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Abstract: The underlying idea behind the construction of indices of economic inequality is based
on measuring deviations of various portions of low incomes from certain references or benchmarks,
which could be point measures like the population mean or median, or curves like the hypotenuse of
the right triangle into which every Lorenz curve falls. In this paper, we argue that, by appropriately
choosing population-based references (called societal references) and distributions of personal
positions (called gambles, which are random), we can meaningfully unify classical and contemporary
indices of economic inequality, and various measures of risk. To illustrate the herein proposed
approach, we put forward and explore a risk measure that takes into account the relativity of large
risks with respect to small ones.
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1. Introduction

The Gini mean difference and its normalized version, known as the Gini index, have
aided decision makers since their introduction by Corrado Gini more than a hundred years ago
(Gini 1912, 1914, 1921); see also (Giorgi 1990, 1993, 1921); Ceriani and Verme 2012; and references
therein). In particular, the Gini index has been widely used by economists and sociologists to
measure economic inequality. Measures inspired by the index have been employed to assess the
equality of opportunity (e.g., Weymark 2003; Kovacevic 2010; Roemer 2013) and estimate income
mobility (e.g., Shorrocks 1978). Policymakers have used the Gini index in quantitative development
policy analysis (e.g., Sadoulet and de Janvry 1995) and in particular for assessing the impact of
carbon tax on income distribution (e.g., Oladosu and Rose 2007). The index has been employed
for analysing inequality in the use of natural resources (e.g., Thompson 1976) and for developing
informed policies for sustainable consumption and social justice (e.g., Druckman and Jackson 2008).
Various extensions and generalizations of the index have been used to evaluate social welfare programs
(e.g., Duclos 2000; Kenworthy and Pontusson 2005; Korpi and Palme 1998; Ostry et al. 2014) and
to improve the knowledge of tax-base and tax-rate effects, as well as of temporal repercussions of
distinct patterns of taxation and public finance on the society (e.g., Pfähler 1990; Slemrod 1992;
Yitzhaki 1994; Van De Ven et al. 2001). Furthermore, Denneberg (1990) has advocated the use of the
Gini mean difference as a safety loading for insurance premiums, with recent developments in the
area by Furman and Zitikis (2017), and Furman et al. (2017).
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Naturally, a multitude of interpretations, mathematical expressions, and generalizations of the
index have manifested in the literature. As noted by Ceriani and Verme (2012), Corrado Gini
himself proposed no less than thirteen formulations of his original index. Yitzhaki (1998, 2003),
and Yitzhaki and Schechtman (2013) have discussed a great variety of interpretations of the Gini
index. Many monographs and handbooks have been written on measuring economic inequality,
where the Gini index and its various extensions and generalizations have played prominent roles:
Amiel and Cowell (1999), Atkinson and Bourguignon (2000, 2015), Atkinson and Piketty (2007),
Banerjee and Duflo (2011), Champernowne and Cowell (1998), Cowell (2011), Kakwani (1980a),
Lambert (2001), Nygård and Sandström (1981), Ostry et al. (2014), Piketty (2014), Sen (1997),
Silber (1999), Yitzhaki and Schechtman (2013), to name a few.

Given the diversity, one naturally wonders if there is one underlying thread that unifies all these
indices. The population Lorenz function, as well as its various distances from the hypotenuse of
the right triangle into which every Lorenz function falls, have traditionally provided such a thread.
However, recent developments in the area of measuring economic inequality (e.g., Palma 2006;
Zenga 2007; Greselin 2014; Gastwirth 2014; Kośny and Yalonetzky 2015) have highlighted the need
for departure from the population mean, which is inherent in the definition of the Lorenz function as
the benchmark, or reference point, for measuring economic inequality. The newly developed indices
have deviated from the aforementioned unifying thread and thus initiated a fresh rethinking of the
problem of measuring inequality.

Bennett and Zitikis (2015) ventured in this direction by suggesting a way to bridge the
Harsanyi (1953) and Rawls (1971) conceptual frameworks via a spectrum of random societal positions.
In this paper, we make a further step by developing a mathematically rigorous approach for unifying
and interpreting numerous classical and contemporary indices of economic inequality, as well as those
of risk. Briefly, the approach we have developed is based on appropriately chosen

1. societal references such as the population mean, median, or some population distribution-tail
based measures, and

2. distributions of random personal positions, or gambles, that determine person’s position on a
certain population-based function.

Certainly, the literature is permeated by discussions related to points 1 and 2. Relativity issues
have been explored in virtually every work, empirical and theoretical, due to the simple reason
that they are a fact of life (e.g., Amiel and Cowell 1997, 1999). Naturally, fundamental measures of
inequality, such as the Lorenz function, are also relative quantities, e.g., with respect to the population
mean income. For discussions of various choices of reference measures and inherent relativity issues,
we refer to, e.g., Sen (1983, 1998); Amiel and Cowell (1997, 1999); Zoli (1999, 2012); Duclos (2000);
and references therein. To illustrate the point, which will become pivotal in our following deliberations,
we recall a remark by Claudio Zoli, who wrote:

In particular, Amiel and Cowell (1997, 1999) find evidence that “the appropriate inequality
equivalence concept depends on the income levels at which inequality comparisons are
made.” Moreover, they show that, as income increases, the equivalence concept moves
from the relative attitude to the absolute one, a pattern consistent with our intuition
(Zoli 2012, p. 4).

