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Abstract: `1 polynomial trend filtering, which is a filtering method described as an `1-norm penalized
least-squares problem, is promising because it enables the estimation of a piecewise polynomial
trend in a univariate economic time series without prespecifying the number and location of knots.
This paper shows some theoretical results on the filtering, one of which is that a small modification
of the filtering provides not only identical trend estimates as the filtering but also extrapolations of
the trend beyond both sample limits.
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1. Introduction

The `1-norm penalized least-squares problem, defined as:

min
x1,...,xT

T

∑
t=1

(yt − xt)
2 + λ

T

∑
t=3
|∆2xt|, (1)

where y1, . . . , yT are observed time-series data, was developed by Kim et al. (2009), who called it `1

trend filtering.1 Here, λ > 0 is a tuning parameter and ∆ denotes the backward difference operator
such that ∆xt = xt − xt−1. Accordingly, ∆2xt = ∆(∆xt) = xt − 2xt−1 + xt−2. Recall that ∑T

t=3 |∆2xt|
in (1) is `1-norm of [∆2x3, . . . , ∆2xT ]

>. Unlike Hodrick and Prescott (1997) filtering, which is defined
as the following squared `2-norm penalized least-squares problem:

min
x1,...,xT

T

∑
t=1

(yt − xt)
2 + ψ

T

∑
t=3

(∆2xt)
2, (2)

where ψ > 0 is a smoothing/tuning parameter, the solution of `1 trend filtering becomes a continuous
piecewise linear trend. The relationship between HP filtering and `1 trend filtering corresponds to
that between ridge regression of Hoerl and Kennard (1970) and Lasso (least absolute shrinkage and
selection operator) regression of Tibshirani (1996)/BPDN (basis pursuit denoising) of Chen et al. (1998).
Econometric applications of `1 trend filtering include Yamada and Jin (2013), Yamada and Yoon (2014),
Winkelried (2016), and Yamada (2017a).

1 `1 trend filtering is supported in several standard software packages such as MATLAB, R, Python, and EViews.
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It has been well-known that HP filtering is a form of the Whittaker–Henderson (WH) method of
graduation, which is defined as:

min
x1,...,xT

T

∑
t=1

(yt − xt)
2 + ψ

T

∑
t=p+1

(∆pxt)
2. (3)

For historical surveys of WH filtering, see Weinert (2007), Phillips (2010), and Nocon and Scott (2012).
Likewise, as shown in Kim et al. (2009), Tibshirani and Taylor (2011), and Tibshirani (2014), `1 trend
filtering may be generalized as:

min
x1,...,xT

T

∑
t=1

(yt − xt)
2 + λ

T

∑
t=p+1

|∆pxt|. (4)

We refer to it as `1 polynomial trend filtering.2 This filtering method is promising because it enables us
to estimate a piecewise (p− 1)-th order polynomial trend of a univariate economic time series without
prespecifying the number and location of knots. For more details, see Yamada (2017b).

Let x̂1, . . . , x̂T denote the solution of (3) and define x̂T+1, . . . , x̂T+h, where h denotes the length of
extrapolation by:

∆p x̂T+j = 0, (j = 1, . . . , h). (5)

Recently, Yamada and Du (2018) introduced the following three modifications of the WH method of
graduation:3

(a) min
x1,...,xT+h

T

∑
t=1

(yt − xt)
2 + ψ

T+h

∑
t=p+1

(∆pxt)
2, (6)

(b) min
x1,...,xT+h

T+h

∑
t=1

(yt − xt)
2 + ψ

T+h

∑
t=p+1

(∆pxt)
2, (7)

(c) min
x1,...,xT+h

T+h

∑
t=1

(yt − xt)
2 + ψ

T

∑
t=p+1

(∆pxt)
2, (8)

