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Abstract: We propose and study the stochastic stationary root model. The model resembles the
cointegrated VAR model but is novel in that: (i) the stationary relations follow a random coefficient
autoregressive process, i.e., exhibhits heavy-tailed dynamics, and (ii) the system is observed with
measurement error. Unlike the cointegrated VAR model, estimation and inference for the SSR model
is complicated by a lack of closed-form expressions for the likelihood function and its derivatives.
To overcome this, we introduce particle filter-based approximations of the log-likelihood function,
sample score, and observed Information matrix. These enable us to approximate the ML estimator
via stochastic approximation and to conduct inference via the approximated observed Information
matrix. We conjecture the asymptotic properties of the ML estimator and conduct a simulation study
to investigate the validity of the conjecture. Model diagnostics to assess model fit are considered.
Finally, we present an empirical application to the 10-year government bond rates in Germany and
Greece during the period from January 1999 to February 2018.

Keywords: cointegration; particle filtering; random coefficient autoregressive model; state space
model; stochastic approximation
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1. Introduction

In this paper, we introduce the multivariate stochastic stationary root (SSR) model. The SSR
model is a nonlinear state space model, which resembles the Granger-Johansen representation of the
cointegrated vector autoregressive (CVAR) model, see inter alia Johansen (1996) and Juselius (2007). The
SSR model decomposes a p–dimensional observation vector into r stationary components and p− r
nonstationary components, which is similar to the CVAR model. However, the roots of the stationary
components are allowed to be stochastic; hence the name ‘stochastic stationary root’. The stationary
and nonstationary dynamics of the model are observed with measurement error, which in this model
prohibits close-form expressions for e.g., the log-likelihood, sample score and observed Information
matrix. Likelihood-based estimation and inference therefore calls for non-standard methods.

Although the SSR model resembles the CVAR model, it is differentiated by its ability to
characterize heavy-tailed dynamics in the stationary component. Heavy-tailed dynamics, and other
types of nonlinear dependencies, are not amenable to analysis with the CVAR model, which
has prompted work into nonlinear alternatives, see inter alia Bohn Nielsen and Rahbek (2014),
Kristensen and Rahbek (2013), Kristensen and Rahbek (2010), and Bec et al. (2008). Similarly,
cointegration in the state space setting has been considered in term of the common stochastic
trend (CST) model by Chang et al. (2009) as well as the CVAR model with measurement
errors by Bohn Nielsen (2016). Additionally, the SSR model is also related to the stochastic
unit root literature, see inter alia Granger and Swanson (1997), Leybourne and McCabe (1996),
Lieberman and Phillips (2014), Lieberman and Phillips (2017), McCabe and Tremayne (1995),
and McCabe and Smith (1998). Relevant empirical applications where the SSR model could potentially
provide a better fit than the CVAR model include, but are not limited to, (i) log-prices of assets
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that exhibit random walk behavior in the levels and heavy-tailed error-correcting dynamics in the
no-arbitrage relations, and (ii) interest rates for which the riskless rate exhibits random walk-type
dynamics and the risk premia undergo periods of high levels and high volatility.

The stationary and nonstationary components of the SSR model are treated as unobserved
processes, and consequently need to be integrated out in order to compute the log-likelihood function
and its derivatives. Due to the nonlinearity of the model, this cannot be accomplished analytically.
We appeal to the incomplete data framework and the simulation-based approach known as particle
filtering to approximate the log-likelihood function, sample score and observed Information matrix.
See inter alia Gordon et al. (1993), Doucet et al. (2001), Cappé et al. (2005), and Creal (2012) for an
overview of the particle filtering literature. Moreover, we rely on stochastic approximation methods to
obtain the maximum likelihood (ML) estimator, see Poyiadjis et al. (2011). Summarizing, the main
contributions of this paper are to

i introduce and study the SSR model, and
ii propose a method for approximate frequentist estimation and inference.

It is beyond the scope of this paper to provide a complete proof of the asymptotic properties
of the ML estimator. The study of the asymptotic properties of the ML estimator in general state
space models, such as the SSR model, is an emerging area of research. Most existing results rely on
compactness of the state space, which excludes the SSR model and is generally restrictive. For results
in this direction, see e.g., Olsson and Rydén (2008) who derive consistency and asymptotic normality
for the ML estimator by discretizing the parameter space. Douc et al. (2011) have shown consistency
of the ML estimator without assuming compactness, but the regularity conditions are nonetheless
too restrictive to encompass the SSR model. Instead of providing a complete proof of the asymptotic
properties of the ML estimator, we conjecture the asymptotic properties of the derivatives of the
log-likelihood function. We base the conjecture on known properties of models that are closely related
to the SSR model, and corroborate it by a simulation study. Given the conjecture holds, it allows
us to establish the asymptotic properties of the ML estimator. We leave proving the conjecture for
future work, and focus in this paper on developing methods for approximate frequentist estimation
and inference.

The rest of the paper is organized as follows. We introduce the SSR model in Section 2, and study
some properties of the process in Section 3. In Section 4 we introduce likelihood-based estimation
and inference for the unknown model parameter. In Section 5 we introduce the incomplete data
framework. In Section 6 we introduce the particle filter-based approximations to the log-likelihood
function, sample score and Information matrix. In Section 7 we propose how to approximate the ML
estimator and classic standard errors. In Section 8 we consider model diagnostics. In Section 9 we
conduct a simulation study of the asymptotic distribution of the ML estimator. In Section 10 we apply
the SSR model to monthly observations of 10-year government bond rates in Germany and Greece
from January 1999 to February 2018. We conclude in Section 11. All proofs have been relegated to
Appendix B, while Appendix A contains various auxiliary results.

Notation-wise, we adopt the convention that the ‘blackboard bold’ typeface, e.g., E, denotes
operators, and the ‘calligraphy’ typeface, e.g., X , denotes sets. We thus let R and N denote the
real and natural numbers, respectively. For any matrix A, we denote by |A| the determinant,
by ‖A‖ =

√
tr(A′A) the Euclidean norm, and by ρ(A) the spectral radius. For some positive

definite matrix A, we let A1/2 denote the lower triangular Cholesky decomposition. For some
function f : Rdz 7→ Rd f , let ∂ f (z)/∂z denote the derivative of f (z) with respect to z. For some
stochastic variable z ∈ Rdz with Gaussian distribution with mean µ and covariance Σ, let N(z; µ, Σ)
denote the Gaussian probability density function evaluated at z. We let p(z) denote the probability
density of stochastic variable z ∈ Rdz with respect to the dz–dimensional Lebesgue measure m,
while p(dz) = p(z)dm denotes the corresponding probability measure. Additionally, the letter ‘p’
is generic notation for probability density functions and measures induced by the model defined in
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(1)–(3) below. The ‘bold’ typeface, e.g., p, is generic notation for analytically intractable quantities,
in the sense of having no closed-form expression. Finally, we denote a sequence of n ∈ N+ real
dz–dimensional vectors by z1:n

..= [ z′1 . . . z′n ]′ ∈ Rn×dz .

2. The Model

The structure of the SSR model is similar to the Granger-Johansen representation of the CVAR
model, cf. Johansen (1996, chp. 4), but departs from it in two respects. First, the stationary component
is a random coefficient autoregressive process, cf. e.g., Feigin and Tweedie (1985), rather than an
autoregressive process. Second, the stationary and nonstationary components are observed with
measurement error. This makes the SSR model is a state space model, whereas the CVAR model is
observation-driven. In addition to resembling the CVAR model, the SSR model constitutes an extension
of the CST model, cf. Chang et al. (2009). However, while the CST model is a linear Gaussian state
space model, the SSR model is a nonlinear Gaussian state space model as it allows the stationary
component to be a random coefficient autoregressive process.

Formally, we consider the observable p-dimensional discrete time vector process yt,
for t = 1, 2, . . . , T given by,

yt = C(y0) + B
t

∑
i=1

ηi + Aξt + ut (1)

ξt = µ + Φtξt−1 + νt , (2)

for fixed initial values y0 and ξ0, and with ut, Φt and [η′t , ν′t ]
′ mutually independent. We define

εt
..= ∑t

i=1 ηi with ε0 = 0p−r. The sequences ε1:T and ξ1:T are unobserved and take values εt ∈ Rp−r

and ξt ∈ Rr for 0 < r < p. Additionally, the matrices are of dimensions A ∈ Rp×r and B ∈ Rp×p−r,
with [A B] ∈ Rp×p and invertible. Let the random coefficient, Φt, be i.i.d. Gaussian,

vec(Φt) ∼ N(vec(Φ), ΩΦ) . (3)

with ΩΦ a positive definite covariance matrix. Let the observation error be i.i.d. Gaussian, such that
ut ∼ N(0, Ωu) with Ωu a positive definite matrix, and let the innovations ηt and νt be jointly Gaussian
such that ηt ∼ N(0, Ωη) and νt ∼ N(0, Ων) with cross-covariance Cov [ηt, νt] = Ωη, ν, such that the
joint covariance matrix,

Λ ..=

[
Ωη Ωη, ν

Ω′η, ν Ων

]
, (4)

is positive definite. Let all the introduced matrices be of appropriate dimensions and full rank.
Furthermore, we introduce the orthogonal complements to A and B, which we denote b ∈ Rp×r

and a ∈ Rp×p−r, such that b′B = 0 and a′A = 0 with b and a of full column rank. Finally, we let
C(y0) ..= B(a′B)−1a′y0.

Define the parameter vectors,

ω ..=
[

vec(B)′ vec(A)′ vech(Ωu)′
]′

(5)

λ ..=
[

µ′ vec(Φ)′ vech(ΩΦ)
′ vech(Λ)′

]′
, (6)

which contain the parameters governing the observations yt, and unobserved components εt and ξt,
respectively. The parameter vectors take values in ω ∈ Θω and λ ∈ Θλ, respectively. Additionally,
we define the full parameter vector as

θ ..=
[

ω′ λ′
]′
∈ Θω ×Θλ =.. Θ . (7)
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which indexes the model, and we refer to Θ as the parameter space. Note that ω and λ in θ are
variation free in the sense of Engle et al. (1983). The parameter space is a subset of the dθ-dimensional
Euclidean space Θ ⊆ Rdθ , where dθ denotes the number of elements in θ. In the case where no
restrictions are imposed on θ, the dimension dθ increases rapidly in r due to the 1

2 (r
2 + 1)r2 parameters

in ΩΦ. We suggest restricting the off-diagonal elements of ΩΦ to zero to avoid over-parameterization.
The number of parameters is then dθ = 2p2 + p + 2r2 + r when the model is otherwise unrestricted.

The log-likelihood function for any parameter vector θ ∈ Θ, fixed initial values y0 ∈ Rp, ε0 = 0p−r

and ξ0 ∈ Rr, and observation sequence y1:T ∈ Rp×T is given by,

`T(θ) ..= log pθ(ε0, ξ0, y0:T) . (8)

The sample score is given by the first derivative of (8),

ST(θ) ..=
∂

∂θ
`T(θ) , (9)

and the observed Information matrix is given by minus the second derivative of (8),

IT(θ) ..= − ∂2

∂θ∂θ′
`T(θ) . (10)

Due to the nonlinear dynamics of the unobserved process (2), the log-likelihood function (8)
and its derivatives (9)–(10) do not have closed-form solutions. In the following, we suppress the
dependence on the initial values ε0, ξ0 and y0, but note they remain fixed.

