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Abstract: This paper addresses tests for structural change in a weakly dependent time series
regression. The cases of full structural change and partial structural change are considered.
Heteroskedasticity-autocorrelation (HAC) robust Wald tests based on nonparametric covariance
matrix estimators are explored. Fixed-b theory is developed for the HAC estimators which allows
fixed-b approximations for the test statistics. For the case of the break date being known, the fixed-b
limits of the statistics depend on the break fraction and the bandwidth tuning parameter as well as on
the kernel. When the break date is unknown, supremum, mean and exponential Wald statistics are
commonly used for testing the presence of the structural break. Fixed-b limits of these statistics are
obtained and critical values are tabulated. A simulation study compares the finite sample properties
of existing tests and proposed tests.
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1. Introduction

This paper focuses on fixed-b inference of heteroskedasticity and autocorrelation (HAC) robust
Wald statistics for testing for a structural break in a time series regression. We focus on kernel-based
nonparametric HAC estimators which are commonly used to estimate the asymptotic variance.
HAC estimators allow for arbitrary structure of the serial correlation and heteroskedasticity of weakly
dependent time series and are consistent estimators of the long run variance under the assumption
that the bandwidth (M) is growing at a certain rate slower than the sample size (T). Under consistency
assumptions, the Wald statistics converge to the usual chi-square distributions. However, because
the critical values from the chi-square distribution are based on a consistency approximation for the
HAC estimator, the chi-square limit does not reflect the often substantial finite sample randomness of
the HAC estimator. Furthermore, the chi-square approximation does not capture the impact of the
choice of the kernel or the bandwidth on the Wald statistics. The sensitivity of the statistics to the
finite sample bias and variability of the HAC estimator is well known in the literature; Kiefer and
Vogelsang (2005) [1] among others have illustrated by simulation that the traditional inference with a
HAC estimator can have poor finite sample properties.

Departing from the traditional approach, Kiefer and Vogelsang [1–3] obtain an alternative
asymptotic approximation by assuming that the ratio of the bandwidth to the sample size, b = M/T,
is held constant as the sample size increases. Under this alternative nesting of the bandwidth, they
obtain pivotal asymptotic distributions for the test statistics which depend on the choice of kernel and
bandwidth tuning parameter. Simulation results indicate that the resulting fixed-b approximation has
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less size distortions in finite samples than the traditional approach, especially when the bandwidth is
not small.

Theoretical explanations for the finite sample properties of the fixed-b approach include the studies
by Hashimzade and Vogelsang (2008) [4], Jansson (2004) [5], Sun, Phillips and Jin (2008, hereafter
SPJ) [6], Gonçalves and Vogelsang (2011) [7] and Sun (2013) [8]. Hashimzade and Vogelsang (2008)
[4] provides an explanation for the better performance of the fixed-b asymptotics by analyzing the
bias and variance of the HAC estimator. Gonçalves and Vogelsang (2011) [7] provides a theoretical
treatment of the asymptotic equivalence between the naive bootstrap distribution and the fixed-b limit.
Higher order theory is used by Jansson (2004) [5], SPJ (2008) [6] and Sun (2013) [8] to show that the
error in rejection probability using the fixed-b approximation is more accurate than the traditional
approximation. In a Gaussian location model, Jansson (2004) [5] proves that for the Bartlett kernel with
bandwidth equal to sample size (i.e., b = 1), the error in rejection probability of fixed-b inference is
O(T−1 log T) which is smaller than the usual rate of O(T−1/2). The results in SPJ (2008) [6] complement
Jansson’s result by extending the analysis for a larger class of kernels and focusing on smaller values
of bandwidth ratio b. In particular, they find that the error in rejection probability of the fixed-b
approximation is O(T−1) around b = 0. They also show that for positively autocorrelated series, which
is typical for economic time series, the fixed-b approximation has smaller error than the chi-square or
standard normal approximation, even when b is assumed to decrease to zero although the stochastic
orders are same.

In this paper, fixed-b asymptotics is applied to testing for structural change in a weakly dependent
time series regression. The structural change literature is now enormous and no attempt will be
made here to summarize the relevant literature. Some key references include Andrews (1993) [9],
Andrews and Ploberger (1994) [10], and Bai and Perron (1998) [11]. Andrews (1993) [9] treats the
issue of testing for a structural break in the generalized method of moments framework when the
one-time break date is unknown and Andrews and Ploberger (1994) [10] derive asymptotically optimal
tests. Bai and Perron (1998) [11] considers multiple structural change occurring at unknown dates and
covers the issues of estimation of break dates, testing for the presence of structural change and testing
for the number of breaks. For a comprehensive survey of the recent structural break literature see
Perron (2006) [12], Banerjee and Urga (2005) [13], and Aue and Horváth (2013) [14]. The fixed-b
analysis can be extended to the case of multiple breaks but the simulation of critical values will be
computationally intensive. Therefore, we leave the case of multiple breaks for future research and we
consider the case of a single break in this paper.

For testing the presence of break, the robust version of the Wald statistic is considered in this
paper and a HAC estimator is used to construct the test statistic. The ways of constructing HAC
estimators in the context of structural change tests are well described in Bai and Perron (2003) [15]
and Bai and Perron (1998) [11]. We focus mainly on the HAC estimator documented in Bai and
Perron (2003) (Section 4.1, [15]) in which the usual “Newey-West-Andrews” approach is applied
directly to the regression with regime dummies. Under the assumption of a fixed bandwidth ratio
(fixed-b assumption), the asymptotic limit of the test statistic is a nonstandard distribution but it is
pivotal. As in standard fixed-b theory, the impact of choice of bandwidth on the limiting distribution is
substantial. In particular, the bandwidth interplays with the hypothesized break fraction so that the
limit of the test statistic depends on both of them. For the unknown break date case, three existing
test statistics (Sup-, Mean-, Exp-Wald) are considered and their fixed-b critical values are tabulated.
The finite sample performance is examined by simulation experiments with comparisons made to
existing tests. For practitioners, we include results using a data-dependent bandwidth rule based
on Andrews (1991) [16]. This data-dependent bandwidth is calculated from the regression using the
break fraction that yields the minimum sum of squared residuals (Bai and Perron, 1998 [11]). One can
calculate a bandwidth ratio

(
b∗ = M∗

T

)
with this data-dependent bandwidth (M∗) and proceed to

apply the fixed-b critical values corresponding to this specific value of b∗.
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The remainder of this paper is organized as follows. In Section 2, the basic setup of the full/partial
structural-change model is presented and preliminary results are provided. Section 3 derives the
fixed-b limit of the Wald statistic and the fixed-b critical values, for the case of unknown break dates,
are tabulated in Section 4. Section 5 compares empirical null rejection probabilities and provides the
size-adjusted power for tests based on the b∗ data-dependent bandwidth ratio. Section 6 concludes.
Proofs and definitions are collected in Appendix A.

2. Setup and Preliminary Results

Consider a weakly dependent time series regression model with a structural break given by

yt = w′tβ + ut,
w′t =

(
x′1t, x′2t

)
, β′ =

(
β′1, β′2

)
,

x1t = xt · 1(t ≤ [λT]), x2t = xt · 1(t ≥ [λT] + 1),
(1)

where xt is p × 1 regressor vector, λ ∈ (0, 1) is a break point, and 1( · ) is the indicator function.
Define νt = xtut and vt = wtut. Recalling that [x] denotes the integer part of a real number, x,
notice that x2t = 0 for t = 1, 2, ..., [λT] and x1t = 0 for t = [λT] + 1, ..., T. For the time being, the
potential break point (fraction) λ is assumed to be known in order to develop the asymptotic theory
for a test statistic and characterize its asymptotic limit. We will relax this assumption to deal with the
empirically relevant case of an unknown break date. The regression model (1) implies that coefficients
of all explanatory variables are subject to potential structural change and this model is labeled the ‘full’
structural change model.

We are interested in testing the presence of a structural change in the regression parameters.
Consider the null hypothesis of the form

H0 : Rβ = 0, (2)

where
R

(l×2p)
= (R1, − R1) ,

and R1 is an l × p matrix with l ≤ p. Under the null hypothesis, we are testing that one or more linear
relationships on the regression parameter(s) do not experience structural change before and after the
break point. Tests of the null hypothesis of no structural change about a subset of the slope parameters
are special cases. For example, we can test the null hypothesis that the slope parameter on the first
regressor did not change by setting R1 = (1, 0, . . . , 0). We can test the null hypothesis that none of the
regression parameters have structural change by setting R1 = Ip. We focus on the OLS estimator of β

given by β̂ =
(

β̂′1, β̂′2

)′
=
(

∑T
t=1 wtw′t

)−1 (
∑T

t=1 wtyt

)
.

