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Abstract: An information matrix of a parametric model being singular at a certain true value of
a parameter vector is irregular. The maximum likelihood estimator in the irregular case usually
has a rate of convergence slower than the

√
n-rate in a regular case. We propose to estimate such

models by the adaptive lasso maximum likelihood and propose an information criterion to select
the involved tuning parameter. We show that the penalized maximum likelihood estimator has the
oracle properties. The method can implement model selection and estimation simultaneously and
the estimator always has the usual

√
n-rate of convergence.
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1. Introduction

It has long been noted that some parametric models may have singular information matrices
but still be identifiable. For example, Silvey (1959) finds that the score statistic in a single-parameter
identifiable model can be zero for all data and Cox and Hinkley (1974) notice that a zero score can
arise in the estimation of variance component parameters. Zero or linearly dependent scores imply
that information matrices are singular. Other examples include, among others, parametric mixture
models that include one homogeneous distribution (Kiefer 1982), simultaneous equations models
(Sargan 1983), the sample selection model (Lee and Chesher 1986), the stochastic frontier function
model (Lee 1993), and a finite mixture model (Chen 1995).

Some authors have considered the asymptotic distribution of the maximum likelihood estimator
(MLE) in some irregular cases with singular information matrices. Cox and Hinkley (1974) show
that the asymptotic distribution of the MLE of variance components can be found after a power
reparameterization. Lee (1993) derives the asymptotic distribution of the MLE for parameters in a
stochastic frontier function model with a singular information matrix by several reparameterizations
so that the transformed model has a nonsingular information matrix. Rotnitzky et al. (2000) consider a
general parametric model where the information matrix has a rank being one less than the number
of parameters, and derive the asymptotic distribution of the MLE by reparameterizations and
investigating high order Taylor expansions of the first order conditions. Typically, the MLEs of
some components of the parameter vector in the irregular case may have slower than the

√
n-rate of

convergence and have non-normal asymptotic distributions, while the MLE in the regular case has the√
n-rate of convergence and is asymptotically normally distributed. As a result, for inference purposes,

one may need to first test whether the parameter vector takes a certain value at which the information
matrix is singular.

Econometrics 2018, 6, 8; doi:10.3390/econometrics6010008 www.mdpi.com/journal/econometrics

http://www.mdpi.com/journal/econometrics
http://www.mdpi.com
http://dx.doi.org/10.3390/econometrics6010008
http://www.mdpi.com/journal/econometrics


Econometrics 2018, 6, 8 2 of 24

We consider the case that the irregularity of a singular information matrix occurs when a subvector
of the parameter vector takes a specific true value, while the information matrix at any other value is
nonsingular. For example, zero true value of a variance parameter in the stochastic frontier function
model, and zero true values of a correlation coefficient and coefficients for variables in the selection
equation of a sample selection model can lead to singular information matrices (Lee and Chesher 1986).
For such a model, if the true value of the subvector is known and imposed in the model, the restricted
model will usually have a nonsingular information matrix for the remaining parameters and the MLE
has the usual

√
n-rate of convergence. This reminds us of the oracle properties of the lasso in linear

regressions, i.e., it may select the correct model with probability approaching one (w.p.a.1.) and the
resulting estimator satisfies the properties as if we knew the true model (Fan and Li 2001). In this paper,
we propose to estimate an irregular parametric model by a penalized maximum likelihood (PML)
which appends a lasso penalty term to the likelihood function. Without loss of generality, we consider
the situation when the information matrix is singular at a zero true value θ20 of a subvector θ2 of the
parameter vector θ.1 We expect that a PML with oracle properties for parametric models can avoid the
slow rate of convergence and nonstandard asymptotic distribution for the irregular case. We penalize
θ2 using the Euclidean norm as for the group lasso (Yuan and Lin 2006), since the interest is in whether
the whole vector θ2 rather than its individual components are zero. The penalty term is constructed to
be adaptive by using an initial consistent estimator as for the adaptive lasso (Zou 2006) and adaptive
group lasso (Wang and Leng 2008), so that the PML can have the oracle properties. In the irregular
case, the initial estimate used to construct the adaptive penalty term has a slower rate of convergence
than that in the literature, but the lasso approach can still be applied if the tuning parameter is properly
selected. We prove the oracle properties under regularity conditions. Consequently, the PML can
implement model selection and estimation simultaneously. Because the model with θ20 6= 0 and
the restricted one with θ20 = 0 imposed have nonsingular information matrices, the PML estimator
(PMLE) always has the

√
n-rate of convergence and standard asymptotic distributions.

The PML criterion function has a tuning parameter in the penalty term. In asymptotic analysis, the
tuning parameter is assumed to have certain order so that the PML can have the oracle properties. In finite
samples, the tuning parameter needs to be chosen. For least square shrinkage methods, the generalized
cross validation (GCV) and information criteria such as the Akaike information criterion (AIC)
and Bayesian information criterion (BIC) are often used. While the GCV and AIC cannot identify
the true model consistently (Wang et al. 2007), the BIC can (Wang and Leng 2007; Wang et al. 2007;
Wang et al. 2009). Zhang et al. (2010) propose a general information criterion (GIC) that can nest the
AIC and BIC and show its consistency in model selection. Following Zhang et al. (2010), we propose
to choose the tuning parameter by minimizing an information criterion. We show that the procedure is
consistent in model selection under regularity conditions. Because of the irregularity in the model,
the proposed information criterion can be different from the traditional AIC, BIC and GIC.

Jin and Lee (2017) show that, in a matrix exponential spatial specification model, the covariance
matrix of the gradient vector for the nonlinear two stage least squares (N2SLS) criterion function can be
singular when a subvector of the parameter vector has the true value zero. They consider the penalized
lasso N2SLS estimation of the model. This paper generalizes the lasso method to the ML estimation
of the several cited models with singular information matrices. For the model in Jin and Lee (2017),
the true parameter vector is in the interior of the parameter space. However, for some irregular models
cited above, the true parameter vector is on the boundary of the parameter space. We thus consider
also the boundary case in this paper.

The PML approach proposed in this paper can be applied to all of the parametric models with
singular information matrices mentioned above, e.g., the sample selection model and the stochastic
frontier function model. Since the PMLE has the

√
n-rate of convergence for the components which

1 A model with the new parameter η = θ2 − θ20 can be considered in the case of a nonzero θ20.
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are not super-consistently estimated, we expect the PMLE to outperform the unrestricted MLE in finite
samples for such models in the irregular case, e.g., in terms of smaller root mean squared errors and
shorter confidence intervals.

The rest of the paper is organized as follows. Section 2 presents the PML estimation procedure
for general parametric models with singular information matrices. Section 3 discusses specifically the
PMLEs for the sample selection model and stochastic frontier function model. Section 4 reports some
Monte Carlo results. Section 5 concludes. In Appendix A, we derive the asymptotic distribution of the
MLE of the sample selection model in the irregular case. Proofs are in Appendix B.

2. PMLE for Parametric Models

Let the data (y1, . . . , yn) be i.i.d. with the probability density function (pdf) f (y; θ0), a member
of the family of pdf’s f (y; θ), θ ∈ Θ, if y’s are continuous random variables. If y’s are discrete, f (y; θ)

will be a probability mass function. Furthermore, if y’s are mixed continuous and discrete random
variables, f (y; θ) will be a mixed probability mass and density function. Assumption 1 is a standard
condition for the consistency of the MLE (Newey and McFadden 1994).

Assumption 1. Suppose that yi, i = 1, . . . , n, are i.i.d. with pdf (or mixed probability mass and density
function) f (yi; θ0) and (i) if θ 6= θ0 then f (yi; θ) 6= f (yi; θ0) with probability one; (ii) θ0 ∈ Θ, which is
compact; (iii) ln f (yi; θ) is continuous at each θ with probability one; (iv) E[supθ∈Θ | ln f (y; θ)|] < ∞.

Rothenberg (1971) shows that, if the information matrix of a parametric model has constant
rank in an open neighborhood of the true parameter vector, then local identification of parameters is
equivalent to nonsingularity of the information matrix at the true parameter vector. Local identification
is necessary but not sufficient for global identification. For the examples in the introduction,
the information matrix of a parametric model is singular when the true parameter vector takes
certain value, but it is nonsingular at other values. Thus, the result in Rothenberg (1971) does not apply
but the parameters may still be identifiable in all cases.

We consider the case that the information matrix of the likelihood function is singular at θ0, with
a subvector θ20 of θ0 being zero. We propose to estimate θ = (θ′1, θ′2)

′ by maximizing the following
penalized likelihood function

Qn(θ) = [Ln(θ)− λn‖θ̃2n‖−µ‖θ2‖]I(θ̃2n 6= 0) + Ln(θ1, 0)I(θ̃2n = 0), (1)

where Ln(θ) =
1
n ∑n

i=1 li(θ) is the log likelihood function divided by n with li(θ) = ln f (yi; θ), λn > 0
is a tuning parameter, µ > 0 is a constant, θ̃2n is an initial consistent estimator of θ2, which can be the
MLE or any other consistent estimator, ‖ · ‖ denotes the Euclidean norm and I(·) is the set indicator.
The PMLE θ̂n maximizes (1).

Assumption 2. θ̃2n = θ20 + op(1).

The initial estimator θ̃2n can be zero in value, especially when θ20 is on the boundary of the
parameter space, e.g., a zero variance parameter for the stochastic frontier function model in Section 3.2.
With a zero value for θ̃2n, the PMLE of θ2 in (1) is set to zero and the value of the PMLE equals that of
the restricted MLE with the restriction θ2 = 0 imposed. The tuning parameter λn needs to be positive
which tends to zero as the sample size increases.

Assumption 3. λn > 0 and λn = o(1).

We have the consistency of θ̂n as long as λn goes to zero as n goes to infinity in Assumption 3.

Proposition 1. Under Assumptions 1–3, θ̂n = θ0 + op(1).

The convergence rate of θ̂n can be derived under regularity conditions. Let Θ = Θ1 ×Θ2, where
Θ1 and Θ2 are, respectively, the parameter spaces for θ1 and θ2. We investigate the case where θ20 is on
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the boundary as well as the case where θ20 is in the interior int(Θ2) of Θ2. The rest of parameters θ10

are always in the interior of Θ1. The following regularity condition is required.

Assumption 4. (i) θ0 = (θ′10, θ′20)
′ ∈ Θ1 ×Θ2 which are compact convex subsets in some finite dimensional

Euclidean space Rk; (ii) θ10 ∈ int(Θ1); (iii) Θ2 = [0, ζ) for some ζ > 0 if θ2 ∈ R1, and θ20 ∈ int(Θ2)

if θ2 ∈ Rk2 with k2 ≥ 2; (iv) f (yi; θ) is twice continuously differentiable and f (y; θ) > 0 on S , where
S = N (θ0)∩ (Θ1×Θ2) withN (θ0) being an open neighborhood at θ0 of Rk; (v)

∫
supθ∈S ‖

∂ f (y;θ)
∂θ ‖ dy < ∞,∫

supθ∈S ‖
∂2 f (y;θ)

∂θ∂θ′ ‖ dy < ∞; (vi) E( ∂li(θ0)
∂θ

∂li(θ0)
∂θ′ ) exists and is nonsingular when θ20 6= 0, and E( ∂li(θ0)

∂θ1

∂li(θ0)
∂θ′1

)

exists and is nonsingular when θ20 = 0; (vii) E(supθ∈S ‖
∂2li(θ)
∂θ∂θ′ ‖) < ∞.

In the literature, several irregular models have parameters on the boundary: the model on simplified
components of variances in Cox and Hinkley (1974, p. 117), the mixture model in Kiefer (1982) and the
stochastic frontier function model in Aigner et al. (1977).2 For these models, a scalar parameter θ2 is
always nonnegative but irregularity occurs when θ20 = 0 on the boundary. True parameters other than
θ20 are in the interior of their parameter spaces. We thus assume that θ20 is a scalar when it can be
on the boundary of its parameter space.3 (iv)–(vii) in Assumption 4 are standard. Note that for the
partial derivative with respect to θ2 at θ20 on the boundary, only perturbations on Θ2 are considered,
as for the (left/right) partial derivatives in Andrews (1999). The convexity of Θ1 and Θ2 makes such
derivatives well-defined and convexity is relevant when the mean value theorem is applied to the log
likelihood function.

For our main focus in this paper, at θ20 = 0, the information matrix is singular. However, our
lasso estimation method is also applicable to regular models where the information matrix might be
nonsingular even at θ20 = 0. The following proposition provides such a generality.

Proposition 2. Under Assumptions 1–4, if E( ∂li(θ0)
∂θ

∂li(θ0)
∂θ′ ) exists and is nonsingular, then θ̂n = θ0 +

Op(n−1/2 + λn).

Proposition 2 derives the rate of convergence of the PMLE θ̂n in the case of a nonsingular
information matrix. When θ20 6= 0, we have assumed in Assumption 4 that the information matrix is
nonsingular. When θ20 = 0, Proposition 2 is relevant in the event that the PML is formulated with a
reparameterized model that has a nonsingular information matrix and the reparameterized unknown
parameters are represented by θ.

We now consider whether the PMLE has the sparsity property, i.e., whether θ̂2n is equal to zero
w.p.a.1. when θ20 = 0. For the lasso penalty function, λn and the initial consistent estimate θ̃n are
required to have certain orders of convergence for the sparsity property.

Assumption 5. Suppose that θ̃n − θ0 = Op(n−s), where 0 < s ≤ 1/2. The tuning parameter sequence λn is
selected to satisfy either

(i) λn converges to zero such that λnnµs → ∞ as n→ ∞; or
(ii) if E( ∂li(θ0)

∂θ
∂li(θ0)

∂θ′ ) exists and is nonsingular, λn is selected to have at most the order O(n−1/2) such that
λnnµs+1/2 → ∞ as n→ ∞.

2 As pointed out by an anonymous referee, our PML approach can also be applied to interesting economic models such
as disequilibrium models and structural change models. For a market possibly in disequilibrium, an equilibrium is
characterized by a parameter value on the boundary (Goldfeld and Quandt 1975; Quandt 1978). Structural changes can also
be characterized by parameters on the boundary. Thus, our PML approach can be applied in those models with singular
information matrices.

3 This implies that θ0 ∈ int(Θ) when θ20 6= 0, which simplifies later presentation for the asymptotic distribution of the PMLE.
In the case that θ2 ∈ Rk2 with k2 ≥ 2 and θ20 is allowed to be on the boundary of Θ2, when θ20 6= 0, some components
of θ20 can still be on the boundaries of their parameter spaces, then the asymptotic distributions of their PMLEs will
be nonstandard.
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According to Rotnitzky et al. (2000), in the case that the information matrix is singular with rank
being one less than the number of parameters k, there exists a reparameterization such that the MLE of
one of the transformed parameter component converges at a rate slower than

√
n, but the remaining

k− 1 transformed components converge at the
√

n-rate. As a result, some components of the MLE
in terms of the original parameter vector have a slower than the

√
n-rate of convergence, while the

remaining components may have the
√

n-rate. In this case, for θ̃n as a whole, s < 1/2 in Assumption 5
if θ̃n is the MLE. Assumption 5 (i) can be satisfied if λn is selected to have a relatively slow rate of
convergence to 0. The condition differs from that in the literature due to the irregularity issue we
are considering. In the case that the PML is formulated with a reparameterized model that has a
nonsingular information matrix and θ represents the reparameterized unknown parameter vector,
Assumption 5 (ii) is relevant with s = 1/2 if θ̃n is the MLE.

The oracle properties of the PMLE, including the sparsity property, are presented in Proposition 3.4

When θ20 = 0, the PMLE θ̂2n of θ2 can equal zero w.p.a.1., and θ̂1n has the same asymptotic distribution
as that of the MLE as if we knew θ20 = 0.

Proposition 3. Under Assumptions 1–5, if θ20 = 0, then limn→∞ P(θ̂2n = 0) = 1, and
√

n(θ̂1n − θ10)
d−→

N
(
0, (−E ∂2l(θ0)

∂θ1∂θ′1
)−1).

We next turn to the case with θ20 6= 0. The consistency of θ̂n to θ0 in Proposition 1 will guarantee
that P(θ̂2n 6= 0) goes to 1 if θ20 6= 0. By Proposition 2, in order that θ̂n can converge to θ0 with√

n-consistency and without an asymptotic impact of the first order by λn when θ20 6= 0, we need to
select λn to converge to zero with the order o(n−1/2).

Assumption 6. λn = o(n−1/2).

Assumptions 5 and 6 need to coordinate with each other as they are opposite requirements.
By taking λn = O(n−τ) for some τ > 1/2, Assumption 6 holds. Assumption 5 (i) can be satisfied if
we take µ to be large enough such that µs > τ > 1/2. For such a τ to exist, it is necessary to take
µ > 1/(2s) for a given s. For the regular case in Assumption 5 (ii) , it is relatively more flexible on the
value of µ.