This remark leads us towards the use of what we call relative-value functions, which, as we shall see
later in this paper, offer a flexible way for coupling fundamental measures of economic inequality,
or risk, with appropriate reference points, such as the mean (e.g., Equation (7) below). This is very
much in the spirit of Definition 3 by Cowell (2003). We shall come back to the latter work in the second
half of Section 4.

Finally, we note that the construction of distributions that govern personal random positions
on population-based functions have been explored within the dual or rank-dependent utility
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theory (Quiggin 1982, 1993; Schmeidler 1986, 1989; Yaari 1987), other non-expected
utility theories (e.g., Puppe 1991; Machina 1987, 2008; and references therein), distortion
risk measures (Wang 1995, 1998), and weighted insurance premium calculation principles
(Furman and Zitikis 2008, 2009).

The rest of the paper is organized as follows. In Section 2, we revisit the classical Gini
index and, in particular, express it in two ways—absolute and relative—within the framework of
expected utility theory using appropriately chosen gambles and societal functions (i.e., Lorenz and
Bonferroni). In Section 3, we step aside from the Lorenz and Bonferroni functions and, crucially
for this paper, suggest using a (financial) average value at risk as the underlying societal function
on which various personal gambles are played; however, the reference measure remains the mean
income µF. In Section 4, we depart from the latter reference and introduce a general index that
accommodates any population-based reference measure. In Sections 5 and 6, we show how the
Donaldson-Weymark-Kakwani index and the Wang (or distortion) risk measure, as well as their
generalizations, fall into the expected utility framework with collective mean-income references and
appropriately chosen personal gambles. In Section 7, we argue for the need for incorporating personal
preferences into reference measures, and, in Section 8, we demonstrate how this yields a new measure
of risk that takes into account the relativity of large risks with respect to smaller ones. Section 9 finishes
the paper with a general index of inequality and risk.

2. The Classical Gini Index Revisited

Naturally, we begin our arguments with the classical index of Gini (1914). Let X be a random
variable (think of ‘income’) with non-negatively supported cdf F(x) and finite mean µF = E[X].
The Gini index, which we denote by GF, is usually interpreted as twice the area between the actual
population Lorenz function (Lorenz 1905; Pietra 1915; Gastwirth 1971)

LF(p) =
1

µF

∫ p

0
F−1(t)dt

and the egalitarian Lorenz function LE(p) = p, 0 ≤ p ≤ 1, which is the hypotenuse of the right
triangle that we have alluded to in the abstract. For parametric expressions of LF(p), we refer to
Gastwirth (1971), Kakwani and Podder (1973), as well as to more recent works of Sarabia (2008),
Sarabia et al. (2010), and references therein. Hence, the Gini index is

GF = 2
∫ 1

0

(
LE(p)− LF(p)

)
dp

= 2E
[
LE(π)− LF(π)

]
,

(1)

where the gamble π follows the uniform density on the unit interval [0, 1], that is, f (p) = 1 for all
p ∈ [0, 1]. Intuitively, π governs person’s position in terms of income percentiles, and we thus call it
personal gamble. In other words, barring the normalizing constant 2, the Gini index GF is the expected
absolute-deviation of person’s position π on the actual Lorenz function LF(p) from his/her position on
the reference (egalitarian) Lorenz function LE(p). Naturally, the position π is random, and we have
already seen in the case of the Gini index that it follows the uniform on [0, 1] distribution. This means
that the person has an equal chance of receiving any income among all the available incomes which
are, in terms of percentiles, identified with the unit interval [0, 1].

In general, the personal gamble π can follow various distributions on [0, 1], and we shall see a
variety of examples throughout this paper. The choice of distribution of π carries information about
person’s probable positions and is thus inevitably subjective, but many of the examples that we have
encountered in the literature follow the beta distribution

fBeta(p | α, β) =
pα−1(1− p)β−1

B(α, β)
for 0 < p < 1,
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which we have visualized in Figure 1. We succinctly write π ∼ Beta(α, β) and so, for example, the Gini
index (cf. Equation (1)) is based on π ∼ Beta(1, 1). For illuminating statistical and historical notes
on the beta and other related distributions in the context of measuring economic inequality, we refer
to Kleiber and Kotz (2003). For very general yet remarkably tractable beta-generated families of
distributions for greater modeling flexibility, we refer to Alexander et al. (2012), and references therein.
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Figure 1. Beta densities of gambles π for various values of α and β.

Importantly for our following discussion, the Gini index GF can also be viewed as the expected
relative-deviation of person’s position π on the actual Lorenz function LF(p) from his/her position on
the reference Lorenz function LE(p), as seen from the equations:

GF =
∫ 1

0

(
1− LF(p)

LE(p)

)
2p dp

= E
[

1− LF(π)

LE(π)

]
,

(2)

where π ∼ Beta(2, 1), which is a considerable change from π ∼ Beta(1, 1) used in the
absolute-deviation based representation (1) of the Gini index. Note that the right-hand side of
Equation (2) can be succinctly written as E[BF(π)], where

BF(p) = 1− LF(p)
LE(p)

= 1− LF(p)
p

(3)

is the Bonferroni function of inequality (cf. Bonferroni 1930), which is also known in the literature
as the Gini function of inequality because it appeared in Gini (1914). For details on the Bonferroni
function and the corresponding Bonferroni index, we refer to Tarsitano (1990) and references therein.

