
econometrics

Article

Data-Driven Jump Detection Thresholds for
Application in Jump Regressions

Robert Davies 1 and George Tauchen 2,*
1 Amazon.com, 399 Fairview Ave N, Seattle, WA 98109, USA; reddavie@amazon.com
2 Department of Economics, Duke University, Durham, NC 27708, USA
* Correspondence: george.tauchen@duke.edu; Tel.: +1-919-660-1800

Received: 8 January 2018; Accepted: 24 February 2018; Published: 26 March 2018
����������
�������

Abstract: This paper develops a method to select the threshold in threshold-based jump detection
methods. The method is motivated by an analysis of threshold-based jump detection methods in the
context of jump-diffusion models. We show that over the range of sampling frequencies a researcher
is most likely to encounter that the usual in-fill asymptotics provide a poor guide for selecting the
jump threshold. Because of this we develop a sample-based method. Our method estimates the
number of jumps over a grid of thresholds and selects the optimal threshold at what we term the
‘take-off’ point in the estimated number of jumps. We show that this method consistently estimates
the jumps and their indices as the sampling interval goes to zero. In several Monte Carlo studies we
evaluate the performance of our method based on its ability to accurately locate jumps and its ability
to distinguish between true jumps and large diffusive moves. In one of these Monte Carlo studies we
evaluate the performance of our method in a jump regression context. Finally, we apply our method
in two empirical studies. In one we estimate the number of jumps and report the jump threshold
our method selects for three commonly used market indices. In the other empirical application we
perform a series of jump regressions using our method to select the jump threshold.

Keywords: efficient estimation; high-frequency data; jumps; semimartingale; specification test;
stochastic volatility

JEL Classification: C5; C52; G12

1. Introduction

Modeling asset prices with jumps has proven to be successful, both empirically and theoretically.
Because of this a method to accurately and reliably estimate the timing and magnitude of jumps in
asset pricing models would greatly aid the existing literature.

Since being introduced in Mancini (2001, 2004) and threshold-based methods have become
popular ways to estimate the jumps in time series data. The essential idea of these methods is that if
an observed return is sufficiently large in absolute value then it is likely that the interval in which that
return was taken contained a jump. To think about such an idea consider a standard jump-diffusion
process for a log-asset price:

Xt =
∫ t

0
bsds +

∫ t

0
σsdWs + Jt (1)

where bs is thought of as the drift of the process, σs is a time-varying volatility process, and Jt is
some finite activity jump process. (See Section 2 for a more rigorous definition of the jump-diffusion
processes we consider in this paper.) Defining the returns of the observed process X as

∆n
i X ≡ Xi∆n − X(i−1)∆n , i = 1, . . . , n. (2)
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where ∆n = 1/n is the sampling interval, n is the number of high frequency increments per day,
and n → ∞ for the asymptotic approximations. Note that ∆n

i X is the geometric return in the asset
price over the interval [(i − 1)∆n, i∆n]. Given a sequence of thresholds, vn, a threshold technique
would label a return interval as containing a jump if |∆n

i X| > vn. While Mancini (2001) originally
set vn =

√
∆n log(1/∆n) a common practice has emerged to use vn = ασ∆v

n where α and v are
parameters selected by the researcher and σ is the level of the local volatility around each return
interval.1 Typically, values are v = 0.49 or v = 0.45 and α is left as a tuning parameter.

If v = 0.49 or v = 0.45 the parameter α has a convenient interpretation. Since the diffusive
moves in Xt are on the order σ∆1/2

n using v = 0.49 or v = 0.45 we see that the tuning parameter
α has the interpretation of being essentially the number of local standard deviations of the process.
A threshold-based jump selection scheme of this form then has the convenient interpretation of
labeling returns as containing a jump (or multiple jumps) if the return is larger in absolute value than
α local standard deviations. While this provides a nice interpretation of the method, unfortunately the
literature leaves the choice α up to the researcher. The goal of the current paper is to provide a method
for the selection of α. (We leave v = 0.49 or v = 0.45 since what is important in practice is the relative
size of a ‘typical’ increment ∆n

i X and vn. See Jacod and Protter (2012, p. 248) for a discussion.)
Our primary focus in this paper is effective jump detection for the jump regression context of

Li et al. (2017a) and Li et al. (2017b) where X = (Z, Y). We can think of such a setting as estimating β

in the following model
∆n

ip
Y = β∆n

ip
Z + εip , (3)

where {ip}Nn
p=1 are the Nn return intervals in Z thought to contain a jump, where Nn is the total number

of identified jumps. In finance applications, Z is the log of a market index and Y is the log of a stock
price. The underlying theoretical model is

∆Yt = β∆Zt + ∆Et (4)

where ∆ is the instantaneous jump operator (i.e., ∆Xt = Xt − Xt−), and the orthogonality condition
that identifies β is ∆Zt∆Et = 0.2 Equation (3) is the empirical counterpart of (4). Li et al. (2017a)
contains more explanation of the theoretical model and the identifying orthogonality condition.

With a truncation threshold of the form vn = ασ∆v
n we would estimate {ip}Nn

p=1 as

{ip}Nn
p=1 = {i : 1 ≤ i ≤ nT and |∆n

i Z| > ασ∆v
n }. (5)

Notice how crucially {ip}Nn
p=1 and thereby the estimated β̂ in (3) depends on the choice of α. There are

two types of jump classification errors that can be made: (i) incorrectly labeling a particular interval as
containing a jump when it does not, and (ii) omitting an interval that actually contains a jump. If we
set too low a threshold, we make type-(i) errors and include return intervals in {ip}Nn

p=1 that do not
actually contain jumps, and that could potentially badly bias the estimated ‘jump beta’.

To see why we do not want to set too high a threshold and make a type-(ii) errors, we need to
think about the variance of our estimated jump beta. To do so consider a heuristic model where at the
jumps times {ip}p≥1 we have

∆n
ip

Y = β0∆n
ip

Z + εip (6)

1 In discussions on estimating asset pricing jumps, the volatility σ is typically treated as being known and locally constant.
In practice it needs to be estimated.

2 In the financial econometrics literature, the symbol ∆ is used three different ways: ∆n is the sampling interval; ∆n
i X ≡

Xi∆n − X(i−1)∆n is the first difference operator over the interval of width ∆n, and ∆Xt means the instantaneous jump in X at
time t. Note that ∆Xt = 0 if X is continuous at t.
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where the εip are independent and identically distributed with common variances σ2
ε . In addition,

assume that the continuous returns are sufficiently small so that regardless of the truncation threshold
used no continuous returns are included in the set of estimated jump returns. In this simplified setting

var(β̂) =
σε2

∑p≥1(∆n
ip

Z)2 . (7)

Notice that in this heuristic model that the variance of the estimated jump beta decreases as the number
of jumps included in regression increases, i.e., as the set {ip}p≥1 grows. If a truncation threshold of the
form vn = ασ∆v

n were used the variance of the estimator would be decreasing in α.
Figure 1 illustrates these ideas using some empirical data. The left panel plots the jump beta for

the jump regression of the SDPR S&P500 ETF (SPY) against the SDPR utilities ETF (XLU) for the years
2007 to 2014 using five-minute returns over a grid of α jump threshold parameters. Notice that going
down from α = 7 to about α = 3.75 that the hypothesis of a constant jump beta might be supported,
i.e., that ∆Yτp = β∆Zτp where {τp}p≥1 are the true jump times in Z. The plotted jump beta is obviously
noisy, but the estimated jump betas might very well be centered around a true and constant value.
However after about α = 3.75 the estimated jump betas for this asset begin to rapidly decline. It is
not hard to imagine that after about α = 3.75 the jump regressions became wildly corrupted by the
addition of return intervals containing only diffusive moves. The right panel plots the reciprocal of
the variance of the estimated jump betas along the same grid of α jump threshold parameters as the
reciprocal of the variance of an estimator is often thought of as a measure of the ‘precision’ of the
estimator. Notice how the precision increases as α decreases and we add return intervals to the jump
regression. As in the left panel we plot a line at α = 3.75. If after around α = 3.75 our jump regression
begins to be rapidly corrupted by the addition of return intervals that only contain diffusive moves
then, even though the precision of our estimator is increasing, our estimates of the jump beta are likely
to be significantly biased. These panels illustrate the trade-off mentioned earlier in selecting a jump
threshold. To decrease the variance of our estimated jump beta (or increase its precision) we would
like a low jump threshold, but too low a jump threshold will likely bias our jump beta since we will
likely include many returns that only contain diffusive moves.

In this paper, we develop a new method to balance the trade-off of setting too low a threshold
and potentially including return intervals that only contain diffusive moves versus setting too high
a threshold and potentially excluding return intervals that actually contain true jumps. The main
idea is to find the value of α for which the jump count function (defined below) ‘bends’ most sharply.
Intuitively this could be thought of as the ‘take-off’ point of the jump count function. Selecting
a threshold at this ‘take-off’ point should greatly reduce the number of misclassifications while
maintaining many of the true jumps. We implement this idea by computing the point of maximum
curvature to a smooth sieve-type estimator applied to the jump count function.