2 (4) where p = 1 has been known as total variation denoising in signal processing, which may be regarded as a form of the
fused Lasso by Tibshirani et al. (2005). Harchaoui and Lévy-Leduc (2010) proposed using the filtering to detect multiple
change points. (4) may be regarded as a form of the generalized Lasso by Tibshirani and Taylor (2011). In addition, we
note that there exist some pioneering works on the filtering that uses the `1-norm penalty. (Miller 1946, sct. 1.7) mentioned
that ∑T

t=p+1 |∆pxt| could be an alternative measure of smoothness to ∑T
t=p+1(∆

pxt)2, Schuette (1978) introduced a filtering,
defined as:

min
x1 ,...,xT

T

∑
t=1
|yt − xt|+ λ

T

∑
t=p+1

|∆pxt|,

and Koenker et al. (1994) presented `1-norm penalized quantile smoothing spline. Incidentally, Schuette (1978) and
Koenker et al. (1994) motivate us to consider a penalized quantile regression that is obtainable by replacing the quadratic
loss function in (4) by the check loss function:

min
x1 ,...,xT

T

∑
t=1

ρτ(yt − xt) + λ
T

∑
t=p+1

|∆pxt|,

where, letting τ ∈ (0, 1),

ρτ(u) =

{
τ|u| (u ≥ 0),
(1− τ)|u| (u < 0),

which is suggested by (Kim et al. 2009, sct. 7.3).
3 See also Yamada (2017c).
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where yT+j = x̂T+j for j = 1, . . . , h. Denote the solution of (a), (b), and (c) by x̂(i)t for i = a, b, c and
t = 1, . . . , T + h. Yamada and Du (2018) showed that, for i = a, b, c and t = 1, . . . , T + h, it follows that:

x̂(i)t = x̂t. (9)

Among the above results, x̂(a)t = x̂t is of practical use because it provides not only a smoothed series
identical to that of the WH graduation, but also an extrapolation beyond the sample limit of current
data. Also, x̂(b)t = x̂t is of interest because it shows that x̂T+1, . . . , x̂T+h based on (5) are useless to
reduce the end-point problem of the WH graduation.4 In addition, Yamada and Du (2018) proved that,
for i = a, b, c and t = 1, . . . , T + h:

lim
ψ→∞

x̂(i)t = β̂0t0 + · · ·+ β̂p−1tp−1, (10)

where (β̂0, . . . , β̂p−1) = arg minβ0,...,βp−1
∑T

t=1(yt − β0t0 − · · · − βp−1tp−1)2.
In this paper, we present three modifications of `1 polynomial trend filtering and show that they

provide not only identical trend estimates as `1 polynomial trend filtering, but also extrapolations
of the trend beyond both sample limits. In addition, we show some other results on the modified
filtering. We also provide a MATLAB function for calculating the solution of one of the modified
filtering methods.

The paper is organized as follows. In Section 2, we present three modifications of `1 polynomial
trend filtering. In Section 3, we state the main results of the paper. In Section 4, we make some remarks
on the results provided in Section 3. Section 5 provides some concluding remarks.

Notation. Let y = [y1, . . . , yT ]
> and IT be the T × T identity matrix. For an n-dimensional column

vector, η = [η1, . . . , ηn]>, ‖η‖1 = ∑n
i=1 |ηi|, ‖η‖2

2 = ∑n
i=1 η2

i , and ‖η‖∞ = max(|η1|, . . . , |ηn|). Dn is the
(n− p)× n p-th order difference matrix such that Dnη = [∆pηp+1, . . . , ∆pηn]>. We denote DT by D.
Πg+T+h is a (g + T + h)× p Vandermonde matrix, defined by

Πg+T+h =



(1− g)0 (1− g)1 · · · (1− g)p−1

...
...

...
10 11 · · · 1p−1

...
...

...
T0 T1 · · · Tp−1

...
...

...
(T + h)0 (T + h)1 · · · (T + h)p−1


,

and we denote Π0+T+0, which is a T × p matrix, by Π.