Proposition 4. Under Assumptions 1–4 and 6, if θ20 6= 0, θ̂n − θ0 = Op(n−1/2). Furthermore, as θ0 ∈
int(Θ),

√
n(θ̂n − θ0)

d−→ N(0, (−E ∂2l(θ0)
∂θ∂θ′ )

−1).

We next consider the selection of the tuning parameter λn. To make explicit the dependence of the
PMLE θ̂n on a tuning parameter λ, denote the PMLE θ̂λ = arg maxθ∈Θ{[Ln(θ)−λ‖θ̃2n‖−µ‖θ2‖]I(θ̃2n 6= 0)
+Ln(θ1, 0)I(θ̃2n = 0)} for a given λ.5 Let Λ = [0, λmax] be an interval from which the tuning parameter
λ is selected, where λmax is a finite positive number. We propose to select the tuning parameter that
maximizes the following information criterion:

Hn(λ) = Ln(θ̂λ) + Γn I(θ̂2λ = 0), (2)

where {Γn} is a positive sequence of constants, and θ̂2λ is the PMLE of θ2 for a given λ. That is, given
Γn, the selected tuning parameter is λ̂n = arg maxλ∈Λ Hn(λ). The term Γn is an extra bonus for setting
θ2 to zero. Some conditions on Γn are also invoked.

Assumption 7. Γn > 0, Γn → 0 and n2sΓn → ∞ as n→ ∞.

4 Proposition 2 is proved in the case of a nonsingular information matrix, similar to that in Fan and Li (2001). The method
cannot be used in the case of a singular information matrix. However, the sparsity property can still be established by using
only the consistency of θ̂n under Assumption 5 (i).

5 As before, when θ̃2n = 0, the PMLE of θ2 is θ̂2λ = 0.
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To balance the order requirements of Γn → 0 and n2sΓn → ∞, Γn can be taken to be O(n−s).
As this order changes with s, the information criterion in (2) can be different from the traditional ones
such as the AIC, BIC and Hannan-Quinn information criterion.

Let {λ̄n} be an arbitrary sequence of tuning parameters which satisfy Assumptions 3, 5 and 6, e.g.,
λ̄n = n−(µs)/2−1/4, where µ is chosen such that µs > 1/2. Define Λn = {λ ∈ Λ : θ̂2λ = 0 if θ20 6= 0,
and θ̂2λ 6= 0 if θ20 = 0}. In Proposition 5, we let the initial estimator θ̃n be the MLE.

Proposition 5. Under Assumptions 1–7, P(supλ∈Λn
Hn(λ) < Hn(λ̄n))→ 1 as n→ ∞.

Proposition 5 states that the model selection by the tuning parameter selection procedure is
consistent. It implies that any λ in Λn that fails to identify the true model would not be selected
asymptotically by the information criterion in (2) as an optimal tuning parameter in Λn, because such
a λ is less favorable than any λ̄n, which can identify the true model asymptotically.

3. Examples

In this section, we illustrate the PMLEs of the sample selection model as well as the stochastic
frontier function model. In the irregular case, the true parameter vector is in the interior of its
parameter space for the sample selection model, but it is on the boundary for the stochastic frontier
function model.

3.1. The Sample Selection Model

We consider the sample selection model in Lee and Chesher (1986), which can have a singular
information matrix. The model is as follows:

yi = x′i β + εi, y∗i = z′iγ− ui, i = 1, . . . , n, (3)

where n is the sample size, (xi, zi) is the ith observation of exogenous variables, and the vectors (εi, ui),

for i = 1, . . . , n, are independently distributed as the bivariate normal N
(

0,

(
σ2 ρσ

ρσ 1

))
. The variable

y∗i is not observed, but a binary indicator Ii is observed to be 1 if and only if y∗i ≥ 0 and Ii is 0 otherwise.
The variable yi is only observed when Ii = 1. Let θ = (β′, σ2, γ′, ρ)′, β = (β1, β′2)

′ and γ = (γ1, γ′2)
′,

where β1 and γ1 are, respectively, the coefficients for the intercept terms in the outcome and selection
equations. According to Lee and Chesher (1986), when xi contains an intercept term, but the true values
of γ2 and the correlation coefficient ρ are zero, elements of the score vector are linearly dependent
and the information matrix is singular.6 For this model, the true parameter vector θ0 which causes
irregularity is in the interior of the parameter space.

We derive the asymptotic distribution of the MLE in this irregular case in Appendix A.7 Let θ̃n

be the MLE of θ. It is shown that, for (γ′20, ρ0)
′ 6= 0, all components of θ̃n have the usual

√
n-rate

of convergence and are asymptotically normal. However, at (γ′20, ρ0)
′ = 0, n1/6ρ̃n has the same

asymptotic distribution as that of (n1/2r̃n)1/3, where r̃n is a transformed parameter and n1/2r̃n is
asymptotically normal, n1/6(β̃1n − β10) has the same asymptotic distribution as that of σ0ψ0(n1/2r̃n)1/3,
where ψ0 = φ(γ10)/Φ(γ10), and n1/3(σ̃2

n − σ2
0 ) has the same asymptotic distribution as that of

σ2
0 ψ0(ψ0 + γ10)(n1/2r̃n)2/3, while n1/2(β̃′2n− β′20, γ̃′n− γ′0)

′ is asymptotically normal. Thus, ρ̃n, β̃1n and
σ̃2

n have slower than the
√

n-rate of convergence, but β̃2n and γ̃n have the usual
√

n-rate of convergence.

6 Another irregular case is that zi consists of only a constant term and dichotomous explanatory variables, and xi contains the
same set of dichotomous explanatory variables and their interaction terms. For this case, the reparameterization process
discussed in Appendix A to derive the asymptotic distribution of the MLE also applies.

7 The method is similar to that in Lee (1993) for the stochastic frontier function model.
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Let θ1 = (β′, σ2, γ1)
′ and θ2 = (γ′2, ρ)′. The PML criterion function for model (3) with the MLE θ̃2n is

[Ln(θ)− λn‖θ̃2n‖−µ‖θ2‖]I(θ̃2n 6= 0) + Ln(θ1, 0)I(θ̃2n = 0). (4)

Since γ̃2n = Op(n−1/2) and ρ̃n = Op(n−1/6), Assumptions 5 (i) and 6 hold when µ is greater than 3.
By Assumption 7, in the information criterion function (2), Γn should satisfy Γn → 0 and n1/3Γn → ∞
as n→ ∞.

According to the discussions in deriving the asymptotic distribution of the MLE via
reparameterizations, alternatively, the criterion function for the PMLE can be formulated with the
function Ln3(η, r) of the transformed parameters as

[Ln3(η, r)− λn‖ω̃n‖−µ1‖ω‖]I(ω̃n 6= 0) + Ln3(η1, 0)I(ω̃n = 0)

= [Ln(θ)− λn‖ω̃n‖−µ1‖ω‖]I(θ̃2n 6= 0) + Ln(θ1, 0)I(θ̃2n = 0).
(5)

where η = (β1 − σ0λ0ρ, β′2, σ2 − ρ2σ2
0 λ0(λ0 + γ10), γ′)′ = (v′, γ′2)

′, r = ρ3, and ω = (γ′2, r)′. While
γ2 enters the penalty terms of (4) and (5) in the same way, it is not the case for ρ: it is ρ in (4)
but ρ3 in (5). Since Ln3(η, r) has a nonsingular information matrix, by Proposition 2, the PMLE
has the order Op(n−1/2 + λn), which is Op(n−1/2) under the assumption λn = o(n−1/2). Then
λnnµ1s+1/2 = λnn(µ1+1)/2 → ∞ as n → ∞ in Assumption 5 (ii) will be relevant. Thus, for the
PML criterion function (5), as long as µ1 > 0, no further condition on µ1 is needed. Furthermore,
Assumption 7 for Γn in the information criterion function (2) with Γn → 0 and nΓn → ∞ as n→ ∞ is
relevant, and we can take Γn = O(n−1/2).

3.2. The Stochastic Frontier Function Model

Consider the following stochastic frontier function model:

yi = x′i β + ui + vi, i = 1, . . . , n, (6)

where xi is a k-dimensional vector of exogenous variables which contains a constant term, the
disturbance ui ≤ 0 represents technical inefficiency, vi represents uncontrollable disturbance, and ui
and vi are independent. Following the literature, ui is assumed to be half normal with the pdf

h(u) =
2√

2πσ1
exp(− u2

2σ2
1
), u ≤ 0,

and vi ∼ N(0, σ2
2 ). As in Aigner et al. (1977), let δ = σ1/σ2 and σ2 = σ2

1 + σ2
2 . For a random sample of

size n, the log likelihood function divided by n is

Ln(θ) = ln(2)− 1
2

ln(2π)− 1
2

ln(σ2)− 1
2nσ2

n

∑
i=1

(yi − x′i β)
2 +

1
n

n

∑
i=1

ln
[
1−Φ(

δ(yi − x′i β)
σ

)
]
, (7)

where θ = (β′, σ2, δ)′. In this model, δ is nonnegative and, for the irregular case, the true parameter
δ0 = 0 lies on the boundary, which represents the absence of technical inefficiency. According to
Lee (1993), when δ0 = 0, the information matrix is singular and the MLE of δ has the convergence rate
n−1/6; when δ0 6= 0, the information matrix has full rank and the MLE has the

√
n-rate of convergence.

The asymptotic distribution of the MLE when δ0 = 0 is derived by transforming the model into one
with a nonsingular information matrix via several reparameterizations. Thus, the PML estimation can
be formulated similarly to the sample selection model, using the original model or the transformed
model. Note that in finite samples, the MLE of δ, regardless of whether δ0 = 0 or not, can be zero with
a positive probability. A necessary and sufficient condition for the MLE of δ to be zero is ∑n

i=1 ε̂2
i ≥ 0,

where ε̂i’s are the least squares residuals (Lee 1993).
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4. Monte Carlo

In this section, we report results from some Monte Carlo experiments for both the sample selection
model and the stochastic frontier function model. The code files are written and run in MATLAB.

4.1. The Sample Selection Model

For the sample selection model, in the experiments, there are two exogenous variables in xi: one
is an intercept term and the other is drawn randomly from the standard normal distribution. The true
vector of coefficients for xi is (1, 1)′. There are also two exogenous variables in zi: an intercept term
with true coefficient 1 and a variable randomly drawn from the standard normal distribution, for
which the true coefficient is 2, 0.5 or 0. Two values of σ2

0 , 2 and 0.5, are considered. The ρ0 is either 0.7,
−0.7, 0.3, −0.3 or 0. In the information criterion function (2) for the tuning parameter selection, µ is set
to 4 and Γn = 0.26n−1/2.8 An estimate is regarded as zero if it is smaller than 10−5. The number of
Monte Carlo repetitions is 1000. The sample sizes considered are n = 200 or 600.

Table 1 reports the probabilities that the PMLEs select the right model, i.e., the probabilities of
the PMLEs of θ2 being zero when θ20 = 0, and being nonzero when θ20 6= 0. We use PMLE-o and
PMLE-t to denote the PMLEs obtained from the criterion functions formulated using, respectively,
the original and transformed likelihood functions. When γ20 = 2 or 0.5, with the sample size n = 200,
the probabilities are 1 or very closed to 1; with the sample size n = 600, all probabilities are 1. When
γ20 = 0 and ρ0 = 0, the PMLEs estimate θ2 = (γ2, ρ)′ as zero with high probabilities, higher than
95% for the PMLE-o and higher than 69% for the PMLE-t. The PMLE-o has higher probabilities of
estimating θ2 as zero than the PMLE-t. As the sample size increases from 200 to 600, the correct model
selection probabilities of the PMLE-o increase while those of the PMLE-t decrease. When γ20 = 0
but ρ0 6= 0, the PMLEs estimate θ2 as nonzero with very low probabilities. With γ20 = 0, we see
that ψ0σ0

∂Ln(α0,ρ)
∂β1

+ 2ρσ2
0 ψ0(ψ0 + γ10)

∂Ln(α0,ρ)
∂σ2 + ∂Ln(α0,ρ)

∂ρ = O(ρ2). Thus, the scores are approximately
linearly dependent as |ρ| < 1. In finite samples, even though ρ0 6= 0, the identification can be weak
and the MLE behaves similarly to that in the case with ρ0 = 0, which has large bias and variance,
as seen from Tables 4 and 5 below. As a result, the PMLEs which use the MLEs to construct the penalty
terms have low probabilities of estimating θ2 to be non-zero.

Table 2 presents the biases, standard errors (SE) and root mean squared errors (RMSE) of the
estimates when γ20 = 2. For a nonzero true parameter value, the biases, SEs and RMSEs are divided
by the absolute value of the true parameter value. The upper panel is for the sample with size n = 200.
The restricted MLE, denoted as MLE-r, usually has the largest bias, because it imposes the wrong
restriction θ2 = 0. The MLE, PMLE-o and PMLE-t almost have identical summary statistics. Their
biases and SEs are relatively low, e.g., the biases of ρ are all below or equal to 0.012, or 2.5% for a
nonzero true ρ0, and the SEs are all below or equal to 0.246. As the SEs dominate the biases, the RMSEs
have similar magnitudes as those of the SEs. As the value of ρ0 changes, the biases, SEs and RMSEs do
not change much. When σ2

0 decreases from 2 to 0.5, all estimates of β1, β2 and σ2 tend to have smaller
biases and SEs, but those for γ1, γ2 and ρ show little changes. As the sample size increases to 600,
all estimates have smaller biases, SEs and RMSEs.

8 In theory, the information criterion (2) can achieve model selection consistency as long as Γn satisfies the order requirement
in Assumption 7. However, the finite sample performance depends on the choice of Γn. From the proof of Proposition 5,
when θ20 6= 0, for large enough n, Γn should be smaller than the difference between the function values of the expected log
density at the true parameter vector and at the probability limit of the restricted MLE with the restriction θ2 = 0 imposed.
When θ20 = 0, Γn should be larger than the difference of the function values of the likelihood divided by n at the MLE and at
the restricted MLE. For θ20 = 0, σ2

0 = 2 and n = 200, we compute the second difference 1000 times, and set Γn = kn−1/2 to
be the sample mean plus 2 times the standard error, which yields k = 0.26. We then set Γn = 0.26n−1/2 in all cases and for all
sample sizes. We also tried setting Γn = kn−1/2 to be the sample mean plus zero to four times the standard error. The results
are relatively sensitive to the choice of k. We leave the theoretical study on the choice of the constant in Γn to future research.
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Table 3 illustrates the biases, SEs and RMSEs of the estimates when γ20 = 0.5. The patterns are
similar to those for Table 2. With a smaller γ0, the biases and SEs of β2, γ1 and γ2 tend to be smaller,
but those of β1, σ2 and ρ are larger.

Table 4 reports the biases, SEs and RMSEs when γ20 = 0 but ρ0 6= 0. We observe that the MLE
has relatively large biases and SEs. For n = 200, the biases of ρ can be as high as 0.46 in absolute
value, or higher than 100%, and the SEs can be as high as 0.72. While the biases of the MLE are usually
smaller than those of the MLE-r, the SEs are usually much larger, especially for β1, σ2 and ρ. In terms
of the RMSEs, the MLE does not show an advantage over the MLE-r. The biases of the PMLE-o are
usually smaller than those of the MLE-r and larger than those of the MLE, but the SEs of the PMLE-o
are generally smaller than those of the MLE. The PMLE-t has smaller biases than those of PMLE-o but
larger SEs in most cases, more similar to the MLE. That is consistent with Table 1, since the PMLE-t
estimates θ2 as nonzero with higher probabilities. The RMSEs of the PMLEs are usually smaller than
those of the MLE but larger than those of the MLE-r. In this case, even though the PML methods do
not provide good probabilities of selecting the non-zero models, the shrinkage feature of the lasso does
provide smaller RMSEs than those of the unconstrained MLEs.

The results for γ20 = 0 and ρ0 = 0 are reported in Table 5. As expected, the MLE-r usually has
the smallest biases, SEs and RMSEs, since it has imposed the correct restriction θ2 = 0. The biases,
SEs and RMSEs of the PMLEs are between those of the MLE-r and MLE. The PMLE-o of β1, σ2, γ2

and ρ have significantly smaller biases, SEs and RMSEs than those of the MLE. The biases, SEs and
RMSEs of the PMLE-t are smaller than those of the MLE, but larger than those of the PMLE-o, since it
estimates θ2 as nonzero with higher probabilities. Note that the MLEs of β1, σ2 and ρ have relatively
very large SEs, and the MLEs of σ2 have very large biases, which can be larger than 50%. With a smaller
σ2

0 , the estimates generally have smaller biases, SEs and RMSEs. As n increases to 600, the summary
statistics of the PMLE-o become very similar to those of the MLE-r, and all estimates have smaller
biases, SEs and RMSEs in general.

Table 1. Probabilities that the PMLEs of the sample selection model select the right model.