In addition to its role when studying income and poverty, the Bonferroni function BF(p) has
also found many uses in other fields such as reliability, demography, insurance, and medicine
(e.g., Giorgi and Crescenzi 2001; and references wherein). For detailed historical notes and references
with explicit expressions of the Lorenz and Bonferroni functions, as well as of the Gini and Bonferroni
indices, for many parametric distributions, we refer to Giorgi and Nadarajah (2010). The role of
the Bonferroni function within the framework of L-functions for measuring economic inequality and
actuarial risks can be found in Tarsitano (2004), and Greselin et al. (2009).
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3. From Egalitarian Lorenz to the Mean Reference

Not only the classical Gini index but also a multitude of other indices of economic inequality
can be viewed as deviation measures (e.g., functional distances) between the actual and egalitarian
Lorenz functions (cf., e.g., Zitikis 2002). Note, however, that the actual Lorenz function LF(p) itself
is a relative measure that compares p× 100% lowest incomes with the population mean income µF.
This two-stage relativity—first with respect to the egalitarian Lorenz function and then with the mean
income—warrants a rethinking of the inequality measurement.

Toward this end, we next rephrase the definition of the Gini index GF by first rewriting the
Bonferroni function BF(p) as follows:

BF(p) = 1− AV@RF(p)
µF

, (4)

where

AV@RF(p) =
1
p

∫ p

0
F−1(t)dt

is the (financial) average value at risk of X. Indeed, with a little mathematical caveat, AV@RF(p) is
the conditional expectation E[X | X ≤ F−1(p)], which is the mean income of those who are below the
‘poverty line’ F−1(p). In summary, Equation (2) becomes

GF = E
[

1− AV@RF(π)

µF

]
(5)

with the gamble π ∼ Beta(2, 1). If, instead of the latter gamble, we use π ∼ Beta(1, 1) on the right-hand
side of Equation (5), then the expectation turns into the Bonferroni index

BF =
∫ 1

0

(
1− AV@RF(p)

µF

)
dp. (6)

For details on the Bonferroni index, we refer to Tarsitano (1990) and references therein.
For a comparison of the two weighting schemes, that is, of the gambles π employed in the Gini
and Bonferroni cases, we refer to De Vergottini (1940). Implications of using the Bonferroni
index on welfare measurement have been studied by, e.g., (Benedetti 1986; Aaberge 2000;
Chakravarty 2007). Nygård and Sandström (1981) give a wide-ranging discussion of the use of
Bonferroni-type concepts in the measurement of economic inequality. Giorgi and Crescenzi (2001),
and Chakravarty and Muliere (2004) propose poverty measures based on the fact that the Bonferroni
index exhibits greater sensitivity on lower levels of the income distribution than the Gini index.
A general class of inequality measures inspired by the Bonferroni index has been explored by
Imedio-Olmedo et al. (2011). Giorgi (1998) provides a list of Bonferroni’s publications.

Equations (5) and (6) suggest that the Gini and Bonferroni indices are members of the following
general class of indices

AF = E[v(AV@RF(π), µF)], (7)

where v(x, y) can be any function for which the expectation is well-defined and finite. In the case of
the Gini and Bonferroni indices (e.g., Greselin 2014), we have v(x, y) = 1− x/y, which is the relative
value of x with respect to y. We call any function v(x, y) used in expressions like (7) a relative-value
function throughout this paper. Hence, we can view the index AF as the expected utility of being in
the society whose income distribution is depicted by the function AV@RF(p) and compared with the
reference mean income µF using an appropriately chosen relative-value function v(x, y). We should
note at this point that even though the class of relative-value functions v(x, y) may look large, it is
nevertheless prudent to restrict our attention to those that are of the form
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v(x, y) = `(x/y) (8)

for some function `(t). Indeed, under the natural assumption of positive homogeneity, which means
that the equation v(λx, λy) = v(x, y) holds for all λ > 0, Euler’s classical theorem says that we must
have Equation (8) for some function `(t). The Gini and Bonferroni indices give rise to `(t) = 1− t.

Another example of the function `(t) arises from the E-Gini index of Chakravarty (1988):

CF,α = 2
( ∫ 1

0
(t− LF(t))αdt

)1/α

= 2
( ∫ 1

0

(
1− AV@RF(π)

µF

)α

tαdt
)1/α

(9)

=
2

(α + 1)1/α

(
E[v(AV@RF(π), µF)]

)1/α
,

where the reference-value function is v(x, y) = (1− x/y)α, that is, `(t) = (1− t)α, and the gamble
π ∼ Beta(α + 1, 1). Zitikis (2002) suggests using (α + 1)1/α instead of 2 in the definition of the E-Gini
index (see also Zitikis (2003) for additional notes) in which case the right-hand side of Equation (9)
turns into the index

C̃F,α =
(

E[v(AV@RF(π), µF)]
)1/α

.

In either case, note from the expressions of CF,α and C̃F,α that it is sometimes useful to transform the
index AF by some function w(x). We shall elaborate on this point in the next section.