2. Three Modifications of `1 Polynomial Trend Filtering

Let x̃1, . . . , x̃T denote the solution of (4) and define x̃1−g, . . . , x̃1−1 and x̃T+1, . . . , x̃T+h, where g
and h denote the length of extrapolations:

∆p x̃p+1−i = 0, (i = 1, . . . , g), (11)

∆p x̃T+j = 0, (j = 1, . . . , h). (12)

4 An argument similar to this is given by (Mohr 2005, p. 20).
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For example, x̃T+1, . . . , x̃T+h, defined by (12) for p = 1, 2, 3, are explicitly expressed as follows:

(p = 1) x̃T+j = x̃T , (j = 1, . . . , h), (13)

(p = 2) x̃T+j = x̃T + j(∆x̃T), (j = 1, . . . , h), (14)

(p = 3) x̃T+j = x̃T + j(∆x̃T) +
j(j + 1)

2
(∆2 x̃T), (j = 1, . . . , h). (15)

For a proof of (15), see the Appendix A.
Consider the following three modifications of `1 polynomial trend filtering:

(d) min
x1−g ,...,xT+h

T

∑
t=1

(yt − xt)
2 + λ

T+h

∑
t=p+1−g

|∆pxt|, (16)

(e) min
x1−g ,...,xT+h

T+h

∑
t=1−g

(yt − xt)
2 + λ

T+h

∑
t=p+1−g

|∆pxt|, (17)

(f) min
x1−g ,...,xT+h

T+h

∑
t=1−g

(yt − xt)
2 + λ

T

∑
t=p+1

|∆pxt|, (18)

where y1−i = x̃1−i for i = 1, . . . , g and yT+j = x̃T+j for j = 1, . . . , h. Note that (16) is equivalent to `1

polynomial trend filtering if g = h = 0. We denote the solution of (d), (e), and (f) by x̃(i)t for i = d, e, f
and t = 1− g, . . . , T + h.

Among (16)–(18), the objective function of (16) may be represented in matrix notation as:

‖y− Sxg+T+h‖2
2 + λ‖Dg+T+hxg+T+h‖1, (19)

where S = [0, IT , 0] is a T× (g + T + h) matrix and xg+T+h is a (g + T + h)-dimensional column vector.

Let x̃(d)g+T+h = [x̃(d)>g , x̃(d)>, x̃(d)>h ]>, where x̃(d)g = [x̃(d)1−g, . . . , x̃(d)1−1]
>, x̃(d) = [x̃(d)1 , . . . , x̃(d)T ]>, and

x̃(d)h = [x̃(d)T+1, . . . , x̃(d)T+h]
>. The MATLAB function for calculating x̃(d)g , x̃(d), and x̃(d)h , which depends

on CVX developed by Grant and Boyd (2013), is as follows:

function [x_g,x,x_h]=m_l1_pt_filtering(y,lambda,p,g,h)
% y: T-dimensional column vector
% lambda: positive real number
% p, g, h: positive integer
% x_g: g-dimensional column vector
% x: T-dimensional column vector
% x_h: h-dimensional column vector

T=length(y);
S=[sparse(T,g),speye(T),sparse(T,h)];
D=diff(speye(g+T+h),p);
cvx_begin

variables z(g+T+h)
minimize(sum((y-S*z).^2)+lambda*norm(D*z,1))

cvx_end
x_g=z(1:g); x=z(g+1:g+T); x_h=z(g+T+1:g+T+h);

end
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3. Main Results

Theorem 1. Denote the solution of (d), (e), and (f) by x̃(i)t for i = d, e, f. For i = d, e, f, and t = 1 − g, . . .,
T + h, it follows that:

x̃(i)t = x̃t, (20)

where x̃1, . . . , x̃T are the solution of (4) and x̃1−g, . . . , x̃1−1 and x̃T+1, . . . , x̃T+h are defined by (11) and (12).

