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Abstract: In economics, rank-size regressions provide popular estimators of tail exponents of
heavy-tailed distributions. We discuss the properties of this approach when the tail of the distribution
is regularly varying rather than strictly Pareto. The estimator then over-estimates the true value in the
leading parametric income models (so the upper income tail is less heavy than estimated), which leads
to test size distortions and undermines inference. For practical work, we propose a sensitivity analysis
based on regression diagnostics in order to assess the likely impact of the distortion. The methods are
illustrated using data on top incomes in the UK.
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1. Introduction

Income distributions exhibit, like many other size distributions in economics and the natural
science, upper tails that decay like power functions (see e.g., Schluter and Trede 2017). The recent and
rapidly growing literature on top incomes focuses on this upper tail, and its presence has important
consequences for the measurement of inequality.1 However, estimating the heaviness of the upper
tail is challenging, since real world size distributions usually are Pareto-like (i.e., tails are regularly
varying) rather than strictly Pareto.

To be precise, let X1, . . . , Xn be a sequence of positive independent and identically distributed
random variables (e.g., incomes) with distribution function F that is regularly varying, so for large x

1− F(x) = x−
1
γ l(x), γ ∈ (0, ∞), (1)

where l is slowly varying at infinity, i.e., l(tx)/l(x) = 1 as x → ∞. The parameter γ, usually referred
to as extreme value index (and 1/γ as the tail exponent), is unknown and needs to be estimated.
Many estimators have been proposed in the statistical literature (see e.g., the textbook treatments in
Embrechts et al. 1997 or Beirlant et al. 2004).

An estimator popular among economists is based on a simple ordinary least squares (OLS)
regression of log sizes on log ranks (e.g., Jenkins 2017 and Atkinson 2017, and references therein,
in the income distribution and top incomes literature, this regression is ubiquitous in the city size
literature). The enduring popularity of the OLS estimator is partly due to its simplicity, and partly due

1 See e.g., Schluter and Trede (2002) in the contexts of Lorenz curves, Davidson and Flachaire (2007) who propose a semi-parametric
bootstrap, Cowell and Flachaire (2007) who advocate semi-parametric methods, or Burkhauser et al. (2012) who seek to reconcile
survey and tax return data. Also observe that the pth moment of the income distribution is finite only if p < 1/γ, so very heavy
tails can directly affect the validity of some standard inequality measurement tools. For instance, statistical inference for the
Generalised Entropy index with parameter 2 requires the existence of the fourth moment (Cowell 1989).
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to a powerful intuition based on a Pareto quantile-quantile (QQ)-plot, the regression estimating its
slope coefficient. However, if the tail of the distribution varies regularly, the Pareto QQ-plot will become
linear only eventually. In particular, (1) can be expressed equivalently, using the tail quantile function
U(x) = inf{t : Pr(X > t) = 1/x} where x > 1, as U(x) = xγ l̃(x) where l̃(x) is a slowly varying
function. Hence, as x → ∞, log U(x) ∼ γ log(x) since then log l̃(x)→ 0. Replacing these population
quantities with their empirical counterparts gives the Pareto QQ-plot, and γ is its ultimate slope.
This qualification (usually ignored by practitioners in economics) has important consequences for the
behaviour of the estimator: Since the OLS estimator estimates the slope parameter of this QQ-plot,
deviations from the strict Pareto model -captured by the nuisance function l- will induce distortions.

The empirical importance of this is illustrated in Figure 1, which depicts the Pareto QQ-plot for our
administrative income data for the UK (the subject of our empirical application developed in Section 4
below), using the 1000 largest incomes. The plot exhibits a pronounced kink, and approximate linearity
of the QQ-plot only holds for the very highest upper order statistics. Panel (b) shows the consequences
for the OLS estimates: As we move in the QQ-plot from the right to the left, the departures from
linearity become progressively more severe, and the OLS estimates progressively fall. Based on this
first diagnostic QQ-plot, once the lower upper order statistics have been discarded as a source of
downward bias, the subsequent analysis can then more clearly focus on the approximate linear part,
the remaining distortions, and the choice of the number of order statistics. Figure 2 provides a further
illustration for three Burr (Singh-Maddala) distributions (examined in detail in Section 3 below, being
the leading parametric income distribution model) possessing the same γ. Here, the speed of decay
of the nuisance function l is parametrised by the absolute value of the parameter ρ. The smaller the
magnitude of ρ, the greater the initial curvature and steepness of the Pareto QQ-plot, and the larger
the induced positive distortions of the OLS estimator of the slope coefficient.
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Figure 1. Pareto quantile-quantile (QQ)-Plot: Top incomes in the UK. Based on administrative income
tax return for the UK in 2009/10. The Survey of Personal Incomes (SPI) is described in Section 4.
Panel (a): The Pareto QQ-plot (see Section 1.1) is based on the largest 1000 incomes. Panel (b): Estimates
of γ for the k upper order statistics using the OLS regression (solid lines), and pointwise 95% symmetric
confidence intervals (dashed lines). The distributional theory is stated in Equation (8).
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Figure 2. Pareto QQ-Plots: The Burr distribution. Based on the Burr distribution given by
F(γ,ρ)(x) = 1− (1 + x−ρ/γ)1/ρ with γ = 2/3, and ρ ∈ {−2,−0.5,−0.25}. Panel (a): Pareto QQ-plots
for 3 random samples drawn from the Burr distribution. Sample size is 1000. To aid comparison across
cases, the points of each QQ-plot have been connected and rendered as lines. Panel (b): Mean of
estimates γ̂ across 1000 Monte Carlo simulations for given ρ, drawing samples of size 1000 in each
iteration. The faint horizontal line is the population value γ = 2/3.