3. Properties of the Process

In this section we consider some properties of the process defined by Equations (1)–(3) for a given
parameter value θ ∈ Θ. Specifically, we study the nonstationary and stationary components, including
conditions on the parameter θ that ensure strict stationarity of the stationary component. Additionally,
we decompose the observation yt into nonstationary and stationary directions.

3.1. The Unobserved Components

The first component of the model, εt, is a random walk (RW) in p− r dimensions, equivalently
expressed as an autoregressive process with a unit root. That is, for t = 1, . . . , T,

εt = εt−1 + ηt , (11)

with ε0 = 0p−r. The process (11) admits the transition density pλ(εt | εt−1) with respect to the
p− r–dimensional Lebesgue measure; however, it does not have a stationary distribution. This type of
process has been studied extensively, see e.g., Dickey and Fuller (1979). In summary, the RW process is
linear and Gaussian, but nonstationary.

The second unobserved component of the model, ξt, is a random coefficient autoregressive (RCAR)
process of lag order one in r dimensions. The RCAR process (2)–(3) is observationally equivalent to a
double autoregressive (DAR) process with one lag, cf. Ling (2007), which we formalize in Lemma 1.

Lemma 1. For θ ∈ Θ, the random coefficient autoregressive process (2)–(3) with k = 1 has the following double
autoregressive process representation, t = 1, 2, . . . , T

ξt = µ + Φξt−1 + Ω1/2
ν,t zt (12)

Ων,t = Ων +
(
ξ ′t−1 ⊗ Ir

)
ΩΦ

(
ξ ′t−1 ⊗ Ir

)′ , (13)
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for ξ0 fixed, zt ∼ N(0, Ir), cross-covariance Cov [ηt, zt] = Ωη ν, and with the joint innovation process [η′t, z′t]
′

independent and identically distributed.

The DAR representation in Lemma 1 of the RCAR process in (2)–(3) characterizes the process
dynamics in terms of the conditional mean and variance. The conditional mean Eλ [ξt | ξt−1] is
autoregressive. However, the conditional variance Varλ [ξt | ξt−1] depends positively on the lagged
level ‘squared’. The conditional variance is heteroskedastic, but not in the well-known ARCH sense
of e.g., Engle (1982); rather, the lagged level of the process ξt−1 enters the variance, not the lagged
innovation νt−1. To illustrate the point, we consider for a moment the conditional variance in the
univariate case r = 1, which is given by ω2

ν, t = ω2
ν + ω2

φξ2
t−1. Here we see that a relatively large

(in absolute terms) lagged level |ξt−1| will result in a relatively large volatility ων, t in the present
period, and vice versa.

We make the following assumption on the random coefficients (3) in order to ensure strict
stationarity of the RCAR process (2)–(3).

Assumption 1. Assume that the top Lyapunov exponent is strictly negative,

γ ..= lim
n→∞

1
n
Eλ

[
log

∥∥∥∥∥ n

∏
t=1

Φt

∥∥∥∥∥
]
< 0 . (14)

Remark 1. The top Lyapunov exponent (14) is intractable but can be approximated to arbitrary precision via
simulation, cf. inter alia Ling (2007) and Francq and Zakoian (2010). The following approximation converges
almost surely

γ̂n
..=

1
n

log

∥∥∥∥∥ n

∏
t=1

Φt

∥∥∥∥∥ a.s.→ γ , (15)

as n→ ∞. In turn, γ̂n can be computed efficiently via the QR-decomposition, cf. Dieci and Van Vleck (1995).

Assumption 1 ensures that the RCAR process can be characterized as a geometrically ergodic
Markov chain, cf. Meyn and Tweedie (2005). This is formalized in the following theorem.

Theorem 1 (Feigin and Tweedie (1985), Theorem 3). Under Assumption 1, the process {ξt}t=0, 1, ... is
geometrically ergodic. In particular, the initial value ξ0 can be given an initial distribution pθ(ξ0) such that
{ξt}t=0, 1, ... is stationary and geometrically ergodic with some fractional moment.

Remark 2. The stationary component, ξt, exhibits heavy-tailed behavior since it satisfies a stochastic recurrence
equation. Pedersen and Wintenberger (2018) have recently considered the tail properties of processes of the
form (2) for a more general specification of the random coefficient, Φt, that includes BEKK-ARCH and DAR-type
processes as special cases. It should be possible to show that the stationary distribution of ξt as defined in (2)–(3)
also has power-law tails under suitable conditions.

The RCAR process (2)–(3) admits the transition density pλ(ξt | ξt−1) with respect to the
r-dimensional Lebesgue measure. Moreover, the process has the stationary distribution pθ(ξt) under
Assumption 1. In summary, the RCAR process is Gaussian and strictly stationary, but nonlinear.

3.2. The Observed Process

The observations {yt}t=1, 2, ... are conditionally independent given the sequence of unobserved
components {εt, ξt}t=1, 2, .... Thus, the dynamics of the observed process are determined by the
dynamics of the unobserved components.
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We use the orthogonal complements b′ and a′ of the loading matrices B and A, respectively,
and the skew-projection identity of Johansen (1996) to decompose the observation vector yt as follows,

yt = Baa′yt + Abb′yt , (16)

where we define Ba
..= B(a′B)−1 and Ab

..= A(b′A)−1. Here a′B and b′A are invertible thanks to our
assumption that [A B] is square and invertible. By premultiplying yt by a′ we eliminate the stationary
directions, while leaving the nonstationary directions,

a′yt = a′C(y0) + a′Bεt + a′ut . (17)

What is left after the linear transformation (17) is a random walk with Gaussian measurement
error. Similarly, premultiplying yt by b′ eliminates the nonstationary directions while the stationary
directions remain,

b′yt = b′Aξt + b′ut . (18)

The process given by (18) is a stationary random coefficient autoregressive process with Gaussian
measurement error.

The decomposition of the observation process (16) allows for a cointegration interpretation
of the SSR model. The p observed variables in yt share p − r common stochastic trends (17) with
loading matrix Ba, while the r linear combinations (18) are stationary and load into the levels with
the matrix Ab. The observed process admits the conditional density pθ(yt | y1:t−1) with respect to
the p–dimensional Lebesgue measure; however, this density does not have a closed-form expression.
Moreover, the observed process does not have a stationary distribution.

4. Likelihood-Based Estimation and Inference

In this section, we introduce the ML estimator and consider its asymptotic properties. We wish
to conduct estimation and inference based on the true, but intractable, model likelihood. Due to the
intractability of the likelihood, we can neither compute the ML estimator via numerical optimization
of (8), nor compute classic standard errors via the observed Information matrix (10). We refer to
the ML estimator as being ‘doubly intractable’, with reference to the concept from the literature in
Bayesian statistics on models with intractable likelihoods, see e.g., Murray et al. (2006). It is beyond
the scope of this paper to derive a full asymptotic theory for the SSR model. Instead, we conjecture the
limiting properties of the likelihood function (8) and its derivatives (9)–(10). We obtain the asymptotic
properties for the ML estimator based on the conjecture.

We recall preliminarily that the ML estimator is defined as the parameter vector θ ∈ Θ that
maximizes the log-likelihood function (8),

θ̂T
..= arg sup

θ∈Θ
`T (θ) , (19)

noting that the ML estimator (19) is a function of the observation sequence y1:T . We denote by θ∗ ∈ Θ
the true parameter value for the data generating process (1)–(3). In the following, we make the below
conjecture on the asymptotic properties of (8)–(10). Note that, having assumed that B∗ is known, the
score, information, and likelihood in the conjecture refer to the unknown parameters only; that is, all
elements in θ excluding vec(B).

Conjecture 1. If Assumption 1 holds, B∗ is known, and θ∗ ∈ Θ ⊆ Rdθ , then the log-likelihood function
`T(·) : Rdθ 7→ R is three times continuously differentiable in θ, and

1. 1√
T

ST(θ
∗)

D→ N(0, ΩS) as T → ∞, with ΩS > 0,
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2. 1
T IT(θ

∗)
P→ ΩI as T → ∞, with ΩI > 0, and

3. maxh,i,j=1, ..., dθ
supθ∈N (θ∗) |∂3`T(θ)/∂θh∂θi∂θj| ≤ cT ,

where N (θ∗) is a neighborhood of θ∗ and 0 ≤ cT
P→ c, 0 < c < ∞, as T → ∞.

Remark 3. Theorem 3 in Bohn Nielsen and Rahbek (2014) shows that Conjecture 1 holds in the case of the
strictly stationary bivariate double autoregressive model with BEKK-type time-varying covariance. With B∗

known, the SSR model corresponds closely to this model plus Gaussian measurement errors.

It should be noted that we propose Conjecture 1 despite lack of finite moments of the RCAR
process, cf. Theorem 1. This is in line with the results of inter alia Bohn Nielsen and Rahbek (2014) for
the bivariate DAR model, and Ling (2004, 2007) for the univariate DAR model.

The result in Theorem 2 below states that if Conjecture 1 holds true, then the ML estimator (19) is
unique,

√
T–consistent and asymptotically Gaussian. The result follows from applying Lemma 1 in

Jensen and Rahbek (2004), the conditions of which correspond to (1.)–(3.) of Conjecture 1.

Theorem 2 (Jensen and Rahbek (2004), Lemma 1). If Conjecture 1 holds, then there exists a fixed open
neighborhood U (θ∗) ⊆ N (θ∗) of the true parameter θ∗, which is an interior point of Θ, such that with
probability tending to one as T → ∞, there exists a minimum point θ̂T in U (θ∗) and `T(θ) is convex in U (θ∗).
In particular, θ̂T is unique and satisfies the score equation

ST(θ̂T) = 0 . (20)

Additionally, the ML estimator is consistent θ̂T → θ∗, and asymptotically Gaussian,

√
T(θ̂T − θ∗)

D→ N(0, Ω−1
I ΩSΩ−1

I ) , T → ∞ . (21)

Proof. Conjecture 1 satisfies the Cramer-type conditions of Lemma 1 in Jensen and Rahbek (2004),
which provides the result.

We assume that the true value of B is known, because Chang et al. (2009) showed that the ML
estimator of the loading matrix B exhibits T-convergence and is asymptotically mixed Gaussian in the
CST model. The CST model corresponds to the SSR model with p− r = 1, but without the stationary
components, i.e., A = 0p×r for any p. We find it reasonable to believe that this result carries over to the
SSR model. Moreover, fixing B is conceptually similar to classic cointegration analysis with known
cointegrating vectors, which is an accepted starting point for new methodological developments,
see e.g., Bec and Rahbek (2004). In applications we often have a predefined set of cointegrating vectors
that we are interested in. In the context of the SSR model, the cointegrating vectors correspond to the
rows of the orthogonal complement b′. As an example, for the empirical illustration in Section 10 we
consider an interest rate spread in a bivariate system with one common stochastic trend, i.e., p = 2
and p− r = 1. The spread implies b′ = [ 1 −1 ], which in turn corresponds to the loading matrix
B = [ 1 1 ]′ when normalizing on the first element.