γ20 = 2 γ20 = 0.5 γ20 = 0

PMLE-o PMLE-t PMLE-o PMLE-t PMLE-o PMLE-t

n = 200
σ2

0 = 2, ρ0 = 0.7 1.000 1.000 0.999 0.999 0.058 0.222
σ2

0 = 2, ρ0 = −0.7 1.000 1.000 1.000 1.000 0.072 0.241
σ2

0 = 2, ρ0 = 0.3 1.000 1.000 0.999 0.999 0.045 0.196
σ2

0 = 2, ρ0 = −0.3 1.000 1.000 0.997 0.999 0.043 0.200
σ2

0 = 2, ρ0 = 0 1.000 1.000 0.999 0.999 0.955 0.808
σ2

0 = 0.5, ρ0 = 0.7 1.000 1.000 1.000 1.000 0.051 0.191
σ2

0 = 0.5, ρ0 = −0.7 1.000 1.000 1.000 1.000 0.050 0.209
σ2

0 = 0.5, ρ0 = 0.3 1.000 1.000 0.998 1.000 0.054 0.216
σ2

0 = 0.5, ρ0 = −0.3 1.000 1.000 0.997 0.997 0.035 0.166
σ2

0 = 0.5, ρ0 = 0 1.000 1.000 0.996 0.998 0.964 0.809

n = 600
σ2

0 = 2, ρ0 = 0.7 1.000 1.000 1.000 1.000 0.014 0.310
σ2

0 = 2, ρ0 = −0.7 1.000 1.000 1.000 1.000 0.007 0.333
σ2

0 = 2, ρ0 = 0.3 1.000 1.000 1.000 1.000 0.004 0.255
σ2

0 = 2, ρ0 = −0.3 1.000 1.000 1.000 1.000 0.003 0.273
σ2

0 = 2, ρ0 = 0 1.000 1.000 1.000 1.000 0.996 0.692
σ2

0 = 0.5, ρ0 = 0.7 1.000 1.000 1.000 1.000 0.008 0.275
σ2

0 = 0.5, ρ0 = −0.7 1.000 1.000 1.000 1.000 0.011 0.244
σ2

0 = 0.5, ρ0 = 0.3 1.000 1.000 1.000 1.000 0.002 0.228
σ2

0 = 0.5, ρ0 = −0.3 1.000 1.000 1.000 1.000 0.001 0.214
σ2

0 = 0.5, ρ0 = 0 1.000 1.000 1.000 1.000 0.997 0.755

The penalized maximum likelihood (PMLE)-o and PMLE-t denote the PMLEs obtained from the criterion
functions formulated using, respectively, the original and transformed likelihood functions. When θ20 6= 0,
the numbers in the table are the probabilities that the PMLEs of θ2 are non-zero; when θ20 = 0, the numbers
are the probabilities that the PMLEs of θ2 are zero.
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Table 2. The biases, standard errors (SE) and root mean squared errors (RMSE) of the estimators when
γ20 = 2 in the sample selection model.

n, σ2
0 , ρ0 β1 β2 σ2 γ1 γ2 ρ

200, 2, 0.7 MLE-r −0.344[0.134]0.369 −0.003[0.135]0.135 −0.163[0.260]0.307 −0.001[0.091]0.091 −2.000[0.000]2.000 −0.700[0.000]0.700
MLE 0.011[0.164]0.164 −0.003[0.129]0.129 −0.022[0.301]0.302 −0.004[0.132]0.132 0.054[0.269]0.274 0.002[0.146]0.146
PMLE-o 0.011[0.164]0.165 −0.003[0.129]0.129 −0.022[0.302]0.302 −0.004[0.132]0.132 0.053[0.269]0.274 0.003[0.146]0.146
PMLE-t 0.011[0.164]0.164 −0.003[0.129]0.129 −0.022[0.301]0.302 −0.004[0.132]0.132 0.054[0.269]0.274 0.002[0.146]0.146

200, 2, −0.7 MLE-r 0.359[0.140]0.385 0.000[0.138]0.138 −0.161[0.252]0.299 −0.002[0.088]0.088 −2.000[0.000]2.000 0.700[0.000]0.700
MLE 0.001[0.171]0.171 0.000[0.130]0.130 −0.017[0.296]0.296 −0.001[0.134]0.134 0.046[0.264]0.268 −0.004[0.153]0.154
PMLE-o 0.001[0.171]0.171 0.000[0.130]0.130 −0.017[0.296]0.296 −0.001[0.134]0.134 0.046[0.264]0.268 −0.004[0.153]0.153
PMLE-t 0.001[0.171]0.171 0.000[0.130]0.130 −0.017[0.296]0.296 −0.001[0.134]0.134 0.046[0.264]0.268 −0.004[0.153]0.153

200, 2, 0.3 MLE-r −0.146[0.142]0.204 −0.015[0.145]0.146 −0.055[0.283]0.288 −0.000[0.089]0.089 −2.000[0.000]2.000 −0.300[0.000]0.300
MLE 0.002[0.187]0.187 −0.014[0.145]0.146 −0.017[0.297]0.297 −0.004[0.132]0.132 0.053[0.273]0.278 −0.007[0.231]0.231
PMLE-o 0.002[0.187]0.187 −0.014[0.145]0.146 −0.017[0.297]0.297 −0.004[0.133]0.133 0.053[0.273]0.278 −0.007[0.230]0.231
PMLE-t 0.002[0.187]0.187 −0.014[0.145]0.146 −0.017[0.296]0.297 −0.004[0.133]0.133 0.053[0.273]0.278 −0.006[0.231]0.231

200, 2, −0.3 MLE-r 0.151[0.142]0.208 −0.001[0.143]0.143 −0.054[0.285]0.290 −0.002[0.086]0.086 −2.000[0.000]2.000 0.300[0.000]0.300
MLE 0.000[0.189]0.189 −0.002[0.144]0.144 −0.016[0.297]0.298 0.002[0.127]0.127 0.050[0.264]0.269 0.003[0.225]0.225
PMLE-o 0.000[0.189]0.189 −0.002[0.144]0.144 −0.016[0.297]0.298 0.002[0.127]0.127 0.050[0.264]0.269 0.003[0.225]0.225
PMLE-t 0.000[0.189]0.189 −0.002[0.144]0.144 −0.016[0.297]0.298 0.002[0.127]0.127 0.050[0.264]0.269 0.003[0.225]0.225

200, 2, 0 MLE-r 0.002[0.141]0.141 −0.005[0.140]0.140 −0.051[0.278]0.283 −0.002[0.088]0.088 −2.000[0.000]2.000 0.000[0.000]0.000
MLE 0.003[0.186]0.186 −0.005[0.142]0.142 −0.036[0.281]0.283 −0.005[0.133]0.133 0.065[0.277]0.285 0.004[0.238]0.238
PMLE-o 0.003[0.185]0.186 −0.005[0.142]0.142 −0.036[0.281]0.283 −0.006[0.133]0.133 0.065[0.277]0.285 0.003[0.238]0.238
PMLE-t 0.003[0.185]0.186 −0.005[0.142]0.142 −0.036[0.281]0.283 −0.005[0.133]0.133 0.065[0.277]0.285 0.004[0.238]0.238

200, 0.5, 0.7 MLE-r −0.174[0.064]0.186 0.003[0.069]0.069 −0.039[0.066]0.076 0.001[0.091]0.091 −2.000[0.000]2.000 −0.700[0.000]0.700
MLE 0.004[0.082]0.082 0.004[0.066]0.066 −0.003[0.076]0.076 0.001[0.132]0.132 0.066[0.280]0.287 0.012[0.142]0.143
PMLE-o 0.004[0.082]0.082 0.004[0.066]0.066 −0.003[0.075]0.075 0.001[0.132]0.132 0.067[0.279]0.287 0.012[0.142]0.142
PMLE-t 0.004[0.082]0.082 0.004[0.066]0.066 −0.003[0.075]0.076 0.001[0.132]0.132 0.067[0.279]0.287 0.012[0.142]0.142

200, 0.5, −0.7 MLE-r 0.177[0.069]0.190 −0.003[0.070]0.070 −0.042[0.070]0.081 0.003[0.090]0.090 −2.000[0.000]2.000 0.700[0.000]0.700
MLE 0.002[0.082]0.082 −0.004[0.066]0.066 −0.008[0.079]0.080 0.001[0.126]0.126 0.067[0.262]0.270 −0.006[0.137]0.137
PMLE-o 0.001[0.082]0.082 −0.004[0.066]0.066 −0.008[0.079]0.080 0.001[0.126]0.126 0.067[0.262]0.270 −0.006[0.137]0.137
PMLE-t 0.002[0.082]0.082 −0.004[0.066]0.066 −0.008[0.079]0.080 0.001[0.126]0.126 0.067[0.262]0.270 −0.006[0.137]0.137

200, 0.5, 0.3 MLE-r −0.077[0.072]0.105 0.006[0.074]0.074 −0.017[0.068]0.070 −0.000[0.089]0.089 −2.000[0.000]2.000 −0.300[0.000]0.300
MLE 0.000[0.096]0.096 0.006[0.073]0.074 −0.007[0.071]0.072 0.000[0.132]0.132 0.042[0.264]0.267 0.008[0.220]0.220
PMLE-o 0.000[0.096]0.096 0.006[0.073]0.074 −0.007[0.071]0.072 0.000[0.132]0.132 0.042[0.264]0.267 0.008[0.220]0.220
PMLE-t 0.000[0.096]0.096 0.006[0.073]0.074 −0.007[0.071]0.072 0.000[0.132]0.132 0.042[0.264]0.267 0.008[0.220]0.220

200, 0.5, −0.3 MLE-r 0.074[0.073]0.103 −0.002[0.074]0.074 −0.019[0.068]0.071 0.001[0.091]0.091 −2.000[0.000]2.000 0.300[0.000]0.300
MLE −0.001[0.094]0.094 −0.001[0.075]0.075 −0.010[0.071]0.072 −0.000[0.130]0.130 0.060[0.281]0.288 0.004[0.224]0.224
PMLE-o −0.001[0.094]0.094 −0.002[0.075]0.075 −0.010[0.071]0.072 −0.000[0.130]0.130 0.060[0.281]0.288 0.003[0.223]0.223
PMLE-t −0.001[0.094]0.094 −0.002[0.075]0.075 −0.010[0.071]0.072 −0.000[0.130]0.130 0.060[0.281]0.288 0.003[0.223]0.223

200, 0.5, 0 MLE-r −0.001[0.071]0.071 −0.007[0.075]0.076 −0.011[0.071]0.072 −0.005[0.086]0.086 −2.000[0.000]2.000 0.000[0.000]0.000
MLE −0.001[0.092]0.092 −0.007[0.076]0.077 −0.007[0.072]0.073 −0.001[0.135]0.135 0.066[0.279]0.287 −0.001[0.246]0.246
PMLE-o −0.001[0.092]0.092 −0.007[0.076]0.077 −0.007[0.072]0.073 −0.001[0.135]0.135 0.066[0.279]0.287 −0.001[0.246]0.246
PMLE-t −0.001[0.092]0.092 −0.007[0.076]0.077 −0.007[0.072]0.073 −0.001[0.135]0.135 0.066[0.279]0.287 −0.001[0.246]0.246

600, 2, 0.7 MLE-r −0.356[0.079]0.364 0.000[0.078]0.078 −0.137[0.159]0.210 −0.000[0.050]0.050 −2.000[0.000]2.000 −0.700[0.000]0.700
MLE 0.000[0.093]0.093 0.001[0.072]0.072 −0.004[0.180]0.180 0.005[0.069]0.069 0.008[0.147]0.148 0.005[0.080]0.080
PMLE-o 0.000[0.093]0.093 0.001[0.072]0.072 −0.004[0.180]0.180 0.005[0.069]0.069 0.008[0.147]0.147 0.005[0.080]0.080
PMLE-t 0.000[0.093]0.093 0.001[0.072]0.072 −0.004[0.180]0.180 0.006[0.069]0.069 0.008[0.147]0.147 0.005[0.080]0.080

600, 2, −0.7 MLE-r 0.351[0.076]0.360 −0.005[0.078]0.078 −0.138[0.154]0.207 0.002[0.051]0.052 −2.000[0.000]2.000 0.700[0.000]0.700
MLE −0.001[0.091]0.091 −0.006[0.073]0.073 −0.010[0.175]0.175 0.002[0.073]0.073 0.011[0.148]0.149 −0.002[0.080]0.080
PMLE-o −0.001[0.091]0.091 −0.006[0.073]0.073 −0.009[0.175]0.175 0.002[0.073]0.073 0.011[0.148]0.149 −0.002[0.080]0.080
PMLE-t −0.001[0.091]0.091 −0.006[0.073]0.073 −0.009[0.175]0.175 0.002[0.073]0.073 0.011[0.148]0.149 −0.002[0.080]0.080

600, 2, 0.3 MLE-r −0.158[0.081]0.178 −0.000[0.082]0.082 −0.031[0.165]0.168 −0.003[0.052]0.052 −2.000[0.000]2.000 −0.300[0.000]0.300
MLE −0.003[0.104]0.104 0.001[0.081]0.081 −0.003[0.170]0.170 −0.001[0.075]0.075 0.019[0.158]0.159 0.006[0.124]0.124
PMLE-o −0.003[0.104]0.104 0.001[0.081]0.081 −0.003[0.170]0.170 −0.001[0.075]0.075 0.019[0.158]0.159 0.006[0.124]0.124
PMLE-t −0.003[0.104]0.104 0.001[0.081]0.081 −0.003[0.170]0.170 −0.001[0.075]0.075 0.019[0.158]0.159 0.006[0.124]0.124

600, 2, −0.3 MLE-r 0.151[0.084]0.173 −0.000[0.082]0.082 −0.040[0.163]0.168 −0.000[0.051]0.051 −2.000[0.000]2.000 0.300[0.000]0.300
MLE −0.001[0.107]0.107 −0.001[0.081]0.081 −0.012[0.168]0.169 −0.002[0.071]0.071 0.018[0.159]0.160 −0.002[0.126]0.126
PMLE-o −0.001[0.107]0.107 −0.001[0.081]0.081 −0.012[0.168]0.169 −0.002[0.071]0.071 0.018[0.159]0.160 −0.002[0.126]0.126
PMLE-t −0.001[0.107]0.107 −0.001[0.081]0.081 −0.012[0.168]0.169 −0.002[0.071]0.071 0.018[0.159]0.160 −0.002[0.126]0.126

600, 2, 0 MLE-r −0.005[0.081]0.081 0.002[0.084]0.084 −0.007[0.162]0.162 −0.002[0.050]0.050 −2.000[0.000]2.000 0.000[0.000]0.000
MLE −0.005[0.108]0.108 0.002[0.084]0.084 −0.003[0.162]0.162 −0.003[0.074]0.075 0.013[0.151]0.151 0.000[0.131]0.131
PMLE-o −0.005[0.108]0.108 0.002[0.084]0.084 −0.003[0.162]0.162 −0.003[0.074]0.075 0.013[0.151]0.151 0.000[0.131]0.131
PMLE-t −0.005[0.108]0.108 0.002[0.084]0.084 −0.003[0.162]0.162 −0.003[0.074]0.075 0.013[0.151]0.151 0.000[0.131]0.131

600, 0.5, 0.7 MLE-r −0.176[0.039]0.180 0.001[0.038]0.038 −0.033[0.039]0.051 −0.000[0.050]0.050 −2.000[0.000]2.000 −0.700[0.000]0.700
MLE 0.002[0.047]0.047 0.001[0.036]0.036 −0.000[0.043]0.043 −0.000[0.071]0.071 0.014[0.144]0.145 0.005[0.078]0.078
PMLE-o 0.002[0.047]0.047 0.001[0.036]0.036 −0.000[0.043]0.043 −0.000[0.071]0.071 0.014[0.144]0.145 0.005[0.078]0.078
PMLE-t 0.002[0.047]0.047 0.001[0.036]0.036 −0.000[0.043]0.043 −0.000[0.071]0.071 0.014[0.144]0.145 0.005[0.078]0.078

600, 0.5, −0.7 MLE-r 0.178[0.040]0.182 −0.000[0.039]0.039 −0.034[0.039]0.052 0.000[0.053]0.053 −2.000[0.000]2.000 0.700[0.000]0.700
MLE −0.000[0.048]0.048 −0.000[0.037]0.037 −0.001[0.045]0.045 0.002[0.074]0.074 0.016[0.147]0.148 −0.005[0.080]0.080
PMLE-o −0.000[0.048]0.048 −0.000[0.037]0.037 −0.001[0.045]0.045 0.002[0.074]0.075 0.016[0.147]0.148 −0.005[0.080]0.080
PMLE-t −0.000[0.048]0.048 −0.000[0.037]0.037 −0.001[0.045]0.045 0.002[0.074]0.075 0.016[0.147]0.148 −0.005[0.080]0.080

