Previous Issue

Table of Contents

Econometrics, Volume 6, Issue 3 (September 2018)

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Readerexternal link to open them.
View options order results:
result details:
Displaying articles 1-2
Export citation of selected articles as:
Open AccessArticle Some Results on 1 Polynomial Trend Filtering
Econometrics 2018, 6(3), 33; https://doi.org/10.3390/econometrics6030033
Received: 22 May 2018 / Revised: 30 June 2018 / Accepted: 4 July 2018 / Published: 10 July 2018
PDF Full-text (288 KB) | HTML Full-text | XML Full-text
Abstract
1 polynomial trend filtering, which is a filtering method described as an 1-norm penalized least-squares problem, is promising because it enables the estimation of a piecewise polynomial trend in a univariate economic time series without prespecifying the number and location
[...] Read more.
1 polynomial trend filtering, which is a filtering method described as an 1-norm penalized least-squares problem, is promising because it enables the estimation of a piecewise polynomial trend in a univariate economic time series without prespecifying the number and location of knots. This paper shows some theoretical results on the filtering, one of which is that a small modification of the filtering provides not only identical trend estimates as the filtering but also extrapolations of the trend beyond both sample limits. Full article
(This article belongs to the Special Issue Filtering)
Open AccessArticle Econometric Fine Art Valuation by Combining Hedonic and Repeat-Sales Information
Econometrics 2018, 6(3), 32; https://doi.org/10.3390/econometrics6030032
Received: 11 December 2017 / Revised: 11 April 2018 / Accepted: 5 June 2018 / Published: 24 June 2018
PDF Full-text (493 KB) | HTML Full-text | XML Full-text
Abstract
Statistical methods are widely used for valuation (prediction of the value at sale or auction) of a unique object such as a work of art. The usual approach is estimation of a hedonic model for objects of a given class, such as paintings
[...] Read more.
Statistical methods are widely used for valuation (prediction of the value at sale or auction) of a unique object such as a work of art. The usual approach is estimation of a hedonic model for objects of a given class, such as paintings from a particular school or period, or in the context of real estate, houses in a neighborhood. Where the object itself has previously sold, an alternative is to base an estimate on the previous sale price. The combination of these approaches has been employed in real estate price index construction (e.g., Jiang et al. 2015); in the present context, we treat the use of these different sources of information as a forecast combination problem. We first optimize the hedonic model, considering the level of aggregation that is appropriate for pooling observations into a sample, and applying model-averaging methods to estimate predictive models at the individual-artist level. Next, we consider an additional stage in which we incorporate repeat-sale information, in a subset of cases for which this information is available. The methods are applied to a data set of auction prices for Canadian paintings. We compare the out-of-sample predictive accuracy of different methods and find that those that allow us to use single-artist samples produce superior results, that data-driven averaging across predictive models tends to produce clear gains, and that, where available, repeat-sale information appears to yield further improvements in predictive accuracy. Full article
(This article belongs to the Special Issue Celebrated Econometricians: Peter Phillips)
Figures

Figure 1

Back to Top