The Fisher Information matrix, ΩI , is consistently estimated by the (scaled) observed Information
matrix evaluated at θ̂T , cf. Conjecture 1.(3.). Moreover, the asymptotic variance of the score, ΩS,
is equal to the Fisher Information matrix when the model is well-specified; the information matrix
equality holds, cf. e.g., Hamilton (1994, sct. 14.4). In this case, the asymptotic variance of the ML
estimator (19) is simply the inverse Fisher Information matrix. Thus, we can use classic standard errors,
that are based on the observed Information matrix (10), to conduct inference on the ML estimates.
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5. The Incomplete Data Framework

In this section, we appeal to the incomplete data framework of Dempster et al. (1977) to deal
with the unobserved components of the SSR model. We first formulate the state space representation
of the model in (1)–(3) and its associated optimal filtering problem. Secondly, we formulate the
intractable sample score (9) and observed information matrix (10) in terms of the optimal filtering
problem. In Section 6 we introduce a particle filter algorithm with which we can approximate the
optimal filtering problem. This enables approximation of the intractable sample score and observed
information matrix via the particle filter algorithm.

5.1. The State Space Form and the Optimal Filtering Problem

Preliminarily, we collect the unobserved components in the vector xt
..= [ ε′t ξ ′t ]′, which we

refer to as the state vector. The unobserved components are Markov, see (11)–(13), and the observation
depends only on the contemporary values of the unobserved components. Thus, the SSR model in
(1)–(3) has the dependency structure of a state space model. Formally, for t = 1, . . . , T, the SSR model
in (1)–(3) has the following state space representation,

yt = C(y0) + Πxt + Ω1/2
u ut (22)

xt = α + Γxt−1 + Λ1/2
t vt , (23)

with y0 and x0 fixed, ut ∼ N(0, Ip) and vt ∼ N(0, Ip), and ut and vt mutually independent.
We define accordingly,

Π ..=

[
B′

A′

]′
, α ..=

[
0
µ

]
, Γ ..=

[
Ip−r 0

0 Φ

]
and Λt

..=

[
Ωη Ωη, ν

Ω′η, ν Ων, t

]
, (24)

and recall that Ων, t is defined in Lemma (1). We refer to (22) as the observation equation, and to (23)
as the transition equation. It is easy to verify that the state space representation in (22) and (23) is
observationally equivalent to the SSR model as presented in (1)–(3). The observation and transition
equations admit the densities with respect to the p-dimensional Lebesgue measure,

pω (yt | xt) = N(yt; C(y0) + Πxt, Ωu) (25)

pλ (xt | xt−1) = N(xt; α + Γxt−1, Λt) , (26)

respectively. We refer to (25) as the observation density and to (26) as the transition density. As mentioned
previously, we suppress the dependence on the initial observation y0.

One approach to conducting inference on the unobserved components, i.e., the state vector xt,
is the optimal filtering problem, cf. Anderson and Moore (1979). The optimal filtering problem refers
to the general problem of computing the conditional expectation of some sequence of unobserved
states given some sequence of observations. In the following, we consider the specific instance of
the optimal filtering problem known as the smoothing problem. Formally, the smoothing problem is a
conditional expectation of the form,

Eθ [γt(x1:t) | y1:t] =
∫

γt(x1:t)pθ (x1:t | y1:t) dx1:t , (27)

for any function γt(x1:t) ∈ L1 [Rt p, pθ (x1:t | y1:t)
]

and point in time t ∈ {1, . . . , T}. We refer to the
function γt(x1:t) as the test function and to the density pθ (x1:t | y1:t) as the smoothing density. The test
function may be time-varying, but of known form for a fixed observation sequence y1:T . The smoothing
density in (27) can be expressed as the recursion of the lagged smoothing density,
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pθ (x1:t | y1:t) =
pω (yt | xt) pλ (xt | xt−1)

pθ (yt | y1:t−1)
pθ (x1:t−1 | y1:t−1) , (28)

initialized with pθ (x1 | x0, y0, y1). The normalizing constant in (28) is the likelihood contribution,
which is given by the integral,

pθ (yt | y1:t−1) =
∫

pω (yt | xt) pλ (xt | xt−1) pθ (x1:t−1 | y1:t−1) dx1:t . (29)

We note the smoothing density recursion (28) is intractable due to the intractability of the
likelihood contribution (29). In the following, we will use the smoothing problem (27) to address
computation of the sample score (9) and observed Information matrix (10).

5.2. The Sample Score and Observed Information as Smoothing Problems

The incomplete data framework is closely associated with the classic expectation maximization
(EM) algorithm, introduced in Dempster et al. (1977). The EM algorithm is a common approach to
maximizing the log-likelihood function (8) to obtain the ML estimator (19) for models with unobserved
variables. When the EM algorithm is applicable, it is also possible to evaluate the sample score (9)
and observed Information matrix (10). For the SSR model, however, the EM algorithm does not apply
directly, yet we may use the incomplete data framework to reformulate the sample score and observed
Information in terms of intractable smoothing problems of the form (27).

A central concept of the EM algorithm is the auxiliary function called the intermediate quantity,
which is defined as,

QT (θ | ϑ) ..=
∫

log pθ (y1:T , x1:T) pϑ (x1:T | y1:T) dx1:T

= `T(θ)− HT(θ | ϑ) , (30)

where

HT(θ | ϑ) ..= −
∫

log pθ(x1:T | y1:T)pϑ(x1:T | y1:T)dx1:T , (31)

for any parameter values θ, ϑ ∈ Θ. We refer to log pθ (y1:T , x1:T) as the complete data log-likelihood.
By the state space model structure (22)–(23) and variation freeness of θ defined in (7), we have that the
complete data log-likelihood is given by,

log pθ (y1:T , x1:T) =
T

∑
t=1

[log pω (yt | xt) + log pλ (xt | xt−1)] . (32)

The intermediate quantity (30) is sometimes also called the expected log-likelihood, since it
is interpretable as the conditional expectation of the complete data log-likelihood (32) given the
observations y1:T . We note the term separating the log-likelihood (8) and the intermediate quantity (30)
is the entropy of the smoothing density (28) with parameters ϑ and θ, defined in (31).

We are interested in the intermediate quantity (30) because it provides a convenient way to derive
the sample score and observed Information matrix in terms of the derivatives of the complete data
log-likelihood (32). The first and second derivatives of the complete data log-likelihood function in (32)
are the sum of the first and second order derivatives of the observation and transition log-densities
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with respect to ω and λ, respectively. These can be computed by either analytical or numerical
differentiation of (32). For ϑ ∈ Θ, we define the derivatives of (32) in terms of the functions,

UT (x1:T ; ϑ) ..=
∂

∂θ
log pθ (y1:T , x1:T)

∣∣
θ=ϑ

=
T

∑
t=1

ut (xt, xt−1; ϑ) (33)

VT (x1:T ; ϑ) ..=
∂2

∂θ∂θ′
log pθ (y1:T , x1:T)

∣∣
θ=ϑ

=
T

∑
t=1

vt (xt, xt−1; ϑ) , (34)

where, taking advantage of the variation freeness of the model parameter, θ, we define the summands
of (33) and (34), respectively, as

ut (xt, xt−1; ϑ) ..=

[
∂

∂ω log pω (yt | xt)
∂

∂λ log pλ (xt | xt−1)

] ∣∣∣∣
θ=ϑ

, (35)

and

vt (xt, xt−1; ϑ) ..=

[
∂2

∂ω∂ω′ log pω (yt | xt) 0dω×dλ

0dλ×dω
∂2

∂λ∂λ′ log pλ (xt | xt−1)

] ∣∣∣∣
θ=ϑ

, (36)

We note that the functions (35) and (36) should not be confused with the measurement error in (22)
and innovations in (23), respectively.

If the first and second order derivatives of the complete data log-likelihood in (33) and (34),
respectively, are integrable with respect to the smoothing density (28), then we may appeal to Fisher’s
and Louis’ identities (defined below) to express the sample score (9) and observed Information
matrix (10) in terms of smoothing problems of the form (27).

Conjecture 2. For any θ ∈ Θ and observation sequence y1:T ∈ Rp×T , it holds that UT(x1:T ; θ) ∈
L2[Rp×T , pθ(x1:T | y1:T)] and VT(x1:T ; θ) ∈ L1[Rp×T , pθ(x1:T | y1:T)].

For the same reasons we conjectured the asymptotic properties of the true log-likelihood function,
sample score, observed information matrix, we conjecture integrability of the derivatives of the
complete data log-likelihood (33) and (34).

Fisher’s identity, cf. Dempster et al. (1977), states the first derivative of the intermediate
quantity (30) is equivalent to the sample score (9). Similarly, Louis’ identity of Louis (1982) establishes
a relation between the first and second derivatives of the intermediate quantity (30) and the observed
Information matrix (10).

Lemma 2 (Fisher’s and Louis’ identities, cf. Cappé et al. (2005), Proposition 10.1.6). If Conjecture 2 holds
and θ ∈ Θ, then the sample score (9) is equivalently given by

ST (θ) =
∫

UT(x1:T ; θ)pθ (x1:T | y1:T) dx1:T , (37)

and the observed Information (10) is equivalently given by

IT (θ) = ST (θ) ST (θ)′ −GT(θ)− KT(θ) , (38)

where

GT(θ) ..=
∫

VT(x1:T ; θ)pθ (x1:T | y1:T) dx1:T (39)

KT(θ) ..=
∫

UT(x1:T ; θ)UT(x1:T ; θ)′pθ (x1:T | y1:T) dx1:T , (40)
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and the functions UT(x1:T ; θ) and VT(x1:T ; θ) are defined in (33) and (34), respectively.

Although Lemma 2 shows the sample score (9) and observed Information (10) can be restated
as smoothing problems of the form (27), we still cannot obtain closed-form expressions due to the
intractability of the optimal filtering problem, cf. Section 5.1. In the next section, we introduce a particle
filter algorithm that can approximate smoothing problems for appropriately chosen test functions,
such as the functions UT(x1:T ; θ) and VT(x1:T ; θ) under Conjecture 2.

6. Particle Filter-Based Approximations

In this section, we introduce a particle filter algorithm that produces pointwise approximations
to the true but intractable log-likelihood function (8), sample score (9), and observed Information
matrix (10) for any parameter θ ∈ Θ and fixed observation sequence y1:T ∈ Rp×T . In Section 7, we show
how to apply the particle filter-based approximations introduced in this section to approximate the
true, intractable ML estimator and classic standard errors, which we introduced in Section 4.

6.1. Particle Filtering

A particle filter is a simulation-based algorithm that produces approximations to smoothing
problems of the form (27) for state space models. We introduce here a standard particle filter,
which produces empirical measures that recursively approximate the smoothing density (28) for
each time point in the observed sample t ∈ {1, . . . , T}. The empirical measures consist of point
masses, which we refer to as particles, and we use these for Monte Carlo integration in order to
approximate the smoothing problem (27). Additionally, the particle filter produces a point-wise
approximation of the log-likelihood function as a by-product. For an introduction to particle filtering
in the context of economics and finance see Creal (2012).