A related paper Figueroa-López and Nisen (2013) derives an optimal rate for the threshold in a
threshold-based jump detection scheme with the goal of estimating the integrated variance. Using a
loss function that equally penalizes jump misclassifications and missed jumps, Figueroa-López and
Nisen (2013) find that the optimal threshold should be on the order of v∗n =

√
3σ2∆n log(1/∆n) +

o(
√

∆n log(1/∆n)) similar to the threshold originally proposed in Mancini (2001). Since√
3σ2∆n log(1/∆n) is of order

√
∆n log(1/∆n) this result does not provide any guidance on the scale of

the threshold to choose. Any threshold of the form Avn for any A > 0 would be just as optimal in their
setting. This presents a major challenge for practitioners. Because of this Figueroa-López and Nisen
(2013) provide an iterative method for selecting the scale of the truncation threshold. This iterative
method however is not motivated by a theory of the jumps or the returns and adds an additional
estimation step for any researcher hoping to use their method.
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Figure 1. A jump regression illustration of the importance of the α threshold parameter. NOTE: Along
the horizontal axes is the jump threshold parameter α. The left panel plots the jump beta for the
jump regression of the SDPR S&P500 ETF (SPY) on the utilities sector ETF (XLU) across a grid of α

threshold parameters used to estimate the jumps in SPY. The right panel plots the inverse variance
of the estimated jump betas in these regressions. A vertical line has been plotted in both panels at
α = 3.75 where it appears the estimated jump beta begins to rapidly decrease. The estimates for these
plots are based on five minute return data for both series spanning the years 2007 to 2014.

While we could have used truncation thresholds of the form A
√

3σ2∆n log(1/∆n) for some A > 0
in our paper and investigated the choice of the scale of the threshold, i.e., the choice of A we did not
for two reasons. First, the difference in the relative convergence rates of

√
∆n log(1/∆n) and α∆v

n are
tiny when v = 0.49 or v = 0.45 (see the discussion in Jacod and Protter (2012, p. 248)). Second, we
feel using vn = ασ∆v

n provides a convenient interpretation for the tuning parameter α and therefore
using vn = ασ∆v

n is preferable.
The rest of the paper is organized as follows. Section 2 presents the setting. Our methodology

and the main theory about its consistency are developed in Sections 3–4. Sections 5 and 6 present
the results from a series of Monte Carlo studies and two empirical applications respectively. Finally,
Section 7 provides a conclusion. All proofs are in the Appendix A.

2. The Setting

We start with introducing the formal setup for our analysis. The following notations are used
throughout. We denote the transpose of a matrix A by A>. The adjoint matrix of a square matrix
A is denoted A#. For two vectors a and b, we write a ≤ b if the inequality holds component-wise.
The functions vec (·), det (·) and Tr(·) denote matrix vectorization, determinant and trace, respectively.
The Euclidean norm of a linear space is denoted ‖ · ‖. We use R∗ to denote the set of nonzero
real numbers, that is, R∗ ≡ R \ {0}. The cardinality of a (possibly random) set P is denoted |P|.
For any random variable ξ, we use the standard shorthand notation {ξ satisfies some property} for
{ω ∈ Ω : ξ (ω) satisfies some property}. The largest smaller integer function is denoted by b·c.
For two sequences of positive real numbers an and bn, we write an � bn if bn/c ≤ an ≤ cbn for some

constant c ≥ 1 and all n. All limits are for n→ ∞. We use P−→, L−→ and L-s−→ to denote convergence in
probability, convergence in law, and stable convergence in law, respectively.

2.1. The Underlying Processes

The object of study of the paper is the optimal selecting of the cutoff level for a threshold-style
jump detection scheme. Let X be the process under consideration and, for simplicity of exposition,
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assume that X is one-dimensional. (The results can be trivially generalized to settings where X is
multidimensional, but doing so would unnecessarily burden the notation.)

We proceed with the formal setup. Let X be defined on a filtered probability space represented as
(Ω,F , (Ft)t≥0,P). Throughout the paper, all processes are assumed to be càdlàg adapted. Our basic
assumption is that X is an Itô semimartingale (see, e.g., Jacod and Protter 2012, sct 2.1.4) with the form

Xt = x0 +
∫ t

0
bsds +

∫ t

0
σsdWs + Jt, Jt =

∫ t

0

∫
R

δ (s, u) µ (ds, du) , (8)

where the drift bt takes value in R; the volatility process σt takes value in R+, the set of positive real
numbers; W is a standard Brownian motion; δ : Ω×R+ ×R 7→ R is a predictable function; µ is a
Poisson random measure on R+ ×R with its compensator ν (dt, du) = dt⊗ λ (du) for some measure λ

on R. The jump of X at time t is denoted by ∆Xt ≡ Xt − Xt−, where Xt− ≡ lims↑t Xs. Finally, the spot
volatility of X at time t is denoted by σt. Our basic regularity condition for X is given by the following
assumption.

Assumption 1. (a) The process b is locally bounded; (b) σt is nonsingular for t ∈ [0, T]; (c) ν ([0, T]×R) < ∞.

The only nontrivial restriction in Assumption 1 is the assumption of finite activity jumps in X.
This assumption is used mainly for simplicity as our focus in the paper are ‘big’ jumps, i.e., jumps that
are not ‘sufficiently’ close to zero. Alternatively, we can drop Assumption 1(c) and focus on jumps
with sizes bounded away from zero.3

Turning to the sampling scheme, we assume that X is observed at discrete times i∆n, for 0 ≤
i ≤ n ≡ bT/∆nc, within the fixed time interval [0, T]. Following standard notation as discussed in the
Introduction, the increments of X are denoted by ∆n

i X ≡ Xi∆n − X(i−1)∆n , i = 1, . . . , n. Below, we
consider an infill asymptotic setting, that is, ∆n → 0 as n→ ∞.

3. Limits

Here we present some initial results needed to develop the data-drive method described in
Section 4. To do so we first discuss how to think about inference for the jumps; next, we introduce the
jump count function, and then we proceed to discuss jump misclassifications.

3.1. Inference for the Jump Marks

As was discussed in the introduction, in order to disentangle jumps from the diffusive
component of asset returns, we choose a sequence vn of truncation threshold values which satisfy the
following condition:

vn � ∆v
n for some constant v ∈ (0, 1/2) . (9)

In order to analyze the jumps of the process X it is helpful to introduce some notation. First,
define {τp}p≥1 to be the successive jump times of the process X. Next, define two random sets
P ≡ {p ≥ 1 : τp ≤ T} and T ≡ {τp : p ∈ P} which collect respectively the indices of the jumps times
in the interval [0, T] and the jump times themselves. Since the jumps in X are assumed to be of finite
activity, these two sets are almost surely finite as well. For the jump in X that occurs at time τ ∈ T , we
call (τ, ∆Xτ) its mark. Finally, define a Borel measurable subset D ⊂ [0, T]×R∗ as a (temporal-spatial)
region. We do so in order to think about restricting our observation set to only those jumps that fall
within a given region. To do so define the set PD ≡ {p ≥ 1 : (τp, ∆Xτp) ∈ D}.

3 Yet another strategy, that can allow for studying dependence in infinite activity jumps, is to use higher order powers in the
statistics that we develop henceforth. This, however, comes at the price of losing some efficiency for the analysis of the
‘big’ jumps.
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With these definitions we can think about the true and estimated sets that index the jumps
in a given sample. For each p ∈ P , we denote by i (p) the unique random index i such that
τp ∈ ((i− 1)∆n, i∆n]. We set

In (D) ≡ {i : 1 ≤ i ≤ n, ((i− 1)∆n, ∆n
i X) ∈ D, |∆n

i X| > vn} , and (10)

I (D) ≡ {i (p) : p ∈ PD}.

The set-valued statistic In (D) collects the indices of returns whose ‘marks’ ((i− 1)∆n, ∆n
i X) are in the

region D, where the truncation criterion
∣∣∆n

i X
∣∣ > vn eliminates diffusive returns asymptotically. The

set I (D) collects the indices of sampling intervals that contain the jumps with marks in D. Clearly, the
set I (D) is random and unobservable. We also impose the following mild regularity condition on D,
which amounts to requiring that the jump marks of X almost surely do not fall on the boundary of D.

Assumption 2. ν ({(s, u) ∈ [0, T]×R : (s, δX (s, u)) ∈ ∂D}) = 0, where ∂D denotes the boundary of D.

Under Assumptions 1 and 2 it can be shown that for a fixed vn � ∆v
n that In (D) consistently

estimates the jumps, i.e., In (D)
P−→ I (D). (See, for example, Li et al. 2017a.) The goal of the current

paper is to make vn dependent on the sample and the sampling frequency.

3.2. The Jump Count Function

The now-standard method to define the truncation level is

vn = ασ∆v
n for some constant v ∈ (0, 1/2) . (11)

where σ is an estimate of the general level of local volatility, typical settings are v = 0.49 or v = 0.45,
and α is a tuning parameter. Since the diffusive moves in X are on the order σ∆1/2

n and v is just under
1/2, the tuning parameter α has the convenient interpretation of essentially being the number of local
standard deviations. This definition of vn motivates a definition of the sample index of the jumps that
depends on the truncation threshold α. With this in mind define

In (α,D) ≡
{

i : 1 ≤ i ≤ n, ((i− 1)∆n, ∆n
i X) ∈ D, |∆n

i X| > ασ∆v
n
}

. (12)

By the presumed finite activity of the jump process in X there are only a (random) finite number of
jumps and we wish to identify the set In (α,D).

In order to do so it proves convenient to define the jump count function

Nn(α) =
nT

∑
i=1

1
(
|∆n

i X| > ασ∆v
n
)

, α ∈ [0, ∞) . (13)

Evidently, Nn(α) is non-increasing, piecewise flat with discontinuities at the order statistics of
∣∣∆n

i X
∣∣.

Notice Nn(α) decreases to zero as α→ ∞. For each fixed α (and for any v ∈ (0, 1/2)), it can be shown
that for a large enough n, i.e., for a small enough ∆n that

Nn(α) = |I (D)| (14)

since Nn(α) = |In (α,D) | and In (α,D) converges to I (D). (See (Li et al. 2017a) for the details and a
more thorough discussion.)
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3.3. Jump Misclassifications

We think of a jump selection procedure as having a ‘misclassification’ if, for some return interval
∆n

i X, we |∆n
i X| > ασ∆v

n yet over the region ((i− 1)∆n, i∆n] we have ∆Xt = 0. That is, if we label the
return interval as containing a jump when no true jump occurred.

