0
5 0 0 0
0 0 0 0


, (A16)

ŷCI-PC = R4R′4y = (1, 2, 3, 4, 0, 0)′, (A17)

ŷCF-PC = S4S′4y = (0, 2, 3, 4, 5, 0)′, (A18)
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||y− ŷCI-PC||2 = ||(1, 2, 3, 4, 5, 0)′ − (1, 2, 3, 4, 0, 0)′||2 = 25, (A19)

||y− ŷCF-PC||2 = ||(1, 2, 3, 4, 5, 0)′ − (0, 2, 3, 4, 5, 0)′||2 = 1. (A20)

Hence, sabs(X, y, 4, 4) = ||y − ŷCI-PC||2 − ||y − ŷCF-PC||2 = 25− 1 = 24, and srel(X, y, 4, 4) = ||y −
ŷCI-PC||2/||y− ŷCF-PC||2 = 25/1 = 25.

For k = 5, sabs(X, y, 5, 5) = y′(SS′ − RR′)y = 0 because

||y− ŷCI-PC||2 = ||(1, 2, 3, 4, 5, 0)′ − (1, 2, 3, 4, 5, 0)′||2 = 0, (A21)

||y− ŷCF-PC||2 = ||(1, 2, 3, 4, 5, 0)′ − (1, 2, 3, 4, 5, 0)′||2 = 0. (A22)

Hence, as noted in Remark 4, sabs(X, y, 5, 5) = ||y − ŷCI-PC||2 − ||y − ŷCF-PC||2 = 0 − 0 = 0, and
srel(X, y, 5, 5) is not defined for k = N = 5.
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