The particle filter algorithm relies on an importance density, denoted qθ (x1:t | y1:t), that has the
same support and recursive structure as the smoothing density (28). Formally, for t = 1, . . . , T,
we define the importance density as,

qθ (x1:t | y1:t) ..= qθ (xt | xt−1, yt) qθ (x1:t−1 | y1:t−1) , (41)

initialized by qθ (x1 | x0, y0, y1). We note the importance density (41) is defined recursively by
qθ (xt | xt−1, yt), which we refer to as the importance transition density.

Assuming the smoothing density (28) is absolutely continuous with respect to the importance
density (41), we can write the former as a the product of the importance density and a weight function,

pθ (x1:t | y1:t) = w̄t (x1:t) qθ (x1:t | y1:t) , w̄t (x1:t) ..=
pθ (x1:t | y1:t)

qθ (x1:t | y1:t)
. (42)

We refer to the weight function w̄t (x1:t) as the normalized importance weight. We note that (42)
constitutes a change of measure from the smoothing density to the importance density, and the
normalized importance weight is a Radon-Nikodym derivative between the two densities.

Substituting the recursive expressions for the smoothing density (28) and importance density (41)
into the expression for the normalized importance weight in (42), we obtain a recursive expression for
the normalized importance weight,

w̄t (x1:t) =
w̃t (xt−1:t)

pθ (yt | y1:t−1)
w̄t−1 (x1:t−1) , (43)

where we define

w̃t (xt−1:t) ..=
pω (yt | xt) pλ (xt | xt−1)

qθ (xt | xt−1, yt)
. (44)
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We refer to (44) as the incremental importance weights. The recursion for the normalized importance
weight (43) is normalized by the likelihood contribution (29) and is therefore also intractable.

For particle filtering in general, the importance transition density is subject to choice under mild
regularity conditions, cf. e.g., Assumption 9.4.1 in Cappé et al. (2005). We let the importance transition
density be the corresponding model density; formally,

qθ (xt | xt−1, yt) ..= pθ (xt | xt−1, yt) . (45)

We refer to (45) as the locally optimal transition density. This choice of importance
transition density is optimal in the sense that it is conditional on the the contemporary
observation yt, cf. Doucet et al. (2000). This is sometimes also referred to as ‘fully adapted’,
cf. e.g., Pitt and Shephard (1999b). If we instead let the importance transition density be the model
transition density (26), we omit the information about xt that is contained in yt. The locally optimal
transition density is not necessarily available in closed-form for nonlinear state space models. It is,
however, available for the SSR model and we present it in Lemma 3.

Lemma 3. For θ ∈ Θ, the locally optimal transition density has the closed-form expression

pθ (xt | xt−1, yt) = N(xt; µx
t|t, Σx

t|t) , (46)

where the conditional mean and variance are given by,

µx
t|t = µx

t|t−1 + Σx
t|t−1Π′

[
Σy

t|t−1

]−1 (
yt − µ

y
t|t−1

)
(47)

Σx
t|t = Σx

t|t−1 − Σx
t|t−1Π′

[
Σy

t|t−1

]−1
ΠΣx

t|t−1 , (48)

with

µ
y
t|t−1 = C(y0) + Πµx

t|t−1 (49)

Σy
t|t−1 = ΠΣx

t|t−1Π′ + Ωu (50)

µx
t|t−1 = α + Γxt−1 (51)

Σx
t|t−1 = Λt , (52)

and the state space form definitions given in (24).

Remark 4. The locally optimal transition density (46) is related to the Kalman (1960) filter, which solves the
optimal filtering problem analytically for linear and Gausian models. Equations (49)–(52) correspond the Kalman
filter for a known value of xt−1. Related methods for efficient particle filtering include the mixture Kalman filter
and Rao-Blackwellisation, cf. Chen and Liu (2000) and Andrieu and Doucet (2002).

It is straightforward to use the general expression for the incremental importance weight in (44)
to show that letting the importance transition density be the locally optimal transition density, i.e., (45),
results in the following specific expression for incremental importance weights,

w̃t(xt−1) = pθ (yt | xt−1) . (53)

We refer to the density in (53) as the predictive observation density. It has a closed-form expression
that follows from the closed-form expression of the locally optimal transition density in Lemma 3.
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Corollary 1. For θ ∈ Θ, the predictive observation density has the closed-form expression

pθ (yt | xt−1) = N(yt; µ
y
t|t−1, Σy

t|t−1) , (54)

recalling the definitions in (49)–(52).

Proof. Contained in the proof of Lemma 3.

Remark 5. The choice of importance transition density (45) is locally optimal in the sense that the conditional
variance of the incremental importance weights (53) given xt−1 is zero, cf. Doucet et al. (2000).

The particle filter, presented in Algorithm 1 below, produces weighted particle samples
approximately distributed as the smoothing density (28) at each point in time t = 1, . . . , T.
The algorithm consists of iterating over three steps. At point t in time, the first step is to sample
N particles, denoted {x̃(i)1:t}N

i=1, from the importance density (41) given the particle sample from t− 1.
This is called the propagation step. Step two consists of computing self-normalized importance weights,
denoted {w̄(i)

t }N
i=1, that approximate the normalized importance weights (43). This is the weighting step.

The third step is to sample N particle indices, denoted {I(i)}N
i=1, with replacement. We sample index j

with probability w̄(j)
t for j ∈ {1, . . . , N}. We retain the number of particles indicated by the resulting

sample of particle indices, denoted {x(i)1:t}N
i=1, and let the importance weights be uniform. This is the

resampling step. After resampling, we store the particle samples and proceed to t + 1.
For a fixed parameter value θ ∈ Θ and observation sequence y1:T ∈ Rp×T , we run the locally

optimal particle filter for the SSR model as specified in Algorithm 1 below.

Algorithm 1: Locally Optimal Particle Filter.

Given a parameter θ ∈ Θ, initialize by setting x(i)0
..= x0 and w̄(i)

0
..= 1/N for i = 1, . . . , N. For

t = 0, 1, . . . , T:

1. Sample particles {x̃(i)t }N
i=1 with distribution

x̃(i)t ∼ pθ(xt | x(i)t−1, yt), (55)

and set x̃(i)1:t
..= [ x(i)1:t−1 x̃(i)t ] for i = 1, 2, . . . , N.

2. Calculate the unnormalized importance weights, {w(i)
t }N

i=1,

w(i)
t = pθ(yt | x̃(i)t−1,t)w̄

(i)
t−1 , (56)

for i = 1, . . . , N. Then compute the normalized importance weights

w̄(i)
t =

w(i)
t

WN
t

, WN
t

..=
N

∑
i=1

w(i)
t , (57)

for i = 1, . . . , N.
3. Sample N particle indices {I(i)}N

i=1, I(i) ∈ {1, . . . , N}, with probabilities

Pr(I(i) = j | F̃t, y1:t) = w̄(j)
t , j ∈ {1, . . . , N} (58)

for i = 1, . . . , N. Set the resampled particles x(i)1:t
..= x̃(I(i))

1:t , and the normalized importance

weights w̄(i)
t

..= 1/N for i = 1, . . . , N.
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Remark 6. The resampling method applied in step (3.) of Algorithm 1 is known as multinomial resampling.
Alternative methods that are guaranteed to produce lower Monte Carlo variance exists, cf. Douc et al. (2005).
We consider multinomial resampling for its analytical tractability, and recommend applying one of the more
efficient alternatives in practice.

Remark 7. The notation x(i)1:t is ambiguous due to the resampling step of Algorithm 1, since the elements of the

ith particle path at time t− 1, denoted x(i)1:t−1, are not necessarily the same as the first t− 1 elements of the ith

particle path at time t, denoted x(i)1:t . By convention, x(i)1:t always refers to the particle chain after resampling at

time t (similarly x̃(i)1:t refers to the chain before resampling). We refer to elements k to l of the ith particle chain

after resampling at time t as x(i)l:k, t.

The particle filter in Algorithm 1 produces two particle samples at each point in time, t. The first
set, {x̃(i)1:t}N

i=1, is produced at the propagation step (1.) and is associated with importance weights in

the weighting step (2.), {w̄(i)
t }N

i=1. The second set, {x(i)1:t}N
i=1, is produced at the resampling step (3.).

Both sets are approximately drawn from the smoothing density (28). We note the resampling step
introduces additional sampling error, cf. Chopin (2004), so we calculate approximations using the
weighted sample unless otherwise specified.

The particle filter iterates over over the propagation, weighting and resampling steps throughout
the sequence, t = 1, . . . , T, after which the algorithm terminates. We note the two sets of particles
produced during each iteration are themselves random variables measurable with respect to the
sub-σ-algebras F̃t and Ft, defined next.

Definition 1. Define the sub-σ-algebras F̃t
..= Ft−1 ∪ σ(x̃(1)t , . . . , x̃(N)

t ), Ft
..= F̃t ∪ σ(x(1)t , . . . , x(N)

t )

for t = 1, . . . , T, initialized by F0
..= ∅.

At each point in time, we associate an empirical measure with the weighted particle sample
generated by the propagation (1.) and reweighting (2.) steps in Algorithm 1. Formally, for t =

1, 2, . . . , T, we define the empirical measure,

p̃N
θ (dx1:t | y1:t) ..=

N

∑
i=1

w̄(i)
t δ

x̃(i)1:t
(dx1:t) , (59)

where δx′(dx) denotes the point measure at x′ ∈ Rp with respect to dx. The weighted particles
that constitute the empirical measure (59) are approximately distributed according to the smoothing
density (28). We emphasize the weighted particles are not independent draws from (28), because
the resampling step introduces dependence between the particles at each iteration of the algorithm.
We use the empirical measure (59) to define a particle filter-based approximation of the intractable
smoothing problem in (27),

ẼN
θ [γt(x1:t) | y1:t] ..=

∫
γt(x1:t) p̃N

θ (dx1:t | y1:t) =
N

∑
i=1

w̄(i)
t γt(x̃(i)1:t) , (60)

for any point in time t ∈ {1, . . . , T}. Due to dependence between the weighted particles, we cannot
establish the asymptotic properties of the approximation (60) based on the law of large numbers and
central limit theorem for independent random variables. For appropriately chosen test functions
γt(x1:t), the approximation (60) is both consistent and asymptotically Gaussian as the number of
particles tends to infinity, N → ∞, cf. Theorem 9.4.5 in Cappé et al. (2005).
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The particle filter in Algorithm 1 also produces an approximation of the log-likelihood function (8)
evaluated at the parameter value θ and the observation sequence y1:T ,

˜̀N
T (θ) ..=

T

∑
t=1

log WN
t . (61)

We note that the approximate log-likelihood function (61) consists of the logarithm of the product
of normalizing constants produced by Algorithm 1. The approximate log-likelihood (61) is consistent
in the sense that it converges in probability to the true log-likelihood function, as the number of
particles tends to infinity, see Lemma 4.