In this paper, we examine the asymptotic distortions of the OLS estimator that arise in these
circumstances, caused by the slow decay of the nuisance function l and modeled here as higher
order regular variation. The theory is presented in Section 2 (proofs are collected in Appendix A),
and numerical illustrations and quantifications of the distortions are provided in Section 3, as well as
of the stark consequence for inference. More specifically, we show formally that the OLS estimator
over-estimates the true value in the leading heavy-tailed model (i.e., the Hall class, which includes
the Burr (Singh-Maddala) distribution, as well as the student, Fréchet, and Cauchy distributions).
An empirical illustration in the context of top incomes in the UK using data on tax returns is the subject
of Section 4.

1.1. The Log-Log Rank-Size Regression

We briefly review the rank size regression. Let X1,n ≤ · · · ≤ Xn,n denote the order statistics
of X1, · · · , Xn, and consider the k upper order statistics. Let ranks be shifted by a constant η < 1.
The regression of sizes on ranks leads to the minimisation of the least squares criterion

k

∑
j=1

(
log

Xn−j+1,n

Xn−k,n
− g log

k + 1
j− η

)2

(2)

with respect to g, where η < 1 and 1 ≤ j ≤ k < n. The classic case is η = 0. However, since the
OLS estimator of the slope coefficient is not invariant to shifts in the data, it is conceivable that a
purposefully chosen shift could yield an asymptotic refinement (Gabaix and Ibragimov 2011 consider
this in the strict Pareto model 1− F(x) = cx−1/γ). The analysis below allows for this possibility.

The justification of considering regression (2) is based on a Pareto QQ-plot (Beirlant et al. 1996):
For a sufficiently high threshold Xn−k,n where k < n, the Pareto quantile plot in model (1) with
coordinates (− log(j/(n + 1)), log Xn−j+1,n)j=1,··· ,k becomes ultimately linear. The line through point
− log((k + 1)/(n + 1)), log Xn−k,n) with slope g is thus given by y = log Xn−k,n + g[x + log((k +
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1)/(n + 1))] and the data points are (x, y) = (− log(j/(n + 1)), log Xn−j+1,n)j=1,··· ,k. The regression
estimator estimates this slope parameter. In particular, the OLS estimator of the slope coefficient g is

γ̂ =

1
k ∑k

j=1 log
(

k+1
j−η

) [
log Xn−j+1,n − log Xn−k,n

]
1
k ∑k

j=1

[
log k+1

j−η

]2 ≡
Nn,k

Dk
, η < 1. (3)

Note that the denominator Dk is a Riemann approximation to
∫ 1

0 log2 xdx = 2. An asymptotic
expansion of the denominator reveals that

Dk = 2 + O

(
log2 k

k

)
(4)

From Kratz and Resnick (1996, proof of their Equation 2.4, p. 704) we know that the numerator
Nn,k converges in probability to 2γ, hence the estimator is weakly consistent: γ̂→P γ as k→ ∞ and
k/n→ 0. We proceed in the next Section to refine this result by obtaining higher order expansions of
the estimator in (3).

The literature contains several variants of regression (2). Rather regressing log sizes on log ranks,
one could regress log ranks on log sizes, thus obtaining the ‘dual’ regression. In view of (3), our
asymptotic analysis of the numerator carries immediately over to this dual regression. Another variant
of (2) includes the additional estimation of a regression constant: log Xn−j+1,n is regressed on a constant
and log j. Kratz and Resnick (1996) obtain the distributional theory for this alternative estimator and
show that its asymptotic variance is 2γ2/k, which exceeds, as will be shown below, the asymptotic
variance of γ̂ given by (3). Hence this regression variant is less efficient. Schultze and Steinebach (1996)
also prove weak consistency of the estimator in this setting.

2. Asymptotic Expansions and Distributional Theory

2.1. Preliminaries: Higher Order Regular Variation

In order to obtain our asymptotic expansions, we use an equivalent representation of model (1)
based on regular variation and extreme value theory. First we recall the definition of first-order regular
variation, and then proceed to model the slowly varying nuisance function l in (1) by a refinement to
second-order regular variation. We then show that most heavy-tailed distributions of interest (in the
income, finance and urban literature) satisfy this condition.

It is well known that model (1) has the equivalent (first-order regular variation) representation
(e.g., Dekkers et al. 1989)

lim
t→∞

log U(tx)− log U(t)
a(t)/U(t)

= log x, (5)

for all x > 0 where a is a positive norming function with the property a(t)/U(t)→ γ. The problem
for estimating the extreme value index γ is the behaviour of the slowly varying function l in (1). It is,
therefore, common practice in the extreme value literature to model such second-order behaviour, thus
strengthening model (1), by strengthening the first-order regular representation (5) to second-order
regular variation. Following De Haan and Stadtmüller (1996), we assume that the following refinement
of (5) holds

lim
t→∞

log U(tx)−log U(t)
a(t)/U(t) − log x

A(t)
= Hγ,ρ(x) (6)

for all x > 0, where Hγ>0,ρ<0(x) = 1
ρ (

xρ−1
ρ − log x) with ρ < 0. This parameter ρ is the so-called

second-order parameter of regular variation, and A(t) is a rate function that is regularly varying with
index ρ, with A(t) → 0 as t → ∞. As ρ falls in magnitude, the nuisance part of l in (1) decays more
slowly. Our numerical illustrations will thus consider small magnitudes for ρ.
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Examples. Most heavy-tailed distributions of interest satisfy representation (6). Consider the
Hall class of distributions (Hall 1982), given by, for large x,

F(x) = 1− ax−1/γ[1 + bxβ + o(xβ)]

with γ, a > 0, b ∈ R, β < 0. In this class, the nuisance function l in model (1) converges to a constant
at a polynomial rate. The Hall class nests, for instance, the Burr (Singh-Maddala), Student, Fréchet,
and Cauchy distributions.2 The tail quantile function is U(x) = cxγ[1 + dxρ + o(xρ)] where c = aγ,
d = bγaγβ. This Hall class satisfies the second order representation (6) with ρ = γβ < 0, and
rate function

A(t) =
ρ2

γ
dtρ.