In order to think about jump misclassifications consider the jump count function solely for the
diffusive moves. Defining the continuous moves of the process as Xc

t = Xt −∑s≤t ∆Xs for t ≥ 0 and
∆n

i Xc ≡ Xc
i∆n
− Xc

(i−1)∆n
we can define the jump count function of the continuous moves as

Nc
n(α) =

nT

∑
i=1

1
(
|∆n

i Xc| > ασ∆v
n
)

, α ∈ [0, ∞) . (15)

For a given jump threshold α and sampling frequency ∆n, the function Nc
n(α) counts the diffusive

moves that are ‘incorrectly’ labeled as jumps. Since the diffusive moves are locally Gaussian we see
that 1

(∣∣∆n
i Xc

∣∣ > ασ∆v
n
)

is simply a Bernoulli random variables with probability of success equal to
2Q(α∆v−1/2

n ) where Q(·) = 1−Φ(·) and Φ(·) is the cumulative distribution function of the standard
normal density. This is because

P
(
|∆n

i Xc| > ασ∆v
n
)
= P

(∣∣∣∣∆−1/2
n

∆n
i Xc

σ

∣∣∣∣ > α∆v−1/2
n

)
= P

(
|Z| > α∆v−1/2

n

)
= 2Q(α∆v−1/2

n )

(16)

where Z is a standard normal random variable. Because of this Nc
n(α) is simply a binomial random

variable with the same probability and n draws. This implies

E[Nc
n(α)] = n2Q(α∆v−1/2

n ). (17)

For a fixed α > 0 it is fairly straight forward to show that E[Nc
n(α)] = n2Q(α∆v−1/2

n )→ 0 as ∆n → 0,
which implies in the limit that the number of misclassifications goes to zero. This result however
turns out not to be a good guide for the range of sampling frequencies most often encountered in
practice. Table 1 reports the expected number of yearly misclassification, i.e., T × E[Nc

n(α)] with
T = 252, using v = 0.49 for n = {39, 78, 390, 390× 60} over a range of α threshold parameter values.
The range of sampling frequencies corresponds to ten minute, five minute, one minute, and one second
sampling in a typical trading day. Notice that for each selected threshold α that the number of expected
misclassifications is always increasing in the table.4 This is in stark contrast to what one might expect
given the asymptotic theory. Since the timing and magnitude of the jumps do not vary with the
sampling frequency and the diffusive moves vanish as ∆n shrinks to zero one might be led to conclude
that the truncation thresholds could be decreased as the sampling frequency increases. The result in
Table 1 shows that for the range of frequencies a researcher is most likely to encounter that this is not
the case. Because of this result, while we remain alert to the asymptotic theory, we seek to find an
optimal threshold parameter α that is sample driven, not one based solely on the asymptotic theory.

4 The intuition behind the result in Table 1 is that when v = 0.49 we have ∆v−1/2
n ≈ 1 for n = {39, 78, 390, 390× 60} resulting

in n2Q(α∆1/2−v
n ) actually increasing as ∆n decreases (or n increases).
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Table 1. Expected Number of Yearly Jump Misclassifications.

Threshold Parameter

Freq. α = 3.5 α = 4 α = 4.5 α = 5 α = 5.5 α = 6 α = 6.5 α = 7

39 2.78 0.328 0.030 0.0021 0.0001 4.8 × 10−6 1.5 × 10−7 3.8 × 10−9

78 5.04 0.578 0.051 0.0035 0.0002 7.2 × 10−6 2.2 × 10−7 5.2 × 10−9

390 19.96 2.140 0.175 0.0109 0.0005 1.9 × 10−5 5.1 × 10−7 1.1 × 10−8

390 × 60 640.63 57.304 3.822 0.1897 0.0070 0.0002 3.9 × 10−6 5.8 × 10−8

NOTE: Table reports the expected number of yearly (n× 252) diffusive returns that would be misclassified as
jumps for each fixed α using the result that E[Nc

n(α)] = n2Q(α∆v−1/2
n ) where Nc

n(α) is the jump count function
of the diffusive moves. We set v = 0.49.

4. The Curvature Method

As briefly discussed above in the introduction, the selection of a jump threshold, i.e., the selection
of α in Equation (11), involves a trade off between setting too high a threshold and failing to include
all of the jumps against setting too low a threshold and erroneously labeling diffusive moves as jumps.
For example, setting α = 0 would correctly identify every jump but would also include every diffusive
move. Similarly, setting α > maxi |∆n

i X| would guarantee that no diffusive moves were incorrectly
labeled as jumps, but would fail to identify any of the jumps.

We can use the results of Section 3 to guide the selection of a suitable α. Under the modeling
assumptions of Section 2, there are a finite (but random) number of jumps N∗ on the interval [0, T].
From the theory (Jacod and Protter 2012; Li et al. 2017a) we know that for any fixed α the truncation
scheme correctly classifies all N∗ jumps when n is sufficiently large. Thus, for any fixed α the jump
count Function (13) satisfies limn→∞ Nn(α) = N∗ almost surely. Furthermore, for a fixed n and for
higher values of α we should expect the jump count function to have a long flat region that is level
at about N∗, but we should also expect the jump count function to rise sharply at lower values of α

where many diffusive moves start getting erroneously classified as jumps. So the task is to determine
from the jump count function that value of α where the jump count function starts to increase sharply
as α declines. We think of this point as the point at which the jump count function begins to ‘take-off’.
Our solution to find this ‘take-off’ point is to look for the value of α at which the jump count function
Nn(α) ‘kinks’ or ‘bends’ most sharply.

The way to mathematically define a ‘kink’ or sharpest ‘bend’ in a smooth function is the point of
maximum curvature. The curvature of a smooth function f : R→ R is defined as

κ( f ) ≡ | f ′′|
(1 + [ f ′]2)3/2 . (18)

Intuitively, if we think of the function f as lying in a two-dimensional plane and representing the
direction of travel of some object, the curvature of f represents the rate at which the direction of travel
is changing. (Or more rigorously the magnitude of the rate of change of the unit tangent vector to the
curve.) The point of maximum curvature then is the point at which the direction of travel changes
the most.

However, being piece-wise flat, the raw jump count function itself is ill-suited for this purpose, as
evident in the top two panels of Figure 2. These panels plot the jump count function for the five minute
returns of the SDPR S&P500 ETF during the year 2014. In the top left panel the domain α ∈ [2, 10] is
too wide making the steps barely noticeable. Zooming in however on the domain α ∈ [6, 7.5] the top
right panel clearly shows the jump count function to be piece-wise flat.
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Figure 2. An illustration of the jump threshold selection method. NOTE: Along the horizontal axes
is the jump threshold parameter α. The top left panel plots the estimated number of jumps over a
grid of α ∈ [2, 10]. The top right zooms in and plots the estimated number of jumps over α ∈ [6, 7.5].
The bottom left panel adds a plot of the fitted basis function. The bottom right plots the curvature of
the fitted basis function. The estimates for these plots are based on five minute return data from the
SDPR S&P500 ETF (SPY) spanning the year 2014. We set v = 0.49. See Sections 3.3 and 4 for details on
the estimated number of jumps and the fitted basis functions.

Given this problem, we work with a smoother sieve estimator fitted to the jump count function.
A natural choice might seem to be kernels or splines but these turn out to be ineffective due to the small
wiggles and discontinuities that these functions have in their higher order derivatives. These wiggles
and discontinuities in turn significantly affect the curvature of these functions making the point of
maximum curvature often more dependent on the particular choice of which kernels or splines was
chosen rather than the data. A far better approach is to do a least-squares projection of the observed
jump count function onto a set of smooth basis functions. Given the shape of the jump count function,
we use basis functions

g(α, γ) ≡ {α ∈ [a, a], γ ∈ Rp : γ0 + γ1α−1 + · · ·+ γpα−p} (19)

where we need p ≥ 1 for the point of maximum curvature to be well-defined. Using these basis
functions we can define the projection of the jump count function onto g(α, γ) as

gn(α) ≡ projg(α,γ)Nn(α). (20)
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In practice we find that these basis functions result in projections with extremely tight5 fits that
have very high R2s for low values of p = 3 or p = 4. Because of this the projection itself amounts to a
compact numerical representation of approximately the same information as in the raw jump count
function itself.

With this idea in mind we select α∗n as the value that maximizes the curvature of the appropriately
smoothed jump count function, i.e.,

α∗n = max
α

κ[gn(α)] for α ∈
[
α
¯
, ᾱ
]

(21)

where α ∈ [α
¯
, ᾱ] ⊂ R+. We refer to such a selection method in what follows as the ‘curvature method’.

Setting the threshold right at this point of maximum curvature or ‘kink’ point then allows for
a great many of the true jumps to be located, but guards against overly misclassify diffusive moves.
Because of this, the procedure is evidently very conservative in that it lets through only a small
number of diffusive moves. However, in a jump regression setting a very conservative jump selection
procedure is to be preferred as the loss from including diffusive moves is very high because doing so
potentially biases the estimates whereas incorrectly missing a true jump only entails a small loss of
efficiency.