Lemma 4. For the model (1)–(3) and θ ∈ Θ, the approximate log-likelihood function (61) produced by
Algorithm 1 is a consistent estimator of the true log-likelihood (8),

˜̀N
T (θ)

P→ `T(θ) , (62)

as N → ∞.

In addition to producing an approximation of the intractable log-likelihood function (8), we apply
the approximation (60) of the intractable smoothing problem in (27) to produce approximations of the
sample score and observed Information matrix via Fisher’s and Louis’ identities in Lemma 2.

6.2. The Approximate Sample Score and Observed Information Matrix

We showed in Section 5 that the sample score and observed Information matrix can be expressed
in terms of smoothing problems of the form (27). Appealing to Fisher’s identity (37) in Lemma 2, and to
the approximation of the smoothing problem (60), we define the particle filter-based approximate
sample score as,

S̃N
T (θ) ..=

N

∑
i=1

UT(x̃(i)1:T ; θ)w̄(i)
T , (63)

for any parameter θ ∈ Θ, with the function UT(x1:T ; θ) as defined in (33). If Conjecture 2 holds,
then the approximate sample score in (63) is both consistent and asymptotically normal.

Lemma 5. If Conjecture 2 holds and θ ∈ Θ, then the approximate sample score (63) is asymptotically normal,

√
N
{

S̃N
T (θ)− ST(θ)

}
D→ N(0, S̃T [UT(x1:T ; θ)]) , (64)

as N → ∞. An intractable expression for the asymptotic covariance matrix S̃T [UT(x1:T ; θ)] is given in
Lemma A.5 by setting t = T and γT(x1:T) = UT(x1:T ; θ).

Similarly, by appealing to Louis’ identity (38) in Lemma 2, and to the approximation of the
smoothing problem (60), we define the particle filter-based approximate observed Information
matrix as,

ĨN
T (θ) ..= S̃N

T (θ)S̃N
T (θ)′ − G̃N

T (θ)− K̃N
T (θ) , (65)

for any parameter θ ∈ Θ, where we define the approximations to (39) and (40) as



Econometrics 2018, 6, 39 16 of 33

G̃N
T (θ) ..=

N

∑
i=1

VT(x̃(i)1:T ; θ)w̄(i)
T (66)

K̃N
T (θ) ..=

N

∑
i=1

UT(x̃(i)1:T ; θ)UT(x̃(i)1:T ; θ)′w̄(i)
T , (67)

and the functions UT(x1:T ; θ) and VT(x1:T ; θ) are defined in (33) and (34), respectively. If Conjecture 2
holds, then the approximate observed Information in (65) is consistent, stated in the following lemma.

Lemma 6. If Conjecture 2 holds and θ ∈ Θ, then the approximate observed Information matrix (65)
is consistent,

ĨN
T (θ)

P→ IT(θ) (68)

as N → ∞.

Both the approximate sample score (63) and observed Information matrix (65) are biased for
finite N. This is a general issue related to the particle filter-based approximation of the smoothing
problem (60). At each iteration, the particle filter in Algorithm 1 relies on an approximation of
the normalized constant, i.e., likelihood contribution. This induces a finite-sample bias in (60) that
gradually disappears as the number of particles N tends to infinity and is negligible for large enough N,
cf. e.g., Robert and Casella (2010, sct. 3.3.2).

The particle filter-based approximation of the sample score (63) and observed Information
matrix (65) correspond to a batch version of Algorithm A in Poyiadjis et al. (2011), which is of
computational cost O(N), but exhibits quadratically increasing variance of the approximate sample
score as a function of the sample size T. We note that Poyiadjis et al. (2011) also suggest an alternative
algorithm, that exhibits linearly increasing variance as a function of T, but at the computational cost
O(N2). For smaller sample sizes, such as monthly observations as usually encountered in economics,
we have found that the O(N) algorithm is adequate.

7. Particle Filter-Based Estimation and Inference

In this section, we show how the approximate sample score (63) and observed Information matrix
(65) can be used to perform parameter estimation and inference. We apply a stochastic approximation
method based on the approximate sample score to approximate the ML estimator (19). This has recently
been suggested in Poyiadjis et al. (2011). We then use the approximate observed Information matrix to
obtain approximate standard errors for the approximate ML estimates. Although these quantities are
‘approximate’, we note that they can be made arbitrarily precise by increasing the number of particles,
N, at the expense of increased computational effort.

Recall from Section 4 that the ML estimator (19) is doubly intractable. Consequently, we cannot
apply gradient-based optimization algorithms to maximize the log-likelihood function (8). Originally
proposed in Robbins and Monro (1951), stochastic approximation methods are conceptually similar to
gradient-based optimization methods, but rely on noisy rather than exact evaluations of the sample
score to optimize the objective function. The basic idea is that appropriately decreasing the step sizes
provides an averaging of the random errors induced by the noisy evaluations of the sample score.
For a book-length treatment of stochastic approximation, we refer to Kushner and Yin (2003).

The stochastic approximation algorithm proposed in Poyiadjis et al. (2011, sct. 3.1) consists
of a recursion that is conceptually similar to the steepest descent method, cf. e.g.,
Nocedal and Wright (2006, chp. 3). Prior to executing the algorithm, we choose a fixed initial
parameter value θ0 ∈ Θ, a sequence of particle counts {Nj}∞

j=1, a sequence of step sizes {γj}∞
j=1,
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and a sequence of weight matrices {Bj}∞
j=1. The particle counts must be monotonically increasing

positive integers, the step sizes must be strictly positive, non-summable but square summable,

∞

∑
j=1

γj = ∞ and
∞

∑
j=1

γ2
i < ∞ , (69)

and the weight matrices must be positive definite. Having chosen the initial parameter, particle counts,
step sizes, and weight matrices, we run the recursion,

θj+1 = θj + γjBjS̃
Nj
T (θj) , (70)

for j = 0, 1, . . . , K. Here K has to be sufficiently large in the sense that the sequence of parameter values
generated by the recursion (70) has stabilized in a neighborhood of the true ML estimate. Additionally,
if the particle count Nj is large enough, the approximation error affecting the stochastic approximation
recursion (70) will be approximately normal, cf. Lemma 5. In this case large disturbances will be rare,
such that the parameter sequence {θj}K

j=1 is likely to stabilize without exhibiting large jumps.

We denote by {x̃(i)1:T, j, w̄(i)
t, j}

Nj
i=1 the particle paths produced by the particle filter in Algorithm 1 at

iteration j of the stochastic approximation recursion (70). The iteration index j is notationally identical
to time index of the particle path, cf. Remark 7. Although this is abuse of notation, it is clear from the
context whether we refer to the parameter iteration or particle path time index. The parameter θj+1
produced by iteration j of (70) is a random variable that is measurable with respect to the sub-σ-algebra
Gj, defined next.

Definition 2. Let FT, j
..= σ(x(1)1:T, j, . . . , x

(Nj)

1:T, j) denote the sub-σ-algebra in Definition 1 generated with the
parameter value θj, and define the sub-σ-algebras Gj

..= Gj−1 ∪ FT, j for j = 1, . . ., initialized by G0
..= FT, 0.

One of the main benefits of the stochastic approximation method is that the method is known to
stabilize for a wide variety of initial values, sample counts, step sizes, and weight matrices. In practice,
all of these choices affect the number of iterations needed to bring the parameter sequence into the
neighborhood of the true ML estimator. The choice of step sizes is particularly important, since large
step sizes generally speed up the convergence, but fail to dampen the approximation-induced noise.
Small step sizes reduce the noise, but cause slow convergence. The particle count has a similar effect,
since a low number of particles will result in a computationally cheap but noisy approximation of
the sample score, while a large number of particles reduces the noise but increases the computational
cost. Heuristically, it is appropriate to use a combination of large step sizes and small particle counts
until the parameter sequence has reached a neighborhood of the ML estimator, and then switch to a
combination of smaller step sizes and larger particle counts to reduce the noise. The intuition is that,
while far away from the ML estimator, a relatively noisy approximation of the sample score will still
on average lead the algorithm in the right direction.

The presence of noise in the sample score is not an impediment when applying stochastic
approximation, since the use of decreasing step sizes provides an averaging of the errors. However,
the finite sample bias of the particle filter-based approximate sample score, cf. Section 6.2, poses a
problem since its effect is not mitigated by decreasing the step sizes. Bias reduction is possible by
increasing the particle count Nj together with the iteration number j.

The stochastic approximation method is presented in Algorithm 2 below.1

1 We use the Choleski factorization to ensure positive definiteness of the covariance matrices Ωu, Λ and ΩΦ. Thus, we estimate
the parameters B, A, Ωu = CuC′u, µ, Φ, ΩΦ = CΦC′Φ and Λ = CΛC′Λ using Algorithm 2 and transform the covariances to
the original parametrization. We obtain standard errors via the δ-method.
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Algorithm 2: Stochastic Approximation.
Choose the initial parameter θ0 ∈ Θ, the particle counts {Nj}∞

j=1, the step sizes {γj}∞
j=1 and

weighting matrices {Bj}∞
j=1. For j = 0, 1, . . . , K:

1. Run Algorithm 1 for θj to generate Nj weighted particle paths, denoted {x(i)1:T, j, w̄(i)
t, j}

Nj
i=1.

2. Compute the approximate sample score (63), denoted

S̃
Nj
T (θj) =

Nj

∑
i=1

UT(x(i)1:T, j; θj)w̄
(i)
t, j . (71)

3. With step size γj, ascend along the direction Bj,

θj+1 = θj + γjBjS̃
Nj
T (θj) . (72)

Polyak (1990) and Polyak and Juditsky (1992) showed that if the step sizes {γj}∞
j=1 satisfy the

summability conditions (69) and tend to zero slower than j−1, then the average of the last j − K0

iterations converges at an optimal rate. Here K0 < K denotes the iteration number at which the
averaging begins; implicitly, we discard the initial K0 iterations. We define the approximate ML
estimator as,

θ̃T
..=

1
K− K0

K

∑
j=K0

θj , (73)

suppressing the dependence on the particle count. Establishing convergence of the approximate ML
estimator (73) to the true ML estimator (19) is outside the scope of this paper. However, if (73) converges
in probability to (19) for any fixed T, then (73) inherits the consistency property, cf. Theorem 2, of the
true ML estimator.

Convergence of the particle filter-based stochastic approximation method proposed in
Poyiadjis et al. (2011) has, to the author’s knowledge, not been studied yet. The finite-sample bias
of the approximate sample score (63) presents the primary obstacle to establishing convergence
results. Intuition suggests that increasing the number of particles Nj with the iteration number j
solves the problem. However, convergence of such schemes has not been carefully established,
cf. Douc et al. (2014, sct. 12.1.2). Poyiadjis et al. (2011) report stabilization of the particle filter-based
stochastic approximation method with constant particle count. In Section 10, we report similar
stabilization with increasing particle counts.

If the model is correctly specified, we would conduct inference on the ML estimator via the
observed Information matrix, cf. Section 4. Analogously, since the approximate observed Information
matrix (65) converges in probability to the true observed Information matrix (10), we can conduct
inference for the approximate ML estimator (73) via the approximate observed Information matrix
(65), the same way we would conduct inference given the true observed Information matrix (10).