600, 0.5, 0.3 MLE-r −0.075[0.042]0.085 0.002[0.041]0.041 −0.009[0.041]0.042 0.002[0.053]0.053 −2.000[0.000]2.000 −0.300[0.000]0.300
MLE 0.000[0.053]0.053 0.002[0.041]0.041 −0.002[0.042]0.042 −0.001[0.076]0.076 0.023[0.155]0.156 −0.001[0.124]0.124
PMLE-o 0.000[0.053]0.053 0.002[0.041]0.041 −0.002[0.042]0.042 −0.001[0.076]0.076 0.023[0.155]0.156 −0.001[0.124]0.124
PMLE-t 0.000[0.053]0.053 0.002[0.041]0.041 −0.002[0.042]0.042 −0.001[0.076]0.076 0.023[0.155]0.156 −0.001[0.124]0.124

600, 0.5, −0.3 MLE-r 0.076[0.039]0.085 0.000[0.041]0.041 −0.012[0.041]0.043 −0.002[0.052]0.052 −2.000[0.000]2.000 0.300[0.000]0.300
MLE 0.001[0.051]0.051 0.000[0.040]0.040 −0.005[0.043]0.043 −0.005[0.074]0.075 0.019[0.156]0.157 0.002[0.121]0.121
PMLE-o 0.001[0.051]0.051 0.000[0.040]0.040 −0.005[0.043]0.043 −0.005[0.074]0.075 0.019[0.156]0.157 0.002[0.121]0.121
PMLE-t 0.001[0.051]0.051 0.000[0.040]0.040 −0.005[0.043]0.043 −0.005[0.074]0.075 0.019[0.156]0.157 0.002[0.121]0.121

600, 0.5, 0 MLE-r −0.001[0.040]0.040 0.001[0.041]0.041 −0.003[0.041]0.041 −0.002[0.052]0.052 −2.000[0.000]2.000 0.000[0.000]0.000
MLE −0.000[0.052]0.052 0.001[0.041]0.041 −0.002[0.041]0.041 −0.005[0.074]0.074 0.015[0.146]0.147 0.001[0.129]0.129
PMLE-o −0.000[0.052]0.052 0.001[0.041]0.041 −0.002[0.041]0.041 −0.005[0.074]0.074 0.015[0.146]0.147 0.001[0.129]0.129
PMLE-t −0.000[0.052]0.052 0.001[0.041]0.041 −0.002[0.041]0.041 −0.005[0.074]0.074 0.015[0.146]0.147 0.001[0.129]0.129

The maximum likelihood estimator (MLE)-r denotes the restricted MLE with the restriction θ2 = 0 imposed, and the
PMLE-o and PMLE-t denote the PMLEs obtained from the criterion functions formulated using, respectively, the original
and transformed likelihood functions. The three numbers in each cell are bias [SE]RMSE. (β10, β20, γ10) = (1, 1, 1).
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Table 3. The biases, SEs and RMSEs of the estimators when γ20 = 0.5 in the sample selection model.

n, σ2
0 , ρ0 β1 β2 σ2 γ1 γ2 ρ

200, 2, 0.7 MLE-r −0.704[0.123]0.715 0.001[0.125]0.125 −0.532[0.204]0.570 0.002[0.090]0.090 −0.500[0.000]0.500 −0.700[0.000]0.700
MLE −0.014[0.323]0.323 0.003[0.120]0.120 0.027[0.483]0.484 0.003[0.094]0.094 0.006[0.098]0.098 −0.035[0.217]0.220
PMLE-o −0.015[0.324]0.325 0.003[0.120]0.120 0.028[0.487]0.487 0.003[0.094]0.094 0.006[0.099]0.099 −0.035[0.218]0.221
PMLE-t −0.015[0.324]0.324 0.003[0.120]0.120 0.027[0.483]0.484 0.003[0.094]0.094 0.006[0.099]0.099 −0.035[0.218]0.221

200, 2, −0.7 MLE-r 0.705[0.124]0.716 0.003[0.125]0.125 −0.533[0.208]0.572 −0.004[0.093]0.093 −0.500[0.000]0.500 0.700[0.000]0.700
MLE 0.009[0.306]0.306 0.001[0.123]0.123 0.030[0.508]0.509 −0.003[0.097]0.097 0.012[0.104]0.104 0.031[0.207]0.209
PMLE-o 0.009[0.308]0.308 0.001[0.123]0.123 0.031[0.510]0.511 −0.002[0.097]0.097 0.012[0.104]0.104 0.031[0.207]0.209
PMLE-t 0.009[0.306]0.306 0.001[0.123]0.123 0.030[0.508]0.509 −0.003[0.097]0.097 0.012[0.104]0.104 0.031[0.207]0.209

200, 2, 0.3 MLE-r −0.305[0.140]0.336 0.003[0.142]0.142 −0.126[0.270]0.297 0.000[0.088]0.088 −0.500[0.000]0.500 −0.300[0.000]0.300
MLE 0.014[0.404]0.404 0.003[0.142]0.142 0.124[0.486]0.501 0.002[0.092]0.092 0.006[0.102]0.102 −0.009[0.324]0.324
PMLE-o 0.017[0.410]0.410 0.002[0.142]0.142 0.130[0.506]0.523 0.002[0.092]0.092 0.006[0.103]0.103 −0.007[0.325]0.325
PMLE-t 0.014[0.404]0.404 0.003[0.142]0.142 0.123[0.486]0.501 0.002[0.092]0.092 0.006[0.103]0.103 −0.009[0.324]0.324

200, 2, −0.3 MLE-r 0.301[0.139]0.331 0.002[0.142]0.142 −0.124[0.273]0.300 0.002[0.089]0.089 −0.500[0.000]0.500 0.300[0.000]0.300
MLE −0.014[0.421]0.421 0.002[0.142]0.142 0.125[0.472]0.489 0.002[0.094]0.094 0.010[0.107]0.107 0.012[0.332]0.333
PMLE-o −0.014[0.420]0.421 0.002[0.142]0.142 0.125[0.472]0.488 0.002[0.094]0.094 0.009[0.109]0.110 0.012[0.332]0.332
PMLE-t −0.015[0.421]0.421 0.002[0.142]0.142 0.125[0.472]0.489 0.002[0.094]0.094 0.009[0.107]0.108 0.012[0.332]0.332

200, 2, 0 MLE-r 0.004[0.144]0.144 0.005[0.147]0.147 −0.051[0.275]0.280 −0.004[0.092]0.093 −0.500[0.000]0.500 0.000[0.000]0.000
MLE 0.007[0.446]0.446 0.006[0.148]0.149 0.124[0.401]0.419 −0.002[0.098]0.098 0.010[0.105]0.105 0.001[0.370]0.370
PMLE-o 0.007[0.446]0.446 0.006[0.148]0.149 0.123[0.400]0.419 −0.002[0.098]0.098 0.010[0.106]0.106 0.002[0.369]0.369
PMLE-t 0.007[0.446]0.446 0.006[0.148]0.149 0.123[0.400]0.419 −0.002[0.098]0.098 0.010[0.106]0.106 0.002[0.369]0.369

200, 0.5, 0.7 MLE-r −0.356[0.059]0.361 0.002[0.064]0.064 −0.130[0.054]0.141 −0.000[0.090]0.090 −0.500[0.000]0.500 −0.700[0.000]0.700
MLE −0.009[0.158]0.158 0.002[0.065]0.065 0.012[0.127]0.127 −0.001[0.097]0.097 0.016[0.103]0.104 −0.033[0.227]0.229
PMLE-o −0.009[0.158]0.158 0.002[0.065]0.065 0.012[0.127]0.127 −0.001[0.097]0.097 0.016[0.103]0.104 −0.033[0.227]0.229
PMLE-t −0.009[0.158]0.158 0.002[0.065]0.065 0.012[0.127]0.127 −0.001[0.097]0.097 0.016[0.103]0.104 −0.033[0.227]0.229

200, 0.5, −0.7 MLE-r 0.350[0.063]0.356 −0.000[0.062]0.062 −0.133[0.056]0.144 −0.003[0.088]0.088 −0.500[0.000]0.500 0.700[0.000]0.700
MLE 0.009[0.147]0.147 −0.000[0.060]0.060 0.001[0.125]0.125 −0.001[0.093]0.093 0.017[0.102]0.104 0.038[0.204]0.207
PMLE-o 0.010[0.151]0.151 −0.000[0.061]0.061 0.002[0.125]0.126 −0.001[0.093]0.093 0.017[0.103]0.104 0.039[0.210]0.214
PMLE-t 0.009[0.147]0.147 −0.000[0.060]0.060 0.001[0.125]0.125 −0.001[0.093]0.093 0.017[0.102]0.104 0.038[0.204]0.207

200, 0.5, 0.3 MLE-r −0.145[0.070]0.161 −0.000[0.068]0.068 −0.035[0.068]0.076 0.005[0.090]0.090 −0.500[0.000]0.500 −0.300[0.000]0.300
MLE 0.006[0.212]0.212 −0.000[0.069]0.069 0.027[0.123]0.126 0.003[0.096]0.096 0.007[0.109]0.110 −0.028[0.338]0.339
PMLE-o 0.006[0.212]0.212 −0.000[0.069]0.069 0.028[0.123]0.126 0.003[0.096]0.096 0.006[0.111]0.111 −0.028[0.338]0.339
PMLE-t 0.006[0.212]0.212 −0.000[0.069]0.069 0.028[0.123]0.126 0.003[0.096]0.096 0.007[0.109]0.110 −0.028[0.338]0.339

200, 0.5, −0.3 MLE-r 0.152[0.068]0.167 0.003[0.070]0.070 −0.032[0.065]0.072 0.004[0.088]0.088 −0.500[0.000]0.500 0.300[0.000]0.300
MLE 0.009[0.203]0.203 0.003[0.071]0.071 0.025[0.105]0.108 0.003[0.092]0.092 0.010[0.106]0.106 0.036[0.331]0.333
PMLE-o 0.010[0.202]0.202 0.003[0.071]0.071 0.024[0.105]0.108 0.003[0.092]0.092 0.009[0.108]0.108 0.036[0.330]0.332
PMLE-t 0.010[0.202]0.202 0.003[0.071]0.071 0.024[0.105]0.108 0.003[0.092]0.092 0.009[0.108]0.108 0.036[0.330]0.332

200, 0.5, 0 MLE-r −0.000[0.072]0.072 −0.001[0.070]0.070 −0.010[0.071]0.072 −0.001[0.086]0.086 −0.500[0.000]0.500 0.000[0.000]0.000
MLE 0.004[0.216]0.216 −0.002[0.071]0.071 0.032[0.104]0.108 −0.001[0.090]0.090 0.005[0.107]0.107 0.007[0.360]0.360
PMLE-o 0.003[0.219]0.219 −0.002[0.071]0.071 0.033[0.107]0.112 −0.001[0.090]0.090 0.004[0.110]0.110 0.006[0.363]0.363
PMLE-t 0.005[0.215]0.216 −0.002[0.071]0.071 0.031[0.104]0.108 −0.001[0.090]0.090 0.005[0.108]0.109 0.008[0.360]0.360

600, 2, 0.7 MLE-r −0.707[0.072]0.711 −0.004[0.069]0.069 −0.506[0.124]0.521 0.001[0.050]0.050 −0.500[0.000]0.500 −0.700[0.000]0.700
MLE −0.003[0.172]0.172 −0.004[0.066]0.066 0.015[0.287]0.288 0.001[0.052]0.052 −0.000[0.059]0.059 −0.010[0.106]0.106
PMLE-o −0.003[0.172]0.172 −0.004[0.066]0.066 0.015[0.287]0.288 0.001[0.052]0.052 −0.000[0.059]0.059 −0.010[0.106]0.106
PMLE-t −0.003[0.172]0.172 −0.004[0.066]0.066 0.015[0.287]0.288 0.001[0.052]0.052 −0.000[0.059]0.059 −0.010[0.106]0.106

600, 2, −0.7 MLE-r 0.709[0.071]0.712 0.002[0.070]0.070 −0.518[0.124]0.533 −0.002[0.050]0.050 −0.500[0.000]0.500 0.700[0.000]0.700
MLE 0.010[0.166]0.166 0.002[0.069]0.069 −0.009[0.279]0.280 −0.002[0.052]0.052 0.005[0.056]0.057 0.012[0.106]0.106
PMLE-o 0.010[0.166]0.166 0.002[0.069]0.069 −0.009[0.279]0.280 −0.002[0.052]0.052 0.005[0.056]0.057 0.012[0.106]0.106
PMLE-t 0.010[0.166]0.166 0.002[0.069]0.069 −0.009[0.279]0.280 −0.002[0.052]0.052 0.005[0.056]0.057 0.012[0.106]0.106

600, 2, 0.3 MLE-r −0.303[0.079]0.313 0.000[0.081]0.081 −0.100[0.163]0.191 −0.001[0.050]0.050 −0.500[0.000]0.500 −0.300[0.000]0.300
MLE 0.009[0.231]0.231 0.001[0.081]0.081 0.044[0.239]0.243 0.000[0.052]0.052 0.003[0.058]0.058 −0.001[0.196]0.196
PMLE-o 0.009[0.231]0.231 0.001[0.081]0.081 0.044[0.239]0.243 0.000[0.052]0.052 0.003[0.058]0.058 −0.001[0.196]0.196
PMLE-t 0.009[0.231]0.231 0.001[0.081]0.081 0.044[0.239]0.243 0.000[0.052]0.052 0.003[0.058]0.058 −0.001[0.196]0.196

600, 2, −0.3 MLE-r 0.305[0.082]0.316 −0.001[0.079]0.079 −0.104[0.158]0.189 −0.000[0.053]0.053 −0.500[0.000]0.500 0.300[0.000]0.300
MLE 0.012[0.229]0.229 −0.000[0.079]0.079 0.028[0.228]0.229 −0.000[0.055]0.055 0.002[0.057]0.057 0.018[0.196]0.197
PMLE-o 0.012[0.229]0.229 −0.000[0.079]0.079 0.028[0.228]0.229 −0.000[0.055]0.055 0.002[0.057]0.057 0.018[0.196]0.197
PMLE-t 0.012[0.229]0.229 −0.000[0.079]0.079 0.028[0.228]0.229 −0.000[0.055]0.055 0.002[0.057]0.057 0.018[0.196]0.197

600, 2, 0 MLE-r 0.002[0.082]0.082 0.001[0.082]0.082 −0.011[0.154]0.155 0.004[0.050]0.051 −0.500[0.000]0.500 0.000[0.000]0.000
MLE −0.003[0.226]0.226 0.001[0.082]0.082 0.035[0.176]0.180 0.003[0.051]0.052 0.001[0.061]0.061 −0.005[0.205]0.205
PMLE-o −0.003[0.226]0.226 0.001[0.082]0.082 0.035[0.176]0.180 0.003[0.051]0.052 0.001[0.061]0.061 −0.005[0.205]0.205
PMLE-t −0.003[0.226]0.226 0.001[0.082]0.082 0.035[0.176]0.180 0.003[0.051]0.052 0.001[0.061]0.061 −0.005[0.205]0.205

600, 0.5, 0.7 MLE-r −0.351[0.036]0.353 0.000[0.035]0.035 −0.127[0.031]0.130 −0.001[0.050]0.050 −0.500[0.000]0.500 −0.700[0.000]0.700
MLE −0.001[0.084]0.084 −0.001[0.034]0.034 0.002[0.070]0.070 −0.001[0.053]0.053 0.002[0.059]0.059 −0.013[0.109]0.110
PMLE-o −0.001[0.084]0.084 −0.001[0.034]0.034 0.002[0.070]0.070 −0.001[0.053]0.053 0.002[0.059]0.059 −0.013[0.109]0.110
PMLE-t −0.001[0.084]0.084 −0.001[0.034]0.034 0.002[0.070]0.070 −0.001[0.053]0.053 0.002[0.059]0.059 −0.013[0.109]0.110

600, 0.5, −0.7 MLE-r 0.353[0.036]0.355 0.001[0.036]0.036 −0.128[0.030]0.131 −0.002[0.051]0.051 −0.500[0.000]0.500 0.700[0.000]0.700
MLE 0.002[0.081]0.081 0.001[0.034]0.034 0.001[0.069]0.069 −0.002[0.054]0.054 0.003[0.058]0.058 0.010[0.101]0.101
PMLE-o 0.002[0.081]0.081 0.001[0.034]0.034 0.001[0.069]0.069 −0.002[0.054]0.054 0.003[0.058]0.058 0.010[0.101]0.101
PMLE-t 0.002[0.081]0.081 0.001[0.034]0.034 0.001[0.069]0.069 −0.002[0.054]0.054 0.003[0.058]0.058 0.010[0.101]0.101