Coming now back to the indexAF, we note that, with the generic relative-value function v(x, y) =
`(x/y), the index can be rewritten as E[ ¯̀(BF(π))], where ¯̀(t) = `(1− t). Hence, we are dealing with
the distorted Bonferroni function ¯̀(BF(p)), 0 < p < 1, which is analogous to the distorted Lorenz
function upon which Sordo et al. (2014) have built their research (see Aaberge (2000) for earlier
results on the topic). We do not pursue this research venue in the present paper because the Bonferroni
function, just like that of Lorenz, incorporates a pre-specified reference measure, which is the mean
income µF. In what follows, we argue in favour of more flexibility when choosing reference measures,
which may even include personal preferences in addition to those of the entire population.

4. From the Mean to Generic Societal References

We now extend the index AF to arbitrary references, which we denote by θF. Namely, let

BF = w
(

E[v(AV@RF(π), θF)]
)

,

where w(x) is a normalizing function whose main role is to fit the index into the unit interval [0, 1],
with the value 0 meaning perfect equality (i.e., everybody has the same amount) and 1 meaning
extreme inequality (i.e., only one person has something, and thus everything, with the others having
nothing). Having the flexibility to manipulate references is important due to a variety of reasons. For
example, the use of the mean µF can become questionable when population skewness increases, and
this has already been noted by, e.g., Gastwirth (2014) who, in his research on the changing income
inequality in the U.S. and Sweden, has suggested replacing the mean µF by the median mF = F−1(0.5).

Another example of θF that differs from µF is provided by the Palma index; we refer to
Cobham and Sumner (2013a, 2013b, 2014) for details. Namely, let θF be the average of the top 10% of
the population incomes, that is, θF = 1

0.1

∫ 1
0.9 F−1(t)dt. Furthermore, let the normalizing function be

w(x) = x, the relative-value function v(x, y) = y/x, and the (deterministic) gamble π = 0.4. Under
these specifications, the index BF becomes the Palma index of economic inequality:
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P40,90
F =

1
0.1

∫ 1
0.9 F−1(t)dt

1
0.4

∫ 0.4
0 F−1(t)dt

.

Instead of the underlying random variable (e.g., income) X, the researcher might be primarily
interested in its transformation (e.g., utility of income) u(X). To tackle this situation, we first
incorporate the transformed incomes into our framework by extending the definition of the (financial)
average value at risk as follows:

AV@RF,u(p) =
1
p

∫ p

0
u(F−1(t))dt.

Note that AV@RF,u(1) = E[u(X)], which we can view as the expected utility of X. We have
arrived at the extension

CF = w
(

E[v(AV@RF,u(π), θF)]
)

(10)

of the index BF.
The index CF appears to be a minor generalization of the extended intermediate index of

Cowell (2003) (see Equation (12) therein), which has been shown to include a large number of
well-known indices (in particular, the Generalized Entropy class of indices) and far-reaching new ones.
Namely, CF reduces to the index of Cowell (2003), which for referencing purposes we denote by CF,k,
by choosing w(x) = Ak(x− 1) for a certain constant Ak, u(x) = φk(x) for a certain function φk(x), the
reference θF = u(µF), the relative-value function v(x) = x/y, and the (deterministic) gamble π = 1;
here are the aforementioned quantities that we have not yet specified:

Ak =
1 + k2

α2
k − αk

, αk = γ + βk, φk(x) =
1
αk

(x + k)αk ,

where γ ∈ (−∞, ∞), β ≥ 0, and k ≥ 0 are parameters. Hence, even though the reason for our use
of the letter C for index (10) is alphabetical, it would only be natural to call CF the Cowell general
intermediate index, whose special case, called extended intermediate index, appears in Cowell (2003).

The Atkinson (1970) index, which we denote by AF,γ, is a special case of CF. (For many
other special cases, we refer to Cowell (2003).) Namely, let the utility function be u(x) = xγ for
some γ ∈ (0, 1). Furthermore, let the (deterministic) gamble be π = 1, the reference θF = u(µF),
and the relative-value function v(x, y) = 1− x/y. Under these specifications, the index CF turns into
1− E[Xγ]/µ

γ
F , which after the transformation with the function w(x) = 1− (1− x)1/γ becomes the

Atkinson index

AF,γ = 1− (E[Xγ])1/γ

µF
.

This index has been highly influential in measuring economic inequality (e.g., Cowell (2011),
and references therein) and inspired a variety of extensions and generalization of the Gini index.
In addition, Mimoto and Zitikis (2008) have found the Atkinson index useful for developing a
statistical inference theory for testing exponentiality, which has been a prominent problem in life-time
analysis and, particularly, in reliability engineering.

5. The Donaldson-Weymark-Kakwani Index Revisited and Extended

The Donaldson-Weymark-Kakwani index (Donaldson and Weymark 1980, 1983; Kakwani 1980a, 1980b;
Weymark 1981)

DWKF,α = α(α− 1)
∫ 1

0
(1− p)α−2(p− LF(p))dp,
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which is also known as the S-Gini index, has arisen following Atkinson (1970) observation that the
Gini index GF does not take into account social preferences. Via the parameter α > 1, the index
DWKF,α can reflect different social preferences, with the classical Gini index arising by setting α = 2.
We note in this regard that a justification for a family of indices to be based on the theory of relative
deprivation has been provided by Yitzhaki (1979, 1982).