Figure 2 illustrates the role of ρ for the Burr distribution (examined in greater detail in Section 3) in terms
of the Pareto QQ-plot, and the implications for the estimator γ̂ of its slope parameter. For ρ = −2 the
plot is close to linear, and the estimates close to the population value. However, as ρ falls in magnitude,
the initial curvature increases, and the slope estimates consequently becomes more positively distorted
as the number of upper order statistics k entering the estimator increases.

2.2. The Main Results

We first state the higher order asymptotic expansion of the numerator Nn,k. We then obtain the
distributional theory for our estimator γ̂, before returning to the distortions induced by deviations
from the strict Pareto model (captured by second order regular variation).

Asymptotic expansion. In theAppendix A we prove the following higher order expansion of
the numerator Nn,k under the assumption of second-order regular variation (6). Throughout, we will
consider an intermediate sequence k = kn of positive integers such that kn → ∞ and kn/n → 0 as
n→ ∞. It is then true that, for γ > 0 and ρ < 0,

Nn,k/γ = 2−
(

1
2
− η

)
log(k− η)

k
−
(

1
2
− η

)
log2 k

2k

+ Op

(
1

k1/2

)
+ O

(
1
k

)
+ Op

(
log k
k1/2

)
(7)

+ A
(n

k

) 1
ρ

[
2− ρ

(1− ρ)2

]
+ Op

(
log k

k

)
+ op(A(n/k))

A few comments are in order. The first two lines of this expression characterise the first-order
behaviour of the numerator. It can be seen that setting the regression shift factor η to 1/2 eliminates the
second and third term. However, the term Op

(
log k/k1/2

)
is still present. The asymptotic refinement

due to second-order regular variation is given by the terms of line 3. Although A(t) → 0 as t → ∞,
this decay might be slow: A(t) is regularly varying with index ρ, and as ρ falls in magnitude the
nuisance part of l in (1) decays more slowly. A slow decay then introduces a noticeable distortion in
finite samples. We examine these distortions after stating the distributional theory for the estimator.

2 The Burr distribution F(γ,ρ)(x) = 1− (1 + x−ρ/γ)1/ρ is a member of the Hall class with parameters γ and ρ < 0, c = 1
and d = γ/ρ, as is the Student tδ distribution with δ degrees of freedom where γ = 1/δ, ρ = −2/δ, d = γBC−2γ,
B = −0.5δ2(δ + 1)/(δ + 2), and C = Γ((δ + 1)/2)δ(δ−1)/2/(δπ)1/2Γ(δ/2) (valid for δ > 2); so is the Fréchet distribution
Fγ(x) = exp(−x−1/γ) with ρ = −1, c = 1, and d = −.5γ, and the Cauchy distribution with γ = 1, ρ = −2, c = 1/π, and
d = −0.5π2.
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Distributional theory. Beirlant et al. (1996) observe that our slope estimator γ̂, given by (3),
is (to first order) a member of the class of kernel estimators discussed in Csorgo et al. (1985) with kernel
K(t) = 1− log t. Since

∫ 1
0 K(t)dt = 2 and not unity, a scale correction is required. Since

∫ 1
0 K2(t)dt = 5,

the following result obtains as k→ ∞ and k/n→ 0, and if
√

kA(n/k)→ 0

√
k(γ̂− γ)→d N

(
0,

5
4

γ2
)

(8)

Higher order distortions. Asymptotically, the estimator is thus unbiased if
√

kA(n/k) → 0. If this
decay is slow, however, the estimator will suffer from a higher order distortion in finite samples. By (7),
this distortion equals, for γ > 0 and ρ < 0,

bk,n ≡
1
2

γ

ρ

2− ρ

(1− ρ)2 A(n/k) (9)

In particular, in the Hall model, A(t) = (ρ2/γ)dtρ. The sign of the higher order distortion of Nn,k
and hence γ̂ is, since ρ < 0, then given by -sgn(d). For the Burr (Singh-Maddala), student, Fréchet,
and Cauchy distributions it can be shown that d < 0, leading to a positive higher order distortion.
We conclude that the higher order distortion induced by higher order regular variation is positive for
many popular distribution -i.e., for which the nuisance function l in model (1) converges to a constant
at a polynomial rate- leading to an overestimation of γ.3

Simulation evidence for these theoretical results is presented next. We also quantify the higher
order distortions and the consequences for statistical inference about γ.

3. Numerical Illustrations

We illustrate numerically several of our results in a Monte Carlo study. First, we verify the
distributional theory, then show that most of the empirical distortion is captured by the bias function
bk,n. At the same time, we show that the distortions can be sizeable, leading to substantial test size
distortions, while a bias correction using bk,n would reconcile nominal and actual test sizes.

Our Monte Carlo study is based on the Burr distribution, a member of the Hall class, parametrised
here as F(γ,ρ)(x) = 1 − (1 + x−ρ/γ)1/ρ with parameters γ and ρ < 0. In the income distribution
and inequality literature, this distribution is also know as the Singh-Maddala distribution, and used
frequently in parametric income models. Specifically, we set γ = 2/3, and ρ = −1/2 to begin
with. Qualitatively similar results are obtained for the student, Fréchet, and Cauchy distributions,
all of which are members of the Hall class, and therefore not reported here. Since 1 < 1/γ < 2 we
consider a situation of fairly heavy tails (as second moments of the distribution do not exist). However,
the qualitative insights depend little on the actual choice of γ. We have chosen ρ = −1/2 as our
leading example since we are interested in the consequences of deviating from a strict Pareto model.
As ρ falls in magnitude the nuisance part of l in (1) decays more slowly. This is illustrated in Figure 2,
where we depict three Pareto QQ-plots for different ρ. For ρ = −2, the plot is almost linear throughout.
The deviations from the strict Pareto model become increasingly more pronounced in the left part of
the plot as ρ falls in magnitude.