600, 0.5, 0.3 MLE-r −0.149[0.040]0.154 −0.002[0.039]0.039 −0.025[0.039]0.047 0.002[0.051]0.051 −0.500[0.000]0.500 −0.300[0.000]0.300
MLE 0.006[0.114]0.114 −0.002[0.039]0.039 0.010[0.057]0.058 0.002[0.054]0.054 0.003[0.059]0.059 −0.000[0.188]0.188
PMLE-o 0.006[0.114]0.114 −0.002[0.039]0.039 0.010[0.057]0.058 0.002[0.054]0.054 0.003[0.059]0.059 −0.000[0.188]0.188
PMLE-t 0.006[0.114]0.114 −0.002[0.039]0.039 0.010[0.057]0.058 0.002[0.054]0.054 0.003[0.059]0.059 −0.000[0.188]0.188

600, 0.5, −0.3 MLE-r 0.152[0.039]0.157 −0.002[0.040]0.040 −0.026[0.040]0.047 0.001[0.053]0.053 −0.500[0.000]0.500 0.300[0.000]0.300
MLE 0.003[0.110]0.110 −0.002[0.040]0.040 0.006[0.056]0.057 0.000[0.055]0.055 0.002[0.059]0.060 0.014[0.188]0.188
PMLE-o 0.003[0.110]0.110 −0.002[0.040]0.040 0.006[0.056]0.057 0.000[0.055]0.055 0.002[0.059]0.060 0.014[0.188]0.188
PMLE-t 0.003[0.110]0.110 −0.002[0.040]0.040 0.006[0.056]0.057 0.000[0.055]0.055 0.002[0.059]0.060 0.014[0.188]0.188

600, 0.5, 0 MLE-r 0.001[0.040]0.040 0.000[0.042]0.042 −0.004[0.041]0.042 −0.001[0.052]0.052 −0.500[0.000]0.500 0.000[0.000]0.000
MLE −0.003[0.119]0.119 0.000[0.042]0.042 0.008[0.047]0.047 −0.001[0.053]0.053 0.002[0.060]0.060 −0.007[0.212]0.213
PMLE-o −0.003[0.119]0.119 0.000[0.042]0.042 0.008[0.047]0.047 −0.001[0.053]0.053 0.002[0.060]0.060 −0.007[0.212]0.213
PMLE-t −0.003[0.119]0.119 0.000[0.042]0.042 0.008[0.047]0.047 −0.001[0.053]0.053 0.002[0.060]0.060 −0.007[0.212]0.213

The MLE-r denotes the restricted MLE with the restriction θ2 = 0 imposed, and the PMLE-o and PMLE-t denote the PMLEs
obtained from the criterion functions formulated using, respectively, the original and transformed likelihood functions. The three
numbers in each cell are bias[SE]RMSE. (β10, β20, γ10) = (1, 1, 1).
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Table 4. The biases, SEs and RMSEs of the estimators when γ20 = 0 and ρ0 6= 0 in the sample selection model.

n, σ2
0 , ρ0 β1 β2 σ2 γ1 γ2 ρ

200, 2, 0.7 MLE-r −0.792[0.118]0.801 −0.002[0.121]0.121 −0.647[0.199]0.677 −0.001[0.091]0.091 0.000[0.000]0.000 −0.700[0.000]0.700
MLE −0.482[0.884]1.007 −0.001[0.124]0.124 0.210[0.666]0.698 −0.002[0.092]0.092 −0.004[0.096]0.096 −0.459[0.698]0.835
PMLE-o −0.743[0.333]0.814 −0.001[0.122]0.122 −0.546[0.510]0.747 −0.002[0.099]0.099 −0.000[0.036]0.036 −0.666[0.215]0.699
PMLE-t −0.665[0.521]0.845 −0.001[0.122]0.122 −0.376[0.639]0.741 −0.001[0.091]0.091 −0.001[0.050]0.050 −0.606[0.382]0.717

200, 2, −0.7 MLE-r 0.786[0.114]0.794 0.004[0.115]0.115 −0.649[0.191]0.676 −0.001[0.089]0.089 0.000[0.000]0.000 0.700[0.000]0.700
MLE 0.420[0.867]0.963 0.004[0.116]0.117 0.213[0.650]0.684 −0.001[0.090]0.090 −0.001[0.098]0.098 0.421[0.687]0.806
PMLE-o 0.735[0.326]0.804 0.004[0.115]0.115 −0.550[0.462]0.718 −0.000[0.090]0.090 −0.002[0.043]0.043 0.664[0.226]0.701
PMLE-t 0.648[0.538]0.842 0.004[0.116]0.116 −0.361[0.636]0.731 −0.001[0.089]0.089 −0.003[0.055]0.055 0.598[0.396]0.718

200, 2, 0.3 MLE-r −0.343[0.136]0.369 0.008[0.139]0.139 −0.158[0.263]0.307 0.000[0.093]0.093 0.000[0.000]0.000 −0.300[0.000]0.300
MLE −0.302[1.047]1.089 0.008[0.143]0.143 0.908[0.847]1.242 −0.000[0.093]0.093 0.005[0.098]0.099 −0.270[0.719]0.768
PMLE-o −0.340[0.332]0.475 0.009[0.141]0.141 −0.071[0.555]0.559 0.000[0.099]0.099 −0.001[0.037]0.037 −0.296[0.180]0.347
PMLE-t −0.326[0.569]0.656 0.008[0.141]0.141 0.145[0.789]0.802 0.000[0.093]0.093 −0.001[0.051]0.051 −0.289[0.362]0.463

200, 2, −0.3 MLE-r 0.340[0.142]0.368 0.001[0.138]0.138 −0.161[0.261]0.307 0.002[0.089]0.089 0.000[0.000]0.000 0.300[0.000]0.300
MLE 0.347[1.029]1.086 0.001[0.142]0.142 0.878[0.827]1.206 0.002[0.091]0.091 0.001[0.102]0.102 0.304[0.712]0.774
PMLE-o 0.353[0.285]0.454 0.001[0.139]0.139 −0.095[0.466]0.476 0.001[0.094]0.094 0.001[0.041]0.041 0.309[0.164]0.350
PMLE-t 0.376[0.567]0.680 0.001[0.139]0.139 0.142[0.777]0.790 0.002[0.090]0.090 −0.000[0.054]0.054 0.323[0.361]0.484

200, 0.5, 0.7 MLE-r −0.397[0.061]0.402 −0.001[0.060]0.060 −0.161[0.048]0.168 0.001[0.091]0.091 0.000[0.000]0.000 −0.700[0.000]0.700
MLE −0.240[0.425]0.488 −0.001[0.061]0.061 0.037[0.158]0.163 0.001[0.091]0.091 0.002[0.100]0.100 −0.464[0.679]0.822
PMLE-o −0.378[0.152]0.408 −0.001[0.060]0.060 −0.142[0.111]0.180 0.001[0.094]0.094 0.002[0.040]0.040 −0.673[0.192]0.700
PMLE-t −0.341[0.242]0.418 −0.001[0.060]0.060 −0.105[0.148]0.181 0.001[0.091]0.091 0.002[0.054]0.054 −0.617[0.347]0.708

200, 0.5, -0.7 MLE-r 0.397[0.059]0.401 0.004[0.060]0.060 −0.166[0.048]0.173 −0.001[0.093]0.093 0.000[0.000]0.000 0.700[0.000]0.700
MLE 0.241[0.434]0.496 0.004[0.060]0.061 0.039[0.161]0.166 −0.001[0.093]0.093 0.001[0.097]0.097 0.463[0.692]0.833
PMLE-o 0.382[0.139]0.407 0.004[0.060]0.060 −0.151[0.096]0.179 −0.001[0.094]0.094 0.001[0.040]0.040 0.679[0.180]0.702
PMLE-t 0.342[0.247]0.422 0.004[0.060]0.060 −0.107[0.148]0.182 −0.000[0.093]0.093 0.002[0.054]0.054 0.618[0.364]0.717

200, 0.5, 0.3 MLE-r −0.171[0.070]0.184 0.002[0.071]0.071 −0.042[0.066]0.078 0.004[0.093]0.093 0.000[0.000]0.000 −0.300[0.000]0.300
MLE −0.173[0.518]0.547 0.002[0.072]0.072 0.220[0.209]0.304 0.004[0.094]0.094 −0.003[0.104]0.104 −0.308[0.715]0.779
PMLE-o −0.167[0.174]0.241 0.002[0.071]0.071 −0.017[0.139]0.140 0.003[0.095]0.095 −0.001[0.043]0.043 −0.294[0.198]0.354
PMLE-t −0.158[0.288]0.328 0.002[0.071]0.071 0.037[0.192]0.196 0.004[0.093]0.093 −0.002[0.055]0.056 −0.285[0.374]0.470

200, 0.5, −0.3 MLE-r 0.167[0.071]0.181 0.002[0.069]0.069 −0.039[0.068]0.079 −0.003[0.088]0.088 0.000[0.000]0.000 0.300[0.000]0.300
MLE 0.157[0.517]0.540 0.002[0.070]0.070 0.222[0.216]0.309 −0.003[0.089]0.089 0.002[0.100]0.100 0.285[0.711]0.766
PMLE-o 0.164[0.154]0.225 0.002[0.069]0.069 −0.020[0.144]0.145 −0.002[0.090]0.090 0.000[0.034]0.034 0.295[0.159]0.336
PMLE-t 0.174[0.269]0.320 0.002[0.069]0.069 0.028[0.196]0.198 −0.003[0.088]0.088 −0.000[0.046]0.046 0.306[0.335]0.454

600, 2, 0.7 MLE-r −0.786[0.068]0.789 −0.002[0.070]0.070 −0.634[0.114]0.645 0.001[0.051]0.051 0.000[0.000]0.000 −0.700[0.000]0.700
MLE −0.322[0.645]0.721 −0.002[0.070]0.070 0.001[0.415]0.415 0.001[0.051]0.051 0.002[0.053]0.053 −0.317[0.561]0.644
PMLE-o −0.771[0.147]0.785 −0.001[0.070]0.070 −0.616[0.202]0.648 0.001[0.061]0.061 0.000[0.011]0.011 −0.688[0.100]0.695
PMLE-t −0.581[0.466]0.745 −0.002[0.070]0.070 −0.378[0.452]0.589 0.001[0.051]0.051 0.001[0.029]0.029 −0.531[0.384]0.656

600, 2, −0.7 MLE-r 0.788[0.068]0.790 0.002[0.069]0.069 −0.637[0.114]0.647 −0.001[0.049]0.049 0.000[0.000]0.000 0.700[0.000]0.700
MLE 0.281[0.623]0.683 0.002[0.069]0.069 0.007[0.408]0.408 −0.001[0.050]0.050 −0.000[0.050]0.050 0.280[0.539]0.607
PMLE-o 0.779[0.116]0.787 0.001[0.069]0.069 −0.627[0.164]0.648 0.000[0.048]0.048 0.000[0.005]0.005 0.694[0.075]0.698
PMLE-t 0.572[0.465]0.737 0.002[0.069]0.069 −0.378[0.435]0.576 −0.001[0.049]0.049 −0.000[0.029]0.029 0.522[0.388]0.651

600, 2, 0.3 MLE-r −0.339[0.079]0.348 0.001[0.082]0.082 −0.132[0.152]0.201 0.001[0.052]0.052 0.000[0.000]0.000 −0.300[0.000]0.300
MLE −0.326[0.844]0.904 0.001[0.083]0.083 0.565[0.508]0.760 0.001[0.052]0.052 0.002[0.057]0.057 −0.290[0.626]0.690
PMLE-o −0.341[0.106]0.357 0.002[0.082]0.082 −0.127[0.174]0.216 0.001[0.060]0.060 0.000[0.009]0.009 −0.301[0.046]0.304
PMLE-t −0.330[0.504]0.602 0.001[0.083]0.083 0.113[0.516]0.528 0.001[0.052]0.052 0.002[0.029]0.029 −0.294[0.358]0.463

600, 2, −0.3 MLE-r 0.343[0.075]0.351 −0.002[0.082]0.082 −0.122[0.151]0.194 0.001[0.052]0.052 0.000[0.000]0.000 0.300[0.000]0.300
MLE 0.311[0.838]0.894 −0.002[0.082]0.082 0.564[0.509]0.760 0.001[0.052]0.052 −0.002[0.055]0.055 0.279[0.621]0.681
PMLE-o 0.342[0.102]0.357 −0.002[0.081]0.081 −0.118[0.183]0.217 0.001[0.054]0.054 −0.000[0.007]0.007 0.300[0.042]0.303
PMLE-t 0.335[0.492]0.595 −0.002[0.081]0.081 0.111[0.499]0.511 0.001[0.052]0.052 −0.001[0.032]0.032 0.296[0.352]0.460

600, 0.5, 0.7 MLE-r −0.394[0.035]0.396 −0.000[0.036]0.036 −0.159[0.028]0.161 −0.001[0.051]0.051 0.000[0.000]0.000 −0.700[0.000]0.700
MLE −0.159[0.323]0.360 −0.000[0.036]0.036 −0.001[0.107]0.107 −0.001[0.051]0.051 0.002[0.054]0.054 −0.312[0.552]0.634
PMLE-o −0.390[0.064]0.395 −0.000[0.036]0.036 −0.156[0.044]0.162 −0.001[0.056]0.056 0.000[0.009]0.009 −0.693[0.076]0.697
PMLE-t −0.304[0.222]0.377 −0.000[0.036]0.036 −0.102[0.111]0.151 −0.001[0.051]0.051 −0.001[0.028]0.028 −0.554[0.362]0.662

600, 0.5, −0.7 MLE-r 0.394[0.033]0.396 −0.000[0.034]0.034 −0.158[0.028]0.160 −0.002[0.050]0.050 0.000[0.000]0.000 0.700[0.000]0.700
MLE 0.148[0.313]0.347 −0.000[0.034]0.034 −0.002[0.106]0.106 −0.002[0.050]0.050 0.002[0.055]0.055 0.293[0.535]0.610
PMLE-o 0.389[0.067]0.394 −0.001[0.034]0.034 −0.154[0.046]0.161 −0.003[0.050]0.050 −0.000[0.011]0.011 0.691[0.088]0.697
PMLE-t 0.302[0.210]0.368 −0.001[0.034]0.034 −0.107[0.106]0.151 −0.002[0.050]0.050 0.000[0.027]0.027 0.549[0.339]0.645

600, 0.5, 0.3 MLE-r −0.169[0.041]0.174 −0.003[0.040]0.040 −0.030[0.039]0.050 −0.000[0.050]0.050 0.000[0.000]0.000 −0.300[0.000]0.300
MLE −0.154[0.413]0.441 −0.004[0.040]0.040 0.138[0.125]0.186 −0.000[0.051]0.051 −0.000[0.055]0.055 −0.281[0.616]0.677
PMLE-o −0.169[0.048]0.176 −0.003[0.040]0.040 −0.030[0.042]0.052 −0.001[0.053]0.053 0.000[0.006]0.006 −0.300[0.034]0.302
PMLE-t −0.163[0.235]0.285 −0.004[0.040]0.040 0.023[0.120]0.122 −0.000[0.050]0.050 0.000[0.027]0.027 −0.293[0.336]0.446

600, 0.5, −0.3 MLE-r 0.170[0.039]0.174 −0.000[0.040]0.040 −0.031[0.039]0.050 −0.001[0.051]0.051 0.000[0.000]0.000 0.300[0.000]0.300
MLE 0.148[0.422]0.447 −0.001[0.040]0.040 0.145[0.127]0.193 −0.001[0.051]0.051 0.000[0.053]0.053 0.268[0.627]0.682
PMLE-o 0.170[0.044]0.176 −0.000[0.040]0.040 −0.030[0.041]0.051 −0.002[0.052]0.052 0.000[0.002]0.002 0.301[0.028]0.302
PMLE-t 0.166[0.225]0.280 −0.000[0.040]0.040 0.018[0.116]0.118 −0.001[0.051]0.051 0.000[0.023]0.023 0.295[0.323]0.438

The MLE-r denotes the restricted MLE with the restriction θ2 = 0 imposed, and the PMLE-o and PMLE-t denote the PMLEs
obtained from the criterion functions formulated using, respectively, the original and transformed likelihood functions. The three
numbers in each cell are bias[SE]RMSE. (β10, β20, γ10) = (1, 1, 1).
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Table 5. The biases, SEs and RMSEs of the estimators when γ20 = 0 and ρ0 = 0 in the sample selection model.

n, σ2
0 β1 β2 σ2 γ1 γ2 ρ

200, 2 MLE-r 0.003[0.141]0.141 −0.005[0.136]0.137 −0.040[0.284]0.287 0.003[0.092]0.092 0.000[0.000]0.000 0.000[0.000]0.000
MLE 0.000[1.076]1.076 −0.004[0.138]0.138 1.062[0.887]1.383 0.002[0.093]0.093 −0.001[0.100]0.100 −0.004[0.712]0.712
PMLE-o 0.001[0.319]0.319 −0.004[0.137]0.137 0.041[0.521]0.522 0.001[0.098]0.098 −0.001[0.041]0.041 0.000[0.176]0.176
PMLE-t 0.024[0.581]0.581 −0.005[0.137]0.137 0.271[0.801]0.845 0.003[0.092]0.092 −0.001[0.053]0.053 0.014[0.359]0.359