Just like the Gini index GF, the index DWKF,α can also be placed within the framework of expected
relative value. Indeed, using Equations (3) and (4), we have

DWKF,α =
∫ 1

0

(
1− LF(p)

p

)
fBeta(p | 2, α− 1)dp

=
∫ 1

0

(
1− AV@RF(p)

µF

)
fBeta(p | 2, α− 1)dp (11)

= E[v(AV@RF(πα), µF)]

with the relative-value function v(x, y) = 1− x/y and the gamble πα ∼ Beta(2, α− 1), whose density
is visualized in Figure 2.

0.0 0.2 0.4 0.6 0.8 1.0

0
1

2
3

4 α = 2
α = 3
α = 4
α = 10

Figure 2. The density of πα for various values of α.

We next introduce a more flexible index than DWKF,α that allows us to employ more general
gambles than πα. For this, we first introduce a class of generating functions:

(H) Let h : [0, 1] → [0, 1] be any twice differentiable and convex function (i.e., h′′(p) ≥ 0 for all
p ∈ (0, 1)) that satisfies the boundary conditions h(0) = 0 and h(1) = 1, and such that h′(0) 6= 1.

Let πh denote the gamble whose density f (p) is given by the formula

f (p) =
p h′′(1− p)
1− h′(0)

(12)

for all p ∈ (0, 1), and f (p) = 0 elsewhere. With the relative-value function v(x, y) = 1− x/y, we have
(details in Appendix A)
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DWKF,h := E[v(AV@RF(πh), µF)]

=
1

1− h′(0)

(
1− 1

µF

∫ 1

0
F−1(p)h′(1− p) dp

)
=

1
1− h′(0)

(
1− 1

µF

∫ ∞

0
h(1− F(x)) dx

)
.

(13)

To illustrate, we choose the function h(p) = pα with any α > 1, in which case the gamble πh
follows the density α(α− 1)p(1− p)α−2; that is, πh ∼ Beta(2, α− 1), which means that πh has the
same distribution as the earlier noted gamble πα. Consequently, DWKF,h reduces to DWKF,α, and thus
Equation (13) reduce to the following expressions of the Donaldson-Weymark-Kakwani index:

DWKF,α = 1− α

µF

∫ 1

0
F−1(p)(1− p)α−1dp

= 1− 1
µF

∫ ∞

0
(1− F(x))αdx

(14)

(cf. Donaldson and Weymark (1980, 1983); Yitzhaki (1983); Muliere and Scarsini (1989)).

6. The Wang Risk Measure Revisited and Extended

The index DWKF,h is based on gambles generated by convex functions h. A similar index but
based on concave generating functions g is called the Wang (or distortion) risk measure, which has been
used in actuarial science and financial mathematics for measuring risks. In detail, the risk measure is
defined by the formula

WF,g =
∫ ∞

0
g(1− F(x)) dx,

where g : [0, 1] → [0, 1] is a distortion function, meaning that it is non-decreasing and satisfies the
boundary conditions g(0) = 0 and g(1) = 1.

Hence, unlike in the previous section, we now work with concave distortion functions, denoted
by g, under which the risk measure WF,g is coherent (Wang et al. 1997; Wang and Young 1998;
Wirch and Hardy 1999; see Artzner et al. (1999) for a general discussion). A classical example of such
a distortion function is g(p) = pα for any α ∈ (0, 1), in which case the Wang risk measure WF,g reduces
to the proportional-hazards-transform risk measure (Wang 1995)

PHTF,α =
∫ ∞

0
(1− F(x))α dx.

For more information on concave versus convex distortion functions in the context of
measuring risks, their variability and orderings, we refer to Sordo and Suárez-Llorens (2011),
Giovagnoli and Wynn (2012), and references therein.

We next show that the Wang risk measure WF,g can be placed within the framework of expected
relative value. When compared with the index DWKF,α, there are two major changes: First, the function
of interest is now the (insurance) average value at risk:

AVaRF(p) =
1

1− p

∫ 1

p
F−1(t)dt.

(Note that when p = 0, then AVaRF(p) is equal to the mean µF.) Second, the function g that generates
the distribution of the random position is concave. Specifically, we introduce the following class of
generating functions:

(G) Let g : [0, 1]→ [0, 1] be twice differentiable and concave function (i.e., g′′(p) ≤ 0 for all p ∈ (0, 1))
that satisfies the boundary conditions g(0) = 0 and g(1) = 1, and such that g′(1) 6= 1.

Any such function g generates the density f (p) of the gamble πg given by the formula



Econometrics 2018, 6, 4 10 of 20

f (p) =
−(1− p)g′′(1− p)

1− g′(1)
(15)

for all p ∈ (0, 1), and f (p) = 0 elsewhere. With the relative-value function v(x, y) = y/x− 1, we have
(details in Appendix)

E[v(µF, AVaRF(πg))] =
1

1− g′(1)

(
1

µF

∫ 1

0
F−1(p)g′(1− p) dp− 1

)
=

1
1− g′(1)

(
1

µF

∫ ∞

0
g(1− F(x)) dx− 1

)
.

(16)

Consequently, the Wang risk measure WF,g can be expressed in terms of the expected relative value
E[v(µF, AVaRF(πg))] as follows:

WF,g = µF

(
E[v(µF, AVaRF(πg))]

(
1− g′(1)

)
+ 1
)

. (17)

When the generating function is g(t) = tα for any α ∈ (0, 1), then the gamble πg follows Beta(1, α)

whose density function α(1− p)α−1 is depicted in Figure 3.
From Equation (16), we have

E[v(µF, AVaRF(πα))] =
1

1− α

(
1

µF

∫ ∞

0
(1− F(x))α dx− 1

)
. (18)

Finally, we note the following expression for the proportional-hazards-transform risk measure:

PHTF,α = µF

(
E[v(µF, AVaRF(πg))]

(
1− α

)
+ 1
)

.