In order to establish the asymptotic limits of the HAC estimators and the Wald statistics,
two assumptions are sufficient. These assumptions imply that there is no heterogeneity in the
regressors across the segments and the covariance structure of the errors is assumed to be the same
across segments as well.

Assumption 1. T−1 ∑
[rT]
t=1 xtx′t

p→ rQ, uniformly in r ∈ [0, 1], and Q−1 exists.

Assumption 2. T−1/2 ∑
[rT]
t=1 xtut = T−1/2 ∑

[rT]
t=1 νt ⇒ ΛWp(r), r ∈ [0, 1], where ΛΛ′ = Σ, Wp(r) is a p× 1

standard Wiener process, and⇒ denotes weak convergence.
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For later use, we define a l × l nonsingular matrix A such that R1Q−1ΛΛ′Q−1R′1 = AA′ and

R1Q−1ΛWp(r)
d
= AWl(r), where Wl(r) is l× 1 standard Wiener process. For a more detailed discussion

about the regularity conditions under which Assumptions 1 and 2 hold, refer to Kiefer and Vogelsang
(2002) [3] and see Davidson (1994) [17], Phillips and Durlauf (1986) [18], Phillips and Solo (1992) [19],
and Wooldridge and White (1988) [20] for more details.

The matrix Q is the second moment matrix of xt and is typically estimated using the quantity
Q̂ = 1

T ∑T
t=1 xtx′t. The matrix Σ ≡ ΛΛ′ is the asymptotic variance of T−1/2 ∑T

t=1 νt, which is,
for a covariance stationary series, given by

Σ = Γ0 +
∞

∑
j=1

(Γj + Γ′j) with Γj = E(ν′tνt−j).

Consider the non-structural change regression equation where β1 = β2 and this coefficient parameter
is estimated by OLS (β̂). In this particular setup, the long run variance, Σ, is commonly estimated by
the kernel-based nonparametric HAC estimator given by

Σ̂ = T−1
T

∑
t=1

T

∑
s=1

K
(
|t− s|

M

)
ν̂tν̂
′
s = Γ̂0 +

T−1

∑
j=1

K
(

j
M

)(
Γ̂j + Γ̂′j

)
,

where Γ̂j = T−1 ∑T
t=j+1 ν̂tν̂

′
t−j, ν̂t = xtût = xt

(
yt − x′t β̂

)
, M is a bandwidth, and K(·) is a kernel

weighting function.
Under some regularity conditions (see Andrews (1991) [16], DeJong and Davidson (2000) [21],

Hansen (1992) [22], Jansson (2002) [23] or Newey and West (1987) [24]), Σ̂ is a consistent estimator of Σ,

i.e., Σ̂
p→ Σ. These regularity conditions include the necessary condition that M/T → 0 as M, T → ∞.

This asymptotics is called “traditional” asymptotics throughout this paper.
In contrast to the traditional approach, fixed-b asymptotics assumes M = bT where b is held

constant as T increases. Assumptions 1 and 2 are the only regularity conditions required to obtain a
fixed-b limit for Σ̂. Under the fixed-b approach, for b ∈ (0, 1], Kiefer and Vogelsang (2005) [1] show that

Σ̂⇒ ΛP(b, W̃p)Λ′, (3)

where W̃p(r) = Wp(r)− rWp(1) is a p-vector of standard Brownian bridges and the form of the random
matrix P(b, W̃p) depends on the kernel. Following Kiefer and Vogelsang (2005) [1], we consider three
classes of kernels which give three forms of P. Let Hp(r) denote a generic vector of stochastic processes.
Hp(r)′ denotes its transpose. P(b, Hp) is defined in Appendix A.

Getting back to our structural change regression model, fixed-b results depend on the limiting
behavior of the following partial sum process given by

Ŝt =
t

∑
j=1

wjûj =
t

∑
j=1

wj

(
yj − x′1j β̂1 − x′2j β̂2

)
=

t

∑
j=1

wj

(
uj − x′1j

(
β̂1 − β1

)
− x′2j

(
β̂2 − β2

))
.

(4)

Under Assumptions 1 and 2, the limiting behavior of β̂ and the partial sum process Ŝt are given
as follows.
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Proposition 1. Let λ ∈ (0, 1) be given. Suppose the data generation process is given by (1) and let [rT] denote
the integer part of rT where r ∈ [0, 1]. Then, under Assumptions 1 and 2 as T → ∞,

√
T(β̂− β) =

√T
(

β̂1 − β1

)
√

T
(

β̂2 − β2

) d→
(

(λQ)−1 ΛWp(λ)

((1− λ)Q)−1 Λ
(
Wp(1)−Wp(λ)

)) ,

and

T−1/2Ŝ[rT] ⇒
(

Λ 0
0 Λ

)
Fp (r, λ) ≡

(
Λ 0
0 Λ

)(
F(1)

p (r, λ)

F(2)
p (r, λ)

)
,

where
F(1)

p (r, λ) =
(

Wp(r)−
r
λ

Wp(λ)
)
· 1(r ≤ λ),

and

F(2)
p (r, λ) =

(
Wp(r)−Wp(λ)−

r− λ

1− λ

(
Wp(1)−Wp(λ)

))
· 1(r > λ).

See Appendix A for the proof.
It is easily seen that the asymptotic distributions of β̂1 and β̂2 are Gaussian and are independent

of each other. Hence the asymptotic covariance of β̂1 and β̂2 is zero. The asymptotic variance of√
T(β̂− β) is given by Q−1

λ ΩQ−1
λ , where

Qλ ≡
(

λQ 0
0 (1− λ)Q

)
and Ω ≡

(
λΣ 0
0 (1− λ)Σ

)
. (5)

In order to test the null hypothesis (2), HAC robust Wald statistics are considered. These statistics are
robust to heteroskedasticity and autocorrelation in the vector process, νt = xtut. The generic form of
the robust Wald statistic is given by

Wald = T
(

Rβ̂
)′ (

RQ̂−1
λ Ω̂Q̂−1

λ R′
)−1 (

Rβ̂
)

, (6)

where

Q̂λ =

(
T−1 ∑

[λT]
t=1 xtx′t 0
0 T−1 ∑T

t=[λT]+1 xtx′t

)
,

and Ω̂ is a HAC robust estimator of Ω.
We consider a particular way of constructing the HAC estimator. This estimator is the same one

as in Bai and Perron (2003) [15]. Denoted by Ω̂(F), it is constructed using the residuals directly from
the dummy regression (1):

Ω̂(F) = T−1
T

∑
t=1

T

∑
s=1

K
(
|t− s|

M

)
v̂tv̂′s, (7)

where v̂t = wtût =
(

x′1tût, x′2tût

)′
2p×1

. We denote the components of v̂t as v̂(1)t = x1tût = xtût1

(t ≤ [λT]) and v̂(2)t = x2tût = xtût1(t ≥ [λT] + 1). Notice that Ω̂(F) is the variance estimator one
would be using if the usual “Newey-West-Andrews” approach is applied directly to the dummy
regression (1).
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Using v̂′t = (v̂(1)′t , v̂(2)′t ) we can write Ω̂(F) as

Ω̂(F) =

(
Ω̂(F)

11 Ω̂(F)
12

Ω̂(F)
21 Ω̂(F)

22

)

=

T−1 ∑T
t=1 ∑T

s=1 K
(
|t−s|

M

)
v̂(1)t v̂(1)′s T−1 ∑T

t=1 ∑T
s=1 K

(
|t−s|

M

)
v̂(1)t v̂(2)′s

T−1 ∑T
t=1 ∑T

s=1 K
(
|t−s|

M

)
v̂(2)t v̂(1)′s T−1 ∑T

t=1 ∑T
s=1 K

(
|t−s|

M

)
v̂(2)t v̂(2)′s



=


T−1 ∑

[λT]
t=1 ∑

[λT]
s=1 K

(
|t−s|

M

)
v̂(1)t v̂(1)′s T−1 ∑

[λT]
t=1 ∑T

s=[λT]+1 K
(
|t−s|

M

)
v̂(1)t v̂(2)′s

T−1 ∑T
t=[λT]+1 ∑

[λT]
s=1 K

(
|t−s|

M

)
v̂(2)t v̂(1)′s T−1 ∑T

t=[λT]+1 ∑T
s=[λT]+1 K

(
|t−s|

M

)
v̂(2)t v̂(2)′s

 (8)

=

 T−1[λT]Σ̂(1) T−1 ∑
[λT]
t=1 ∑T

s=[λT]+1 K
(
|t−s|

M

)
v̂(1)t v̂(2)′s

T−1 ∑T
t=[λT]+1 ∑

[λT]
s=1 K

(
|t−s|

M

)
v̂(2)t v̂(1)′s T−1(T − [λT])Σ̂(2)