200, 0.5 MLE-r 0.004[0.071]0.072 0.000[0.073]0.073 −0.014[0.074]0.075 −0.002[0.086]0.086 0.000[0.000]0.000 0.000[0.000]0.000
MLE 0.012[0.535]0.535 −0.001[0.074]0.074 0.261[0.232]0.349 −0.002[0.087]0.087 −0.002[0.101]0.101 0.012[0.709]0.709
PMLE-o 0.001[0.156]0.156 0.000[0.074]0.074 0.005[0.135]0.135 −0.003[0.089]0.089 −0.001[0.031]0.031 −0.004[0.164]0.164
PMLE-t 0.009[0.290]0.290 0.000[0.074]0.074 0.061[0.200]0.209 −0.002[0.086]0.086 −0.002[0.048]0.048 0.006[0.353]0.353

600, 2 MLE-r 0.002[0.082]0.082 −0.006[0.081]0.081 −0.018[0.167]0.168 −0.001[0.051]0.051 0.000[0.000]0.000 0.000[0.000]0.000
MLE −0.014[0.864]0.864 −0.006[0.082]0.082 0.713[0.537]0.893 −0.001[0.051]0.051 −0.001[0.056]0.056 −0.011[0.623]0.623
PMLE-o 0.002[0.115]0.115 −0.006[0.081]0.081 −0.011[0.211]0.211 −0.001[0.057]0.057 −0.000[0.008]0.008 0.000[0.049]0.049
PMLE-t 0.017[0.539]0.539 −0.006[0.081]0.081 0.261[0.547]0.606 −0.001[0.051]0.051 0.000[0.032]0.032 0.010[0.375]0.375

600, 0.5 MLE-r 0.001[0.041]0.041 0.002[0.041]0.041 −0.003[0.040]0.040 −0.001[0.051]0.051 0.000[0.000]0.000 0.000[0.000]0.000
MLE 0.025[0.437]0.438 0.001[0.041]0.041 0.185[0.134]0.229 −0.001[0.051]0.051 −0.002[0.056]0.056 0.033[0.629]0.630
PMLE-o −0.000[0.053]0.053 0.002[0.041]0.041 −0.002[0.046]0.046 −0.001[0.053]0.053 0.000[0.007]0.007 −0.001[0.046]0.046
PMLE-t 0.013[0.250]0.250 0.001[0.041]0.041 0.057[0.131]0.143 −0.001[0.051]0.051 0.000[0.028]0.028 0.015[0.346]0.346

The MLE-r denotes the restricted MLE with the restriction θ2 = 0 imposed, and the PMLE-o and PMLE-t denote the PMLEs
obtained from the criterion functions formulated using, respectively, the original and transformed likelihood functions. The three
numbers in each cell are bias[SE]RMSE. (β10, β20, γ10) = (1, 1, 1).

4.2. The Stochastic Frontier Function Model

In the Monte Carlo experiments for the stochastic frontier function model, there are three
explanatory variables in x: the first one is the intercept term, the second one is randomly drawn
from the standard normal distribution, and the third one is randomly drawn from the centered
chi-squared distribution χ2(2) − 2. The true coefficient vector β0 for the explanatory variables is
(1, 1, 1)′. We fix σ2

20 = 1, thus σ2
0 = δ2

0 + 1, where δ0 is either 2, 1, 0.5, 0.25, 0.1 or 0. For the PML
criterion function (1) using the original likelihood function, µ is set to 4, and Γn in the information
criterion (2) is taken to be Γn = 0.1n−1/2, which is chosen in a way similar to that for the sample
selection model. For the PML criterion function using the transformed likelihood function as in (5),
3µ1 = 4 and Γn = 0.1n−1/2.

Table 6 reports the probabilities that the PMLEs select the right model. For sample size n = 200,
when δ0 = 2, both the PMLE-o and PMLE-t estimate δ to be nonzero with probabilities higher
than 80%. However, when δ0 = 1, 0.5, 0.25 or 0.1, the PMLEs estimate δ to be nonzero with very
low probabilities. With δ0 = 0, the PMLEs estimate δ as zero with probabilities higher than 85%.
There is a weak identification issue for the stochastic frontier function model similar to that for the
sample selection model: ψ0σ0

∂Ln(θ10,δ)
∂β1

+ 2σ2
0 ψ2

0δ
∂Ln(θ10,δ)

∂σ2 + ∂Ln(θ10,δ)
∂δ = O(δ2), where θ10 = (β′0, σ2

0 )
′

and ψ0 = φ(0)/[1−Φ(0)]. Thus, when δ0 is nonzero but small, the MLE and thus the PMLEs can
perform poorly, which can be seen from Table 7. When the sample size increases from 200 to 600,
the probabilities for δ0 = 2 and δ0 = 0 increase, but others decrease except that of the PMLE-o with δ0 = 1.

Table 6. Probabilities that the PMLEs of the stochastic frontier function model select the right model.

n = 200 n = 600

PMLE-o PMLE-t PMLE-o PMLE-t

δ0 = 2 0.822 0.838 0.991 0.991
δ0 = 1 0.170 0.289 0.196 0.271
δ0 = 0.5 0.071 0.184 0.025 0.082
δ0 = 0.25 0.054 0.132 0.012 0.065
δ0 = 0.1 0.050 0.159 0.015 0.059
δ0 = 0 0.961 0.856 0.990 0.925

The PMLE-o and PMLE-t denote the PMLEs obtained from the criterion functions formulated using, respectively, the original and
transformed likelihood functions. When δ0 6= 0, the numbers in the table are the probabilities that the PMLEs of δ are non-zero;
when δ0 = 0, the numbers are the probabilities that the PMLEs of δ are zero.

Table 7 presents biases, SEs and RMSEs of the MLE, PMLE-o, PMLE-t and MLE-r with the
restriction δ = 0 imposed, even though δ0 6= 0. Since the MLE-r imposes the wrong restriction, it has
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very large biases for β1, σ2 and δ but it generally has the smallest SEs. The MLE, PMLE-o and PMLE-t
of β2 and β3 have similar features. For δ0 = 2, 1 and 0.5, the biases of the PMLEs of β1, σ2 and δ

are generally larger than those of the MLE, but are smaller than those of the MLE-r. The SEs of the
PMLEs are larger than those of the MLE for δ0 = 2 and 1 but are smaller for smaller values of δ0. For
δ0 = 0.25 and 0.1, even though the PMLEs estimate δ as zero with high probabilities, they have smaller
biases, SEs and RMSEs than those of the MLE in almost all cases. As the sample size n increases, all
estimates have smaller SEs, the MLEs have smaller biases, but the MLE-r and PMLEs may have smaller
or larger biases.

Table 7. The biases, SEs and RMSEs of the estimators when δ0 6= 0 in the stochastic frontier function model.

n, δ0 β1 β2 β3 σ2 δ

200, 2 MLE-r −1.595[0.112]1.599 0.002[0.114]0.114 −0.001[0.057]0.057 −2.574[0.264]2.588 −2.000[0.000]2.000
MLE −0.034[0.301]0.303 0.002[0.110]0.110 −0.002[0.055]0.055 −0.050[0.996]0.998 0.115[0.724]0.733
PMLE-o −0.235[0.662]0.703 0.002[0.111]0.111 −0.002[0.056]0.056 −0.291[1.348]1.379 −0.093[1.047]1.051
PMLE-t −0.215[0.640]0.675 0.002[0.111]0.111 −0.002[0.055]0.055 −0.266[1.319]1.345 −0.072[1.021]1.024

200, 1 MLE-r −0.795[0.082]0.799 0.002[0.082]0.082 0.001[0.041]0.041 −0.657[0.134]0.671 −1.000[0.000]1.000
MLE −0.136[0.426]0.447 0.002[0.082]0.082 0.001[0.042]0.042 −0.050[0.522]0.524 −0.077[0.657]0.661
PMLE-o −0.602[0.438]0.744 0.002[0.082]0.082 0.001[0.042]0.042 −0.434[0.536]0.690 −0.684[0.713]0.988
PMLE-t −0.499[0.484]0.695 0.002[0.082]0.082 0.001[0.042]0.042 −0.343[0.561]0.657 −0.546[0.756]0.932

200, 0.5 MLE-r −0.395[0.073]0.401 0.002[0.070]0.070 0.000[0.039]0.039 −0.178[0.106]0.207 −0.500[0.000]0.500
MLE −0.014[0.380]0.380 0.002[0.071]0.071 0.000[0.039]0.039 0.106[0.363]0.378 0.068[0.600]0.604
PMLE-o −0.324[0.267]0.420 0.002[0.071]0.071 0.000[0.039]0.039 −0.107[0.284]0.304 −0.373[0.470]0.600
PMLE-t −0.242[0.341]0.418 0.002[0.071]0.071 0.000[0.039]0.039 −0.045[0.326]0.330 −0.251[0.559]0.613

200, 0.25 MLE-r −0.199[0.071]0.211 −0.003[0.071]0.071 −0.001[0.034]0.034 −0.052[0.102]0.115 −0.250[0.000]0.250
MLE 0.120[0.362]0.382 −0.003[0.071]0.071 −0.002[0.034]0.034 0.177[0.329]0.373 0.235[0.572]0.618
PMLE-o −0.147[0.232]0.275 −0.003[0.071]0.071 −0.002[0.034]0.034 −0.002[0.244]0.244 −0.158[0.389]0.420
PMLE-t −0.093[0.288]0.302 −0.003[0.071]0.071 −0.002[0.034]0.034 0.037[0.271]0.273 −0.075[0.472]0.478

200, 0.1 MLE-r −0.079[0.073]0.108 −0.002[0.071]0.071 0.002[0.037]0.037 −0.018[0.105]0.107 −0.100[0.000]0.100
MLE 0.240[0.355]0.429 −0.002[0.071]0.071 0.002[0.037]0.037 0.208[0.314]0.377 0.391[0.573]0.694
PMLE-o −0.032[0.214]0.216 −0.002[0.071]0.071 0.002[0.037]0.037 0.027[0.229]0.231 −0.013[0.384]0.384
PMLE-t 0.046[0.296]0.299 −0.002[0.071]0.071 0.002[0.037]0.037 0.085[0.278]0.291 0.108[0.503]0.514

600, 2 MLE-r −1.595[0.066]1.596 −0.004[0.065]0.066 0.001[0.033]0.033 −2.558[0.151]2.563 −2.000[0.000]2.000
MLE −0.007[0.142]0.142 −0.003[0.061]0.061 0.000[0.031]0.031 −0.016[0.540]0.541 0.038[0.349]0.351
PMLE-o −0.017[0.204]0.204 −0.004[0.061]0.061 0.000[0.031]0.031 −0.028[0.582]0.583 0.028[0.390]0.391
PMLE-t −0.017[0.204]0.204 −0.004[0.061]0.061 0.000[0.031]0.031 −0.028[0.582]0.583 0.028[0.390]0.391

600, 1 MLE-r −0.796[0.047]0.797 0.004[0.048]0.049 0.001[0.025]0.025 −0.640[0.079]0.645 −1.000[0.000]1.000
MLE −0.073[0.288]0.297 0.004[0.048]0.048 0.000[0.025]0.025 −0.036[0.350]0.352 −0.062[0.417]0.422
PMLE-o −0.597[0.406]0.722 0.004[0.048]0.048 0.000[0.025]0.025 −0.438[0.431]0.614 −0.717[0.577]0.921
PMLE-t −0.536[0.433]0.689 0.004[0.048]0.048 0.000[0.025]0.025 −0.387[0.445]0.590 −0.639[0.605]0.880

600, 0.5 MLE-r −0.397[0.042]0.399 −0.002[0.043]0.043 −0.000[0.022]0.022 −0.165[0.063]0.176 −0.500[0.000]0.500
MLE −0.062[0.316]0.322 −0.002[0.043]0.043 −0.000[0.022]0.022 0.047[0.248]0.252 −0.040[0.449]0.451
PMLE-o −0.375[0.142]0.401 −0.002[0.043]0.043 −0.000[0.022]0.022 −0.145[0.141]0.202 −0.466[0.215]0.513
PMLE-t −0.336[0.210]0.396 −0.002[0.043]0.043 −0.000[0.022]0.022 −0.118[0.177]0.212 −0.410[0.309]0.513

600, 0.25 MLE-r −0.200[0.041]0.204 0.001[0.042]0.042 0.001[0.021]0.021 −0.046[0.059]0.075 −0.250[0.000]0.250
MLE 0.065[0.289]0.296 0.001[0.042]0.042 0.001[0.021]0.021 0.107[0.202]0.229 0.121[0.414]0.432
PMLE-o −0.190[0.101]0.215 0.001[0.042]0.042 0.001[0.021]0.021 −0.037[0.100]0.107 −0.234[0.149]0.277
PMLE-t −0.158[0.170]0.232 0.001[0.042]0.042 0.001[0.021]0.021 −0.017[0.131]0.132 −0.187[0.247]0.310

600, 0.1 MLE-r −0.080[0.040]0.089 −0.003[0.041]0.041 −0.001[0.020]0.020 −0.011[0.058]0.059 −0.100[0.000]0.100
MLE 0.187[0.295]0.350 −0.003[0.041]0.041 −0.001[0.020]0.020 0.145[0.205]0.251 0.279[0.427]0.510
PMLE-o −0.067[0.110]0.129 −0.003[0.041]0.041 −0.001[0.020]0.020 −0.000[0.100]0.100 −0.079[0.169]0.187
PMLE-t −0.039[0.172]0.176 −0.003[0.041]0.041 −0.001[0.020]0.020 0.018[0.132]0.133 −0.037[0.258]0.261

The MLE-r denotes the restricted MLE with the restriction δ = 0 imposed, and PMLE-o and PMLE-t denote the PMLEs obtained
from the criterion functions formulated using, respectively, the original and transformed likelihood functions. The three numbers
in each cell are bias[SE]RMSE. β0 = (1, 1, 1)′ . Corresponding to δ0 = 2, 1, 0.5, 0.25 and 0.1, the true value of σ2 is σ2

0 = 5, 2, 1.25,
1.0625 and 1.01.

The biases, SEs and RMSEs of the estimators when δ0 = 0 are presented in Table 8. All estimators
of various estimation methods have similar summary statistics for β2 and β3. For other parameters,
the MLE-r has the smallest biases, SEs and RMSEs, since it imposes the correct restriction δ = 0.
The PMLEs have much smaller biases, SEs and RMSEs than those of the MLE. The biases, SEs and
RMSEs of the PMLE-o are smaller than those of the PMLE-t. As the sample size increases to 600,
the summary statistics of the PMLE-o become very close to those of the MLE-r. For all estimates, we
observe smaller biases, SEs and RMSEs for a larger sample size.
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Table 8. The biases, SEs and RMSEs of the estimators when δ0 = 0 in the stochastic frontier function model.

n, δ0 β1 β2 β3 σ2 δ

200, 0 MLE-r −0.000[0.074]0.074 −0.001[0.073]0.073 −0.001[0.037]0.037 −0.016[0.100]0.101 0.000[0.000]0.000
MLE 0.302[0.347]0.460 −0.001[0.073]0.073 −0.002[0.037]0.037 0.191[0.295]0.351 0.462[0.549]0.718
PMLE-o 0.037[0.198]0.202 −0.001[0.073]0.073 −0.002[0.037]0.037 0.018[0.202]0.203 0.067[0.337]0.344
PMLE-t 0.109[0.278]0.298 −0.001[0.073]0.073 −0.002[0.037]0.037 0.069[0.248]0.257 0.178[0.459]0.492

600, 0 MLE-r 0.001[0.040]0.040 −0.001[0.041]0.042 −0.001[0.022]0.022 −0.002[0.057]0.057 0.000[0.000]0.000
MLE 0.268[0.292]0.396 −0.001[0.042]0.042 −0.001[0.022]0.022 0.153[0.206]0.257 0.377[0.419]0.564
PMLE-o 0.009[0.093]0.093 −0.001[0.042]0.042 −0.001[0.022]0.022 0.005[0.089]0.089 0.014[0.138]0.139
PMLE-t 0.049[0.178]0.185 −0.001[0.042]0.042 −0.001[0.022]0.022 0.031[0.132]0.135 0.072[0.262]0.272

The MLE-r denotes the restricted MLE with the restriction δ = 0 imposed, and PMLE-o and PMLE-t denote the PMLEs obtained
from the criterion functions formulated using, respectively, the original and transformed likelihood functions. The three numbers
in each cell are bias[SE]RMSE. β0 = (1, 1, 1)′ and σ2

0 = 1.