Though conservative, the curvature method is asymptotically accurate. We show this in Theorem
1 below. The theorem shows that in the limit the curvature method correctly identifies all of the jumps
and excludes any returns that contain only diffusive moves. The theorem relies on the following
definition for the convergence of random vectors with possibly different length: for a sequence Nn of

random integers and a sequence (
(

Aj,n
)

1≤j≤Nn
)n≥1 of random elements, we write (Aj,n)1≤j≤Nn

P−→(
Aj
)

1≤j≤N if we have both P (Nn = N) −→ 1 and
(

Aj,n
)

1≤j≤N 1{Nn=N}
P−→
(

Aj
)

1≤j≤N

Theorem 1. Under Assumptions 1 and 2 and with α ∈ [α
¯
, ᾱ] ⊂ R+ we have that

(a) P[In(α∗n,D) = I(D)]→ 1, and
(b) ((i− 1)∆n, ∆i

nX)i∈In(α∗n ,D)
P−→ (τp, ∆Xτp)p∈PD .

The theorem above shows that as ∆n → 0 that the jump count function Nn(α∗n) using our
procedure will converge in probability to the true number of jumps and that the estimated index of the
jumps In (α∗n,D) over a region D will converge in probability to the true index I (D) over that region.

5. Monte Carlo Studies

We evaluate the performance of our threshold selection method on simulated data in three Monte
Carlo studies. The first study compares our method with a method that simply chooses a fixed value
of the truncation parameter α. The second study evaluates how our method does at recovering jumps
of varying magnitudes. Finally, the third study shows the performance of our method in a jump
regression setting.

5.1. Comparing Our Method with Choosing a Fixed Truncation Constant

In the first Monte Carlo study we evaluate the performance of our threshold selection method
against a method that simply chooses a fixed value of α. (Where recall we label a return interval
as containing a jump if |∆n

i X| > α∆v
n .) The sample span is one year, containing T = 252 trading

days. Each day we simulate data using N = 390× 60 high-frequency returns to match what would

5 The projection minimizes
∫ a

a (Nn(α)− g(α, γ))2 dα with respect to γ.
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correspond to one second sampling and consider return intervals of one second, one minute, five
minutes, and ten minutes. There are 1000 Monte Carlo replications and we set v = 0.49.

The data generating process in this Monte Carlo study follows the model below. The model is
taken from Li et al. (2017b) and accommodates features such as the leverage effect, price-volatility
co-jumps, and heteroskedasticity in jump sizes. Let W and B be independent Brownian motions. We
generate prices according to

dXt =
√

Vt(ρdBt +
√

1− ρ2dWt) + ϕtdNt

d log Vt = µVdt + 0.5(dBt + JV,tdNt)
(22)

The first displayed equation shows the price dynamics: X is the log asset price, V the local diffusive
variance, ρ is parameter that captures correlation between the continuous parts of X and V (the
leverage effect), ϕt is a mean-zero Gaussian price jump, and Nt is a Poisson counting process with
intensity λ. The second displayed equation shows the variance (V) dynamics: µV is the drift in V,
JV,t is the log-variance jump, which occurs at the same time as price jumps and is exponential with
parameter ηJV . The parameters calibrated (realistically) are given by

V0 = (18)2, ρ = −0.7

JV,t
i.i.d.∼ Exp(ηJV), ηJV = 0.1

ϕt|Vt
i.i.d.∼ N(0, φ2Vt), φ = 0.055

µV = −2

Nt is a Poisson process with intensity λ = 20.

(23)

The negative value for the variance drift µV is needed to offset the positive upward drift generated by
variance jumps with positive mean, and thereby keep log Vt from increasing off to infinity.

In addition to the selected threshold α∗n, we report two statistics for the Monte Carlo study.
The first we term the jump ‘recovery rate’. This is the number of correctly identified jumps divided by
the number of true jumps. A recovery rate of 100% means every true jump was correctly identified
whereas a recovery rate of 0% means no true jumps were identified. The second statistic we term the
‘accuracy’ of the jump detection procedure. This is the number of correctly matched jumps divided by
the number of estimated jumps. An accuracy of 100% means that every return interval we estimated to
include a jump actually contained a true jump whereas an accuracy of 0% means that none of the return
intervals we estimated to include a jump actually contained a true jump. Table 2 below reports the
results of the first Monte Carlo study. All the statistics in the table are averages across the 1000 Monte
Carlo replications. First notice that while the average selected value of α∗n decreases from ten minute
sampling down to one second sampling. Such a result is to be hoped for since over the sampling
range of ten minutes to one second the number of jump misclassifications, as was shown in Section
3.3, is actually increasing at higher sampling frequencies. A method that attempted to minimize jump
misclassifications would ideally increase the jump threshold over this range to guard against such
misclassifications. Our method appears to make some effort to do so.

Notice that the average recovery rates of the curvature procedure are generally as good as and
sometimes better (rarely worse) than those using a fixed α. At the same time, the average accuracy of
the procedure is above 90% for all sampling frequencies, unlike the fixed α = 4 case. The curvature
method can achieve substantially increased recovery rates with little sacrifice in accuracy. As for the
other values of α, the accuracy remains high but at the expense of a lower recovery rate than that of
the curvature method.
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Table 2. Comparison against a fixed truncation scheme: Monte Carlo averages (%).

Curvature Fixed Truncated Parameter

Method α = 4 α = 5 α = 6 α = 7

Freq. α∗
n REC ACC REC ACC REC ACC REC ACC REC ACC

10 min 4.83 29.35 98.61 39.22 89.36 27.75 99.63 17.17 100.00 11.08 100.00
5 min 4.65 49.49 98.95 56.09 92.63 46.21 99.91 36.83 100.00 28.65 100.00
1 min 4.22 79.61 94.85 80.71 87.09 76.08 99.90 71.42 100.00 65.89 100.00

1 s 5.95 96.70 91.48 97.46 25.74 97.03 98.95 96.54 100.00 95.73 100.00

NOTE: REC is average jump recovery rate, ACC is the average accuracy of estimated jumps, and α∗n is the
average selected threshold parameter α across the Monte Carlo replications. The jump recovery rate is defined as
the number of correctly matched jumps divided by the number of true jumps. The jump accuracy is defined as
the number of correctly matched jumps divided by the number of estimated jumps. The jump accuracy and
recovery rate are in percentage terms. The results are based on 1000 replications following the data generating
process outlined in (22) and (23).

5.2. Recovering Jumps of Varying Magnitudes

For the second Monte Carlo study, we use modification of a standard setup to examine how our
method performed in recovering jumps of differing magnitudes. To this end we simulated jumps
that, with equal probability, took sizes varying from one to ten unit standard deviations of the local
volatility.6 To do this, we modeled the jumps as following a compound Poisson process, that once
scaled for the local volatility, had a jump size density that followed a discrete uniform distribution
taking values in the range {1, 2, . . . 10}. Using such a jump density allows us to observe how well our
method can and cannot detect jumps of various magnitudes.

Letting (Wt, Bt) be a vector of Brownian motions with Corr(Wt, Bt) = 0.5, the model is defined as

dXt =
√

VtdWt +
√

VtutNt,

dVt = 0.03(1.0−Vt)dt + 0.1
√

VtdBt,

Nt is a Poisson process with intensity λ = 1/12× 252, and

(24)

where ut is an i.i.d. discrete uniform distribution that takes values in {1, . . . , 10}. (Setting
Corr(Wt, Bt) = 0.5 allows for a dependence between Xt and Vt, i.e., a leverage effect.) We set
λ = 1/12× 252 so there should be on average a one-twelfth chance of a jump occurring each day. This
is consistent with previous studies on market jumps. The data generating process for the diffusive
moves and the volatility process is similar and based on that found in Li et al. (2017a).

We perform the study using 1000 replications and set T = 3× 252, which corresponds to three
years’ worth of simulated data. We use an Euler scheme to simulate the high-frequency data doing
an initial simulation with N = 390× 60× 10 which corresponds to sampling once every tenth of a
second. We then sample these high-frequency returns at one second, one minute, five minute, and ten
minute frequencies.

Table 3 reports the results of this Monte Carlo study. The table lists the averages across all 1000
Monte Carlo replications. Consistent with a theory of vanishing diffusive moves the recovery rates
increase significantly with each increase in the sampling frequency. At a 10 minute frequency we
recovery most jumps greater than eight local standard deviations, a few jumps between five and
seven local standard deviations, and virtually no jumps of sizes one to four local standard deviations.
Sampling at a five minute frequency we make significant gains in recovering jumps of five to seven
local standard deviations. At a one minute sampling frequency we can uncover nearly all jumps
except those of one local standard deviation. Finally, at one second sampling all of the jumps are

6 Where to preserve the jump sizes across sampling frequencies we used the local volatility in terms of return intervals at the
coarsest sampling frequency, which here corresponded to sampling at a ten minute frequency.
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recovered. (Note though that the increase in the sampling frequency going from one minute to one
second sampling is significantly greater than going from ten to five to one minute sampling so the
stark contrast between the one minute and the one second sampling should not be exaggerated.)

The average selected threshold parameter α∗n appears to decrease somewhat from ten minute
to five minute to one minute sampling, but increases quite significantly going from one minute
to one second sampling. Following the discussion in Section 3.3 the large increase in the selected
threshold from one minute to one second sampling is to be hoped for as the number of expected jump
misclassifications increases greatly going from one minute to one second sampling. The slight decrease
in the average selected threshold parameter going from ten minute to one minute sampling, while not
ideal in terms of the arguments of Section 3.3, does not appear to drastically change the accuracy of
the estimated jumps. The accuracy over these three sampling frequencies is always above 98% and
only decreases to 94.28% at one second sampling.

Table 3. Recovering jumps of varying magnitudes: Monte Carlo averages.