Proof. Because the objective function of (4) is coercive and strictly convex with respect to x1, . . . , xT ,
x̃1, . . . , x̃T are the unique global minimizer of the function. It follows that:

T

∑
t=1

(yt − xt)
2 + λ

T

∑
t=p+1

|∆pxt| ≥
T

∑
t=1

(yt − x̃t)
2 + λ

T

∑
t=p+1

|∆p x̃t|, (21)

where the equality holds only if xt = x̃t for t = 1, . . . , T.5 In addition, from (11) and (12), y1−i = x̃1−i
for i = 1, . . . , g, and yT+j = x̃T+j for j = 1, . . . , h, we have the following inequalities:

λ
p+1−1

∑
t=p+1−g

|∆pxt| ≥ 0 = λ
p+1−1

∑
t=p+1−g

|∆p x̃t|, (22)

λ
T+h

∑
t=T+1

|∆pxt| ≥ 0 = λ
T+h

∑
t=T+1

|∆p x̃t|, (23)

1−1

∑
t=1−g

(yt − xt)
2 ≥ 0 =

1−1

∑
t=1−g

(yt − x̃t)
2, (24)

T+h

∑
t=T+1

(yt − xt)
2 ≥ 0 =

T+h

∑
t=T+1

(yt − x̃t)
2. (25)

Combining (21)–(23) yields

T

∑
t=1

(yt − xt)
2 + λ

T+h

∑
t=p+1−g

|∆pxt| ≥
T

∑
t=1

(yt − x̃t)
2 + λ

T+h

∑
t=p+1−g

|∆p x̃t|, (26)

where the equality in (26) holds only if xt = x̃t for t = 1− g, . . . , T + h, which proves that x̃(d)t = x̃t for

t = 1− g, . . . , T + h. Likewise, combining (21)–(25) proves that x̃(e)t = x̃t for t = 1− g, . . . , T + h and

combining (21), (24) and (25) proves that x̃(f)t = x̃t for t = 1− g, . . . , T + h.

As an illustration of the above theorem, we give a numerical example. Consider the case where
T = 5, g = 1, and h = 2. Suppose that we obtained

x̃1 = 3, ∆x̃2 = 2, [∆2 x̃3, ∆2 x̃4, ∆2 x̃5]
> = [0,−1, 0]>

by applying `1 polynomial trend filtering of order 2 (i.e., `1 trend filtering) to a T-dimensional
time-series data.6 Because 2 = ∆x̃2 = ∆x̃3 6= ∆x̃4 = ∆x̃5 = 1, the line plot of (t, x̃t) for t = 1, . . . , 5
becomes a continuous piecewise linear line such that (3, x̃3) is a knot. x̃t for t = 1, . . . , 5 are explicitly

5 In the objective function of (4), ∑T
t=1(yt − xt)2 is coercive because it is a quadratic function whose Hessian matrix is positive

definite. See, e.g., (Beck 2014, Lemma 2.42).
6 In the case, [∆2 x̃3, ∆2 x̃4, ∆2 x̃5]

> is expected to become sparse, as in the numerical example, because ∑5
t=3 |∆2xt| is included

as a penalty.
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[x̃1, x̃2, x̃3, x̃4, x̃5]
> = [3, 5, 7, 8, 9]>. Then, from the above theorem, in the case, x̃(i)t for i = d, e, f and

t = 1− 1, . . . , 5 + 2 are as follows:

[x̃(i)1−1, x̃(i)1 , x̃(i)2 , x̃(i)3 , x̃(i)4 , x̃(i)5 , x̃(i)5+1, x̃(i)5+2]
> = [1, 3, 5, 7, 8, 9, 10, 11]>.

Theorem 2. If λ ≥ 2‖(DD>)−1Dy‖∞, for i = d, e, f and t = 1− g, . . . , T + h, it follows that

x̃(i)t = β̂0t0 + · · ·+ β̂p−1tp−1, (27)

where (β̂0, . . . , β̂p−1) = arg minβ0,...,βp−1
∑T

t=1(yt − β0t0 − · · · − βp−1tp−1)2.

Proof. Because Dg+T+h is a (g + T + h− p)× (g + T + h) (p + 1)-diagonal Toeplitz matrix, such that:

Dg+T+h =


a0 · · · ap 0 · · · 0

0
. . . . . . . . .

...
...