5. Conclusions

In this paper, we investigate the estimation of parametric models with singular information
matrices using the PML based on the adaptive lasso (group lasso). An irregular model has a singular
information matrix occurring at a subvector θ20 of the true parameter vector θ0 being zero, but its
information matrices at other parameter values are nonsingular. In addition, if we knew that θ20 is
zero, the restricted model always has a nonsingular information matrix. We show that the PMLEs
have oracle properties. Consequently, the PMLEs always have the

√
n-rate of convergence, no matter

whether θ20 = 0 or not, while the MLEs usually have slower than the
√

n-rate of convergence and their
asymptotic distributions might not be normal when θ20 = 0. The PML can conduct model selection
and estimation simultaneously. As examples, we consider the PMLEs for the sample selection model
and the stochastic frontier function model, which can be formulated with both original structural
parameters of interest and transformed parameters. Our Monte Carlo results show that the PMLE
formulated with the original parameters generally performs well and outperforms the reparameterized
one in terms of smaller RMSEs.
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Appendix A. MLE of the Sample Selection Model

In this section, we derive the asymptotic distribution of the MLE of the sample selection model (3).
The irregularity of the information matrix occurs at ρ0 = 0, which is in the interior of the range for
the correlation coefficient. So for this model, the true parameter vector θ0 of interest is in the interior
of the compact parameter space Θ. In addition, we assume that the exogenous variables xi and zi
are uniformly bounded, the empirical distribution of (xi, zi) converges in distribution to a limiting
distribution and the matrices limn→∞

1
n ∑n

i=1 xix′i and limn→∞
1
n ∑n

i=1 ziz′i exist and are positive definite.
These assumptions are strong enough to establish the asymptotic properties in this section.

The log likelihood function of model (3) divided by n is

Ln(θ) =
1
n

n

∑
i=1

{
(1− Ii) ln(1−Φ(z′iγ))−

1
2

Ii ln(2πσ2)− 1
2σ2 Ii(yi − x′i β)

2 + Ii ln Φ
[

1√
1− ρ2

(
z′iγ−

ρ(yi − x′i β)
σ

)]}
, (A1)

where θ = (β′, σ2, γ′, ρ)′ and Φ(·) is the standard normal distribution. The first order derivatives of
Ln(θ) are
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∂Ln(θ)

∂β
=

1
nσ2

n

∑
i=1

Iixi[εi(β) + σρ(1− ρ2)−1/2ψi(θ)], (A2)

∂Ln(θ)

∂σ2 =
1

2nσ2

n

∑
i=1

Ii
[ ε2

i (β)

σ2 − 1 +
1
σ

ρ(1− ρ2)−1/2ψi(θ)εi(β)
]
, (A3)

∂Ln(θ)

∂γ
=

1
n

n

∑
i=1

zi
[
(1− ρ2)−1/2 Iiψi(θ)− (1− Ii)

φi
1−Φi

]
, (A4)

∂Ln(θ)

∂ρ
=

1
n
(1− ρ2)−3/2

n

∑
i=1

Iiψi(θ)
(
ρz′iγ−

εi(β)

σ

)
, (A5)

where εi(β) = yi − x′i β, φi = φ(z′iγ), Φi = Φ(z′iγ) and ψi(θ) = φ
(
(1 − ρ2)−1/2(z′iγ −

ρ
σ εi(β))

)
/Φ
(
(1− ρ2)−1/2(z′iγ−

ρ
σ εi(β))

)
with φ(·) being the standard normal pdf. It is known that

the variance-covariance matrix of a vector of random variables is positive definite if and only if there is
no linear relation among the components of the random vector (Rao 1973, p. 107). Under the assumed
regularity conditions, one can easily show that when ρ0 6= 0, the gradients (A2)–(A5) at θ0 are linearly
independent w.p.a.1., and hence the limiting matrix of 1

n In(θ0), where In(θ0) is the information matrix
with the sample size n, is positive definite. Thus, there are no irregularities in the model when ρ0 6= 0,
and the MLE is

√
n-consistent and asymptotically normal.

However, when ρ0 = 0 and together with γ0, there are some irregularities in the model. With ρ0 = 0,
the first order derivatives are

∂Ln(θ0)

∂β
=

1
nσ2

0

n

∑
i=1

Iixiεi, (A6)

∂Ln(θ0)

∂σ2 =
1

2nσ4
0

n

∑
i=1

Ii(ε
2
i − σ2

0 ), (A7)

∂Ln(θ0)

∂γ
=

1
n

n

∑
i=1

[Ii −Φ(z′iγ0)]φ(z′iγ0)

Φ(z′iγ0)[1−Φ(z′iγ0)]
zi, (A8)

∂Ln(θ0)

∂ρ
= − 1

nσ0

n

∑
i=1

φ(z′iγ0)

Φ(z′iγ0)
Iiεi. (A9)

These derivatives are linearly independent as long as x and φ(z′γ0)/Φ(z′γ0) are linearly
independent, which will usually be the case if z contains some relevant continuous exogenous variables
with nonzero coefficients. However, when the non-intercept variables in z have coefficients equal
to zero, φ(z′γ0)/Φ(z′γ0) is a constant for all i, and the first component of ∂Ln(α0,0)

∂β and ∂Ln(α0,0)
∂ρ are

linearly dependent as x contains an intercept term. It follows that the information matrix must
be singular. We consider this irregularity below. Let xi = (1, x′2i)

′, β = (β1, β′2)
′ with β1 being a

scalar, γ = (γ1, γ′2)
′ with γ1 being the coefficient for the intercept term of the selection equation,

α = (β′, σ2, γ1)
′, θ2 = (γ′2, ρ)′, θ = (α′, θ′2)

′, and θ20 = 0. Then,

∂Ln(θ0)

∂ρ
+ σ0ψ0

∂Ln(θ0)

∂β1
= 0. (A10)

where ψ0 = φ(γ10)/Φ(γ10). Furthermore, the submatrix of the information matrix corresponding to α

with the sample size n is

Ξn = E
(
n2 ∂Ln(θ0)

∂α

∂Ln(θ0)

∂α′
)
=


Φ(γ0)

σ2
0

∑n
i=1 xix′i 0 0

0 nΦ(γ0)

2σ4
0

0

0 0 nφ(γ10)
2

Φ(γ10)[1−Φ(γ10)]

 .
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The limit of Ξn/n has full rank under the assumed regularity conditions. Thus, the rank of the
information matrix is one less than the total number of parameters. This sample selection model (3)
has irregularities similar to the stochastic frontier function model in Lee (1993), with the exception that
the true parameter vector is not on the boundary of a parameter space. The asymptotic distribution
of its MLE can be similarly derived. The method in Rotnitzky et al. (2000) can also be used, but the
method in Lee (1993) is simpler for this particular model.

Consider the transformation of (α′, θ2)
′ to (ξ ′, θ2)

′ defined by ξ = α − ρK1, where K1 =

(σ0ψ0, 01×(kx+1))
′ with kx being the number of variables in x.9 At ρ0 = 0, ξ0 = α0. Define Ln1(ξ, ρ) by

Ln1(ξ, θ2) = Ln(ξ + ρK1, θ2), (A11)

which is the log likelihood divided by n in terms of ξ and θ2. Then

∂Ln1(ξ0, 0)
∂ξ

=
∂Ln(α0, 0)

∂α
, (A12)

and by (A10),
∂Ln1(ξ0, 0)

∂ρ
=

∂Ln(α0, 0)
∂ρ

+ σ0ψ0
∂Ln(α0, 0)

∂β1
= 0. (A13)

Thus, the derivative of Ln1(ξ, θ2) with respect to ρ at (ξ ′0, 0)′ is zero. The derivative can be

interpreted as the residual vector ∂Ln(α0,0)
∂ρ −

[
E
( ∂Ln(α0,0)

∂ρ
∂Ln(α0,0)

∂β1

)][
E
( ∂Ln(α0,0)

∂β1

)2]−1 ∂Ln(α0,0)
∂β1

of the

minimum mean square regression of ∂Ln(α0,0)
∂ρ on ∂Ln(α0,0)

∂β1
. The linear dependence relation (A10)

implies that the residual vector must be zero and
[
E
( ∂Ln(α0,0)

∂ρ
∂Ln(α0,0)

∂β1

)][
E
( ∂Ln(α0,0)

∂β1

)2]−1
= −σ0ψ0.

Furthermore, we see that

∂2Ln1(ξ0, 0)
∂ρ2 =

∂2Ln(α0, 0)
∂ρ2 + 2σ0ψ0

∂2Ln(α0, 0)
∂ρ∂β1

+ σ2
0 ψ2

0
∂2Ln(α0, 0)

∂β2
1

=
ψ0(ψ0 + γ10)

nσ2
0

n

∑
i=1

Ii(σ
2
0 − ε2

i ).

Then by (A12) and (A7),

∂2Ln1(ξ0, 0)
∂ρ2 + 2σ2

0 ψ0(ψ0 + γ10)
∂Ln1(ξ0, 0)

∂ξkx+1
= 0, (A14)

where ξkx+1 denotes the (kx + 1)th component of ξ. This is a second irregularity of the model.
Following Lee (1993) and Rotnitzky et al. (2000), consider the transformation of (κ′, ρ)′ to (η′, ρ)′

defined by η = κ − 1
2 ρ2K2, where κ = (ξ ′, γ′2)

′ and K2 = [01×kx , 2σ2
0 ψ0(ψ0 + γ10), 01×(kz+1)]

′ with kz

being the number of parameters in z, and the function Ln2(η, ρ) defined by

Ln2(η, ρ) = Ln1(η +
1
2

ρ2K2, ρ). (A15)

9 For the reparameterization in Lee (1993), the parameters σ and ψ in K1 are not taken to be the true values. Both methods
work. The method here might be simpler in computation.
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Then

∂Ln2(η, ρ)

∂η
=

∂Ln1(κ, ρ)

∂κ
, (A16)

∂Ln2(η, ρ)

∂ρ
= ρ

∂Ln1(κ, ρ)

∂κ′
K2 +

∂Ln1(κ, ρ)

∂ρ
, (A17)

∂2Ln2(η, ρ)

∂ρ2 = ρ2K′2
∂2Ln1(κ, ρ)

∂κ∂κ′
K2 + 2ρ

∂2Ln1(κ, ρ)

∂ρ∂κ′
K2 +

∂Ln1(κ, ρ)

∂κ′
K2 +

∂2Ln1(κ, ρ)

∂ρ2 . (A18)

At ρ0 = 0, η0 = κ0. By (A13) and the linear dependence relation in (A14),

∂Ln2(η0, 0)
∂η

=
∂Ln1(κ0, 0)

∂κ
, (A19)

∂Ln2(η0, 0)
∂ρ

= 0, (A20)

and

∂2Ln2(η0, 0)
∂ρ2 = 0. (A21)

Since the first and second order derivatives of Ln2(η, ρ) with respect to ρ at (η0, 0) are zero, it is necessary
to investigate the third order derivative of Ln2(η, ρ) with respect to ρ at (η0, 0). By (A18) and (A10),

∂3Ln2(η0, 0)
∂ρ3 = 3

∂2Ln1(κ0, 0)
∂ρ∂κ′

K2 +
∂3Ln1(κ0, 0)

∂ρ3 . (A22)

Note that 3 ∂2Ln1(κ0,0)
∂ρ∂κ′ K2 = 6σ2

0 ψ0(ψ0 + γ10)
∂2Ln1(κ0,0)

∂ρ∂κkx+1
. Since ∂Ln1(κ,ρ)

∂ρ = σ0ψ0
∂Ln(α,ρ)

∂β1
+ ∂Ln(α,ρ)

∂ρ ,
∂2Ln1(κ,ρ)
∂ρ∂κkx+1

= σ0ψ0
∂2Ln(α,ρ)

∂β1∂σ2 + ∂2Ln(α,ρ)
∂ρ∂σ2 , ∂2Ln1(κ,ρ)

∂ρ2 = σ2
0 ψ2

0
∂2Ln(α,ρ)

∂β2
1

+ 2σ0ψ0
∂2Ln(α,ρ)

∂β1∂ρ + ∂2Ln(α,ρ)
∂ρ2 , and

∂3Ln1(κ,ρ)
∂ρ3 = σ3

0 ψ3
0

∂3Ln(α,ρ)
∂β3

1
+ 3σ2

0 ψ2
0

∂3Ln(α,ρ)
∂β2

1∂ρ
+ 3σ0ψ0

∂3Ln(α,ρ)
∂β1∂ρ2 + ∂3Ln(α,ρ)

∂ρ3 , it is straightforward to show that

3
∂2Ln1(κ0, 0)

∂ρ∂κ′
K2 = − 3

n
ψ2

0(ψ0 + γ10)
n

∑
i=1

Ii
( εi

σ0

)
,

and
∂3Ln1(κ0, 0)

∂ρ3 =
1
n

ψ0(1− 2ψ2
0 − 3ψ0γ10 − γ2

10)
n

∑
i=1

Ii

[( εi
σ0

)3 − 3
( εi

σ0

)]
.

Then

∂3Ln2(η0, 0)
∂ρ3 = − 3

n
ψ2

0(ψ0 + γ10)
n

∑
i=1

Ii
( εi

σ0

)
+

1
n

ψ0(1− 2ψ2
0 − 3ψ0γ10 − γ2

10)
n

∑
i=1

Ii

[( εi
σ0

)3 − 3
( εi

σ0

)]
. (A23)

Thus, ∂3Ln2(η0,0)
∂ρ3 is not linearly dependent on ∂Ln2(η0,0)

∂η . Under this circumstance, as in
Rotnitzky et al. (2000), the asymptotic distribution of the MLE can be derived by investigating high
order Taylor expansions of the first order condition of Ln2(η, ρ). For the stochastic frontier function
model, Lee (1993) shows that the asymptotic distribution of the MLE can be derived by considering
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one more reparameterization. We employ the approach in Lee (1993).10 Note that a Taylor expansion
of ∂Ln2(η0,ρ)

∂ρ around ρ = 0 up to the second order yields

∂Ln2(η0, ρ)

∂ρ
=

∂Ln2(η0, 0)
∂ρ

+
∂2Ln2(η0, 0)

∂ρ2 ρ +
1
2

∂3Ln2(η0, 0)
∂ρ3 ρ2 + o(ρ2) =

1
2

∂3Ln2(η0, 0)
∂ρ3 ρ2 + o(ρ2),

where the second equality follows by (A20) and (A21). Consider the transformation of (η, δ) to (η, r)
defined by

r = ρ3, (A24)

and the function Ln3(η, r) defined by

Ln3(η, r) = Ln2(η, r1/3). (A25)

It follows that
∂Ln3(η, r)

∂η
=

∂Ln2(η, δ)

∂η
, and

∂Ln3(η, r)
∂r

=
1

3ρ2
∂Ln2(η, r)

∂ρ
. (A26)

Hence,
∂Ln3(η0, 0)

∂η
=

∂Ln2(η0, 0)
∂η

, and
∂Ln3(η0, 0)

∂r
=

1
6

∂3Ln2(η0, 0)
∂ρ3 . (A27)

From (A27) and (A23), ∂Ln3(η0,0)
∂η and ∂Ln3(η0,0)

∂r are linearly independent. Then the information matrix
for Ln3(η, r) is nonsingular and the MLE (η̃′n, r̃n)′ has the asymptotic distribution

√
n(η̃′n − η′0, r̃n)

′ d−→ N(0, lim
n→∞

Ωn), (A28)

where

Ωn =

Φ(γ10)

nσ2
0

∑n
i=1 xi x′i 0 0 − ψ2

0 (ψ0+γ10)Φ(γ0)
2nσ0

∑n
i=1 xi

0 Φ(γ10)

2σ4
0

0 0

0 0 φ2(γ10)
nΦ(γ10)[1−Φ(γ10)]

∑n
i=1 ziz′i 0

− ψ2
0 (ψ0+γ10)Φ(γ10)

2nσ0
∑n

i=1 x′i 0 0 1
12 Φ(γ10)[3ψ4

0(ψ0 + γ10)2 + 2ψ2
0(1− 2ψ2

0 − 3ψ0γ10 − γ2
10)

2]


.

(A29)

The complete transformation for the model is

η1 = β1 − σ0ψ0ρ, η2 = β2, η3 = σ2 − ρ2σ2
0 ψ0(ψ0 + γ10), η4 = γ, r = ρ3.