Recovery Rates (%) by Jump Size

Freq. α∗
n Accuracy (%) 1σ 2σ 3σ 4σ 5σ 6σ 7σ 8σ 9σ 10σ

10 min 5.27 99.71 0.32 0.15 1.27 5.51 18.53 41.48 65.93 83.83 94.07 97.79
5 min 5.07 99.83 0.31 0.91 11.68 46.62 84.69 97.67 99.86 99.96 99.94 99.97
1 min 4.41 98.22 6.38 93.90 99.99 100.00 99.95 99.97 99.99 100.00 99.98 100.00

1 s 5.72 94.28 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00

NOTE: The recovery rates are for jumps of sizes equal to 1–10 unit local standard deviations in terms of
return intervals sampled at a ten minute frequency. The σ above indicates a unit of local standard deviation.
The average selected threshold parameter α across Monte Carlo replications is denoted α∗n. The jump recovery
rate is defined as the number of correctly matched jumps divided by the number of true jumps. The jump
accuracy is defined as the number of correctly matched jumps divided by the number of estimated jumps.
The results are based on 1000 replications following the data generating process outlined in Section 5.2.

5.3. Jump Regression Setting

The third Monte Carlo study examines how our procedure performs in a jump regression context.
A thorough overview of jump regressions can be found in Li et al. (2017a). Below we only give a
brief overview of jump regressions and the results we use in our Monte Carlo study. Given two series
of returns ∆n

i Z (often a proxy for the market) and ∆n
i Y (often the return on an asset price) a jump

regression considers a regression of ∆n
i Z on ∆n

i Y only over the return intervals in which Z is thought
to contain a jump. The null in many jump regression settings is that the jump regression coefficient,
termed the jump beta, is constant at every jump time, i.e.,

∆Yτp = β∆Zτp , where τp are the jump times of Z. (25)

For this Monte Carlo study we perform a test of a constant jump beta under both a simulated model
that has a constant jump beta and a model with a time varying jump beta. We report rejection rates
for the test as well as the average selected thresholds α∗n and the accuracy and recovery rates of the
estimated jumps. For the test of a constant jump beta we use a bootstrap version of the determinant
test of Li et al. (2017a).

We simulate data using a model adapted from Li et al. (2017a). The model takes the form

dZt = σtdWt + σtdJt

dYt = βcσtdWt + βJ
t σtdJt +

σt√
2

dW̃t + σtdJ̃t

dσ2
t = 0.03(1− σ2

t )dt + 0.15σtdBt

(26)
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where W, W̃, and B are three independent Brownian motions. Jt and J̃t are compound Poisson jump
processes where the jump size densities follow double-exponential (or Laplacian) distributions and the
jump intensities are λ = 1/12× 252 and λ̃ = 1/48× 252 respectively. We set βc = 0.89.

The jump beta process βJ
t follows the following specifications under the null and the alternative

βJ
t = 1, for all t ∈ [0, T], under H0 (null hypothesis)

dβJ
t = 0.005(1− βJ

t )dt + 0.005
√

βJ
t dB̃t, under Ha (alternative hypothesis)

(27)

where B̃ is a Brownian motion independent of W, W̃, and B. The unconditional mean of βJ
t under the

alternative is 1. The model differs from Li et al. (2017a) only in the specification of different jump and
diffusive betas.

We perform the study using 1000 replications and set T = 3× 252, which corresponds to three
years’ worth of simulated data. We use an Euler scheme to simulate the high-frequency data doing
an initial simulation with N = 390× 60× 10 which corresponds to sampling once every tenth of a
second. We then sample these high-frequency returns at one second, one minute, five minute, and ten
minute frequencies. These parameters were chosen to match the Monte Carlo study in Li et al. (2017a)
as closely as possible.

Table 4 below reports the results of our study. Notice how differently the size of the test is affected
by the choice of the jump threshold parameter. Using the curvature method the test is only moderately
over-sized at ten and five minute sampling and not terribly over-sized at one minute sampling. (This
is perhaps to be somewhat expected as Li et al. (2017a) found the test of a constant jump beta to be
moderately over-sized.) These fairly mild over rejections using the curvature method however are
in stark contrast to using a fixed α = 4. Notice that using a fixed α = 4 how the size of the tests
becomes progressively worse and worse as the sampling frequency increases. Even at ten and five
minute sampling the test is quite over-sized. This result is due to the inclusion of return intervals in the
jump regression that only contained diffusive moves thereby biasing the estimated jump beta. To see
this notice that using α = 4 the accuracy of the jump detection procedure deteriorates significantly
as the sampling frequency increases. At one minute sampling the average accuracy is 88.1% and at
one second sampling the average accuracy is a very low 26.5%. This means that in the respective
jump regressions on average fully 11.9% and 84.5% of the respectively estimated returns did not
actually contain a jump. In contrast using the curvature method the accuracy of the estimated jumps
remains high at all sampling frequencies. Finally, note that the power of the test using both methods is
consistent with the results in Li et al. (2017a).

Table 4. Monte Carlo rejection rates (%) for tests of a constant jump beta.

Curvature Method

Under H0 Under Ha

Average Nominal Level Average Nominal Level

Freq. α∗
n ACC REC 10% 5% 1% α∗

n ACC REC 10% 5% 1%

10 min 5.64 99.8 34.4 11.6 6.5 1.8 5.65 99.8 34.6 52.1 42.6 22.8
5 min 4.42 99.7 52.4 10.6 5.8 1.8 4.42 99.8 52.9 71.0 62.0 45.4
1 min 5.04 98.1 78.6 13.5 8.3 2.2 5.01 98.1 78.6 98.6 96.9 94.1

1 s 5.57 92.6 96.0 19.7 11.6 4.1 5.59 92.7 96.1 100.0 100.0 100.0
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Table 4. Cont.

Fixed α = 4 as in Li et al. (2017a)

Under H0 Under Ha

Average Nominal Level Average Nominal Level

Freq. α ACC REC 10% 5% 1% α ACC REC 10% 5% 1%

10 min 4.00 92.8 48.3 12.7 7.1 3.0 4.00 92.9 48.6 52.0 41.4 23.1
5 min 4.00 93.6 61.0 12.7 7.5 2.6 4.00 93.7 61.0 70.9 61.5 43.1
1 min 4.00 88.1 80.5 18.8 10.5 4.2 4.00 88.2 80.6 98.7 96.9 94.5

1 s 4.00 26.5 97.2 99.1 96.6 86.5 4.00 26.3 97.3 100.0 100.0 100.0

NOTE: The rejection rates are for the null of a constant jump beta using a bootstrap version of the determinant
test of Li et al. (2017a). REC is average jump recovery rate, ACC is the average accuracy of estimated jumps, and
α∗n is the average selected threshold parameter α across the Monte Carlo replications. The jump recovery rate is
defined as the number of correctly matched jumps divided by the number of true jumps. The jump accuracy
is defined as the number of correctly matched jumps divided by the number of estimated jumps. The jump
accuracy and recovery rate are in percentage terms. The results are based on 1000 replications following the data
generating processes for the null and alternative as outlined in Section 5.3.

6. Empirical Application

We considered two empirical applications. The first estimates the jumps and reports the jump
threshold selected by our method for three commonly used and high liquid market indices. The second
application reports the results of jump regressions of the nine SDPR sector ETFs against the SDPR
S&P500 ETF using our method to select the jump threshold.

6.1. Estimating Jumps in Market Indices

For the E-mini S&P500 index futures (ES), the SPDR S&P500 ETF (SPY), and the VIX futures (VIX)
we use the tools developed in this study to estimate the optimal jump thresholds for each series over a
range of dates and a range of sampling frequencies. We report both the jump threshold selected by
our method as well as the estimated number of jumps at each selected jump threshold. The SPY and
ES series span the dates 3 January 2007 to 12 December 2014. The VIX series spans the dates 2 July
2012 to 30 April 2015. Only the more recent VIX futures data are used because Bollen and Whaley
(2015) provide evidence that the VIX futures market was highly illiquidity and immature in prior
periods. For each series we remove market holidays and partial trading days; and, to guard against
possible adverse microstructure effects, we discard the first five minutes and the last five minutes of
each trading day.

For each series we performed the estimation over both the entire sample and each complete
calendar year within each sample. In addition, we performed the estimation using one minute, five
minute, and ten minute intraday returns. Tables 5 and 6 report the selected jump threshold α∗n and the
estimated number of jumps at the selected jump threshold.

In Table 6 which reports the selected jump threshold α∗n, notice that for the E-mini S&P500
index futures (ES) and the SPDR S&P500 ETF (SPY) there appears to be somewhat of an increase in
the selected threshold as the sampling frequency increases from ten minute to five minute to one
minute sampling. As was discussed in Section 3.3 this is to be hoped for as the number of jump
misclassifications is actually increasing over this range of sampling frequencies. For the VIX futures
(VIX) we do not see much of a pattern in the selected jump threshold α∗n. This however should not
be seen as evidence against our threshold selection procedure since Andersen et al. (2015) provide
evidence that the high-frequency returns of the VIX futures might be well modeled as following an
α-stable distribution with α ≈ 1.8. If this were true then not only would we not expect the same
misclassification dynamics as in the diffusive case, but the correct scaling of the returns would be on
the order of ∆α

n rather than ∆1/2
n .

For Table 5, which reports the estimated number of jumps, notice that the number of estimated
jumps is always increasing as the sampling frequency increases. Note also that the number of jumps



Econometrics 2018, 6, 16 16 of 25

detected at the 5-min and 10-min frequencies is very small, reflecting the inherent conservative nature
of the curvature method. In practice, common sense suggests that at these coarser frequencies the
practitioner might elect to experiment a bit with slightly lower values of α than those produced directly
by the curvature method, which does define a sensible baseline however.

Table 5. Estimated Number of Jumps.