For the simulation study, we draw R = 1000 samples of size n = 10, 000 at first (then n = 1000), and
consider the upper k order statistics. In order to choose a particular k, we follow standard practice and

3 De Haan and Ferreira (2006) consider the merit of shifting the tail for tail quantile functions U(t) = c0 + c1tγ + c2tγ+τ +
o(tγ+τ) where c0 and c2 are not zero, c1 > 0, and γ > 0 and τ < 0. It can then be shown that if τ < −γ, the second order
parameter satisfies ρ = −γ. A data shift that eliminates c0 then results in ρ = τ, so the post shift second order parameter
has increased in magnitude, leading to a decrease in the induced distortion. However, the reverse reasoning also applies.
In particular, the Hall model is U(x) = cxγ[1 + dxρ + o(xρ)]. A data shift by c0 yields U(x) + c0 = cxγ[1 + (c0/c)x−γ +
dxρ + o(xρ)], and increases the distortion if γ ≤ |ρ|.
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minimise the theoretical asymptotic Mean Squared Error (AMSE) (e.g., Hall 1982, or Beirlant et al. 1996),
given by b2

k,n + (1/k)(5/4)γ2, trading off distortion and dispersion. The theoretical higher order bias in
γ̂ induced by higher order regular variation in this Burr case is

bk,n =
1
2

γ
2− ρ

(1− ρ)2

(n
k

)ρ

which is, of course, increasing in k. The theoretical AMSE is minimised around k∗ = 200, which also
corresponds to the minimiser of the empirical AMSE based on the R samples. The mean of γ̂ at this k∗

is 0.739, and exceeds, as predicted by the theory, the population value γ = 2/3.
Figure 3 depicts the results. In panel (a) we illustrate the distributional theory, given by (8), for k∗,

by plotting a kernel density estimate of
√

k∗γ̂ (solid line), as well as a normal density with variance
(5/4)γ2, centered on the empirical mean of the simulated data. The two are in close agreement.
The figure also implies that any inferential problems are due to location shifts. In panel (b) we contrast
the empirical distortions (solid line) with bk,n (dashed line). γ̂ overestimates γ, and the distortion
increases in k. It is evident that most of the distortion is captured by bk,n. In panel (c) we illustrate the
consequences of the distortions for statistical inference, by plotting the empirical coverage error rates
of the usual 95% symmetric confidence intervals. The higher order distortions lead to undermining
inference because of the considerable size distortions. For instance, at k∗, the empirical coverage error
rate is 30% for a nominal 5% rate. Shifting the estimate by bk∗,n reduces the coverage error rate to 7%.
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Figure 3. Bias and Inference: Burr. Monte Carlo study for the Burr distribution with parameters
γ = 2/3 and ρ = −0.5. Based on samples of size n=10,000 and R=1000 repetitions. k∗ = 200 minimises
the asymptotic Mean Squared Error (AMSE), and is depicted by the vertical lines in panels b and c.
Panel (a): Density plot of

√
k∗γ̂ (solid line) and shifted normal density with variance (5/4)γ2 (dashed

line). Panel (b): empirical bias (solid line) and higher order bias function bk,n (dashed line). Panel (c):
Coverage error rate of the usual 95% symmetric confidence intervals for nominal rate of 5%, with no
bias correction (solid line) and correction by the theoretical bk,n (dashed line).

Next, we consider the role of the sample size n. Reducing the sample sizes in the Monte Carlo to
n = 1000 yields results that are in line with the above theory, and therefore not depicted. The bias of γ̂

increases by a factor predicted by the theory, namely bk,1000/bk,10,000 = 101/2 = 3.16. The optimal k∗

shrinks by a factor of 4, as now k∗ = 50. The density of
√

k∗γ̂ is in good agreement with the theory, and
empirical coverage error rates at this k∗ are 32% for the uncorrected and 11% for the corrected estimator.
The empirical coverage error rate for the uncorrected estimator rises steeply after k∗, reaching 64% at
k = 100. Reducing the sample sizes further to 100 results in k∗ = 20, and an empirical coverage error
rate for the uncorrected estimator of 46% at this k∗. Biases are increased by a factor bk,100/bk,10,000 = 10.

Finally, we illustrate the importance of the speed of decay in the nuisance function l of model (1).
As ρ falls in magnitude, the nuisance function l decays more slowly. For the Burr case with γ = 2/3,
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we depict in Figure 4 bk,n as ρ falls in magnitude for n = 1, 000 and selected k. While for ρ = −2 the
distortions are negligible (in line with Figure 2, it is evident that for small magnitudes of ρ the higher
order distortions cannot be ignored).
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Figure 4. Relative distortions in the Burr model. Burr model with γ = 2/3 and n = 1000. Depicted is
100 ∗ bk,n/γ as ρ varies.

As the purpose of our simulation study is the provision of numerical evidence for our theory,
we have used the theoretical bias function bk,n in the Burr case. When no such external knowledge is
available, estimating the bias function requires non-parametric estimates of the second order parameter
ρ and the function A(·). However, existing methods perform poorly, yielding excessively volatile
estimates. The theory then informs a sensitivity analysis which is described in Section 4.1 in the context
of our empirical application.