The inverse transformation is

β1 = η1 + σ0ψ0r1/3, (A30)

β2 = η2, (A31)

σ2 = η3 + r2/3σ2
0 ψ0(ψ0 + γ10), (A32)

γ = η4, (A33)

ρ = r1/3. (A34)

10 In Rotnitzky et al. (2000), for a general model, it is possible that the order of the first non-zero derivative with respect to the
first component (last component in this paper) is either odd or even after proper reparameterizations. If the order is even,
there is a need to analyze the sign of the MLE. In our case, the order is odd and the asymptotic distribution of the MLE can
be derived by considering one more reparameterization.
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With the asymptotic distribution of (η̃′n, ρ̃n)′ in (A28), the asymptotic distribution of the
MLE (β̃′n, σ̃2

n , γ̃n, ρ̃n)′ for the original parameters can then be derived from the inverse
transformations (A30)–(A34) by Slutsky’s theorem and the continuous mapping theorem. From (A34),
ρ̃n = r̃1/3

n . By the matrix inverse formula in a block form,
√

nr̃n is asymptotically normal
N
(
0, 1

6 Φ(γ0)ψ
2
0(1− 2ψ2

0 − 3ψ0γ10− γ2
10)

2). Then it follows that n1/6ρ̃n = (n1/2r̃n)1/3 is asymptotically
distributed as a cubic root of a normal variable, and ρ̃n converges in distribution at a much lower rate
of convergence.11 Since

n1/6(β̃1n − β10) = n1/6(η̃1n − η10) + σ0ψ0(n1/2r̃n)
1/3 = σ0ψ0(n1/2r̃n)

1/3 + op(1),

the MLE β̃1n has the same rate of convergence as ρ̃n, and the asymptotic distribution of n1/6(β̃1n − β10)

is the same as that of σ0ψ0(n1/2r̃n)1/3. Similarly, as

n1/3(σ̃2
n − σ2

0 ) = n1/3(η̃3n − η30) + σ2
0 ψ0(ψ0 + γ10)(n1/2r̃n)

2/3 = σ2
0 ψ0(ψ0 + γ10)(n1/2r̃n)

2/3 + op(1),

n1/3(σ̃2
n − σ2

0 ) has the same asymptotic distribution as σ2
0 ψ0(ψ0 + γ10)(n1/2r̃n)2/3. Both β̃1n and σ̃2

n
converge in distribution at some lower rates of convergence and are not asymptotically normally
distributed. n1/6(β̃1n − β10) is asymptotically distributed as a cubic root of a normal variable and is
asymptotically proportional to n1/6ρ̃n. n1/3(σ̃2

n − σ2
0 ) is asymptotically distributed as a 2/3 power of

a normal variable. The remaining estimates β̃2n and γ̃n, however, have the usual order Op(n−1/2)

and
√

n(β̃2n−β20
γ̃n−γ0

) =
√

n(η̃2n−η20
η̃4n−η40

) is asymptotically normally distributed. From the information matrix

in (A29), the joint asymptotic distribution of β̃n, σ̃2
n , γ̃n, and ρ̃n can also be derived.

Appendix B. Proofs

Proof of Proposition 1. When θ20 6= 0, by Assumption 2, θ̃2n = θ20 + op(1) and ‖θ̃2n‖−µ = Op(1).
Then, w.p.a.1.,

Qn(θ̂n) = Ln(θ̂n)− λn‖θ̃2n‖−µ‖θ̂2n‖ ≥ Ln(θ0)− λn‖θ̃2n‖−µ‖θ20‖.

When θ20 = 0, if θ̃2n 6= 0,

Qn(θ̂n) = Ln(θ̂n)− λn‖θ̃2n‖−µ‖θ̂2n‖ ≥ Ln(θ0)− λn‖θ̃2n‖−µ‖θ20‖ = Ln(θ0);

if θ̃2n = 0, Qn(θ̂n) = Ln(θ̂1n, 0) ≥ Ln(θ0). Thus, w.p.a.1., for any δ > 0,

Qn(θ̂n) > Ln(θ0)−
δ

3
.

By Lemma 2.4 in Newey and McFadden (1994), supθ∈Θ |Ln(θ)− E li(θ)| = op(1) under Assumption 1.
Hence, w.p.a.1.,

E li(θ̂n) ≥ Ln(θ̂n)−
δ

3
≥ Qn(θ̂n)−

δ

3
> Ln(θ0)−

2δ

3
> E li(θ0)− δ.

Let N be any relative open subset of Θ containing θ0. As Θ ∩N c is compact and E li(θ) is uniquely
maximized at θ0, for some θ∗ ∈ Θ ∩N c, supθ∈Θ∩N c E li(θ) = E li(θ∗) < E li(θ0). Therefore, choosing
δ = E li(θ0) − supθ∈Θ∩N c E li(θ), it follows that w.p.a.1. E li(θ̂n) > supθ∈Θ∩N c E li(θ). Thus, the
consistency of θ̂n follows.

11 Note that we cannot use the delta method because r1/3 is not differentiable at r = 0.
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Proof of Proposition 2. Let αn = n−1/2 + λn. As in Fan and Li (2001), we show that for any given
ε > 0, there exists a large enough constant C such that

P{ sup
‖u‖=C

Qn(θ0 + αnu) < Qn(θ0)} ≥ 1− ε. (A35)

We consider the two cases θ20 6= 0 and θ20 = 0 separately.
(i) θ20 6= 0. Note that Taylor’s theorem still holds when some parameters are on the boundary

(Andrews 1999, Theorem 6) as the parameter space is convex. Then by a first order Taylor expansion
of u at 0, w.p.a.1.,

Qn(θ0 + αnu)−Qn(θ0)

= αn
∂Ln(θ0)

∂θ′
u +

1
2

α2
nu′

∂2Ln(θ0 + αnū)
∂θ∂θ′

u− αnλn‖θ̃2n‖−µ‖θ20‖−1θ′20u2

− 1
2

α2
nλn‖θ̃2n‖−µu′2[−‖θ20 + αnū2‖−3(θ20 + αnū2)(θ20 + αnū2)

′ + ‖θ20 + αnū2‖−1 Ip]u2,

where u2 is the subvector of u that consists of the last p elements of u, and ū lies between u and 0.

The first term on the r.h.s. excluding u has the order Op(n−1/2αn) = Op(α2
n). As ∂2Ln(θ0+αn ū)

∂θ∂θ′ =

E ∂2li(θ0)
∂θ∂θ′ + op(1), the second term on the r.h.s. excluding u′ and u has the order Op(α2

n). The third
term on the r.h.s. excluding u2 has the order Op(λnαn) = Op(α2

n), since θ̃2n = θ20 + op(1) and θ20 6= 0.
By the Cauchy-Schwarz inequality, the fourth term on the r.h.s. is bounded by α2

nλn‖θ̃2n‖−µu′2u2‖θ20 +

αnū2‖−1 = Op(λnα2
n) = op(α2

n). Since E ∂2li(θ0)
∂θ∂θ′ is negative definite, for a sufficiently large C, the second

term dominates other terms. Thus, (A35) holds.
(ii) θ20 = 0. If θ̃2n = 0, then Qn(θ) = Ln(θ1, 0) and the PMLE becomes the restricted MLE with

θ2 = 0 imposed. Thus, θ̂n = Op(n−1/2). If θ̃2n 6= 0, then Qn(θ) = Ln(θ)− λn‖θ̃2n‖−µ‖θ2‖ and

Qn(θ0 + αnu)−Qn(θ0) = Ln(θ0 + αnu)− λn‖θ̃2n‖−µ‖αnu2‖ − Ln(θ0)

≤ Ln(θ0 + αnu)− Ln(θ0).

Expanding Ln(θ0 + αnu)− Ln(θ0) by Taylor’s theorem as in (i), we see that (A35) holds.
Equation (A35) implies that there exists a local maximum in the ball {θ0 + αnu : ‖u‖ ≤ C} with

probability at least 1− ε. Furthermore, for given ε > 0, because θ̂n is a consistent estimator of θ0 by
Proposition 1, there exists a small ball with radius δ > 0, such that P(‖θ̂n − θ0‖ ≤ δ) ≥ 1− ε. So one
may choose C such that the small ball is a subset of {θ0 + αnu : ‖u‖ ≤ C} and (A35) holds. Because
Qn(θ̂n) ≥ Qn(θ0), this implies that θ̂n ∈ {θ0 + αnu : ‖u‖ ≤ C}. Then the result in the proposition
holds.

Proof of Proposition 3. From the construction of Qn(θ) in (1), if the initial θ̃2n = 0, θ̂2n is set to zero.
So it is sufficient to consider θ̃2n 6= 0. If θ̂2n 6= 0, we have the first order condition

∂Ln(θ̂n)

∂θ2
− λn‖θ̃2n‖−µ θ̂2n‖θ̂2n‖−1 = 0. (A36)

By a first order Taylor expansion, ∂Ln(θ̂n)
∂θ2

= ∂Ln(θ0)
∂θ2

+ ∂2Ln(θ̌n)
∂θ2∂θ′ (θ̂n − θ0), where θ̌n lies between θ0

and θ̂n. Let T be a relative compact neighborhood of θ0 contained in S . Under Assumption 4,

by Lemma 2.4 in Newey and McFadden (1994), supθ∈T ‖
∂Ln(θ)

∂θ2
− E ∂li(θ)

∂θ2
‖ = op(1), supθ∈T ‖

∂2Ln(θ)
∂θ2∂θ′ −

E ∂2li(θ)
∂θ2∂θ′ ‖ = op(1), and E ∂li(θ)

∂θ2
and E ∂2li(θ)

∂θ2∂θ′ are continuous for θ ∈ T . For Ln(θ) on S , Lemma 3.6

in Newey and McFadden (1994) holds and E ∂l(θ0)
∂θ = 0. Then ∂Ln(θ0)

∂θ = Op(n−1/2) as its variance

has the order O(n−1). As S is compact, ∂2Ln(θ̌n)
∂θ2∂θ′ = Op(1). Thus, ∂Ln(θ̂n)

∂θ2
= op(1). Furthermore,
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if the information matrix is nonsingular, by Proposition 2, θ̂n − θ0 = Op(n−1/2 + λn) and ∂Ln(θ̂n)
∂θ2

=

Op(n−1/2 + λn). Since θ̂2n 6= 0, there must be some component θ̂2n,j of θ̂2n = (θ̂2n,1, . . . , θ̂2n,p)
′, where

p is the length of θ2, such that |θ̂2n,j| = max{|θ̂2n,i| : 1 ≤ i ≤ p}. Then |θ̂2n,j|/‖θ̂2n‖ ≥ 1/
√

p > 0.
Under Assumption 5 (i), the first term on the l.h.s. of (A36) has the order op(1), but the maximum of
the components in absolute value of the second term goes to infinity w.p.a.1., then (A36) cannot hold
with a positive probability. Under Assumption 5 (ii), the first term on the l.h.s. of (A36) multiplied by
n−1/2 has the order Op(1), but the maximum of the components in absolute value of the second term
multiplied by n−1/2 goes to infinity w.p.a.1., then (A36) cannot hold with a positive probability either.
Hence, P(θ̂2n = 0)→ 1 as n→ ∞.

Since limn→∞ P(θ̂2n = 0) = 1, w.p.a.1., we have the first order condition ∂Ln(θ̂1n ,0)
∂θ1

= 0. By the
mean value theorem,

0 =
∂Ln(θ0)

∂θ1
+

∂2Ln(θ̄1n, 0)
∂θ1∂θ′1

(θ̂1n − θ10),

where θ̄1n lies between θ̂1n and θ10. Thus,

√
n(θ̂1n − θ10) =

(
−∂2Ln(θ̄1n, 0)

∂θ1∂θ′1

)−1√n
∂Ln(θ0)

∂θ1
.

Under Assumption 4, ∂2Ln(θ̄1n ,0)
∂θ1∂θ′1

= E( ∂2li(θ0)
∂θ1∂θ′1

) + op(1) and the information matrix equality E( ∂2li(θ0)
∂θ1∂θ′1

) =

−E( ∂li(θ0)
∂θ1

∂li(θ0)
∂θ′1

) holds, thus the result in the proposition follows.

Proof of Proposition 4. When θ20 6= 0, by Proposition 2, θ̂n = θ0 + Op(n−1/2) under Assumption 6,
and also θ̃2n 6= 0 w.p.a.1. As θ0 ∈ int(Θ), we have the first order condition

∂Ln(θ̂n)

∂θ
− λn‖θ̃2n‖−µ‖θ̂2n‖−1

(
0

θ̂2n

)
= 0.

Applying the mean value theorem to the first term on the l.h.s. yields

∂Ln(θ0)

∂θ
+

∂2Ln(θ̄n)

∂θ∂θ′
(θ̂n − θ0)− λn‖θ̃2n‖−µ‖θ̂2n‖−1

(
0

θ̂2n

)
= 0,

where θ̄n lies between θ̂n and θ0. As in the proof of Proposition 3, E ∂l(θ0)
∂θ = 0 and ∂Ln(θ0)

∂θ = Op(n−1/2).
The second term on the l.h.s. has the order Op(n−1/2). By Assumption 6, the third term on the l.h.s.
has the order op(n−1/2). Thus,

√
n(θ̂n − θ0) =

(
−∂2Ln(θ̄n)

∂θ∂θ′
)−1√n

∂Ln(θ0)

∂θ
+ op(1).

Since ∂2Ln(θ̄n)
∂θ∂θ′ = E( ∂2li(θ0)

∂θ∂θ′ ) + op(1) and the information matrix equality E( ∂2li(θ0)
∂θ∂θ′ ) = −E( ∂li(θ0)

∂θ
∂li(θ0)

∂θ′ )

holds,
√

n(θ̂n − θ0) has the asymptotic distribution in the proposition.

Proof of Proposition 5. We consider the following two cases separately: (1) θ20 6= 0, but θ̂2λ = 0;
(2) θ20 = 0, but θ̂2λ 6= 0.

Case 1: θ20 6= 0, but θ̂2λ = 0. Let θ̌n = (θ̌′1n, 0)′ be the restricted MLE with the restriction
θ2 = 0 imposed, where θ̌1n = arg maxθ1∈Θ1 Ln(θ1, 0). As θ20 6= 0, θ̄ ≡ plimn→∞ θ̌n 6= θ0. Then
E l(θ̄) < E l(θ0). By the setting of Case 1 and the definition of θ̌n, since Γn → 0 as n → ∞, Hn(λ) =

Ln(θ̂λ) + Γn ≤ Ln(θ̌n) + Γn = E l(θ̌n) + op(1) = E l(θ̄) + op(1). Furthermore, by Proposition 2,
θ̂λ̄n

= θ0 + op(1). Then w.p.a.1., Hn(λ̄n) = Ln(θ̂λ̄n
) = E l(θ̂λ̄n

) + op(1) = E l(θ0) + op(1). Hence,
P(sup{λ∈Λ:θ20 6=0, but θ̂2λ=0} Hn(λ) < Hn(λ̄n))→ 1 as n→ ∞.
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Case 2: θ20 = 0, but θ̂2λ 6= 0. As θ̂2λ 6= 0, Hn(λ) = Ln(θ̂λ). By the definition of the MLE
θ̃n, Ln(θ̂λ) ≤ Ln(θ̃n). By Proposition 3, P(θ̂2λ̄n

= 0) → 1 as n → ∞, and θ̂1λ̄n
= θ10 + Op(n−1/2).

Then w.p.a.1., Hn(λ̄n) = Ln(θ̂1λ̄n
, 0) + Γn. By a first order Taylor expansion (Andrews 1999, Theorem 6),

w.p.a.1.,

n2s[Hn(λ)− Hn(λ̄n)] ≤ n2s[Ln(θ̃n)− Ln(θ0)]− n2s[Ln(θ̂1λ̄n
, 0)− Ln(θ0)]− n2sΓn

= n2s ∂Ln(θ0)

∂θ′
(θ̃n − θ0) +

1
2

ns(θ̃n − θ0)
′ ∂

2Ln(θ̈n)

∂θ∂θ′
ns(θ̃n − θ0)

− n2s ∂Ln(θ0)

∂θ′1
(θ̂1λ̄n

− θ10)−
1
2

n2s(θ̂1λ̄n
− θ10)

′ ∂
2Ln(θ̆n)

∂θ1∂θ′1
(θ̂1λ̄n

− θ10)− n2sΓn,

where θ̈n lies between θ0 and θ̃n, and θ̆n lies between θ0 and θ̂λ̄n
. As in the proof of Proposition 3,

supθ∈T ‖
∂Ln(θ)

∂θ − E ∂l(θ)
∂θ ‖ = op(1), supθ∈T ‖

∂2Ln(θ)
∂θ∂θ′ − E ∂2l(θ)

∂θ∂θ′ ‖ = op(1) and ∂Ln(θ0)
∂θ = Op(n−1/2).

Then the first term on the r.h.s. has the order Op(ns−1/2) = Op(1), the second term has the order

Op(1) since ∂2Ln(θ̈n)
∂θ∂θ′ = E ∂2l(θ̈n)

∂θ∂θ′ + op(1) = E ∂2l(θ0)
∂θ∂θ′ + op(1) = Op(1), the third term has the order

Op(n2s−1) = Op(1), the fourth term has the order Op(n2s−1) = Op(1), and the last term goes to minus
infinity as n→ ∞. Hence, P(sup{λ∈Λ:θ20=0, but θ̂2λ 6=0} Hn(λ) < Hn(λ̄n))→ 1 as n→ ∞.

Combining the results in the above two cases, we have the result in the proposition.
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