SPDR S&P500 ETF (SPY)

Frequency Full Sample 2007 2008 2009 2010 2011 2012 2013 2014

10 min 6 3 1 1 0 0 0 0 1
5 min 20 3 4 1 3 1 5 3 1
1 min 81 6 13 13 10 10 12 5 6

E-mini S&P500 Futures (ES)

Frequency Full Sample 2007 2008 2009 2010 2011 2012 2013 2014

10 min 6 1 0 1 0 0 1 0 1
5 min 20 2 3 2 3 1 4 3 1
1 min 100 12 9 9 13 14 14 11 12

VIX Futures

Frequency Full Sample 2013 2014

10 min 3 2 1
5 min 9 6 2
1 min 43 17 11

NOTE: The table reports the estimated number of jumps for each sample at the chosen α∗n jump threshold given
in Table 6. The frequency refers to the sampling frequency of the returns. The SPY and ES series span the dates
3 January 2007 to 12 December 2014. The VIX series spans the dates 2 July 2012 to 30 April 2015.

Table 6. Selected Jump Threshold (α∗n).

SPDR S&P500 ETF (SPY)

Frequency Full Sample 2007 2008 2009 2010 2011 2012 2013 2014

10 min 5.61 5.81 5.20 5.25 6.07 5.38 6.13 5.26 5.71
5 min 6.13 5.98 5.54 5.81 6.30 5.80 6.60 6.17 7.01
1 min 6.67 7.12 6.13 6.24 6.49 6.43 7.59 6.79 6.76

E-mini S&P500 Futures (ES)

Frequency Full Sample 2007 2008 2009 2010 2011 2012 2013 2014

10 min 5.60 5.97 5.25 5.39 5.81 5.37 6.06 5.24 5.52
5 min 6.15 6.20 5.66 5.86 6.26 5.90 6.52 6.04 6.72
1 min 6.11 6.45 6.08 5.94 5.80 5.95 6.69 5.93 6.13

VIX Futures

Frequency Full Sample 2013 2014

10 min 5.78 5.65 5.67
5 min 5.52 5.38 5.41
1 min 5.49 5.18 5.30

NOTE: The table reports the selected jump threshold for each sample based on the procedure in Section 4.
The frequency refers to the sampling frequency of the returns. The SPY and ES series span the dates 3 January
2007 to 12 December 2014. The VIX series spans the dates 2 July 2012 to 30 April 2015.

6.2. Jump Regressions

Using the nine SDPR sector ETFs we perform a series of jump regressions of the sector ETFs
against the SDPR S&P500 market ETF (SPY). We determine the jumps in the SPY series via the jump
threshold parameter α∗n based on the curvature method developed Section 4 above. Then to examine
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how sensitive these jump regressions are to different jump thresholds we consider two other thresholds
α+n and α−n which are equal to α∗n plus and minus 15% respectively. The reason for basing the jump
threshold on the SPY series is that a jump regression only considers the beta for the regression of the
specific asset return on the market return for intervals in which the market (SPY) is thought to have
jumped. Note that the data are for the year 2009 and that we use one-minute returns to estimate the
jumps but five-minute returns to perform the jump regressions.7 We chose the year 2009 because it
was a representative year and one for which there appeared empirical support for a constant jump
beta for each asset over the year.8

Table 7. Jump regression results for the nine SDPR sector ETFs against the SDPR S&P500 ETF.

Jump Thresholds

α−
n = 5.18 α∗

n = 6.09 α+
n = 7.00

Asset α β̂ S.E. R2 p-Value

XLB
α−n 1.049 0.060 0.894 0.021
α∗n 0.996 0.102 0.905 0.045
α+n 0.988 0.112 0.922 0.015

XLE
α−n 0.948 0.065 0.877 0.029
α∗n 0.902 0.101 0.984 0.679
α+n 0.934 0.117 0.994 0.471

XLF
α−n 1.182 0.144 0.866 0.360
α∗n 1.687 0.577 0.984 0.956
α+n 1.691 0.661 0.998 0.872

XLI
α−n 1.046 0.048 0.955 0.151
α∗n 0.967 0.078 0.991 0.648
α+n 0.973 0.086 0.994 0.271

XLK
α−n 0.697 0.057 0.916 0.196
α∗n 0.711 0.105 0.922 0.086
α+n 0.741 0.114 0.988 0.350

XLP
α−n 0.684 0.059 0.908 0.363
α∗n 0.712 0.133 0.935 0.275
α+n 0.754 0.146 0.962 0.173

XLU
α−n 0.890 0.079 0.865 0.118
α∗n 1.127 0.128 0.914 0.183
α+n 1.192 0.135 0.974 0.073

XLV
α−n 0.764 0.060 0.905 0.339
α∗n 0.885 0.102 0.903 0.071
α+n 0.973 0.105 0.999 0.819

XLY
α−n 0.956 0.049 0.932 0.023
α∗n 1.032 0.073 0.955 0.073
α+n 0.998 0.077 0.962 0.018

NOTE: This table reports the results from jump regression of the listed asset against the SDPR S&P500 ETF (SPY).
The data are returns on the nine SDPR sector ETFs for the year 2009. The selected jump threshold parameters
are based on the estimated jumps in the SPY returns series as this is the left-hand side variable in the jump
regressions. The jumps were located using one-minute returns and the jump regressions where performed using
five-minute returns. The threshold α∗n is the estimated threshold using the curvature method and α+n and α−n are
α∗n plus and minus 15% respectively. The standard errors are calculated under the simplifying assumption that
the volatility is continuous over the day. The p-values are from a bootstrap version of the determinant test in Li
et al. (2017a).

7 The SPY asset is sufficiently liquid to use to identify jump intervals at the 1-min level; the subsequent aggregation to 5-min
returns is a correction for possible trading friction noise in the returns of the less liquid sector-specific assets.

8 Not all years showed such evidence of constant jump betas. For the sake of exposition we do not report the results from
these years since there is not as much to learn from examining the jump regression results using different jump thresholds if
the jump beta is time-varying. Results for all years are available on request, however.
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Table 7 reports the jump beta, the standard error of the jump beta, the R2 of the regression, and
the p-value of the null of a constant jump beta over the year. The p-values are calculated using a
bootstrap version of the determinant test in Li et al. (2017a). The standard errors are calculated under
a simplifying assumption that the volatility process of the diffusive moves is continuous across the
market jump times; otherwise, inference becomes far more complicated but the conclusions barely
changed in the end. For some of the portfolios the estimated beta seen in the table seems relatively
insensitive to the 15% perturbations to α∗n, but there are some notable exceptions. In particular, the
jump beta for the XLF (Finance) portfolio is quite lower (1.182 vs. 1.687) using α−n versus α∗n. The same
is also true but to a lesser degree for XLK (Technology), XLU (Utilities), and XLV (Health Care). These
four are economically important portfolios where the beta value matters, and one does not want a
misleading estimate obtained by letting in too many diffusive moves and thereby throwing off the
jump regression. At the same time, note that for all nine portfolios the estimation precision obtained
with α∗n is higher (lower standard error) than with α+n , which reflects of course the inclusion of the
more jumps, i.e., data points.

7. Conclusions

This paper introduced a method for selecting the threshold in threshold-based jump detection
schemes. Previously the selection of the threshold in such schemes has been left to each researcher
in each project to choose. This creates a problem because the number of estimated jumps in a series
of observed returns can vary substantially depending on which threshold a researcher selects. Our
method therefore advances the existing literature on asset price jumps because it provides a method
for the selection of the jump threshold. Even further, we believe researchers will find our method
intuitive and easy to implement in practice.

In developing our method, we first showed that over the range of sampling frequencies a
researcher is most likely to encounter that the standard in-fill asymptotics provide a poor guide for the
selection of the jump threshold. Because of this we developed a sample-based method. Our method is
developed as follows. Given a series of observed returns, our method relies on first estimating the
number of jumps in this series over a grid of possible thresholds. Doing so results in a jump count
function where the value of the function is the number of estimated jumps in the series of returns at
each value of the threshold in the grid. Our method then selects the chosen threshold as the threshold
for which the curvature of a suitably smoothed version of the jump count function is maximized. We
think of this point as being the point were the estimated number of jumps begins to ‘take-off’. We
argue that selecting the threshold at this point should include many of the true jumps in the process
and should guard against overly including returns that only contain diffusive moves. As the sampling
size of the returns goes to zero we show that such a methodology will consistently estimate the jumps
of a jump-diffusion model and asymptotically will exclude returns that only contain diffusive moves.

Having developed a methodology for selecting the threshold in threshold-based jump detection
schemes we show its performance in several Monte Carlo studies and an empirical application.
The Monte Carlo studies showed our method was able to recovery many of the true jumps in the data
generating processes considered and maintained a high degree of accuracy in the returns it labeled
as containing jumps. Further, one Monte Carlo study showed the improvement our method gave
in a jump regression context. Finally, in two empirical studies we applied the method discussed
to real world data. In the first empirical study we estimated the number jumps and provided the
jump threshold selected by our method over a range of dates and sampling frequencies for three
commonly used series in finance: the SPDR S&P500 ETF, the S&P500 E-mini futures, and the VIX
futures. In the second empirical study we performed a series of jump regressions where we regressed
the return intervals thought to contain jumps in the SDPR S&P500 ETF (SPY) on the corresponding
return intervals in the SDPR sector ETFs using our method to select the jump times.