8. Model Diagnostics

In this section, we introduce a method to conduct model diagnostics, such that we may assess
whether the SSR model is well-specified for a given parameter θ and observation sequence y1:T . Recall
that the disturbances ut, ηt and νt are normally distributed and serially independent with mean zero
and unit variances. Because the components εt and ξt are hidden to us, we cannot directly compute the
residuals corresponding to the disturbances. Instead, we introduce the normalized one-step prediction
errors, cf. Durbin and Koopman (2012, sct. 2.12), that can be approximated via particle filtering.
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This approach to model diagnostics for state space models has also previously been considered in
Pitt and Shephard (1999a).

We define the normalized one-step prediction errors as,

et
..= Varθ [yt | y1:t−1]

−1/2 (yt −Eθ [yt | y1:t−1]) , (74)

for t = 1, . . . , T. For a well-specified model, the sequence of normalized one-step prediction errors
should be serially independent with mean zero with unit variance. Any deviation from these
characteristics are indicative of model misspecification.

The conditional mean and variance in (74) can be stated in terms of smoothing problems, where
the test functions are the conditional mean and variance of the predictive observation density,

Eθ [yt | y1:t−1] = Eθ [Eθ [yt | xt−1] | y1:t−1] , (75)

Varθ [yt | y1:t−1] = Eθ [Varθ [yt | xt−1] | y1:t−1] +Varθ [Eθ [yt | xt−1] | y1:t−1] . (76)

We note that the conditional mean and variance of the predictive observation density are given in
Lemma 3. Using the locally optimal particle filter in Algorithm 1, we define approximations to (75)
and (76) as

ẼN
θ [yt | y1:t−1] ..=

N

∑
i=1

µ̃
y,(i)
t|t−1w̄(i)

t−1 (77)

Ṽar
N
θ [yt | y1:t−1] ..=

N

∑
i=1

Σ̃y,(i)
t|t−1w̄(i)

t−1 +
N

∑
i=1

(µ̃
y,(i)
t|t−1)(µ̃

y,(i)
t|t−1)

′w̄(i)
t−1 − ẼN

θ [yt | y1:t−1] Ẽ
N
θ [yt | y1:t−1]

′ , (78)

respectively, where we have defined the conditional moments given each individual particle as,

µ̃
y,(i)
t|t−1

..= Eθ [yt | x̃(i)t−1] (79)

Σ̃y,(i)
t|t−1

..= Varθ [yt | x̃(i)t−1] , (80)

for i = 1, . . . , N. Finally, we use the approximations (77) and (78) to define the approximate normalized
likelihood contributions as follows,

ẽN
t

..= Ṽar
N
θ [yt | y1:t−1]

−1/2
(

yt − ẼN
θ [yt | y1:t−1]

)
, (81)

for t = 1, . . . , T. Thus, by applying the particle filter in Algorithm 1, we obtain the sequence of
approximate normalized one-step prediction errors ẽ1:T via (77)–(81). For N sufficiently large, we can
use the sequence ẽ1:T to test whether the true sequence of normalized one-step prediction errors e1:T is
serially independent with mean zero and unit variance. For common tests for serial dependence and
ARCH effects see e.g., Doornik and Hendry (2013, sct. 11.9.2–3).

9. Simulation Study

In this section, we conduct a simulation study of the asymptotic properties of the ML estimator,
stated in Theorem 2. We limit our treatment to B, A, Φ and ΩΦ, leaving aside the remaining parameters
Ωu, µ, Ωη , Ων and Ωη, ν. Recall, the loading matrix for the stationary components A is conjectured to
be asymptotically normal, while the loading matrix of the nonstationary components B is kept fixed.
Due to the results of Chang et al. (2009), we expect the asymptotic distribution of B to be mixed normal,
and we tentatively investigate this. Moreover, we consider the case where Φt is a stochastic unit root.
A deterministic unit root is associated with the Dickey-Fuller distribution, cf. Dickey and Fuller (1979),
while a stochastic unit root has been shown to be asymptotically normal, see e.g., Ling (2007) and
Bohn Nielsen and Rahbek (2014).
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Recall, Theorem 2 is based on the conjectured properties of the true, intractable log-likelihood
function and its derivatives, cf. Conjecture 1. The aim is to substantiate this conjecture by obtaining
the distribution of the approximate ML estimator based on simulated data sets. Usually, the number
of realizations in a simulation study of this type is in excess of 1000 and the sample length in
excess of 2500 observations. Due to the computational intensity of the particle filter-based stochastic
approximation method in Algorithm 2, we limit ourselves to 250 realizations and 500 observations.

We let each of the simulated data sets be a bivariate p = 2 series of length T = 500 observations
with r = 1 stationary component and p− r = 1 nonstationary component. We use the parameter

B =

[
1
1

]
, A =

[
0
1

]
, Ωu =

[
2.52 0

0 2.52

]
, (82)

µ = 0 , φ = 1 , ω2
φ = 0.252 , ω2

η = 152 , ωη, ν = 0 , and ω2
ν = 2.52 , (83)

to generate the simulated data sets. We note the parameter values (83) result in a top Lyapunov
coefficient of γn = −0.035, computed via (15) with n = 106, such that the RCAR process {ξt}t=0, 1, ... is
strictly stationary.

Having simulated 250 series with the data generating process given by (1)–(3) and (83), we apply
Algorithm 2 with K = 600 iterations to obtain the approximate ML estimate for the parameter in
question, e.g., φ, keeping all other parameters fixed at the true values in (83). We initialize the algorithm
at the true parameter value, and initiate Polyak averaging at iteration K0 = 100.2 Moreover, we let the
particle count increase as

Nj = 50 + b1/20jc , (84)

where b·c denotes the largest integer that is smaller than the argument. We let the step size sequence
to decrease as

γj = 100(j + 500)−2/3 , (85)

and set the weight matrix to

Bj = T−1diag
(
[ 10−5 1 1 1 1 10−2 1 1 1 10−3 ]

)
, (86)

for j = 1, 2, . . . , K. Note the particle count (84) tends to infinity as j→ ∞, eliminating the finite-sample
bias of (63)–(65), the step sizes satisfy (69), and the weight matrix is constant.3

The results from the simulation experiment are presented in Figure 1. Despite the relatively low
number of realizations and observations, Figure 1 is instructive of the asymptotic distributions of
A1, φ and ω2

φ, cf. Panels (a), (c) and (d). These all appear to be normal. Recall, Theorem 2 does not
state the asymptotic distribution of the ML estimator for B2, and from Panel (b) it does not appear
to be normal. Rather, the realizations in Panel (b) are consistent with mixed normality, as we would
expect from the closely-related CST model, cf. Chang et al. (2009). To investigate further, one could
to simulate the t-ratios of B2, which should be standard normal. This involves the approximation of
the observed Information matrix for each realization, which further increases the computational cost.
For this reason, and because we consider B fixed, we do not pursue this further here.

2 Because we initialize at the true parameter value, the parameter sequences stabilize within the first 100 realizations. Using
K = 600 iterations is sufficient to reduce the impact of the approximation error.

3 The choice of weight matrix is based on hand-tuning the convergence speed of Algorithm 2 by running a small number of
trial-and-error runs with N = 50 particles and constant step size γ = 1.
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Figure 1. Simulation study with 250 realizations of the approximate MLE for A1, B2, φ, and ω2
φ.

In summary, the findings of the simulation study tentatively support the conjecture made in
Section 4. Namely, the ML estimator for A, Φ and ΩΦ is asymptotically normal. The ML estimator for
B2 appears to be consistent with mixed normality. We have not investigated the remaining parameters.

10. An Illustration

In this section, we illustrate the use of the SSR model by applying it to the monthly 10-year
government bond rates for Germany and Greece from January 1999 to February 2018.4 We denote the
German and Greek bond rates yGE and yGR, respectively, and measure these in basis points per year.
The sample begins at the introduction of the euro area and ends at present day. During this period,
the rates initially exhibit convergence towards a common ‘euro area rate’, until interrupted by the euro
area crisis beginning in 2009 and culminating in 2011. The rates, the spread and the changes in the
spread are illustrated in Figure 2 below. Because the spread is up to 75 times larger during the second
half of the sample than during the first half, we split the display of the sample into the first and second
half, respectively.

Panels (a) and (b) in Figure 2 show the bond rates, Panels (c) and (d) show the spread, and
Panels (e) and (f) show the changes in the spread in the two periods. We note two features of the
observations. First, Panel (a) suggests the rates can be characterized by a shared common stochastic
trend, since these tend to move in tandem. Second, Panels (d) and (f) suggest the spread can be
characterized by a RCAR process, since the changes in the spread, cf. Panel (f), are clearly positively
associated with the level of the spread itself, cf. Panel (d).

4 Obtained via a Bloomberg LP Terminal using the ticker codes ‘GDBR10 Index’ and ‘GGGB10YR Index’.
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Figure 2. German and Greek 10-year government bond rates, spread and changes in the spread.
Monthly observations in basis points from January 1999 to February 2018.

We define the observation vector as yt
..= [ yGE

t yGR
t ]′. We condition on the observation for

January 1999, which we denote y0, such that the effective sample spans t = 1, . . . , 229. From visual
inspection of Figure 2, our working assumption is that the spread yGR

t − yGE
t is strictly stationary,

while the rates yt share a common stochastic trend. With a p = 2 dimensional system, we thus have
r = 1 stationary component and p− r = 1 nonstationary component. Moreover, we fix B = [ 1 1 ]′,
such that the orthogonal complement b = [ −1 1 ]′ produces the spread. To ensure the model is
just-identified, we normalize on the second element of A, such that A2 = 1.

We apply the particle filter-based stochastic approximation method in Algorithm 2 to obtain the
approximate ML estimate of the model parameter θ. For this illustration, we run the algorithm for
K = 10, 000 iterations. We let the particle count increase as (84), the step size sequence decrease as (85),
and the weighting matrix as (86). We initiate Polyak averaging at iteration K0 = 5000.
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(a) Parameter sequence, {ωj}K
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(b) Parameter sequence, {λj}K
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Figure 3. Parameter and log-likelihood sequences from stochastic approximation with K = 10, 000
iterations. We also show a moving average of lag order 500 for the log-likelihood sequence. To avoid
large differences in the scales of the displayed sequences, we have scaled the sequences for A1, ω2

η ,
ωη, ν, ων, and ωφ by 100, 1/300, 1/50, 1/50, and 2 respectively.