Three important observations are in order. First, the main component of the two diagonal blocks

are within regime HAC estimators of Σ , the long run variance of {νt} . However, one should see that
the “effective” bandwidth ratio being applied to Σ̂(1) is not b

(
= M

T

)
but M

λT = bT
λT = b

λ , which is

bigger than b since 0 < λ < 1. Similarly, the effective bandwidth ratio for Σ̂(2) is M
(1−λ)T = b

1−λ .
As documented in fixed-b literature (e.g., Kiefer and Vogelsang (2005) [1]), the bias in HAC estimators
not accounted by traditional inference increases as the bandwidth ratio gets bigger. So, when the HAC
estimator is constructed as in (8), traditional inference might be often exposed to size distortion—more
than expected—due to this mechanism of determining effective bandwidths. The second issue is
that the above estimator has non-zero off-diagonal blocks. So, the methodology based on partial
samples such as in Andrews (1993) [9] does not exactly cover this case because the off-diagonal blocks
in Andrews (1993) [9] are assumed to be zero, matching the zero asymptotic covariance of the OLS
estimators of the slope coefficients between pre- and post-regimes. It is presumable that the influence
of having non-zero off diagonal terms might be small since the off-diagonal blocks converge to zero
under the traditional assumption M

T → 0 as sample size grows (see a proof in Cho (2014) [25] for the
Bartlett kernel) but it might still negatively affect the performance of tests in finite samples and we
need to develop an alternative asymptotic theory to explicitly reflect the presence of these components.
Third, there is another issue when a researcher uses a data-dependent bandwidth as in Andrews (1991)
[16]. For a given hypothesized break fraction, a data-dependent bandwidth can be calculated based on

the pooled series of
{

v̂(1)t

}[λT]

t=1
and

{
v̂(2)t

}T

t=[λT]+1
. This method would result in an optimal bandwidth

which minimizes the MSE in estimating Σ but the presence of non-zero off-diagonal terms are not
taken into account in this procedure. Moreover, when the break date is treated as unknown, a sequence
of data-dependent bandwidth across potential break dates will be generated. In this case, the fixed-b
limits are not useful approximations because the sequence of the data-dependent bandwidth is random
by nature so the limiting distributions of corresponding test statistics cannot be characterized by a
single particular value of b.

Denote by Wald(F)(Tb), the Wald statistic given by (6) using the break date Tb with Ω̂(F) used for Ω̂.
Tests for a potential structural break with an unknown break date are well studied in Andrews (1993) [9],
Andrews and Ploberger (1994) [10], and Bai and Perron (1998) [11]. Andrews (1993) [9] considers
several tests based on the supremum across breakpoints of Wald and Largrange multiplier statistics
and shows that they are asymptotically equivalent. Andrews and Ploberger (1994) [10] derives tests
that maximize average power across potential breakpoints.

As argued by Andrews (1993) [9] and Andrews and Ploberger (1994) [10], break dates close to
the end points of the sample cannot be used and so some trimming is needed. To that end, define
Ξ∗ = [εT, T − εT] with 0 < ε < 1 to be the set of admissible break dates. The tuning parameter, ε,
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denotes the amount of trimming of potential break dates. We consider the three statistics following
Andrews (1993) [9]1 and Andrews and Ploberger (1994) [10]2 defined as

SupW(F) ≡ sup
Tb∈Ξ∗

Wald(F)(Tb), (9)

MeanW(F) ≡ 1
T ∑

Tb∈Ξ∗
Wald(F)(Tb), (10)

ExpW(F) ≡ log

(
1
T ∑

Tb∈Ξ∗
exp

[
1
2

Wald(F)(Tb)

])
. (11)

The next section provides asymptotic results for the robust Wald statistics under the
fixed-b asymptotics.

3. Asymptotic Results

3.1. Asymptotic Results under the Fixed-b Approach

We now provide fixed-b limits for the HAC estimators and the test statistics in the full structural
change model (1). The fixed-b limits presented in the next Lemma and Corollary approximate the
diagonal blocks of Ω̂(F) by random matrices. Also, it is shown that the fixed-b approach gives a
non-zero limit for the off-diagonal blocks, which further distinguishes fixed-b asymptotics from
traditional asymptotics.

Lemma 1. Let b ∈ (0, 1] be given and suppose M = bT. Then under Assumptions 1 and 2, as T → ∞,

Ω̂(F) ⇒
(

Λ 0
0 Λ

)
× P

(
b, Fp (r, λ)

)
×
(

Λ′ 0
0 Λ′

)
, (12)

where

Fp (r, λ) =

(
F(1)

p (r, λ)

F(2)
p (r, λ)

)
, (13)

F(1)
p (r, λ) =

(
Wp(r)−

r
λ

Wp(λ)
)

1 (0 ≤ r ≤ λ) , (14)

F(2)
p (r, λ) =

(
Wp(r)−Wp(λ)−

r− λ

1− λ

(
Wp(1)−Wp(λ)

))
1 (λ < r ≤ 1) , (15)

and P
(
b, Fp (r, λ)

)
is defined by (A1)–(A3) with Hp(r) = Fp (r, λ).

See Appendix A for the proof.
Next, Corollary presents alternative representations for P

(
b, Fp (r, λ)

)
for three classes of kernels.

The definitions of these classes of kernels (Classes 1, 2 and 3) are given in Appendix A. Three popular
kernels—the Quadratic Spectral, Bartlett and Parzen kernels—belong to Classes 1, 2 and 3, respectively.
See Cho (2014) [25] for the proof of this Corollary.

1 We used the critical values provided in Andrews (2003) [26] for traditional inference.
2 The definitions for the mean and exponential statistics are slightly different in the divisor of the summation. For traditional

inference, we adjusted the critical values in Andrews and Ploberger (1994) [10] to our definitions of the statistics.
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Corollary 1.

P
(
b, Fp (r, λ)

)
=

 P
(

b, F(1)
p (r, λ)

)
C
(

b, F(1)
p (r, λ) , F(2)

p (r, λ)
)

C
(

b, F(1)
p (r, λ) , F(2)

p (r, λ)
)′

P
(

b, F(2)
p (r, λ)

)
 , (16)

where
C
(

b, F(1)
p (r, λ) , F(2)

p (r, λ)
)

=


−
∫ 1

0

∫ 1
0

1
b2 K′′

(
|r−s|

b

)
F(1)

p (r, λ) F(2)
p (s, λ)′ drds,

1
b

∫ 1−b
0 F(1)

p (r, λ) F(2)
p (r + b, λ)′ dr,

−
∫ ∫
|r−s|<b

1
b2 K′′

(
|r−s|

b

)
F(1)

p (r, λ) F(2)
p (s, λ)′ drds + K′_(1)

b

∫ 1−b
0 F(1)

p (r, λ) F(2)
p (r + b, λ)′ dr,

for Classes 1,2 and 3 kernels respectively.

The expression for P
(
b, Fp (r, λ)

)
in this Corollary makes it easier to compare the fixed-b limit of

Ω̂(F) with the standard fixed-b limit (see (3)) appearing in a non-structural change setting. Since each
diagonal block of Ω̂(F) is basically a HAC estimator (up to a scale factor; see (8)) based on one of
the pre- or post- break data, its limit should take the same form as (3), which is verified in this
Corollary. So, each diagonal component of P

(
b, Fp (r, λ)

)
serves to reflect the randomness and

bandwidth/kernel-dependence of the associated HAC estimator. Second, unlike the traditional
approach, the fixed-b limit of the off-diagonal component is non-zero. This implies that the fixed-b
approach is able to take account of the covariance between β̂1 and β̂2 which is generally non-zero in
finite samples. The limits of the Wald statistics can be derived by using Lemma 1 and the result is
presented in the next Theorem.

Theorem 1. Let b ∈ (0, 1] be given. Suppose M = bT. Then under Assumptions 1 and 2, as T → ∞,

Wald(F) ⇒
(

1
λ

Wl(λ)−
1

1− λ
(Wl(1)−Wl(λ))

)′

×
(

P
(

b,
1
λ

F(1)
l (r, λ)− 1

1− λ
F(2)

l (r, λ)

))−1
×
(

1
λ

Wl(λ)−
1

1− λ
(Wl(1)−Wl(λ))

)
(17)

See Appendix A for the proof.
The next Corollary provides an alternative representation for the limit given in (17). The proof for

this Corollary is given in Cho (2014) [25].