0.0 0.2 0.4 0.6 0.8 1.0

0
1

2
3

4 α = 0.1
α = 0.5
α = 0.8
α = 0.9

Figure 3. The density of πg when g(p) = pα for various values of α.

7. From Collective to Individual References

So far, we have worked with collective references. They do not depend on the outcomes of personal
gambles and thus apply to all members of the society. Such references may not, however, be always
desirable or justifiable. For example, given the outcome 0.4 of the gamble π, meaning that the person is
considered to be among the 40% lowest income earners, the person may wish to compare the current
position with the hypothetical one of being among the 60% highest income earners. In such situations,
we are dealing with individual references: their values may depend on outcomes of the personal gamble π.
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Hence, for example, the mean µF and the median mF = F−1(0.5) are collective references,
but θF = F−1(π) is an individual reference because its value depends on the outcome of π. Would
the quantile F−1(π) be a good reference? There are at least two major reasons against the use of the
quantile, which is known in the risk literature as the value-at-risk:

1. The quantile F−1(p) is not robust with respect to realized values p of the random gamble π, in the
sense that the quantile may change drastically even for very small changes of p.

2. For a realized value p of π, the quantile F−1(p) is not informative about the values of F−1(q) for
q > p. Indeed, we may have the same value of F−1(p) irrespective of whether the cdf F is heavy-
or light-tailed.

These are serious issues when constructing sound measures of economic inequality and risk. In the
risk literature (cf., e.g., McNeil et al. (2005); Meucci (2007); Pflug and Römisch (2007); Cruz (2009);
Sandström (2010); Cannata and Quagliariello (2011); and references therein), the problem with
quantiles has been overcome by using AVaRF(p) whose definition was given in the previous section.
For example, adopting AVaRF(p) as our (individual) reference θF and using the normalizing function
w(x) = x, the earlier introduced index BF turns into the Zenga (2007) index

ZF =
∫ 1

0

(
1− AV@RF(p)

AVaRF(p)

)
dp

= E[v(AV@RF(π), AVaRF(π))]

(19)

with the relative-value function v(x, y) = 1− x/y and the gamble π ∼ Beta(1, 1). Hence, the Zenga
index ZF is the average with respect to all percentiles p ∈ (0, 1) of the relative deviations of the
mean income of the poor (i.e., those whose incomes are below the poverty line F−1(p)) from the
corresponding mean income of the rich, that is, of those whose incomes are above the poverty line
F−1(p). We refer to Greselin et al. (2013) for a more detailed discussion of the relative nature of the
Gini and Zenga indices, and their comparison.

8. Relative Measure of Risk

Many risk measures that we find in the literature are designed to measure absolute heaviness of
the right-hand tail of the underlying loss distribution. Suppose now that we wish to measure the
severity of large (e.g., insurance) losses relative to small ones. Note that this problem is very similar to
that tackled by Zenga (2007) in the context of economic inequality. Hence, following the same path
but now using the relative-value function v(x, y) = y/x− 1 and generic gamble π, we arrive at the
relative measure of risk

RF = E[v(AV@RF(π), AVaRF(π))], (20)

which, in the spirit of expected utility, can be rewritten as

RF = E[RF(π)], (21)

where the role of utility function is played by the risk function

RF(p) =
AVaRF(p)
AV@RF(p)

− 1.

In what follows, we explore properties of this risk measure, using the notation RX instead of RF to
simplify the presentation.

Proposition 1. We have the following statements:

1. If the risk X is constant, that is, X = d for some constant d > 0, then RX = 0.
2. Multiplying X by any constant d > 0 does not change the relative measure of risk, that is, RdX = RX .



Econometrics 2018, 6, 4 12 of 20

3. Adding any constant d > 0 to the risk X decreases the relative measure of risk, that is, RX+d ≤ RX .

We have relegated the proof of Proposition 1 to Appendix. We next comment on the meaning
of the three properties spelled out in the proposition. First, given that we are dealing with a relative
measure of risk, properties 1 and 2 are self-explanatory. As to property 3, it says that lifting up the
risk by any positive constant decreases its riskiness. This is natural because lifting up diminishes
the relative variability of the risk. This, in turn, suggests that ordering of the relative risk measures
should be done, for example, in terms of the Lorenz ordering, which is one of the most used tools for
comparing the variability of economic-size distributions. This leads to the following property:

Proposition 2. If risks X and Y follow the Lorenz ordering X ≤L Y, then RX ≤ RY.

The proof of Property 2 is provided in Appendix, where the basic definition of Lorenz ordering
can also be found. It is related to the notion of ordering based on the generalized, also called absolute,
Lorenz curve (e.g., Ramos et al. 2000; Sriboonchita et al. 2010; and references therein). This leads
us directly to a closely related property called the Pigou-Dalton principle of transfers. In the context
of economic inequality, the principle says that progressive (i.e., from rich to poor) rank-order and
mean-preserving transfers should decrease the value of inequality measures. Hence, in the context
of risk, the transfers should be risk decreasing. Formally (cf., Vergnaud 1997), X is less risk-unequal
than Y in the Pigou-Dalton sense, denoted by X ≤PD Y, if and only if µX = µY and X ≤L Y. Hence,
X ≤PD Y is sometimes denoted by X ≤L,= Y (cf. Denuit et al. 2005). The following property is
now obvious.