. . . . . . . . . 0
0 · · · 0 a0 · · · ap

 ,

where ak = (−1)p−k(p
k) for k = 0, . . . , p, it may be expressed as

Dg+T+h =

G1 G2 0
0 D 0
0 H1 H2

 ,

where G1 is a g× g upper triangular matrix, G2 is a g× T matrix, H1 is an h× T matrix, and H2 is an
h× h unit lower-triangular matrix. For example, when p = 3, g = h = 2, and T = 5:

D2+5+2 =



−1 3 −3 1 0 0 0 0 0
0 −1 3 −3 1 0 0 0 0
0 0 −1 3 −3 1 0 0 0
0 0 0 −1 3 −3 1 0 0
0 0 0 0 −1 3 −3 1 0
0 0 0 0 0 −1 3 −3 1


. (28)

Let x̃g = [x̃1−g, . . . , x̃1−1]
>, x̃ = [x̃1, . . . , x̃T ]

>, x̃h = [x̃T+1, . . . , x̃T+h]
>, and x̃g+T+h = [x̃>g , x̃>, x̃>h ]

>,
which is a (g + T + h)-dimensional column vector. Then, by definition of x̃g and x̃h, it follows that:

G1 x̃g + G2 x̃ = 0, (29)

H1 x̃ + H2 x̃h = 0, (30)

which leads to:

Dg+T+h x̃g+T+h =

 0
Dx̃
0

 . (31)

From Kim et al. (2009), if λ ≥ 2‖(DD>)−1Dy‖∞, it follows that x̃ = Πβ̂, where β̂ = (Π>Π)−1Π>y.
Recalling that DΠ = 0, we obtain Dg+T+h x̃g+T+h = 0 if λ ≥ 2‖(DD>)−1Dy‖∞, which implies
that x̃g+T+h may be represented as Πg+T+hγ. Because x̃ = Πβ̂, γ must equal β̂. Therefore, if
λ ≥ 2‖(DD>)−1Dy‖∞, then x̃g+T+h = Πg+T+h β̂.
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Theorem 3. Suppose that y = Πα, where α 6= 0 is a p-dimensional column vector. Then, for i = d, e, f, it
follows that:

x̃(i)g+T+h = Πg+T+hα, (32)

where x̃(i)g+T+h = [x̃(i)1−g, . . . , x̃(i)T+h]
>.

Proof. If y = Πα, it follows that: x̃ = Πα. Accordingly, Dg+T+h x̃g+T+h = 0, which indicates that
x̃g+T+h may be represented as Πg+T+hγ. Because x̃ = Πα if y = Πα, γ must equal α. Therefore, we
obtain x̃g+T+h = Πg+T+hα if y = Πα.

Corollary 1. Let x̃(i)g+T+h = [x̃(i)1−g, . . . , x̃(i)T+h]
> for i = d, e, f.

(i) Denote the (j + 1)-th column of Π and that of Πg+T+h, respectively, by τj and by τg+T+h,j for j =

0, . . . , p− 1. If y = τj, then x̃(i)g+T+h = τg+T+h,j for any λ > 0.

(ii) Let z be a T-dimensional column vector. If y = Π(Π>Π)−1Π>z, then x̃(i)g+T+h =

Πg+T+h(Π
>Π)−1Π>z for any λ > 0.

4. Some Remarks on the Main Results

First, we make a remark on Theorem 1. Because |G1| = (−1)g·p, from (29), x̃g may be expressed
with x̃ as x̃g = −G−1

1 G2 x̃. Likewise, because |H2| = 1, from (30), x̃h may be expressed with x̃ as
x̃h = −H−1

2 H1 x̃. Thus, the modified `1 polynomial trend filtering, (16), may be characterized as a
filtering that calculates −G−1

1 G2

IT
−H−1

2 H1

 x̃ (33)

from y.7 In addition, from Kim et al. (2009), it follows that x̃→ y as λ→ 0. Therefore, we obtain:

x̃(d)g+T+h →

−G−1
1 G2

IT
−H−1

2 H1

 y, (λ→ 0). (34)

Second, we provide a remark on Theorems 2 and 3. Yamada (2017b) recently showed that:

x̃ = Πβ̂ + Xφ̃, (35)

7 Let us calculate −H−1
2 H1 x̃ for the case where p = 3, g = h = 2, and T = 5. From (28), it follows that

−H1 x̃ =

[
x̃T−2 − 3x̃T−1 + 3x̃T

x̃T−1 − 3x̃T

]
=

[
x̃T + (∆x̃T) + (∆2 x̃T)
−2x̃T − (∆x̃T)

]
.