Figure 3 shows the results of running the particle filter-based stochastic approximation method.
Panel (a) displays the iterations for the parameters in the observation Equation (22), Panel (b) displays
the iterations for the parameters in the transition Equation (23), and Panel (c) displays the sequence of
realized approximate log-likelihoods together with a moving average of lag order 500. The algorithm
has been implemented in the Ox 7 programming language, cf. Doornik (2012), using analytical
derivatives of the complete data log-likelihood (32) for the evaluation of the function (33). The elements
of the parameter sequence shown in Panels (a) and (b) have stabilized after the initial 7500 iterations.
At the 10, 000th iteration, the particle count has increased to 550, the step size decreased to 0.2085,
and the sequences have stabilized. By inspection of the sequence of the approximate log-likelihood in
Panel (c), we see that the value has also stabilized after approximately 7500 iterations.
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The estimation results are presented in Table 1, together with approximate classic standard errors.5

Before considering inference, we assess the model fit. We compute the normalized one-step prediction
errors ẽN

1:T via (81) using N = 1000 particles. Table 2 presents univariate tests for autocorrelation
(AR) of order one and two, autoregressive conditional heteroskedasticity (ARCH) of order one, and a
multivariate test for AR of order one and two, cf. Doornik and Hendry (2013, sct. 11.9.2–3). We cannot
reject the null hypothesis of no-AR of order one and two in the univariate as well as multivariate tests
at a 5% critical level. Nor can we reject the null hypothesis of no-ARCH for the residuals at a 5% critical
level. However, we note the test for the German rate is close to, but below, our chosen critical level.
This could suggest unmodeled heteroskedasticity in the German bond rate. In conclusion, the overall
specification of the model is acceptable. Moreover, computing the top Lyapunov coefficient via (15)
with n = 105 produces a coefficient of γ̂n = −0.007, which indicates the stationary direction is strictly
stationary for θ̃T .

Table 1. Approximate ML estimate, θ̃T .

Parameter Estimate Std.err. Parameter Estimate Std.err.

B1 +1.0000 + – µ +0.3449 +0.5526

B2 +1.0000 + – φ +1.0085 +0.0152

A1 −0.0154 +3.4× 10−5 ω2
φ +0.0306 +0.0031

A2 +1.0000 + – ω2
η +360.1600 +33.6250

ω2
u 11 +2.1063 +0.1974 ωη, ν −22.2400 +0.8119

ωu 12 +3.5924 +0.3435 ω2
ν +1.7880 +2.0728

ω2
u 22 +6.6327 +0.6214

Note: The approximate log-likelihood is ˜̀T = −2094.1. The approximate ML estimate has been obtained
by running Algorithm 2 for K = 10, 000 iterations with the particle count increasing to N = 550 particles,
as described in the main text. The standard errors are based on the inverse of the approximate observed
Information matrix computed with N = 1000 particles.

Table 2. Model diagnostics.

Univariate tests for AR 1-2: ẽt, 1 F(2, 227) = 1.4523 p = 0.2362
ẽt, 2 F(2, 227) = 1.2086 p = 0.3005

Multivariate test for AR 1-2: F(8, 448) = 1.6084 p = 0.1200

Univariate tests for ARCH: ẽt, 1 F(1, 227) = 4.7008 p = 0.0312
ẽt, 2 F(1, 227) = 0.58861 p = 0.4438

Note: The approximate normalized one-step prediction errors ẽ1:T have been computed with N =
1000 particles for the approximate ML estimate θ̃T , cf. Table 1.

The model is reasonably well-specified, and we therefore proceed to use the approximate classic
standard errors to conduct inference on the approximate ML estimates. First, we note the standard
error of the estimate of A1 is extremely small. Since the test for no-ARCH for the residuals associated
with the German rate is rejected at the 5% critical level, this could affect the approximate classic
standard errors.6 Nevertheless, it is economically plausible that the stationary component also loads
into the German rate, given that a large increase in the Greek rate would in this case coincide with
a small drop in the German rate, which is consistent with risk-averse investors seeking safer assets
in times of uncertainty, such as the euro area crisis. Second, we cannot reject the null hypothesis that
H0 : φ = 1 at a 5% critical level with p = 0.577. Third, the estimate of ω2

φ is significantly different from

5 The difference between computing the classic standard errors with N = 1000 and N = 10, 000 particles is negligible.
6 Particle filter-based approximate robust standard errors have been suggested in Doucet and Shephard (2012), but we do not

pursue this idea further in the present context.
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zero at any commonly used critical level. However, the constant term µ is not significantly different
from zero with p = 0.533. Fourth, the measurement errors are highly positively correlated with
coefficient 0.961, and the innovations of the unobserved components are highly negatively correlated
with coefficient −0.876. The results in Table 1 suggest the level of the stationary direction is a stochastic
unit root process without a constant term. An approximate likelihood ratio test for the joint null
hypothesis H0 : φ = 1, µ = 0 fails to reject the null at a 5% critical level with p = 0.374.

Based on the estimates in Table 1, we use the orthogonal complements b and a to compute
the changes of the nonstationary and stationary components, given by b′∆yt and a′∆yt, respectively.
These are illustrated in Figure 4. First, we note the magnitude of the changes in Panels (a) and (b)
of Figure 4 are slightly larger during the second half of the sample than during the first (standard
deviations 18.01 and 20.16, respectively). Otherwise, the series in Panels (a) and (b) in Figure 4 are
consistent with a homoskedastic random walk plus measurement error, cf. (17). The magnitude of
the changes in Panels (c) and (d) of Figure 4 is positively associated with the level, just as observed in
Figure 2. This is consistent with a random coefficient autoregressive process plus measurement error,
cf. (18).
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Figure 4. Changes in the nonstationary b′yt and stationary a′yt components.

Summarizing, the empirical illustration suggests that the SSR model successfully characterizes
the 10-year government bond rates for Germany and Greece during the period from January 1999 to
February 2018. During this sample, the spread exhibits bubble-like behavior, which is captured by
the random coefficient autoregressive dynamics of the stationary component. Additionally, the levels
exhibit a shared common stochastic trend, which is captured by the random walk dynamics of the
nonstationary component.

11. Conclusions

In this paper, we have proposed and studied the stochastic stationary root model, which is a
multivariate nonlinear state space model. We introduced particle filter-based approximations of the
intractable log-likelihood function, sample score and observed Information matrix. In turn, we used
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these to approximate the ML estimator via stochastic approximation, and showed how to perform
inference via the approximate observed Information matrix. We considered model diagnostics to assess
the model fit. Additionally, we conducted a simulation study to investigate the asymptotic properties of
the ML estimator. Finally, we presented an empirical application to the 10-year government bond rates
in Germany and Greece in the period from January 1999 to February 2018 to illustrate the usefulness
of the SSR model.
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Appendix A. Auxiliary Results

Lemma A.1. For the SSR model (1)–(3) with θ ∈ Θ, it holds that

i
∫

pω(yt | xt)pλ(xt | xt−1)dxt > 0 for all xt−1 ∈ Rp, and
ii sup

xt∈Rp
pω(yt | xt) < ∞,

for any t ∈ {1, . . . , T}.

Proof of Lemma A.1. By Corollary 1 we have that
∫

pω(yt | xt)pλ(xt | xt−1)dxt = pθ(yt | xt−1) is
Gaussian, and therefore strictly positive for all xt−1 ∈ Rp and θ ∈ Θ, which yields part (i). Moreover,
because the observation density (25) is Gaussian with constant and non-singular covariance matrix,
we obtain part (ii).

Lemma A.2. For the SSR model (1)–(3) with θ ∈ Θ, the model likelihood pθ(y1:T) is strictly positive and finite,

0 < pθ(y1:T) < ∞ . (A1)

Proof of Lemma A.2. Preliminarily, we observe the likelihood in (A1) can equivalently be written in
terms of the complete data likelihood pθ(y1:T , x1:T),

pθ(y1:T) =
∫

pθ(y1:T , x1:T)dx1:T , (A2)

which, by the state space structure of the model, cf. (25)–(26), is equivalently

pθ(y1:T) =
∫ T

∏
t=1

pω(yt | xt)pλ(xt | xt−1)dx1:T . (A3)

By Lemma A.1.(i) and (A3), we have that the likelihood in (A1) is strictly positive, since

∫ T

∏
t=1

pω(yt | xt)pλ(xt | xt−1)dx1:T > 0 . (A4)
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Moreover, by Lemma A.1.(ii), the likelihood in (A1) is also finite, since

∫ T

∏
t=1

pω(yt | xt)pλ(xt | xt−1)dx1:T

≤
T

∏
t=1

sup
xt∈Rp

pω(yt | xt)
∫ T

∏
t=1

pλ(xt | xt−1)dx1:T (A5)

=
T

∏
t=1

sup
xt∈Rp

pω(yt | xt) < ∞ ,

which completes the proof of Lemma A.2.

Lemma A.3. For the model (1)–(3) with θ ∈ Θ, it holds that

i pω(yt | xt)pλ(xt | xt−1)� pθ(xt | xt−1, yt) for all xt−1 ∈ Rp,

ii sup
xt−1, xt∈Rp×Rp

pω(yt |xt)pλ(xt |xt−1)
pθ(xt |xt−1, yt)

> 0, and

iii pθ(xt | xt−1, yt) > 0 for all xt−1 ∈ Rp,

for t ∈ {1, . . . , T}

Proof of Lemma A.3. We preliminarily note that the locally optimal transition density (46) can be
written as

pθ(xt | xt−1, yt) =
pω(yt | xt)pλ(xt | xt−1)

pθ(yt | xt−1)
, (A6)

where the predictive observation density is given by the integral,

pθ(yt | xt−1) =
∫

pω(yt | xt)pλ(xt | xt−1)dxt . (A7)

By (A6) and the definition of absolute continuity, part (i) states that for every Borel-measurable set
A ∈ B(Rp), it holds that

∫
A

pω(yt | xt)pλ(xt | xt−1)

pθ(yt | xt−1)
dxt = 0 =⇒

∫
A

pω(yt | xt)pλ(xt | xt−1)dxt = 0 . (A8)

By (A7) and Lemma A.1.(i), we know the predictive observation density is strictly positive
pθ(yt | xt−1) > 0 for all xt−1 ∈ Rp and θ ∈ Θ. Therefore (A8) is true for all xt−1 ∈ Rp and θ ∈ Θ,
and part (i) holds.

To show part (ii), we first use (A6) to write

pω(yt | xt)pλ(xt | xt−1)

pθ(xt | xt−1, yt)
= pθ(yt | xt−1) , (A9)

where, by Corollary 1, we have that pθ(yt | xt−1) is Gaussian and therefore strictly positive for all
xt, xt−1 ∈ Rp ×Rp and θ ∈ Θ, and part (ii) holds.

Part (iii) follows from pθ(xt | xt−1, yt) being Gaussian, cf. Lemma 3, and therefore strictly positive
for all xt−1 ∈ Rp. Thus, part (iii) holds.

Lemma A.4. If θ ∈ Θ and γt(x1:t) ∈ L1[Rtp, pθ(x1:t | y1:t)], then it holds that the approximation (60)
is consistent,

ẼN
θ [γt(x1:t) | y1:t]

P→ Eθ [γt(x1:t) | y1:t] , (A10)
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for any t ∈ {1, . . . , T}, as N → ∞.

Proof of Lemma A.4. We apply Theorem 9.4.5.(i) in Cappé et al. (2005) by verifying its conditions,
i.e., Assumptions 9.4.1–3. We note the theorem is stated for scalar test functions, but generalizes to
higher-dimensional test functions. Assumptions 9.4.1–2 is hold by Lemma A.1, while Assumption 9.4.3
holds by Lemma A.3. Thus, the conditions for Theorem 9.4.5.(i) in Cappé et al. (2005) are satisfied,
which completes the proof of Lemma A.4.