Corollary 2. For a given value of λ ∈ (0, 1), the fixed-b limit of Wald(F) has the same distribution as

1
λ(1− λ)

Wl(1)′
(

1
λ

P
(

b
λ

, W̃l(r)
)
+

1
1− λ

P
(

b
1− λ

, W̃∗l (r)
)
+ CP (λ, b) + CP (λ, b)′

)−1
Wl(1), (18)

where

CP (λ, b) =



√
λ
√

1−λ
∫ 1

0
∫ 1

0 K′′
(
|λt−(1−λ)s−λ|

b

)
W̃l(t)W̃∗l (s)

′dtds

b2 for Class-1 kernels,∫ 1−b
0 W̃l(

r
λ )W̃

∗
l (

r+b−λ
1−λ )

′
1(λ−b<r≤λ)dr

b
√

λ
√

1−λ
for Class-2 kernels,

√
λ
√

1−λ
∫ 1

0
∫ 1

0 K′′
(
|λt−(1−λ)s−λ|

b

)
W̃l(t)W̃∗l (s)

′1(|λt−(1−λ)s−λ|<b)dtds

b2

−
∫ 1−b

0 K′_(1)W̃l(
r
λ )W̃

∗
l (

r+b−λ
1−λ )

′
1(λ−b<r≤λ)dr

b
√

λ
√

1−λ
for Class-3 kernels,

and W̃l(r) and W̃∗l (r) are l × 1 Brownian Bridge processes which are independent of each other and of Wl(1).
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The limit in (18) shows how the components of Ω̂(F) affect the distribution of Wald(F).
As mentioned earlier, the random matrix P

(
b
λ , W̃l(r)

)
reflects the random nature of Ω̂(F)

11 which

is part of the estimator of the asymptotic variance of β̂1. Notice that the effective bandwidth for Ω̂(F)
11

turns out to be b
λ not b. Thus, we implicitly use the bandwidth ratio b

λ for Ω̂(F)
11 when we use a full

sample bandwidth ratio b for constructing Ω̂(F). The second component, P
(

b
1−λ , W̃∗l (r)

)
, is related to

Ω̂(F)
22 (and β̂2) in exactly the same fashion. Finally, the third component, CP (λ, b), captures the impact

of finite sample covariance between β̂1 and β̂2 on structural change inference.
Now consider the unknown break date case and let Wald(F)

∞ (λ) denote the limit of Wald(F)(Tb),
where the form of Wald(F)

∞ (λ) depends on whether traditional or fixed-b asymptotic theory is being
used. In the case of fixed-b theory, Wald(F)

∞ (λ) is given in (17). Under the traditional assumption that
the bandwidth ratio goes to zero as T grows,

Wald(F) ⇒ λ(1− λ)

(
1
λ

Wl(λ)−
1

1− λ
(Wl(1)−Wl(λ))

)′

×
(

1
λ

Wl(λ)−
1

1− λ
(Wl(1)−Wl(λ))

)
The asymptotic limits of Sup-, Mean-, and Exp-Wald statistics immediately follow from the

continuous mapping theorem given by

SupW(F) d→ sup
λ∈(ε,1−ε)

Wald(F)
∞ (λ),

MeanW(F) d→
∫ 1−ε

ε
Wald(F)

∞ (λ)dλ,

ExpW(F) d→ log
(∫ 1−ε

ε
exp

[
1
2

Wald(F)
∞ (λ)

]
dλ

)
.

3.2. Extension to the Partial Structural Change Model

This section derives the fixed-b limit of Wald(F) in the partial structural change model. The main
result of this section is that the limit is the same as the limit for the full structural change model.
The regression model with partial structural change is given by

yt = z′tα + x′1tβ1 + x′2tβ2 + ut (19)

= z′tα + X′tβ + ut,

where xt is p× 1 and zt is q× 1 vector and

x1t = xt1(t ≤ [λT]), x2t = xt1(t ≥ [λT] + 1),

X′t = (x′1t x′2t), and β′ = (β′1 β′2).

The coefficients on the xt regressors are unrestricted in terms of a structural change whereas the
coefficients on the zt regressors are assumed to not have structural change. Denote

y = (y1,y2, . . . , yT)
′ , X = (X1, X2, . . . XT)

′,

Z = (z1, z2, . . . , zT)
′, u = (u1, u2, . . . , uT)

′.

The parameters (α, β) are estimated by OLS and the OLS residual vector can be written as

û = ỹ− X̃β̂ = u− X̃
(

β̂− β
)
− PZu,
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where
ỹ = (I − PZ) y, X̃ = (I − PZ) X, and PZ = Z(Z′Z)−1Z′.

The residual for an individual observation is given by

ût = ut − X̃′t
(

β̂− β
)
− z′t

(
Z′Z

)−1 Z′u. (20)

Also, note that

X̃t = Xt − X′Z(Z′Z)−1zt =


X̃(1)

t
p×1

X̃(2)
t

p×1

 .

The following assumptions replace Assumptions 1 and 2:

Assumption 3. T−1/2 ∑
[rT]
t=1

(
xtut

ztut

)
⇒ ΛWp+q(r) ≡

(
Λ1

Λ2

)
Wp+q(r), where Λ1 is a p× (p + q) matrix,

Λ2 is a q× (p + q) matrix, and Wp+q(r) is a (p + q)× 1 vector of independent Wiener process.

Assumption 4. p lim 1
T ∑

[rT]
t=1 ztz′t = rQZZ, p lim 1

T ∑
[rT]
t=1 xtx′t = rQxx, and p lim 1

T ∑
[rT]
t=1 xtz′t = rQxZ

uniformly in r ∈ [0, 1], and Q−1
ZZ and Q−1

xx exist.

We continue to focus on tests of the null hypothesis of no structural change in the xt slope
parameters of the form

H0 : Rβ = r

with

R
l×2p

=

(
R1
l×p

, −R1
l×p

)
and r = 0. (21)

Recall that the OLS estimator, β̂ =
(

β̂′1, β̂′2

)′
can be rewritten as

β̂ =

(
T

∑
t=1

X̃tX̃′t

)−1( T

∑
t=1

X̃tỹt

)
. (22)

Proposition 2. Under Assumptions 3 and 4, as T → ∞

T1/2
(

β̂− β
)

d→ Q−1
X̃X̃

(
Λ1Wp+q(λ)− λQxZQ−1

ZZΛ2Wp+q(1)
Λ1
(
Wp+q(1)−Wp+q(λ)

)
− (1− λ)QxZQ−1

ZZΛ2Wp+q(1)

)
,

and √
T
(

Rβ̂− r
)
⇒ R1Q−1

xx Λ1

(
1
λ

Wp+q(λ)−
1

1− λ

(
Wp+q(1)−Wp+q(λ)

))
, (23)

where QX̃X̃ = p lim
(

T−1 ∑T
t=1 X̃tX̃′t

)
.

See Appendix A for the proof.
As seen from the above proposition, β̂1 and β̂2 are not asymptotically independent in the partial

structural change regression model. This is true because we are projecting out the variation of
explanatory variables zt so that β̂1 and β̂2 depend on the entire series of xt and zt. The dichotomy
that β̂1 is dependent only on the pre-break data and that β̂2 depends only on the post-break data
no longer holds in the partial structural change model. The dependence manifests in the common
term, QxZQ−1

ZZΛ2Wp+q(1), in Proposition 2. However, this term cancels out in (23) when the restriction
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matrix takes the form of (21). As a result, and also as suggested by Equation (23), in principle we need
to estimate only Λ1Λ′1 for testing for partial structural change. Because Ω̂(F), extended for the case of
partial structural change, does not impose any restrictions on the asymptotic correlation between β̂1

and β̂2, Wald(F) continues to allow asymptotically pivotal fixed-b tests for partial structural change.
While not obvious at first glance, Wald(F) has the same fixed-b limit in the partial structural change
case as it does in the full structural change case.

The Wald statistic for testing for partial structural change is given by

Wald = T
(

Rβ̂
)′ (

RQ̂−1
X̃X̃

Ω̂Q̂−1
X̃X̃

R′
)−1 (

Rβ̂
)

, (24)

where Q̂X̃X̃ = T−1 ∑T
t=1 X̃tX̃′t. For constructing Wald(F), we use the HAC estimator Ω̂(F) which is

computed using
{

X̃tût

}T

t=1
:

Ω̂(F) = T−1
T

∑
t=1

T

∑
s=1

K
(
|t− s|

M

)
ξ̂t ξ̂
′
s, (25)

where ξ̂t = X̃tût. By the Frisch-Waugh-Lovell Theorem, this is the straightforward extension of Wald(F)

to the case of partial structural change.
The next Lemma provides the limit of the scaled partial sum process of ξ̂t premultiplied by

an appropriate term.

Lemma 2. Let Ŝξ
t = ∑t

j=1 ξ̂ j. Under Assumptions 3 and 4, as T → ∞,

RQ̂−1
X̃X̃

T−1/2Ŝξ
[rT] ⇒ R1Q−1

xx Λ1

(
1
λ

F(1)
p+q (r, λ)− 1

1− λ
F(2)

p+q (r, λ)

)
,

where
F(1)

p+q (r, λ) =
(

Wp+q(r)−
r
λ

Wp+q(λ)
)

1 (0 ≤ r ≤ λ) ,

F(2)
p+q (r, λ) =

(
Wp+q(r)−Wp+q(λ)−

r− λ

1− λ

(
Wp+q(1)−Wp+q(λ)

))
1 (λ < r ≤ 1) .