4. Empirical Illustration: Top incomes in the UK

Our empirical application uses administrative income tax return data are from the public-release
files of the Survey of Personal Incomes (SPI) for the year 2009/10 (see e.g., Jenkins 2017 for a detailed
description, and an analysis that includes rank size regressions). The SPI data underlie the UK top
income share estimates in the World Top Incomes Database (WTID), and is a stratified sample of the
universe of tax returns. The unit of taxation is the individual, and we use total taxable income as the
income variable. The file contains 674,715 individuals, and we consider the n largest incomes.

In Figure 1 panel (a), we have depicted the Pareto QQ-plot for the 1000 largest incomes. It is
evident that the data clearly reject a strict Pareto model: The plot exhibits a pronounced kink,
and approximate linearity of the QQ plot only holds for the very highest upper order statistics.
The function l in (1) captures this significant departure from the strict Pareto model. The Pareto
QQ-plot thus conveys crucial information that is usually ignored by practitioners in economics,
making it a key diagnostic device. For instance, a common mechanical approach is to set k by choosing
‘blindly’ (i.e., without reference to the Pareto QQ-plot) e.g., the top 1% or the top 1000 observations.
Since the approximate linearity only obtains for about the 70 largest observations, the estimate of the
slope parameter of the Pareto QQ-plot, i.e., the OLS estimator (3), will be severely biased if k is set
to 1000 or higher. This is illustrated in panel (b) of the figure: The estimates fall for higher values
of k, since the estimation procedure then attributes increasing weights to the left of the kink in the
Pareto QQ-plot.

In the light of these observations, we restrict our subsequent analysis to the range of k in which
the Pareto QQ-plot is approximately linear. We confirm this in Figure 5 panel (a), having restricted
the plot to the n = 70 highest incomes. The plot now appears fairly linear. In panel (b), we depict the
regression estimates γ̂ and the 95% symmetric pointwise confidence intervals. One first visual way of
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choosing an estimate is to consider an area of the plot where the estimate is fairly stable (as is done by
inspecting Hill or so-called alternative Hill plots) and picking the largest such k since the variance of
the estimate falls in k. Such subjective choice would be around k = 60 with an estimate of γ̂ = 1.070
(indicated by the horizontal faint line in the figure).4 Overall, the visual method would suggest an
estimate of γ between 0.9 and 1, implying very heavy tails. Taking into consideration the variability of
the estimate, one cannot reject the hypothesis that the tail index be unity, i.e., Zipf’s law. Returning to
panel (a) we have also plotted the line with slope 1. This line does well in describing the data. We turn
to a method that permits an objective choice of a particular k, and examine the remaining distortions
in the estimate of γ.

4.1. Sensitivity Analysis, and the Choice of k

The preceding analysis has shown that γ̂ is likely to suffer from positive higher order distortions,
captured by bk,n. Estimating this bias function requires non-parametric estimates of the second order
parameter ρ and the function A(·), but existing methods perform poorly, yielding excessively volatile
estimates. Hence we limit ourselves to a sensitivity analysis, taking ρ as a sensitivity parameter, whose
objective is to gauge plausible values of the potential distortions based on diagnostics of the rank size
regression. This approach is sketched next.

Following Beirlant et al. (1996), we observe that the mean weighted theoretical squared deviation

1
k

k

∑
j=1

wj,kE
(

log
(Xn−j+1,n

Xn−k,n

)
− γ log

(
k + 1

j

))2

equals, to first order,
ckVar(γ̂) + dk(ρ)b2

k,n (10)

for some coefficients ck depending only on k, and dk(ρ) depending on k and ρ (these are stated explicitly
in the Appendix A). Set wj,k ≡ 1. An estimate of the mean theoretical deviation is the mean of the
squared residuals k−1SSRk of the rank size regression. In view of the usual bias-variance trade-off
for our estimator γ̂ for fixed n, we ascribe all the measured deviation k−1SSRk to the bias, thereby
defining a very conservative bound, and let

b̃k,n(ρ) = [k−1SSRk/dk(ρ)]
1/2

This conservative sensitivity analysis then consists of examining γ̂− b̃k,n(ρ) for a range of values
of ρ.

Figure 5 panel (c) reports the results of such a sensitivity analysis for k being restricted to the
n = 70 highest incomes. Since under this restriction the Pareto QQ-plot is approximately linear,
we expect that the remaining distortions are fairly modest. This is borne out in the sensitivity plot,
as the precise value of ρ now plays only a minor role.

Should a researcher wish to choose a particular k by minimising an approximation to the AMSE,
Equation (10) is the basis of the procedure proposed in Beirlant et al. (1996): Apply two weighting
schemes w(i)

j,k (i = 1, 2), estimate the corresponding two mean weighted theoretical deviations using the

residuals, and compute a linear combination thereof such that Var(γ̂) + b2
k,n obtains. We have carried

out this programme (see Appendix A for further details) for weights w(1)
j,k ≡ 1 and w(2)

j,k = j/(k + 1) for
given ρ, and Figure 5 panel (d) depicts the results. Minimising this approximation to the AMSE yields
k∗(ρ), which, for ρ ∈ {−2,−1,−0.5}, resulted in k∗ = 58 across the selected ρ, for which γ̂k∗ = 1.089
obtains. In view of the results depicted in panel (c) it is not surprising that changing ρ has only a small

4 Alternative estimators lead to similar conclusions. For instance, using the classic Hill estimator, at k = 60 an estimate of γ of
1.017 is obtained. The plot (not displayed here) is fairly stable around this value for k ∈ [20, 60].
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effect. This estimate of γ is very close to the subjective visual choice of γ̂ of 1.075, reported above,
based on Figure 5b.
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Figure 5. Estimates of γ. Based on Survey of Personal IncomeS (SPI) data for 2009/10. Panel (a) Pareto
QQ plot for the largest 70 incomes. The dashed line has slope 1. Panel (b): Estimates of γ̂ (solid line)
and the 95% symmetric pointwise confidence interval (dashed line). The faint horizontal line at 1.075 is
subjectively chosen. Panel (c): Sensitivity analysis. Plot of γ̂ (solid line) and γ̂− b̃k,n(ρ) for a different
values of ρ. Panel (d): Approximation to the AMSE for different values of ρ. Minimising AMSE yields
k∗ = 58 (vertical line) across the selected ρ, for which γ̂k∗ = 1.089 obtains.