Proposition 3. If a Pigou-Dalton risk-increasing transfer turns risk X into Y so that X ≤PD Y, then RX ≤ RY.

To have an idea of how the Pigou-Dalton transfers act, we recall (e.g., Shaked and Shanthikumar 2007;
Sriboonchita et al. 2010) that given X and Y with densities fX and fY, respectively, and assuming that
their means are equal, if the sign of the difference fX − fY changes twice according to the pattern
(+,−,+), then X ≤L Y. Examples of parametric distributions with such pdf’s can be found in, e.g.,
Kleiber and Kotz (2003); see also references therein.

In what follows, we discuss an example based on the Zenga (2010) distribution that has shown
remarkably good performance in terms of goodness-of-fit on a number of real income data sets. It is a
very flexible three-parameter distribution with Pareto-type right-hand tail and whose density is

fZenga(x | µ, α, θ) =



1
2µ Beta(α, θ)

(
x
µ

)−1.5 ∫ x/µ

0
tα+0.5−1(1− t)θ−2dt, x < µ,

1
2µ Beta(α, θ)

(
µ

x

)1.5 ∫ µ/x

0
tα+0.5−1(1− t)θ−2dt, x ≥ µ,

where µ is the scale parameter, which also happens to be the mean of the distribution, and θ and α are
two shape parameters that affect, respectively, the center and the tails of the distribution. We have
depicted the Zenga density in Figure 4. For further details on this distribution and its uses, we refer to
Zenga (2010), Zenga et al. (2011), Zenga et al. (2012), and Arcagni and Zenga (2013).
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Figure 4. Zenga(2, 2, θ) density for various values of θ.

To see the effects of the Pigou-Dalton transfers in the case of the Zenga distribution, the following
theorem is particularly useful.

Theorem 1 (Arcagni and Porro 2013). Assume X ∼ Zenga(µX, αX, θX) and Y ∼ Zenga(µY, αY, θY),
where all the parameters are positive. When αX ≥ αY and θX ≤ θY, then X ≤PD Y.

9. Conclusions: A General Index of Inequality and Risk

The right-hand sides of Equations (19) and (20), which are identical, barring their different
relative-value functions v(x, y), give rise to a very general measure of inequality:

E[v(AV@RF(π), AVaRF(π
∗))],

where π and π∗ are two gambles, which could be dependent or independent, degenerate or not.
Obviously, when π = π∗, then we have either the Zenga index of economic inequality or the relative
measure of risk, depending on the choice of the relative-value function. Furthermore, if π∗ = 0,
then we have AVaRF(π

∗) = µF and thus E[v(AV@RF(π), µF)], which is the Bonferroni index BF.
By appropriately choosing relative-value functions and personal gambles, we can reproduce a number
of other measures of economic inequality and risk, but the Chakravarty and Atkinson indices require
some little extension:

EF = w
(

E
[
v
(
AV@RF,u(π), AVaRF,u∗(π

∗)
)])

, (22)

where u and u∗ are two utility functions, and

AVaRF,u∗(p) =
1

1− p

∫ 1

p
u∗(F−1(t))dt.

Note that AVaRF,u∗(0) = E[u∗(X)]. All the examples that we have mentioned in this paper, and also
many other ones that appear in the literature, are special cases of the just introduced index EF. Table 1
provides a summary.
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Table 1. Special cases of index (22) with u∗(x) = x in all the rows.

π π∗ w(x) v(x, y) u(x)

Atkinson AF,α 1 0 1− (1− x)1/γ 1− x/y xγ

Bonferroni BF Beta(1, 1) 0 x 1− x/y x
Chakravarty CF,α Beta(α + 1, 1) 0 2(α + 1)−1/αx1/α (1− x/y)α x
Inequality index C̃F,α Beta(α + 1, 1) 0 x1/α (1− x/y)α x
Cowell CF,k 1 0 Ak(x− 1) x/y φk(x)
Cowell’s Generalized Entropy class 1 0 linear x/y φ(x)
Donaldson-Weymark-Kakwani DWKF,α Beta(2, α− 1) 0 x 1− x/y x
Inequality index DWKF,h πh 0 x 1− x/y x
Gini GF Beta(2, 1) 0 x 1− x/y x
Palma P40,90

F 0.4 0.9 x y/x x
Risk measure RF Any π∗ = π x y/x− 1 x
Wang WF,g 1 πg µF(x(1− g′(1)) + 1) y/x− 1 x
Proportional hazards transform PHTF,α 1 Beta(1, α) µF(x(1− α) + 1) y/x− 1 x
Zenga ZF Beta(1, 1) π∗ = π x 1− x/y x

We conclude with the note that, in the examples throughout this paper, the gambles π and π∗

have been such that either they are identical (i.e., π = π∗) or one of them is degenerate (e.g., π = 1 or
π∗ = 0). There is no reason why this should always be the case: the two gambles can be dependent
but not necessarily identical or degenerate. This suggests that, in general, modeling probability
distributions of the pair (π, π∗) can be conveniently achieved by, for example, specifying marginal
distributions of the gambles π and π∗, as well as dependence structures between them using, e.g.,
appropriately chosen copulas. For methodological and applications-driven developments related to
copulas, we refer to the monographs of Nelsen (2006), Jaworski et al. (2010), Jaworski et al. (2013),
and references therein.
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Appendix A. Technicalities