See Appendix A for the proof.
As Lemma 2 shows, the partial sums of the inputs to Ω̂(F) are asymptotically proportional to

the same nuisance parameters as
√

T
(

Rβ̂− r
)

. This is the key condition for a pivotal fixed-b limit.

The next Theorem provides the fixed-b limit of Wald(F).

Theorem 2. Let b ∈ (0, 1] be given. Suppose M = bT. Then, under Assumptions 3 and 4, Wald(F) weakly
converges to the same limit in (17), i.e., as T → ∞,

Wald(F) ⇒
(

1
λ

Wl(λ)−
1

1− λ
(Wl(1)−Wl(λ))

)′
×
(

P
(

b,
1
λ

F(1)
l (r, λ)− 1

1− λ
F(2)

l (r, λ)

))−1
×
(

1
λ

Wl(λ)−
1

1− λ
(Wl(1)−Wl(λ))

)
.

See Appendix A for the proof.
According to Theorem 2, the limit of Wald(F) in the partial structural change model is the same as

in the full structural change model.
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4. Critical Values

While the fixed-b limiting distributions are nonstandard, asymptotic critical values are easily
obtained via simulations. We approximate the Wiener processes in the limiting distributions using
scaled partial sums of 1000 i.i.d. N(0, 1) random variables. Critical values are tabulated based on
50,000 replications3.

In Table 1, fixed-b critical values for SupW(F), MeanW(F), and ExpW(F) are provided for l = 2,
ε = 0.05, 0.1, 0.2 and for b ∈ {0.02, 0.04, 0.06, 0.08, 0.1, 0.2, 0.3, ..., 0.9, 1}. Critical values over the entire
grid of 0.02-increment of b are available upon request.

Table 1. (a) Fixed-b 95% Critical Values of Sup-/Mean-/Exp-W(F), Bartlett kernel, l = 2; (b) Fixed-b
95% Critical Values of Sup-/Mean-/Exp-W(F), QS kernel, l =2.

(a)

b
ε = 0.05 ε = 0.1 ε = 0.2

SupW MeanW ExpW SupW MeanW ExpW SupW MeanW ExpW

0.02 30.293 4.861 9.588 18.230 4.235 5.051 13.542 3.263 3.539
0.04 48.447 5.9489 18.194 26.034 4.974 8.173 16.313 3.688 4.654
0.06 61.976 7.0183 24.816 33.172 5.729 11.483 19.496 4.162 5.967
0.08 73.862 8.001 r30.656 39.957 r6.496 14.695 22.812 4.617 7.364
0.1 84.848 8.973 36.109 46.263 7.278 17.653 26.323 5.146 8.998
0.2 138.92 14.018 63.068 76.971 11.323 32.706 46.122 8.052 18.156
0.3 193.94 19.113 90.408 109.11 15.596 48.657 67.262 11.216 28.446
0.4 254.14 24.443 120.71 142.31 20.009 65.120 89.241 14.464 39.161
0.5 313.06 29.999 149.85 176.51 24.565 82.037 111.18 17.912 49.818
0.6 374.36 35.304 180.46 212.05 29.202 99.596 134.00 21.386 61.205
0.7 433.71 40.902 210.22 245.66 33.625 116.32 153.93 24.666 70.991
0.8 491.83 46.205 239.08 279.65 38.016 133.32 173.96 27.702 81.134
0.9 549.63 51.450 268.05 311.37 42.238 149.22 192.52 30.670 90.145
1 608.99 57.142 297.78 344.26 46.623 165.51 212.76 33.936 100.36

(b)

b
ε = 0.05 ε = 0.1 ε = 0.2

SupW MeanW ExpW SupW MeanW ExpW SupW MeanW ExpW

0.02 64.848 5.678 26.200 24.831 4.641 7.548 15.051 3.458 4.111
0.04 122.00 8.102 54.483 46.350 6.059 17.433 20.670 4.205 6.401
0.06 161.74 10.617 74.329 68.158 7.630 28.148 28.305 5.060 9.666
0.08 207.65 13.202 97.163 91.258 9.461 39.595 38.905 6.143 14.409
0.1 257.31 16.139 122.02 118.67 11.671 53.066 52.759 7.491 20.987
0.2 832.93 40.501 409.56 452.33 30.155 219.29 240.65 19.924 113.55
0.3 3339.8 99.975 1663.0 2055.3 77.012 1020.8 1144.7 51.677 565.45
0.4 13,932 239.82 6959.4 8975.9 185.18 4481.1 4771.4 124.22 2378.8
0.5 47,253 537.89 23,620 31,752 411.53 15,869 16,684 276.98 8334.9
0.6 136211 1115.4 68,099 91,828 850.69 45,907 49,492 580.43 24,740
0.7 328,737 2170.5 164,361 224,463 1674.7 112,225 128,234 1140.0 64,110
0.8 719,812 3982.4 359,899 488,008 3100.4 243,997 283,267 2099.3 141,627
0.9 1,444,833 7015.5 722,409 970,172 5395.5 485,079 565,285 3626.6 282,635
1 2,647,520 11566 1,323,754 1,829,406 9072.3 914,696 1,062,685 5951.4 531,336

3 For the case of a known break date, the 95% critical values for l = 2 are available for selected values of b and λ in Cho and
Vogelsang (2014) [27]. The critical values display two main patterns. First, for each given λ the critical values increase
as the bandwidth gets bigger. This can be expected given the well known downward bias induced into HAC estimators
from estimation error. The fixed-b approximation captures this downward bias and reflects it through larger critical values.
Second, for a given value of the bandwidth, the critical values display a V-shaped pattern as a function of λ. As the break
point moves closer to zero or one, the critical values increase and the minimum critical values occur at λ = 0.5.
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5. Finite Sample Properties

In this section, we report the results of a finite sample simulation study that illustrates the
performance of fixed-b critical values relative to traditional critical values. The data generating process
(DGP) is given by (1) with x′t = [1, qt] where qt is a scalar time series, β′1 = [βc

1, βs
1], and β′2 = [βc

2, βs
2].

We use the break point λ = 0.4. The regressor qt and the regression error ut are generated as
qt = θqt−1 + εt and ut = ρut−1 + ηt + ϕηt−1, where εt and ηt are independent of each other with
εt, ηt ∼ i.i.d. N(0, 1). We use the parameter values: θ ∈ {0.5, 0.8, 0.9}, and (ρ, ϕ) ∈ {(0, 0), (0.5, 0.5),
(0.9, 0.9)} (see Table 2):

Table 2. Parameter values for simulations

DGP θ ρ ϕ qt ut ν1t = qtut

A 0.5 0 0 AR(1) IID White Noise
B 0.8 0.5 0.5 AR(1) ARMA(1,1) Serially Correlated
C 0.9 0.9 0.9 AR(1) ARMA(1,1) Serially Correlated

The value of θ measures the persistence of the time varying regressor qt. The parameters ρ

and ϕ jointly determine the serial correlation structure of the error term ut. Bigger values of these
three parameters lead to higher persistence of the series ν1t ≡ qtut except for specification A where
bigger values of θ would not increase persistence in ν1t. We set βc

1 = 0, βs
1 = 0 and βc

2 = δ, βs
2 = δ.

Under the null hypothesis of no structural change, δ = 0, whereas for δ 6= 0 there is structural change
in both the intercept and slope parameters. We report results for sample sizes T = 100, 200, 500,
and 1000 and the number of replications is 2500. The nominal level of all tests is 5%. We compute the
Sup/Mean/Exp-W(F) statistics for testing the joint null hypothesis of no structural change in both
the intercept and slope parameters. The frequency of rejections for the case of δ = 0 measures the
empirical type-I error.4

We report empirical rejection frequencies for traditional inference and for fixed-b inference.
In traditional inference, we select the bandwidth following Andrews (1991) [16] for each hypothesized
break date using the AR(1) plug-in formula. For fixed-b inference, we report results for different
values of b to show how the null rejection probability varies with the choice of b. We also give results
for another test in which a single data-dependent bandwidth ratio, denoted by b∗, is used across all
hypothetical break dates and a fixed-b critical value is applied. The data-dependent bandwidth ratio,
b∗, is computed as follows. We find the break date which minimizes the sum of squared residuals;
we use that break date to select Andrews (1991) [16] data-dependent bandwidth (M∗) with the AR(1)
plug-in formula and calculate the implied bandwidth ratio (b∗ = M∗/T); we implement the test using
the fixed-b critical values for b∗.