5. Conclusions

The OLS estimator of the slope coefficient in the rank size regression (shifted or unshifted) can
suffer significant higher order distortions that arise from the slow decay of the nuisance function l in

the model 1− F(x) = x−
1
γ l(x) for γ > 0. Modeling the tail as second order regular variation, we have

shown that the estimator over-estimates the true value in models in which l converges to a constant
at a polynomial rate (i.e., in the leading heavy-tailed distributions). Our numerical illustrations have
shown that these distortions can be dramatic, leading to test size distortions in which actual error
rates are multiples of nominal error rates. The empirical illustration based on the Pareto QQ-plot has
revealed a further distortion, namely the presence of a pronounced kink. Figure 1 has revealed that
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using the common rule to choose 1% of the observation for tail estimation would lead to a severe
under-estimation of how heavy the tail is.

The higher order distortions are functions of A(·) and the second order regular variation
parameter ρ. Since existing methods usually result in poor estimates of these, reliable bias corrections
are not feasible. In view of this we have proposed a sensitivity analysis based on diagnostics from the
rank size regression. When applied to our data on top incomes, we still cannot reject the hypothesis γ

be unity, a situation often described in several fields as Zipf’s law (e.g., Schluter and Trede 2017).
The simplicity of the regression estimator is undoubtedly the principal reason for its popularity

among practitioners in economics. This paper has shown that in many situations the naive (i.e., ‘blind’)
use of this estimator should be considered with care: Pareto QQ-plot, the sensitivity plot and the
AMSE plot convey jointly important information about the behaviour of the estimator.

Acknowledgments: I thank the referees for their constructive comments that have helped to improve the paper.

Conflicts of Interest: The author declares no conflicts of interest.

Appendix A. Proofs

Before proving the main result given by (7), we consider first the behaviour of the numerator Nn,k
under first-order regular variation (5). We then refine the asymptotic expansion by assuming that the
second-order regular variation (6) holds.

First-order asymptotic expansion of the numerator Nn,k. Assume that (5) holds, and consider
an intermediate sequence k = kn of positive integers such that kn → ∞ and kn/n → 0 as n → ∞.
It will be shown that

Nn,k/γ = 2−
(

1
2
− η

)
log(k− η)

k
−
(

1
2
− η

)
log2 k

2k
(A1)

+ Op

(
1

k1/2

)
+ O

(
1
k

)
+ Op

(
log k
k1/2

)

Remark: The term Op

(
log k
k1/2

)
dominates (log k)/k, and is not eliminated by setting the shift factor η to

1/2.
In the proof of (A1) we will make use of the following Euler Maclaurin formulae (e.g., Gabaix and

Ibragimov 2011, Equations A.4 and A.5)

1
k

k

∑
i=1

log2(i− η) = 2 +
k− η

k
log2(k− η)− 2

k− η

k
log(k− η) +

log2(k− η)

2k
+ O

(
1
k

)

= 2 + log(k− η)(log(k− η)− 2) + O

(
log2 k

k

)
(A2)

and

1
k

k

∑
i=1

log(i− η) = −1 + log(k− η) +

(
1
2
− η

)
log(k− η)

k
+ O

(
1
k

)
(A3)

Proof of (A1). We adapt the proofs of Kratz and Resnick (1996) (KR henceforth) of their Equations 2.4
and 2.8. The key is the use of Renyi’s representation of exponential order statistics, which implies (e.g.,
KR, p. 705)

En−k+i,n − En−k,n =d
k

∑
j=k−i+1

Ej

j
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where Ej (j = 1, · · · , n) denote iid unit exponential random variables, and En−k,n denotes the (n− k)-th
order statistic. We obtain an asymptotic refinement by using, instead of KR’s Lemmas 2.2 and 2.3,
the above Euler Maclaurin formulae, and Lyapunov’s central limit theorem (CLT). Our numerator
is denoted there by An, and the indices are mapped by setting i = k + 1− j. From KR (pp. 704-707),
we have

Nn,k/γ =d 1
k

k

∑
i=1
− log(

i− η

k + 1
)

k

∑
j=i

Ej

j
+ op(1/k)

= log(k + 1)Ēk −
1
k

k

∑
j=1

Ej

[
1
j

j

∑
i=1

log(i− η)

]
+ op(1/k) (A4)

where Ēk = (1/k)∑k
j Ej.