Accordingly, we obtain:

−H−1
2 H1 x̃ =

[
1 0
3 1

] [
x̃T + (∆x̃T) + (∆2 x̃T)
−2x̃T − (∆x̃T)

]
=

[
x̃T + (∆x̃T) + (∆2 x̃T)

x̃T + 2(∆x̃T) + 3(∆2 x̃T)

]
,

which is consistent with (15).
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where X = D>(DD>)−1 and φ̃, which is a (T − p)-dimensional column vector, is the solution of the
following Lasso regression/BPDN:

min
φ
‖y− Xφ‖2

2 + λ‖φ‖1. (36)

Because X>Π = 0, Πβ̂ + Xφ̃ in (35) represents an orthogonal decomposition of x̃. Here, we show
that we may prove Theorems 2 and 3 by using (35) and (36). Premultiplying (35) by D yields Dx̃ = φ̃.
We accordingly obtain:

Dg+T+h x̃g+T+h =

0
φ̃

0

 . (37)

(i) From (Osborne et al. 2000, p. 324), if λ ≥ 2‖X>y‖∞, then φ̃ = 0. Therefore, we obtain x̃ = Πβ̂

and Dg+T+h x̃g+T+h = 0, which proves Theorem 2.
(ii) If y = Πα, where α 6= 0, then X>y = 0, which implies that λ > 2‖X>y‖∞ = 0. Again,

from Osborne et al. (2000), we obtain φ̃ = 0 if y = Πα. Therefore, if y = Πα, it follows that
x̃ = Πβ̂ = Πα and Dg+T+h x̃g+T+h = 0, which proves Theorem 3.

Third, we give an example of Corollary 1 (i). For the case where y = [1, . . . , 5]> and p = g = h = 2,
it follows that x̃(d)2+5+2 = [−1, 0, 1, . . . , 5, 6, 7]> for any λ > 0.

5. Concluding Remarks

The `1 polynomial trend filtering method is a promising piecewise polynomial curve-fitting
method because it does not require prespecifying the number and location of knots. We have shown
some theoretical results on this method. One of them is that a small modification of the filtering
provides identical trend estimates and also extrapolations of the trend beyond both sample limits.
Another is that x̃T+1, . . . , x̃T+h based on (12) are useless to improve the trend estimates of `1 polynomial
trend filtering. We also provided a MATLAB function for calculating the solution of one of the modified
filtering methods. The main results of the paper are summarized in Theorems 1–3 and Corollary 1.

Finally, we remark that applying the modified `1 polynomial trend filtering (16)–(18) requires
specification of the value of λ. For this purpose, the methods proposed in Yamada and Yoon (2016)
and Yamada (2018) are applicable.
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Appendix A. Proof of (15)

Because ∆3 x̃T+j = ∆2 x̃T+j − ∆2 x̃T+j−1, from ∆3 x̃T+j = 0 for j = 1, . . . , h, we obtain ∆2 x̃T+k =

∆2 x̃T for k = 1, . . . , h. Then, because ∑l
k=1(∆

2 x̃T+k) = l(∆2 x̃T) for l = 1, . . . , h and ∑l
k=1(∆

2 x̃T+k) =

∆x̃T+l − ∆x̃T , it follows that

∆x̃T+l = ∆x̃T + l(∆2 x̃T), (l = 1, . . . , h).
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Furthermore, because ∑
j
l=1(∆x̃T+l) = j(∆x̃T) + (∑

j
l=1 l)(∆2 x̃T) for j = 1, . . . , h and ∑

j
l=1(∆x̃T+l) =

x̃T+j − x̃T , we finally obtain:

x̃T+j = x̃T + j(∆x̃T) +
j(j + 1)

2
(∆2 x̃T), (j = 1, . . . , h).
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