The rationale behind b∗ is as follows. If a different bandwidth is used for each potential break point
within the trimming range, then the fixed-b limits of the sup/mean/exp statistics will be functions of
those bandwidth ratios and tabulation of fixed-b critical values will be computationally prohibitive. To provide
practitioners with a data-dependent bandwidth approach that can be implemented with fixed-b critical
values, we need a single data-dependent bandwidth to be used for all potential break points in which
case the tabulated critical values can be used. Given the nice properties of the least squares estimator
of the break point under the alternative of structural change (see Bai and Perron (1998) [11]), it is
natural to use the least squares estimator of the break point to generate residuals needed to implement
the Andrews (1991) [16] plug-in formula. Under the null of no structural change, any break point,
including the least squares break point, will generate useful residuals for the Andrews (1991) [16]
plug-in formula. Crainiceanu and Vogelsang (2007) [28] also considered using the least squares
estimator of the break point to deal with the nonmonotonic power of the CUSUM test.

4 Cho and Vogelsang (2014) [27] also contains results for the known break date case along with a local power analysis.
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Table 3 provides empirical null rejection frequencies for the traditional tests. For each hypothetical
break date, the HAC estimator is constructed using the data-dependent bandwidth. For DGP A with
zero persistence, all tests using ε = 0.05 are subject to severe size distortions when the sample size
is 100. Having more data or using more trimming helps reduce the size distortions. The null rejections
decrease towards the 5% nominal level for all statistics when T is 500 and ε = 0.2. Under the DGP B,
as the sample size increases from 100 to 500, the null rejection probabilities drop to 0.194 from 0.594
for the supremum test with ε = 0.2 and the QS kernel being used. The T = 500 rejection rate is still
far from the nominal level. Size distortions get worse under more persistent data (DGP C). The mean
test, which has the least size distortion of the three statistics, only attains a null rejection of 0.368 with
the larger trimming value and T = 500. While traditional inference provides tests with reasonable size
under DGPs with zero or mild persistence, as the DGP becomes more persistent, over-rejections can
be substantial.

Table 3. Empirical Null Rejection Probabilities, traditional Sup/Mean/Exp-W(F) tests with 5%
Nominal Size, H0: No Structural Change (δ = 0).

DGP T

SupW(F) MeanW(F) ExpW(F)

ε = 0.05 ε = 0.2 ε = 0.05 ε = 0.2 ε = 0.05 ε = 0.2

Bartlett QS Bartlett QS Bartlett QS Bartlett QS Bartlett QS Bartlett QS

A
100 0.699 0.742 0.164 0.171 0.278 0.306 0.115 0.121 0.676 0.728 0.176 0.186
200 0.368 0.408 0.090 0.095 0.111 0.124 0.069 0.072 0.322 0.356 0.094 0.102
500 0.165 0.177 0.066 0.068 0.070 0.072 0.060 0.060 0.132 0.146 0.070 0.070

B
100 0.967 0.980 0.588 0.594 0.855 0.898 0.440 0.428 0.972 0.981 0.604 0.609
200 0.918 0.940 0.392 0.371 0.622 0.653 0.261 0.238 0.906 0.930 0.400 0.371
500 0.745 0.750 0.218 0.194 0.315 0.297 0.152 0.134 0.688 0.699 0.217 0.196

C
100 0.992 0.993 0.910 0.918 0.982 0.984 0.853 0.866 0.995 0.995 0.924 0.930
200 0.980 0.984 0.800 0.804 0.946 0.952 0.679 0.672 0.987 0.988 0.819 0.814
500 0.949 0.955 0.540 0.509 0.784 0.780 0.405 0.368 0.949 0.952 0.548 0.514

Tables 4–6 present simulation results for fixed-b inference. A single bandwidth ratio, b, is applied
across all hypothetical break dates in constructing HAC estimators. We report results for b = 0.02, 0.1,
0.5, and 1. These tables also contain the null rejection probability when the traditional critical values in
Andrews (1993) [9] or Andrews and Ploberger (1994) [10] are used. The traditional critical values are
not designed to work well with relatively large bandwidths and this can be clearly seen in the tables.
In general, as the bandwidth ratio gets bigger, the tendency to over-reject becomes more and more
pronounced because using more lags generates a systematic downward bias in the HAC estimator and
pushes up the value of test statistic. The traditional critical values do not take this impact of lag-choice
into account. Because the effective bandwidths play important roles for the behavior of the HAC
estimator (8), the impact of using large values of b is greater than for HAC estimators in non-structural
change settings.

For fixed-b inference, several patterns stand out in Table 4 for the supremum test. Rejections using
fixed-b critical values are similar to the rejections in traditional inference when a small bandwidth
ratio is used. However, as the bandwidth increases, rejections using fixed-b critical values
systematically decrease towards the nominal level of 0.05. Under DGP B, the null rejections decrease
as 0.131→0.096→0.083→0.086 over the range of b with T = 500 and the Bartlett kernel and ε = 0.2
being used. Even under DGP C, the null rejections approach the nominal level as b increases for all
sample sizes when the QS kernel and the trimming value of 0.2 are used.

Table 7 gives null rejection probabilities when using the data-dependent bandwidth ratio b∗.
Columns on the left give rejections using fixed-b critical values whereas columns on the right
give rejections using traditional critical values. Patterns in Table 7 are similar to patterns in
Tables 4–6. Over-rejections are often large when traditional critical values are used. Over-rejections
are systematically smaller when fixed-b critical values are used and b∗ works reasonably well if the
sample size is large enough relative to the strength of the persistence in the data. This is particularly
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true when the QS kernel is used with 0.2 trimming for the mean statistic and 0.05 trimming for the
supremum and exponential statistics.

Table 4. Empirical Null Rejection Probabilities, SupW(F) test with 5% nominal size, M = bT, H0: No
Structural Change (δ = 0), T = 100, 200, 500.

DGP ε c.v. kernel b = 0.02 b = 0.1 b = 0.5 b = 1
T = 100 200 500 T = 100 200 500 T = 100 200 500 T = 100 200 500

A

0.05
fixed-b Bartlett 0.331 0.146 0.093 0.277 0.132 0.084 0.250 0.131 0.083 0.253 0.131 0.081

QS 0.184 0.094 0.084 0.212 0.118 0.077 0.036 0.028 0.046 0.012 0.016 0.026

A93 Bartlett 0.721 0.555 0.472 0.954 0.930 0.904 1.00 1.00 1.00 1.00 1.00 1.00
QS 0.810 0.735 0.696 0.995 0.993 0.992 1.00 1.00 1.00 1.00 1.00 1.00

0.2
fixed-b Bartlett 0.104 0.072 0.062 0.094 0.064 0.062 0.081 0.057 0.052 0.080 0.056 0.055

QS 0.099 0.072 0.062 0.071 0.051 0.056 0.019 0.024 0.042 0.009 0.015 0.028

A93 Bartlett 0.163 0.124 0.111 0.447 0.397 0.381 0.923 0.912 0.908 0.994 0.990 0.992
QS 0.201 0.161 0.146 0.649 0.610 0.608 0.999 0.998 0.999 1.00 1.00 1.00

B

0.05
fixed-b Bartlett 0.665 0.420 0.247 0.351 0.268 0.170 0.302 0.243 0.144 0.309 0.238 0.149

QS 0.308 0.184 0.109 0.161 0.137 0.089 0.034 0.039 0.037 0.020 0.018 0.032

A93 Bartlett 0.947 0.855 0.697 0.985 0.975 0.956 1.00 1.00 1.00 1.00 1.00 1.00
QS 0.947 0.874 0.774 0.994 0.993 0.992 1.00 1.00 1.00 1.00 1.00 1.00

0.2
fixed-b Bartlett 0.493 0.274 0.131 0.255 0.160 0.096 0.213 0.132 0.083 0.209 0.131 0.087

QS 0.376 0.189 0.090 0.128 0.081 0.070 0.034 0.036 0.041 0.018 0.020 0.030

A93 Bartlett 0.604 0.382 0.216 0.674 0.543 0.447 0.966 0.949 0.926 0.999 0.997 0.994
QS 0.539 0.333 0.205 0.757 0.686 0.620 0.999 1.00 0.999 1.00 1.00 1.00

C

0.05
fixed-b Bartlett 0.934 0.824 0.591 0.346 0.257 0.212 0.307 0.216 0.176 0.296 0.209 0.174

QS 0.586 0.365 0.195 0.092 0.064 0.059 0.036 0.030 0.041 0.026 0.024 0.038

A93 Bartlett 0.998 0.991 0.945 0.990 0.980 0.971 1.00 1.00 1.00 1.00 1.00 1.00
QS 0.996 0.986 0.926 0.988 0.987 0.980 1.00 1.00 1.00 1.00 1.00 1.00

0.2
fixed-b Bartlett 0.942 0.843 0.512 0.596 0.413 0.204 0.488 0.340 0.180 0.494 0.335 0.174

QS 0.886 0.731 0.354 0.304 0.176 0.098 0.064 0.050 0.050 0.032 0.036 0.044

A93 Bartlett 0.967 0.902 0.632 0.900 0.809 0.630 0.994 0.982 0.956 1.00 0.999 0.997
QS 0.947 0.846 0.532 0.904 0.835 0.698 1.00 1.00 0.998 1.00 1.00 1.00

Note: A93 are critical values from Andrews (2003) [26].