We first show that KR’s result (A4) can also be derived from the first order regular variation
condition under the stated assumptions. Let Y denote a standard Pareto random variable, and denote
the (n− k)-th order statistic by Yn−k,n. Consider the scaled log excesses

log Xn−i+1,n − log Xn−k,n

a(Yn−k,n)/U(Yn−k,n)

where a(.) and U(.) are defined in representation (5). Then, noting that Xi,n =d U(Yi,n), and using (5)
with t = Yn−k,n and x = Yn−i+1,n/Yn−k,n, the scaled log excesses satisfy as n→ ∞ and n/k→ ∞

log Xn−i+1,n − log Xn−k,n

a(Yn−k,n)/U(Yn−k,n)
=d log U(Yn−i+1,n)− log U(Yn−k,n)

a(Yn−k,n)/U(Yn−k,n)

= log
(

Yn−i+1,n

Yn−k,n

)
+ op(1)

By Renyi’s representation of exponential order statistics, we have Yn−i+1,n/Yn−k,n =d Yk−i+1,k, so

log
(

Yn−i+1,n

Yn−k,n

)
=d log (Yk−i+1,k) =

d Ek−i+1,k =
d

k

∑
i=j

Ei
i

since, using Renyi’s representation again, Ek−j+1,k =
d E1,k + ∑k−1

i=j
Ei
i = ∑k

i=j
Ei
i . From Wellner (1978),

we know that k
n Yn−k,n →p 1, so a(Yn−k,n)/U(Yn−k,n)→ γ. Using the definition of Nn,k, on combining

the results we thus obtain

Nn,k/γ =d

[
1
k

k

∑
j=1

(−1) log
(

j− η

k + 1

) k

∑
i=j

Ei
i

]
+ op(1/k).

as claimed.
We proceed to examine (A4). Using (A3) yields

Nn,k/γ = log(k + 1)Ēk + Ēk −
1
k

k

∑
j=1

Ej log(j− η)

−
(

1
2
− η

)
1
k

k

∑
j=1

Ej
log(j− η)

j
− 1

k

k

∑
j=1

EjO
(

1
j

)



Econometrics 2018, 6, 10 13 of 16

By Lyapunov’s CLT,

k1/2

log k

[
1
k

k

∑
j=1

(Ei − 1) log(j− η)

]
→d N(0, 1)

so (1/k)∑k
j=1 Ei log(j− η) = Op

(
log k
k1/2

)
+ (1/k)∑k

j=1 log(j− η). Using again (A3) and substituting
the result, we obtain

Nn,k/γ = Ēk + 1 + log(k + 1)Ēk − log(k− η)

−
(

1
2
− η

)
log(k− η)

k
+ O

(
1
k

)
+ Op

(
log k
k1/2

)
−

(
1
2
− η

)
1
k

k

∑
j=1

log(j− η)

j
− 1

k

k

∑
j=1

O
(

1
j

)

−
(

1
2
− η

)
1
k

k

∑
j=1

(Ej − 1)
log(j− η)

j
− 1

k

k

∑
j=1

(Ej − 1)O
(

1
j

)

Note that Ēk + 1 = 2 + Op(k−1/2) and log(k + 1)(Ēk − 1) = Op

(
log k
k1/2

)
. (1/k)∑k

j=1
log(j−η)

j is

a Riemann approximation to the integral k−1
∫ k

1 (log x − η)/xdx = (log2 k)/2k, and (1/k)∑k
j=1

1
j

is a Riemann approximation to the integral k−1
∫ k

1 (1/x)dx = (log k)/k. By Lyapunov’s CLT,

(k/
√

2)[(1/k)∑k
j=1(Ej − 1) log(j−η)

j ] →d N(0, 1), so (1/k)(Ej − 1) log(j−η)
j = Op(1/k). Similarly, the

last term is Op(1/k2). Hence

Nn,k/γ = 2−
(

1
2
− η

)
log(k− η)

k
−
(

1
2
− η

)
log2 k

2k

+ Op

(
1

k1/2

)
+ O

(
1
k

)
+ Op

(
log k
k1/2

)
,

which is Equation (A1), as claimed.
Before refining the asymptotic expansion, we briefly consider:

Proof of (4). Dk = 2 + O
(

log2 k
k

)
. Expanding the quadratic in the definition of Dk

Dk = log2(k + 1)− 2(log k + 1)
1
k

k

∑
i=1

log(i− η) +
1
k

k

∑
i=1

log2(i− η)

and using the Euler Maclaurin formulae yields the stated result.
We are now in a position to examine the behaviour of the numerator Nn,k under second order

regular variation.

Proof of the higher order expansion (7). Consider the scaled log excesses again, this time
using representation (6) instead of (5). Set again t = Yn−k,n and x = Yn−i+1,n/Yn−k,n, and recall
Yn−i+1,n/Yn−k,n =d Yk−i+1,k. Hence we obtain the higher order expression

log Xn−i+1,n − log Xn−k,n

a(Yn−k,n)/U(Yn−k,n)
=d

k

∑
i=j

Ei
i

+ A(Yn−k,n)Hγ,ρ (Yk−i+1,k) + op(1). (A5)
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The role of the first term on the right for Nn,k has already been described above. In what follows,
we consider the higher order term. Since Hγ>0,ρ<0(x) = 1

ρ (
xρ−1

ρ − log x), the higher order expansion
of Nn,k requires the analysis of

1
k

k

∑
i=1

(−1) log
(

i− η

k + 1

)[Yρ
k−i+1,k − 1

ρ

]
= log(k + 1)Ȳρ −

1
k

k

∑
i=1

(log i− η)

[
Yρ

k−i+1,k − 1

ρ

]

where Ȳρ = (1/k)∑k
i=1

Yρ
i −1
ρ . Ȳρ has expectation (1− ρ)−1, so by the CLT Ȳρ = (1− ρ)−1 + Op(k−1/2).