Acknowledgments: We would like to thank Tim Bollerslev, Jia Li, Andrew Patton, Dacheng Xiu and the entire
financial econometrics lunch group at Duke for helpful discussions.
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Appendix A. Proofs

To notational brevity below we refer to the optimally selected jump threshold as αn, that is
αn = arg max κ(gn(α)), rather than α∗n as in the main text. For two positive sequences of real numbers
an and bn we use the following set of notations below: we write an

a∼ bn if an/bn → 1 as n → ∞,
we write an = O(bn) if for some N∗ ∈ N there exists c > 0 such that for all n > N∗ we have an ≤ cbn,
we write an = Ω(bn) if for some N∗ there exists c > 0 such that for all n > N∗ we have an ≥ cbn, and
finally we write an = Θ(bn) if for some N∗ there exists c > 0 and d > 0 such that for all n > N∗ we
have cbn ≤ an ≤ dbn.

We also drop the dependence of In(α,D) and I(D) on the region D and simply write In(α) and
I instead.

Proof of Theorem 1. (a) Since the jumps of X have finite activity, we can assume without any loss of
generality that each interval ((i− 1)∆n, i∆n] contains at most one jump. (If not we can restrict the focus
to the w.p.a.1 set of the sample paths upon which this condition holds.) We denote the continuous part
of X by

Xc
t = Xt −∑

s≤t
∆Xs, t ≥ 0. (A1)

Following Li, Todorov, and Tauchen (2014) notice that In(α) can be broken into two disjoint sets
I1n(α) and I2n(α) defined as

I1n(α) = I ∩ In(α) and I2n(α) = In(α) \ I(α). (A2)

The proof proceeds by showing

(i) P(I1n(αn) = I)→ 1, and
(ii) P(I2n(αn) = ∅)→ 1.

Part (i):
Recall that αn ∈ [α, α] with α > 0. By Lemma A1 below we have αn → α. This implies αnσ∆v

n → 0
as n → ∞ (or equivalently as ∆n → 0) since ∆v

n → 0. Following Li, Todorov, and Tauchen (2014),
we notice that αnσ∆v

n → 0 implies that for any p ∈ P and an n ∈ N sufficiently large that we will have
|∆n

i(p)X| > αnσ∆v
n . These results imply

I1n(αn) =
{

i(p) : p ∈ P , ((i(p)− 1)∆n, ∆n
i(p)X)

}
w.p.a. 1. (A3)

Next notice that
sup
p∈P

∥∥∥((i(p)− 1)∆n, ∆n
i(p)X

)
− (τp, ∆Xτp)

∥∥∥→ 0 a.s.. (A4)

To see this notice that, almost surely,

sup
p∈P

∥∥∥((i(p)− 1)∆n, ∆n
i(p)X

)
− (τp, ∆Xτp)

∥∥∥
= sup

p∈P

∥∥∥((i(p)− 1)∆n − τp, ∆n
i(p)X

)∥∥∥
≤ ∆n + sup

s,t≤T,|s−t|≤∆n

|Xc
t − Xc

s |

→ 0.

(A5)

Therefore w.p.a.1 the sets I1n(αn) and I will coincide.
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Part (ii):
We first show a result concerning the distribution of the diffusive moves. Notice that because

the diffusive moves are locally Gaussian that for a fixed α > 0 that we have P(|∆Xc
i | > ασ∆v

n ) =

2Q(α∆v−1/2
n ) where Q(·) = 1−Φ(·) and Φ(·) is the cumulative distribution function of the standard

normal density.
Recalling that αn ∈ [α, α] with α > 0 notice that

0 ≤ P(I2n(αn) 6= ∅)

≤ P
(

n⋃
i=1

{|∆n
i Xc| > αnσ∆v

n }
)

≤ P
(

n⋃
i=1

{|∆n
i Xc| > α∆v

n }
)

≤ nP(|∆n
i Xc| > ασ∆v

n ).

(A6)

Consider nP(|∆n
i X| > ασ∆v

n ). Since α is non-random we know P(|∆n
i X| > ασ∆v

n ) =

2Q(α∆v−1/2
n ) and therefore nP(|∆n

i Xc| > ασ∆v
n ) = n2Q(α∆v−1/2

n ). Next, we will use the result
that Q(z) ≤ φ(z)/z for any z > 0 where φ(z) is the standard normal density. Using this result and the
fact that Q(z) > 0 for any z > 0 we see

0 < n2Q(α∆v−1/2
n ) ≤ n2

φ(α∆v−1/2
n )

α∆v−1/2
n

=
n2√
2π

exp{−(α∆v−1/2
n )2/2}

α∆v−1/2
n

=
2√
2π

exp{−(α∆v−1/2
n )2/2}

α∆v+1/2
n

→ 0

(A7)

where the convergence above follows since exp{−(α∆v−1/2
n )2/2} → 0 at a faster rate than α∆v+1/2

n →
0. This shows P(I2n(αn) 6= ∅)→ 0.

(b) By part (a), it suffices to show that

((i− 1)∆n, ∆n
i X)i∈I − (τp, ∆Xτp)p∈P = op(1). (A8)

Observe that ((i − 1)∆n, ∆n
i X)i∈I is simply ((i(p) − 1)∆n, ∆n

i(p)X)p∈P . We deduce the desired
convergence by the same arguments as in part (a).

Lemma A1. For αn ∈ [α, α] with α > 0 and αn as defined in Section 3.3, we have that αn → α at rate
nv+1/2e−n1−2v

.

Proof. Recall that αn = arg maxα∈[α,α] κ[gn(α)]. Where κ(·) is the curvature of a function and where
gn(α) is the projection of Nn(α) onto the set of basis functions g(α, γ) = {α ∈ [a, a], γ ∈ Rp+1 :
γ0 + γ1α−1 + · · ·+ γpα−p}.

Since the approximation of Nn(α) onto the set of basis functions g(α, γ) is found by a least squares
projection of Nn(α) onto g we can solve for gn(α) = projNn(α)

g(α, γ) analytically. To do so define

a ≡ (1, α−1, . . . , α−p)′ so that γn = 〈a, a′〉−1〈a, Nn(α)〉 where 〈 f , g〉 =
∫ a

a f (x)′g(x)dx is the inner
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product on the space of real-valued functions on the domain [α, α]. Defining A ≡ 〈a, a′〉−1 we can
express the (p + 1)× 1 vector of coefficients

γn = 〈a, a′〉−1〈a, Nn(α)〉

=

[∫ a

a
a′a dα

]−1 [∫ a

a
a′Nn(α) dα

]
= A

[∫ a

a
a′Nn(α) dα

]
.

(A9)

which implies each coefficient

γj,n =
p

∑
k=0

Aj,k+1〈α−k, Nn(α)〉. (A10)

Recall from the proof of Theorem 1 that P(|∆Xc
i | > ασ∆v

n ) = 2Q(α∆v−1/2
n ) for a fixed α > 0. Since

the jump process in X is assumed to be of finite activity and Nc
n(α) increases without bound as α→ 0

we can see that Nn(α)
a∼ Nc

n(α). (Note the limit here is for α→ 0 holding n fixed.) This result implies
that in a neighborhood around α = 0 that Nn(α)

a∼ n2Q(α∆v−1/2) since E[Nc
n(α)] = n2Q(α∆v−1/2

n ).
(Where the limit is now for n→ ∞ holding α fixed in a neighborhood around α = 0.) We can use this
result to derive an expression for each 〈α−k, Nn(α)〉 when α is small and n is large.9

For k ≥ 2 some algebra shows

〈α−k, Nn(α)〉 =
∫ α

α
α−k Nn(α)dα

=
1

2(k− 1)
n[

α1−k − α1−k

(
erf

(
αn

1
2−v

√
2

))
−

2
1
2−

k
2 n

1
2 (k−1)(1−2v)Γ

(
1− k

2 , 1
2 α2n1−2v

)
√

π

+ α1−kerf

(
αn

1
2−v

√
2

)
− α1−k +

2
1
2−

k
2 n

1
2 (k−1)(1−2v)Γ

(
1− k

2 , 1
2 n1−2vα2

)
√

π


(A11)

where the function Γ(a, z) is the incomplete Gamma function. (When k = 0 or k = 1 similar expressions
can be deduced.) We proceed by examining each component of (A11) in the limit in order to derive a
bound on 〈α−k, Nn(α)〉 in the limit. For any fixed m ∈ N we can express Γ(a, z) as

Γ (a, z) = za−1e−z

(
m−1

∑
k=0

uk

zk + Rm(a, z)

)
(A12)

where uk = (−1)k(1− a)k and Rm(a, z) = O(z−m). (DLMF, Section 8.11(i)) If we think of z → ∞
in (A12) we see Γ(a, z) = Θ(za−1e−z). This implies that Γ

(
1− k

2 , 1
2 α2n1−2v

)
= Θ(n−

1
2 k(1−2v)e−n1−2v

)

for α = α, α in (A11) and therefore that

2
1
2−

k
2 n

1
2 (k−1)(1−2v)Γ

(
1− k

2 , 1
2 n1−2vα2

)
√

π
= Θ(nv−1/2e−n1−2v

) (A13)

9 We limit our scope to the case when α is small because we are primarily interested in limiting the number of misclassifications
that might occur in the jump count function and, as was shown in Section 3.2, these increase exponentially as α→ 0.
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for α = α, α in (A11). The error function erf(z) can be written as (DLMF, Section 7.12)

erf(z) = 1− e−z2

z
√

π

∞

∑
m=0

(−1)m (2m− 1)!!
(2z2)m (A14)

which shows erf(z)− 1 = Θ(z−1e−z2
). This implies that

α1−kerf

(
αn

1
2−v

√
2

)
− α1−k = Θ(nv−1/2e−n1−2v

) (A15)

as well for α = α, α in (A11). Combing these results we see

〈α−k, Nn(α)〉 = Θ(n)
[
Θ(nv−1/2e−n1−2v

) + Θ(nv−1/2e−n1−2v
)

+ Θ(nv−1/2e−n1−2v
) + Θ(nv−1/2e−n1−2v

)
]

= Θ(nv+1/2e−n1−2v
)

(A16)

for k ≥ 2. Using a similar derivation as in (A11) and the arguments above it can be shown
that both 〈α0, Nn(α)〉 = Θ(nv+1/2e−n1−2v

) and 〈α−1, Nn(α)〉 = Θ(nv+1/2e−n1−2v
) as well. Recall

γj,n = ∑
p
k=0 Aj,k+1〈α−k, Nn(α)〉 since 〈α−k, Nn(α)〉 = Θ(nv+1/2e−n1−2v

) for all k ≥ 0 we see

γj,n = Θ(nv+1/2e−n1−2v
).