Lemma A.5. If θ ∈ Θ and γt(x1:t) ∈ L2[Rtp, pθ(x1:t | y1:t)], then it holds that the approximation (60) is
consistent and asymptotically normal,

√
N
{
ẼN

θ [γt(x1:t) | y1:t]−Eθ [γt(x1:t) | y1:t]
}

D→ N(0, S̃t[γt(x1:t)]) , (A11)

for any t ∈ {1, . . . , T}, as N → ∞. Initialized by S̃0
..= 0, the asymptotic covariance matrix S̃t[γt(x1:t)] is

given by

S̃t[γt(x1:t)] = S̃t−1

[
Eq,t

[
(γt(x1:t)−Eθ [γt(x1:t) | y1:t])

w̃t(xt−1:t)

pθ (yt | y1:t−1)
| x1:t−1

]]
+Varθ

[
Eq,t

[
(γt(x1:t)−Eθ [γt(x1:t) | y1:t])

w̃t(x1:t)

pθ (yt | y1:t−1)
| x1:t−1

]
| y1:t−1

]
(A12)

+Eθ

[
Varq,t

[
(γt(x1:t)−Eθ [γt(x1:t) | y1:t])

w̃t(x1:t)

pθ (yt | y1:t−1)
| x1:t−1

]
| y1:t−1

]
,

where, for any appropriately integrable function γ(x1:t), we define the operators

Eq,t [γ (x1:t) | x1:t−1]
..=
∫

γ (x1:t) qθ (xt | f1:x−1, y1:t−1) dx1:t (A13)

Varq,t [γ(x1:t) | x1:t−1]
..= Eq,t

[
γ (x1:t) γ (x1:t)

′ | x1:t−1

]
−Eq,t [γ (x1:t) | x1:t−1]Eq,t [γ (x1:t) | x1:t−1]

′ , (A14)

omitting dependence on θ.

Proof of Lemma A.5. We apply Theorem 9.4.5.(ii) in Cappé et al. (2005) by verifying its conditions,
i.e., Assumptions 9.4.1–3. Similar to the proof of Lemma A.4, we note the theorem is stated for scalar
test functions, but generalizes to higher-dimensional test functions. Assumptions 9.4.1–2 is hold by
Lemma A.1, while Assumption 9.4.3 holds by Lemma A.3. Thus, the conditions for Theorem 9.4.5.(ii)
in Cappé et al. (2005) are satisfied, which completes the proof of Lemma A.5.

Appendix B. Main Results

Proof of Lemma 1. We compute conditional mean and variance of ξt in Equation (2). First the mean

Eλ [ξt | ξt−1] = Eλ [µ + Φtξt−1 + νt | ξt−1]

= µ + Φξt−1 , (A15)

and then the variance

Varλ [ξt | ξt−1] = Varλ [µ + Φtξt−1 + νt | ξt−1]

= Varλ

[
µ +

(
ξ ′t−1 ⊗ Ir

)
vec(Φt) + νt | ξt−1

]
=
(
ξ ′t−1 ⊗ Ir

)
Varλ [vec(Φt)]

(
ξ ′t−1 ⊗ Ir

)′
+Varλ [νt]

=
(
ξ ′t−1 ⊗ Ir

)
ΩΦ

(
ξ ′t−1 ⊗ Ir

)′
+ Ων .

(A16)



Econometrics 2018, 6, 39 29 of 33

Since the conditional distribution of ξt given ξt−1 is Gaussian, it is completely characterized by its first
and second conditional moments. Thus, we obtain equations (12)–(13), which completes the proof of
Lemma 1.

Proof of Lemma 2. The result is an application of the Fisher’s and Louis’ identities to the SSR model.
We use Proposition 10.1.6 in Cappé et al. (2005), by verifying the conditions.

First, we verify that Assumption 10.1.3 in Cappé et al. (2005) holds. We have that Θ is an open
subset ofRdθ , which satisfies Assumption 10.1.3.(i). Assumption 10.1.3.(ii) is satisfied via Lemma A.2.
Assumption 10.1.3.(iii) is encompassed by condition (b) of Proposition 10.1.6 in Cappé et al. (2005),
shown below. Thus, Assumption 10.1.3 in Cappé et al. (2005) holds.

Second, we verify conditions (a) and (b) of Proposition 10.1.6 in Cappé et al. (2005). Condition (a)
holds by Conjecture 1. For condition (b), we begin with the third and last part, which states that

∂

∂θ

∫
log pθ(y1:t, x1:T)pϑ(x1:T | y1:T)dx1:T =

∫
∂

∂θ
log pθ(y1:t, x1:T)pϑ(x1:T | y1:T)dx1:T . (A17)

For θ, ϑ ∈ Θ, the complete data log-likelihood (32) is log-Gaussian and therefore continuous with
respect to θ, and (A17) holds.

The second part of condition (b) states that for θ ∈ Θ,∫
‖UT(x1:T ; θ)‖ pθ(x1:T | y1:T)dx1:T < ∞ (A18)∫
‖VT(x1:T ; θ)‖ pθ(x1:T | y1:T)dx1:T < ∞ , (A19)

which is holds by Conjecture 2.
The first part of condition (b) states that for θ, ϑ ∈ Θ, the entropy function in (31) is

twice-differentiable with respect to θ for fixed ϑ and y1:T . Using (A17) and that the complete data
log-likelihood (32) is twice-differentiable with respect to θ, we have that (31) is also twice-differentiable
with respect to θ. Thus, Proposition 10.1.6 in Cappé et al. (2005) applies for the SSR model, which
completes the proof of Lemma 2.

Proof of Lemma 3. Define the conditional moments of the locally optimal transition density (46),

µx
t|t

..= Eθ [xt | xt−1, yt] and Σx
t|t

..= Varθ [xt | xt−1, yt] . (A20)

Applying the Gaussian projection, we can write these as

µx
t|t = Eλ [xt | xt−1] +Covθ [xt, yt | xt−1]Varθ [yt | xt−1]

−1 (yt−1 −Eθ [yt | xt−1])

= µx
t|t−1 + Σx

t|t−1Π′
[
Σy

t|t−1

]−1 (
yt − µ

y
t|t−1

) (A21)

Σx
t|t = Varλ [xt | xt−1] +Covθ [xt, yt | xt−1]Π′ Varθ [yt | xt−1]

−1 ΠCovθ [yt, xt | xt−1]

= Σx
t|t−1 − Σx

t|t−1Π′
[
Σy

t|t−1

]−1
ΠΣx

t|t−1 ,
(A22)

where we have used that,

Covθ [xt, yt | xt−1] = Covθ [xt, C(y0) + Πxt | xt−1 | xt−1] = Σx
t|t−1Π′ . (A23)

We define the conditional moments of the predictive observation density,

µ
y
t|t−1

..= Eθ [yt | xt−1] = Eθ [C(y0) + Πxt | xt−1] = C(y0) + Πµx
t|t−1 (A24)

Σy
t|t−1

..= Varθ [yt | xt−1] = Varθ [C(y0) + Πxt | xt−1] = ΠΣx
t|t−1Π′ + Ωu , (A25)



Econometrics 2018, 6, 39 30 of 33

where we have used (22). Similarly, we define the conditional moments of the transition density,

µx
t|t−1

..= Eλ [xt | xt−1] = α + Πxt−1 (A26)

Σx
t|t−1

..= Varλ [xt | xt−1] = Λt , (A27)

where we have used (23), which concludes the proof of Lemma 3.

Proof of Lemma 4. Lemma A.4 establishes that Theorem 9.4.5 in Cappé et al. (2005) holds. It is a
corollary to Theorem 9.4.5 in Cappé et al. (2005) that

L̃N
T (θ) ..=

T

∏
t=1

WN
t

P→ pθ(y1:T) =.. LT(θ) , (A28)

as N → ∞. By continuity of the logarithm, the continuous mapping theorem and the definitions (8)
and (61), we therefore have that,

˜̀N
T (θ) = log L̃N

T (θ)
P→ log LT(θ) = `T(θ) , (A29)

as N → ∞, which completes the proof of Lemma A.4.

Proof of Lemma 5. We apply Lemma A.5 for t = T setting the test function to γT(x1:T) ..= UT(x1:T ; θ),
cf. (33). By Conjecture 2 we have that UT(x1:T ; θ) ∈ L2[Rp×T , pθ(x1:T | y1:T)], which satisfies the
condition, and Lemma A.5 applies.

Proof of Lemma 6. We apply Lemma A.4 to the functions UT(x1:T ; θ), VT(x1:T ; θ) and the outer
product UT(x1:T ; θ)UT(x1:T ; θ)′ for θ ∈ Θ. First, Conjecture 2 implies that UT(x1:T ; θ) ∈
L1[Rp×T , pθ(x1:T | y1:T)], such that by setting the test function to γT(x1:T) ..= UT(x1:T ; θ), Lemma A.4
gives us that,

ẼN
θ [UT(x1:T ; θ) | y1:t]

P→ Eθ [UT(x1:T ; θ) | y1:t] , (A30)

as N → ∞. Second, Conjecture 2 states VT(x1:T ; θ) ∈ L1[Rp×T , pθ(x1:T | y1:T)], such that by setting
the test function to γT(x1:T) ..= VT(x1:T ; θ), Lemma A.4 gives us that,

ẼN
θ [VT(x1:T ; θ) | y1:t]

P→ Eθ [VT(x1:T ; θ) | y1:t] , (A31)

as N → ∞. Third, we note that by the Cauchy-Schwarz inequality it holds that,

‖UT(x1:T ; θ)UT(x1:T ; θ)′‖ ≤ ‖UT(x1:T ; θ)‖‖UT(x1:T ; θ)′‖ = ‖UT(x1:T ; θ)‖2 , (A32)

such that, by Conjecture 2, we have that
∫
‖UT(x1:T ; θ)UT(x1:T ; θ)′‖pθ(x1:T | y1:T)dx1:T ≤

∫
‖UT(x1:T ; θ)‖2 pθ(x1:T | y1:T)dx1:T < ∞ . (A33)

Thus, by setting the test function to γT
..= UT(x1:T ; θ)UT(x1:T ; θ)′, Lemma A.4 gives us that,

ẼN
θ [UT(x1:T ; θ)UT(x1:T ; θ)′ | y1:t]

P→ Eθ

[
UT(x1:T ; θ)UT(x1:T ; θ)′ | y1:t

]
, (A34)
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as N → ∞. Now, by (37), (39), (40), (63), (66), and (67), we have that (A30)–(A34) correspond to,

S̃N
T (θ)

P→ ST(θ) (A35)

G̃N
T (θ)

P→ GT(θ) (A36)

K̃N
T (θ)

P→ KT(θ) , (A37)

as N → ∞, respectively, such that we get by the continuous mapping theorem that,

ĨN
T (θ) = S̃N

T (θ)S̃N
T (θ)′ − G̃N

T (θ)− K̃N
T (θ)

P→ ST(θ)ST(θ)
′ − KT(θ)−GT(θ) = IT(θ) , (A38)

as N → ∞, which completes the proof of Lemma 6.
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