Table 5. Empirical Null Rejection Probabilities, MeanW(F) test with 5% nominal size, M = bT, H0: No
Structural Change (δ = 0), T = 100, 200, 500.

DGP ε c.v. Kernel
b = 0.02 b = 0.1 b = 0.5 b = 1

T = 100 200 500 T = 100 200 500 T = 100 200 500 T = 100 200 500

A

0.05
fixed-b Bartlett 0.162 0.077 0.064 0.190 0.090 0.064 0.216 0.100 0.065 0.217 0.100 0.067

QS 0.148 0.085 0.066 0.226 0.108 0.070 0.120 0.075 0.057 0.097 0.062 0.055

AP94 Bartlett 0.290 0.174 0.134 0.759 0.623 0.570 0.999 0.998 0.995 1.00 1.00 1.00
QS 0.376 0.265 0.216 0.952 0.908 0.877 1.00 1.00 1.00 1.00 1.00 1.00

0.2
fixed-b Bartlett 0.084 0.057 0.056 0.086 0.055 0.061 0.089 0.059 0.060 0.087 0.060 0.060

QS 0.082 0.056 0.060 0.081 0.050 0.055 0.065 0.053 0.051 0.055 0.050 0.050

AP94 Bartlett 0.120 0.087 0.084 0.291 0.248 0.231 0.850 0.828 0.818 0.982 0.974 0.971
QS 0.132 0.106 0.100 0.449 0.403 0.390 0.998 0.996 0.998 1.00 1.00 1.00

B

0.05
fixed-b Bartlett 0.664 0.358 0.160 0.445 0.270 0.128 0.462 0.275 0.148 0.455 0.276 0.141

QS 0.530 0.242 0.110 0.291 0.178 0.103 0.155 0.112 0.078 0.121 0.088 0.073

AP94 Bartlett 0.806 0.534 0.291 0.926 0.834 0.694 1.00 1.00 0.999 1.00 1.00 1.00
QS 0.783 0.512 0.318 0.973 0.946 0.908 1.00 1.00 1.00 1.00 1.00 1.00

0.2
fixed-b Bartlett 0.420 0.207 0.109 0.216 0.132 0.081 0.224 0.135 0.082 0.229 0.137 0.086

QS 0.324 0.148 0.085 0.154 0.102 0.070 0.114 0.084 0.065 0.089 0.072 0.065

AP94 Bartlett 0.488 0.270 0.152 0.521 0.386 0.295 0.938 0.889 0.848 0.996 0.992 0.982
QS 0.428 0.219 0.137 0.603 0.483 0.417 0.998 0.998 0.998 1.00 1.00 1.00

C

0.05
fixed-b Bartlett 0.985 0.927 0.653 0.723 0.546 0.324 0.668 0.494 0.316 0.664 0.492 0.304

QS 0.948 0.827 0.451 0.407 0.247 0.145 0.207 0.137 0.099 0.174 0.127 0.091

AP94 Bartlett 0.996 0.966 0.788 0.979 0.955 0.868 1.00 1.00 1.00 1.00 1.00 1.00
QS 0.992 0.949 0.734 0.981 0.968 0.928 1.00 1.00 1.00 1.00 1.00 1.00

0.2
fixed-b Bartlett 0.916 0.776 0.429 0.586 0.396 0.206 0.552 0.384 0.204 0.547 0.375 0.204

QS 0.854 0.661 0.318 0.409 0.257 0.124 0.223 0.144 0.105 0.171 0.114 0.084

AP94 Bartlett 0.943 0.822 0.502 0.838 0.686 0.469 0.988 0.967 0.918 0.999 0.998 0.992
QS 0.909 0.753 0.408 0.843 0.705 0.529 1.00 1.00 0.999 1.00 1.00 1.00

Note: AP94 are critical values from Andrews and Ploberger (1994) [10] with an adjustment.
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Table 6. Empirical Null Rejection Probabilities, ExpW(F) test with 5% nominal size, M = bT, H0: No
Structural Change (δ = 0), T = 100, 200, 500.

DGP ε c.v. Kernel
b = 0.02 b = 0.1 b = 0.5 b = 1

T = 100 200 500 T = 100 200 500 T = 100 200 500 T = 100 200 500

A

0.05
fixed-b Bartlett 0.368 0.162 0.094 0.291 0.140 0.086 0.256 0.133 0.083 0.254 0.132 0.082

QS 0.198 0.100 0.086 0.217 0.120 0.078 0.036 0.028 0.046 0.012 0.016 0.026

AP94 Bartlett 0.712 0.504 0.404 0.956 0.920 0.888 1.00 1.00 1.00 1.00 1.00 1.00
QS 0.802 0.693 0.640 0.996 0.992 0.987 1.00 1.00 1.00 1.00 1.00 1.00

0.2
fixed-b Bartlett 0.108 0.068 0.062 0.104 0.068 0.060 0.086 0.060 0.055 0.082 0.058 0.055

QS 0.104 0.072 0.064 0.080 0.055 0.055 0.019 0.024 0.042 0.009 0.015 0.028

AP94 Bartlett 0.179 0.131 0.115 0.454 0.390 0.367 0.929 0.909 0.906 0.996 0.991 0.992
QS 0.210 0.167 0.142 0.646 0.605 0.591 0.999 0.999 1.00 1.00 1.00 1.00

B

0.05
fixed-b Bartlett 0.708 0.456 0.260 0.372 0.282 0.172 0.309 0.246 0.144 0.313 0.241 0.150

QS 0.333 0.194 0.113 0.165 0.140 0.090 0.034 0.039 0.037 0.020 0.018 0.032

AP94 Bartlett 0.954 0.836 0.647 0.986 0.974 0.946 1.00 1.00 1.00 1.00 1.00 1.00
QS 0.952 0.855 0.734 0.996 0.992 0.993 1.00 1.00 1.00 1.00 1.00 1.00

0.2
fixed-b Bartlett 0.518 0.281 0.132 0.275 0.169 0.096 0.219 0.136 0.085 0.214 0.133 0.087

QS 0.398 0.195 0.094 0.139 0.088 0.072 0.034 0.036 0.041 0.018 0.020 0.030

AP94 Bartlett 0.627 0.384 0.211 0.689 0.554 0.446 0.970 0.956 0.925 1.00 0.998 0.997
QS 0.564 0.332 0.202 0.763 0.687 0.610 0.999 1.00 0.999 1.00 1.00 1.00

C

0.05
fixed-b Bartlett 0.958 0.870 0.634 0.370 0.277 0.220 0.313 0.219 0.177 0.301 0.210 0.174

QS 0.624 0.387 0.204 0.095 0.066 0.060 0.036 0.030 0.041 0.026 0.024 0.038

AP94 Bartlett 0.999 0.992 0.942 0.993 0.988 0.970 1.00 1.00 1.00 1.00 1.00 1.00
QS 0.998 0.986 0.924 0.993 0.989 0.985 1.00 1.00 1.00 1.00 1.00 1.00

0.2
fixed-b Bartlett 0.951 0.853 0.517 0.617 0.437 0.218 0.502 0.348 0.183 0.498 0.342 0.177

QS 0.902 0.751 0.372 0.327 0.190 0.102 0.064 0.050 0.050 0.032 0.036 0.044

AP94 Bartlett 0.971 0.907 0.641 0.918 0.829 0.637 0.996 0.985 0.961 1.00 1.00 0.998
QS 0.954 0.854 0.532 0.919 0.845 0.710 1.00 1.00 0.999 1.00 1.00 1.00

Note: AP94 are critical values from Andrews and Ploberger (1994) [10] with an adjustment.