To handle the last sum, note that Yk−j+1,k =d exp(Ek−j+1,k) =
d (Vj,k)

−1 where V denotes a standard
uniform random variable, and we replace the order statistic Vj,k by its expectation, Vj,k = j/(k + 1) +
Op(k−1/2). A Taylor series expansion then gives (V−1

j,k )ρ = (k + 1/j)ρ + Op(k−1/2). Then

1
k

k

∑
i=1

(−1) log
(

i− η

k + 1

)[Yρ
k−i+1,k − 1

ρ

]
=

log(k + 1)
1− ρ

− 1
ρ

(k + 1)ρ

k

k

∑
i=1

(log i− η)j−ρ

+
1
ρ

1
k

k

∑
i=1

log(i− η) + Op

(
log k
k1/2

)
For the third term on the rhs, we use the Euler Maclaurin (A3), for the second term on the rhs we

have the following Euler Maclaurin

1
k

k

∑
j=1

j−ρ log(j− η) =
1

1− ρ
k−ρ log(k− η)−

(
1

1− ρ

)2
k−ρ + o(k−ρ)

Combing these two Euler Maclaurin formulae, we can simplify to get

1
ρ

(k + 1)ρ

k

k

∑
i=1

(log i− η)j−ρ − 1
ρ

1
k

k

∑
i=1

log(i− η) =
log k− η

1− ρ
− 1

ρ

1
(1− ρ)2 +

1
ρ
+ O

(
log k

k

)
=

log k− η

1− ρ
− 2− ρ

(1− ρ)2 + O
(

log k
k

)
Therefore5

1
k

k

∑
i=1

(−1) log
(

i− η

k + 1

)[Yρ
k−i+1,k − 1

ρ

]
=

2− ρ

(1− ρ)2 + Op

(
log k

k

)
(A6)

We are now in a position to combine the results. In order to simplify notation, denote the first order
expansion of the numerator Nn,k/γ by N1,n,k/γ, given by the rhs of (A1). Then substituting the higher
order expression for the scaled excesses (A5) into the formula for Nn,k, recalling that k

n Yn−k,n →p 1
(Wellner 1978), and using (A6) yields

Nn,k/γ = N1,n,k/γ + A
(n

k

) 1
ρ

[
2− ρ

(1− ρ)2

]
+ Op

(
log k

k

)
+ op(A(n/k)).

Proof of (8). The class of kernel estimator considered in Csorgo et al. (1985) is of the form

γ̂kernel =
∑k

j=1(j/k)K(j/k)[log Xn−j+1 − log Xn−j]∫ 1
0 K(t)dt

5 To support this key expression, numerical evidence from a Monte Carlo with k = 1000, 1000 samples, and η = 0 yielded for
the lhs of (15) v. (2− ρ)/(1− ρ)2 the following: ρ = −1/2: 1.105 v. 1.111, ρ = −1: .746 v. 0.75, ρ = −2: 0.443 v. 0.444.
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Their Theorem 2 (or Theorem 1.1 in Beirlant et al. 1996) states the following. Under general
conditions on kernel K and distribution function F so that there exists a nonrandom sequence Cn such
that Cn(â− γ) converges weakly to a limiting N(0, 1) distribution for some sequence k = kn → ∞
with kn/n→ 0, it is necessary and sufficient that

lim
n→∞

√
k
∫ 1

0
b(kw/n)K(w)dw = 0

where b is a function such that b(1/x) → 0 as x → ∞, and that for the tail quantile function
U(x) = xγ l̃(x) with

l̃(x) = c(x) exp
(∫ 1

1/x

b(u)
u

du
)

where c(x)→ c as x → ∞. If this condition is satisfied, then as k = kn → ∞ and kn/n→ 0

√
k
(∫ 1

0
K2(v)dv

)−1/2

(γ̂kernel − γ)→d N(0, γ2).

Beirlant et al. (1996) observe that our slope estimator γ̂, given by (3), is (to first order) a member of the
class of kernel estimators γ̂kernel with kernel K(t) = 1− log t, and that the above condition holds under
the regular variation hypothesis. Turning to the specific kernel K(t) = 1− log t, since

∫ 1
0 K(t)dt = 2

and not unity, a scale correction is required. As
∫ 1

0 K2(t)dt = 5, the stated result (8) follows.

Proof of (10). Consider the mean weighted theoretical squared deviation

1
k

k

∑
j=1

wj,kE
(

log
(Xn−j+1,n

Xn−k,n

)
− γ log

(
k + 1

j

))2

for some weights wj,n. Using (A5) this equals, to first order,

γ2

k

k

∑
j=1

E

((
k

∑
i=j

Ei
i
− log

(
k + 1

j

))
+ A(Yn−k,n)Hγ,ρ(Yk−i+1,k)

)2

Then, recalling that Yk−j+1,k =d (Vj,k)
−1 and proceeding as in Beirlant et al. (1996, Section 4),

which involves approximating expectations E( f (Vj,k)) by the leading term f (j/(k + 1)) when applying
the delta method yields, to first order,

γ2

k
c̃k + dk(ρ)b2

k,n

with

c̃k =
k

∑
j=1

wj,k

k−j+1

∑
l=1

(
1

k− l + 1

)2
+

(
k−j+1

∑
l=1

1
k− l + 1

− log
(

k + 1
j

))2
and dk(ρ) = ( 1

2
2−ρ

(1−ρ)2 )
−2d̃k(ρ) with

d̃k(ρ) =
1
k

k

∑
j=1

wj,k

(
(j/(k + 1))−ρ − 1

ρ

)2

Finally, we set ck = (4/5)c̃k and wj,k ≡ 1 to arrive at (10).

Remark: In order to obtain an estimate of the AMSE, Beirlant et al. (1996) use two weighting schemes,
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namely wj,k ≡ 1 leading to coefficients, say, c1
k and d1

k and mean weighted squared residuals k−1SSR1
k ,

and wj,k = j/(k + 1) leading to c2
k , d2

k , and k−1SSR2
k . Then a linear combination of two approximate

MSE expressions (with coefficients, say, x and y) is sought that yields Var(γ̂) + b2
k,n, which is achieved

by solving simultaneously the equations

xc1
k + yc2

k = 1

xd1
k + yd2

k = 1.
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