Having provided rates for how the coefficients of gn(α) go to zero we will use these results to
describe the behavior of the the curvature function of gn(α) in the limit as well. Doing so will allow us
to think about how αn = arg max κ(gn(α)) will behave in the limit. The curvature10 of gn(α) is

κ(gn(α)) =
g′′n(α)

(1 + [g′n(α)]2)
3/2 . (A17)

Since gn(α) = ∑
p
j=1 γj,nα−j notice that

g′n(α) =
p

∑
j=1
−jγj,nα−j−1 (A18)

and

g′′n(α) =
p

∑
j=1

j(j + 1)γj,nα−j−2. (A19)

We showed above that for j = 0, . . . , p that each coefficient

γj,n = Θ(nv+1/2e−n1−2v
) (A20)

which implies that both
g′n(α) = Θ(nv+1/2e−n1−2v

) (A21)

and
g′′n(α) = Θ(nv+1/2e−n1−2v

). (A22)

10 The equation in (A17) is actually for the signed curvature. However the basis functions g(α, γ) used here always have a
positive signed curvature so that the curvature and the signed curvature coincide.
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Looking at the denominator of κ(gn(α)) in (A17) we see that(
1 + [g′n(α)]

2
)3/2

− 1 = Θ(n3v+3/2e−3n1−2v
) (A23)

and therefore that for an n sufficiently large that κ(gn(α))
a∼ g′′n(α) since

(
1 + [g′n(α)]2

)3/2 → 1 at a
faster rate than g′′n(α)→ 0. To see this, note that

g′′n(α)
κ(gn(α))

=
κ(gn(α))

(
1 + [g′n(α)]2

)3/2

κ(gn(α))
=
(

1 + [g′n(α)]
2
)3/2

→ 1. (A24)

Note as well that since κ(gn(α)) = g′′n(α)(1 + [g′n(α)]2)−3/2 and g′′n(α) → 0 at slower rate than
(1 + [g′n(α)]2)−3/2 → 1 that κ(gn(α))→ 0 and therefore |κ(gn(α))− g′′n(α)| → 0.

Having concluded that κ(gn(α))
a∼ g′′n(α) and |κ(gn(α))− g′′n(α)| → 0 we can think about how αn

might behave in the limit as well. Recall that αn ∈ [α, α] with α > 0. Fixing an n > 0 and thinking about
the function g′′n(α) on the domain [α, α] notice that for any n > 0 that arg maxα g′′n(α) = α since g′′n(α)
is a monotonically decreasing function of α. Since |κ(gn(α))− g′′n(α)| → 0 and arg maxα g′′n(α) = α for
all n > 0 we see that αn = arg max κ(gn(α))→ α as well.

Having shown that αn → α we will find its rate. First, however, we need to establish a result
concerning linear functions. Note that for any non-zero linear function f (x) : R → R the rate at
which f (x) → f (c) when x → c for a constant c ∈ R will be the same as the rate that x → c
because we express f (x) = mx + b for some m 6= 0 and b ∈ R. With this in mind define the function
hn(αn) = κ(gn(αn))− g′′n(αn) and consider its Taylor approximation around αn = α when α is ‘small’.
That is

hn(αn) = hn(α) + h′n(α)αn + O(α2
n). (A25)

Since |κ(gn(α))− g′′n(α)| → 0 as ∆n → 0, for a sufficiently large n, we will have hn(α) = κ(gn(α))−
g′′n(α) ≈ 0. Since we took the approximation around αn = α and assumed α was ‘small’ we see that the
Taylor approximation error in (A25) will also be negligible compared to h′n(α)αn. This shows that in a
sufficiently small neighborhood around αn = α when α is ‘small’ that hn(αn) will be approximately
linear in αn and therefore the rate that αn → α will be the same as the rate that hn(αn) → 0. Since
hn(αn) = κ(gn(αn))− g′′n(αn) the rate that hn(αn)→ 0 is given by the rate that |κ(gn(α))− g′′n(α)| → 0.
We showed earlier that κ(gn(α))

a∼ g′′n(α) this implies that κ(gn(α)) = Θ(g′′n(α)) and since g′′n(α) =
Θ(nv+1/2e−n1−2v

) we see |κ(gn(α)) − g′′n(α)| → 0 at rate nv+1/2e−n1−2v
. This implies finally that

αn → α at rate nv+1/2e−n1−2v
.

Appendix B. NOTES

The entire interval [0, nT] comprises nT intervals of width ∆n. Let are Jn denote indexes (labels)
of the intervals that actually contain Z jumps. Note that the labels in Jn vary with n but the cardinality
|Jn| does not vary with n since that is the actual (finite) number of jumps.

We need to characterize the asymptotic behavior of the increments in the Y and Z processes across
both the non-jump and jump intervals. For the diffusive (non-jump) intervals, we have from Jacod and
Protter (2012) (

∆n
r Z

∆n
r Yc

)
=

(
∆1/2

n σz,rζz,r

∆1/2
n σy,rζy,r

)
r /∈ Jn (A26)

where σz,r, σy,r are local volatilities, and ζz,r, ζy,r are conditionally correlated Gaussian random
variables with unit variance each. For the intervals that actually Z jumps we have from LTT

∆n
i Y = ∆Zti β + ∆1/2

n ηi i ∈ Jn, (A27)
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where ti are the jump times, ∆Zti the actual jumps, β is the (constant) jump beta, and ηi are
"mixed-normal" random variables with a relatively simple but non-stand distribution defined by
the diffusive variation in Y and Z across the jump interval.

As per the main text, let In denote the intervals labeled as jumps by the jump detection scheme,
where we suppress the dependence on α for now. If Jn = In then all jumps are perfectly detected, and
we are in the setup of LTT, which has been covered. The following is interesting only if Jn ∩ I c

n 6= φ,
i.e., there are diffusive intervals erroneously miss-classified as jump intervals.

Suppose across the entire jump interval

∆n
ip

Y = ∆n
ip

Zβ + ∆n
ip

ec
ip

, p = 1, . . . ,P (A28)

which implicitly assumes equal beta at jump intervals and by construction ec
t is a continuous process.

Suppose we incorrectly include Rn extra diffusive terms ∆n
ir Zc, ∆n

ir Y
c, r = 1, 2, . . . , Rn into the

regression. From Jacod and Protter (2012) we have that

∆n
ir Zc = ∆1/2

n σz,tr ζz,r

∆n
ir Y

c = ∆1/2
n ρzy,tr σy,tr ζz,r + ∆1/2

n σy,tr

√
1− ρ2

zy,tr
ζy,r

(A29)

In what follows it matters how Rn grows (if at all) with n. Thus we write

Rn

n
→ B, 0 ≤ B ≤ ∞ (A30)

The most interesting and relevant case is when 0 < B < ∞, but considering the cases B = 0, B = ∞
provide further insights.

The jump regression estimator is

β̂ =
∑P

p=1 ∆n
ip

Z∆n
ip

Y + ∑Rn
r=1 ∆n

ir Zc∆n
ir Y

c

∑P
p=1(∆

n
ip

Z)2 + ∑Rn
r=1(∆

n
ir Zc)

(A31)

Suppose B is positive and finite. Then

Rn

∑
r=1

∆n
ir Zc∆n

ir Y
c =

Rn

∑
r=1

(∆n
ir Zc)2 = ∆n

Rn

∑
r=1

σ2
z,tr ζ2

z,r

=
B
ñ

ñ

∑
r=1

σ2
z,tr ζ2

z,r

(A32)

The above is just the mean of ñ random variables, where the r for the ζ2
z,r is drawn from whatever

probability density η(r) governs the (incorrect) inclusion of the diffusive terms in [0, 1]; hence,

B
ñ

ñ

∑
r=1

σ2
z,tr ζ2

z,r → BK
∫ 1

0
σ2

z,sη(s)ds, (A33)

where K = E(ζ2
s ). Note that the support of η(s) could be a strict subset of [0, 1], and that η(s) will put

zero mass points at the jump times tp, p = 1, . . . , P. By similar reasoning we have that

Rn

∑
r=1

∆n
ir Zc∆n

ir Y
c → BK

∫ 1

0
σ2

zy,sη(s)ds (A34)
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Using familiar jump regression arguments we have that

P

∑
p=1

∆n
ip

Z∆n
ip

Y = β
P

∑
p=1

(∆n
ip

Z)2 + ∆1/2
n

P

∑
p=1

∆n
ip

Zσe,tp ζe,r (A35)

Putting everything together we have that asymptotically (A31) acts as

β̂ = wJ J β + wddb + wJ J
∆1/2

n

∑P
p=1(∆

n
ip

Z)2

P

∑
p=1

∆n
ip

Z (A36)

where b = ∑Rn
r=1 ∆n

ir Zc∆n
ir Y

c/ ∑Rn
r=1(∆

n
ir Zc)2 is the now classical “realized beta” for diffusive

regression, and

wJ J =
∑P

p=1(∆
n
ip

Z)2

∑P
p=1(∆

n
ip

Z)2 + BK
∫ 1

0 σ2
z,sη(s)ds

wdd = 1− wJ J

(A37)
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