Proof of Equation (13). Since the relative-value function is v(x, y) = 1− x/y, we have

DWKF,h = 1− 1
µF

∫ 1

0
AV@RF(p) f (p) dp, (A1)

where f (p) is the density function of the gamble πh defined by Equation (12). The following are
straightforward calculations:

∫ 1

0
AV@RF(p) f (p) dp =

∫ 1

0

1
p

( ∫ p

0
F−1(t) dt

)
f (p) dp

=
∫ 1

0
F−1(t)

(∫ 1

t

1
p

f (p) dp
)

dt

=
1

1− h′(0)

∫ 1

0
F−1(t)

(
h′(1− t)− h′(0)

)
dt

=
1

1− h′(0)

( ∫ 1

0
F−1(t)h′(1− t) dt− h′(0)µF

)
.
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Combining this result with Equation (A1), we obtain the first equation of (13). Since

∫ 1

0
F−1(t)h′(1− t) dt =

∫ ∞

0

( ∫ 1

0
1{F−1(t) > x}h′(1− t) dt

)
dx

=
∫ ∞

0

( ∫ 1

0
1{t > F(x)}h′(1− t) dt

)
dx

=
∫ ∞

0

( ∫ 1

F(x)
h′(1− t) dt

)
dx

=
∫ ∞

0
h(1− F(x)) dx,

(A2)

we have the second equation of (13).

Proof of Equation (16). Since the relative-value function is v(x, y) = y/x− 1, we have

E[v(µF, AVaRF(πg))] =
1

µF

∫ 1

0
AVaRF(p) f (p) dp− 1, (A3)

where f (p) is the density function of the gamble πg defined by Equation (15). The following are
straightforward calculations:

∫ 1

0
AVaRF(p) f (p) dp =

∫ 1

0

1
1− p

( ∫ 1

p
F−1(t) dt

)
f (p) dp

=
∫ 1

0
F−1(t)

(∫ t

0

f (p)
1− p

dp
)

dt.

Applying definition (15) of the density function f (p), we obtain

∫ 1

0
AVaR(p) f (p) dp =

1
1− g′(1)

∫ 1

0
F−1(t)

(
g′(1− t)− g′(1)

)
dt

=
1

1− g′(1)

( ∫ 1

0
F−1(t)g′(1− t) dt− g′(1)µF

)
.

(A4)

Combining Equations (A3) and (A4), we obtain the first equation of (16). Using Equation (A2) with g
instead of h, we arrive at the second equation of (16).

Remark A1. From the mathematical point of view, Equation (A4) is elementary, but it was a pivotal
observation that allowed Jones and Zitikis (2003) to initiate the development of statistical inference
for the Wang (or distortion) risk measure. Since then, numerous statistical results have appeared
on risk measures: parametric and non-parametric, light- and heavy-tailed cases have been explored
in great detail by many authors. To illustrate the challenges that arise in the heavy-tailed context,
we refer to Necir and Meraghni (2009), and Necir et al. (2007) for the proportional hazards transform;
Necir et al. (2010), and Rassoul (2013) for the tail conditional expectation; and Brahimi et al. (2012)
for general distortion risk measures.

Proof of Proposition 1. Property 1 follows from the fact that, if X = d for any constant d > 0, then
F−1

X (p) = d and so AVaRX(p) = AV@RX(p) for every p ∈ (0, 1). Property 2 follows from the fact that
if d > 0, then F−1

dX (p) = dF−1
X (p) and so AVaRdX(p)/AV@RdX(p) = AVaRX(p)/AV@RX(p) for every

p ∈ (0, 1). Property 3 follows from the fact that F−1
X+d(p) = F−1

X (p) + d for every d, and so the bound
AV@RX(p) ≤ AVaRX(p) together with the assumed positivity of d imply

AVaRX+d(p)
AV@RX+d(p)

=
AVaRX(p) + d
AV@RX(p) + d

≤ AVaRX(p)
AV@RX(p)

.
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The latter bound is equivalent to RX+d(p) ≤ RX(p) for every p ∈ (0, 1), which establishes the bound
RX+d ≤ RX .

Proof of Proposition 2. We first recall (Arnold 1987; Aaberge 2000) that the Lorenz ordering X ≤L Y
means the bound LX(p) ≥ LY(p) for all p ∈ [0, 1]. Since

RX(p) =
1− LX(p)

LX(p)
p

1− p
− 1

=
p

(1− p)LX(p)
− p

1− p
− 1,

the Lorenz ordering X ≤L Y is equivalent to the R-ordering X ≤R Y, which means RX(p) ≤ RY(p) for
all p ∈ (0, 1). The latter bound and Equation (21) conclude the verification of Proposition 2.

Remark A2. With the above introduced notion of R-ordering, we can rephrase Proposition 2 as follows:
if X ≤R Y, then RX ≤ RY. For detailed treatments of various notions of stochastic orders, we refer to
Shaked and Shanthikumar (2007); Li and Li (2013); and Sriboonchita et al. (2010).
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