We now examine the power of the tests when using b∗. We report size-adjusted power for T = 200
in Figures 1–6. Recall the break point under the alternative is λ = 0.4. Odd (even) numbered figures
give results with 0.05 (0.2) trimming. Results are given for the three DGPs used for the tables. First note
that more trimming leads to higher power in all cases as one would expect. Second, the mean statistic
tends to have the highest power regardless of the DGP or kernel. This is not surprising given the
power optimality properties of the mean statistic derived by Andrews and Ploberger (1994) [10] using
traditional asymptotics. Third, for a given kernel, the supremum and exponential statistics have almost
the same power across DGPs and trimming. This is somewhat surprising given that under traditional
asymptotics, the exponential statistic is in the class of power optimal tests but the supremum statistic is
not. This finding could be driven by values of b∗ being far away from zero in which case the traditional
asymptotics might not be accurately reflecting finite sample power. Finally, the Bartlett kernel tends to
give tests with higher power than the QS kernel; a similar finding was made by Kiefer and Vogelsang
(2005) [1] in models without structural change.

The size and power results for the statistics implemented with b∗ point to the typical size-power
tradeoff when using HAC variance estimators. Configurations that give the least size distortions
also tend to have low power. As long as the data is not too persistent relative to the sample size,
a reasonable approach for practice that balances size distortions and power is to use the mean statistic
with 0.2 trimming implemented with the QS kernel with b∗ and fixed-b critical values.

6. Summary and Conclusions

In this paper, fixed-b asymptotics is applied to the problem of testing for the presence of a
structural break in a weakly dependent time series regression. The Wald(F) statistic is the Wald statistic
that one obtains when structural change is expressed in terms of dummy variables interacted with
regressors as in Bai and Perron (1998, 2003) [11,15]. We derived the fixed-b limit of the statistic. In
both the full structural change and partial structural change model, the Wald statistic has the same
pivotal fixed-b limit. We tabulated fixed-b critical values for Sup/Mean/Exp-Wald(F) statistics which
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are commonly used for testing parameter instability when the break point is unknown. In a simulation
study, we examined the finite sample properties of traditional and fixed-b inference. With persistent
data, traditional inference suffers from substantial size distortions. Using fixed-b critical values
markedly improves over-rejection problem. A reasonable approach for practice that balances size
distortions and power is to use the mean statistic with 0.2 trimming implemented with the QS kernel,
b∗ and fixed-b critical values.

Table 7. Empirical Null Rejection Probabilities, Sup/Mean/Exp-W(F) test using bandwidth ratio b∗

with 5% nominal size, H0 : No Structural Change (δ = 0), T = 100, 200, 500, 1000.

SupW(F) Fixed-b c.v. Andrews (1993) [9] c.v.

DGP T ε = 0.05 ε = 0.2 ε = 0.05 ε = 0.2

Bartlett QS Bartlett QS Bartlett QS Bartlett QS

A
100 0.318 0.182 0.103 0.099 0.773 0.830 0.189 0.221
200 0.147 0.094 0.073 0.072 0.558 0.735 0.126 0.161
500 0.089 0.081 0.062 0.062 0.479 0.701 0.111 0.146

B
100 0.384 0.164 0.287 0.177 0.972 0.985 0.612 0.627
200 0.302 0.135 0.187 0.134 0.931 0.962 0.416 0.415
500 0.206 0.102 0.110 0.088 0.826 0.801 0.249 0.218

C

100 0.328 0.083 0.574 0.289 0.992 0.991 0.915 0.924
200 0.278 0.070 0.428 0.219 0.982 0.985 0.806 0.814
500 0.267 0.082 0.250 0.158 0.954 0.965 0.556 0.548

1000 0.254 0.072 0.188 0.120 0.900 0.928 0.375 0.368

MeanW(F) Fixed-b c.v. Andrews and Ploberger (1994) [10] c.v.

DGP T ε = 0.05 ε = 0.2 ε = 0.05 ε = 0.2

Bartlett QS Bartlett QS Bartlett QS Bartlett QS

A
100 0.172 0.154 0.086 0.082 0.348 0.417 0.132 0.142
200 0.077 0.085 0.058 0.056 0.176 0.265 0.088 0.106
500 0.064 0.066 0.056 0.060 0.134 0.216 0.084 0.100

B
100 0.465 0.312 0.237 0.168 0.869 0.912 0.454 0.456
200 0.278 0.190 0.145 0.110 0.667 0.717 0.277 0.269
500 0.142 0.108 0.090 0.085 0.408 0.349 0.171 0.143

C

100 0.701 0.382 0.566 0.401 0.982 0.983 0.853 0.875
200 0.555 0.293 0.408 0.283 0.948 0.956 0.688 0.688
500 0.374 0.203 0.232 0.171 0.804 0.812 0.415 0.391

1000 0.258 0.133 0.155 0.104 0.574 0.619 0.257 0.238

ExpW(F) Fixed-b c.v. Andrews and Ploberger (1994) [10] c.v.

DGP T ε = 0.05 ε = 0.2 ε = 0.05 ε = 0.2

Bartlett QS Bartlett QS Bartlett QS Bartlett QS

A
100 0.331 0.196 0.095 0.107 0.761 0.820 0.203 0.230
200 0.161 0.100 0.068 0.072 0.506 0.593 0.132 0.167
500 0.093 0.083 0.062 0.064 0.404 0.640 0.115 0.142

B
100 0.402 0.170 0.296 0.195 0.976 0.988 0.626 0.638
200 0.278 0.143 0.167 0.142 0.923 0.956 0.427 0.423
500 0.135 0.104 0.068 0.093 0.788 0.762 0.251 0.215

C

100 0.348 0.087 0.601 0.308 0.995 0.994 0.929 0.935
200 0.298 0.072 0.449 0.241 0.987 0.990 0.826 0.829
500 0.277 0.083 0.263 0.169 0.955 0.961 0.563 0.556

1000 0.186 0.072 0.134 0.121 0.881 0.912 0.378 0.369
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Figure 1. Size adjusted power, DGP A, ε = 0.05, T = 200.
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Figure 2. Size adjusted power, DGP A, ε = 0.2, T = 200.

0 1 2 3 4 5 6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

δ

N
u
ll 

re
je

c
ti
o
n
 f
re

q
u
e

n
c
y

 

 

Sup Bartlett

Sup QS

Mean Bartlett

Mean QS

Exp Bartlett

Exp QS

Figure 3. Size adjusted power, DGP B, ε = 0.05, T = 200.
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Figure 4. Size adjusted power, DGP B, ε = 0.2, T = 200.
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Figure 5. Size adjusted power, DGP C, ε = 0.05, T = 200.
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Figure 6. Size adjusted power, DGP C, ε = 0.2, T = 200.
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Appendix A. Definitions and Proofs

Definitions

Case 1. Suppose K(x) is twice continuously differentiable everywhere (Class 1) such as the Quadratic Spectral
kernel (QS), then

P
(
b, Hp

)
≡ −

∫ 1

0

∫ 1

0

1
b2 K′′

(
r− s

b

)
Hp(r)Hp(s)′drds, (A1)

where K′′ (·) is the second derivative of the kernel K(·).

Case 2. Suppose K(x) is the Bartlett kernel (Class 2), then

P
(
b, Hp

)
≡ 2

b

∫ 1

0
Hp(r)Hp(r)′dr− 1

b

∫ 1−b

0

(
Hp(r)Hp(r + b)′ + Hp(r + b)Hp(r)′

)
dr. (A2)

Case 3. Suppose K(x) is continuous, K(x) = 0 for |x| ≥ 1, and K(x) is twice continuously differentiable
everywhere except for |x| = 1 (Class 3) (e.g., Parzen kernel), then

P
(
b, Hp

)
≡ −

∫ ∫
|r−s|<b

1
b2 K′′

(
|r− s|

b

)
Hp(r)Hp(s)′drds (A3)

+
K′_(1)

b

∫ 1−b

0

(
Hp(r + b)Hp(r)′ + Hp(r)Hp(r + b)′

)
dr,

where K′_(1) = limh↓0 [(K(1)− K(1− h)) /h] , i.e., K′_(1) is the derivative of K(x) from the left at x = 1.

The following expression is a general representation of the HAC estimators:

Ω̂ = T−1
T

∑
t=1

T

∑
s=1

K
(
|t− s|

M

)
v̂tv̂′s.

This representation can be rewritten in terms of the partial sum processes Ŝt = ∑t
j=1 v̂j following

Kiefer and Vogelsang (2005) [1] and Hashimzade and Vogelsang (2008) [4] as follows. Let M = bT.
Then, for the kernels in Class 1, we have

Ω̂ = T−2
T−1

∑
t=1

T−1

∑
s=1

T−1/2Ŝt

(
T2∆2

t,s

)
T−1/2Ŝ′s, (A4)

where

∆2
t,s ≡ (Kt,s − Kt,s+1)− (Kt+1,s − Kt+1,s+1) with Kt,s = K

(
|t− s|

bT

)
.

For the Class 2 kernel (Bartlett), we have

Ω̂ =
2

bT

T−1

∑
t=1

(
T−1ŜtŜ′t

)
− 1

bT

T−M−1

∑
t=1

(
T−1Ŝt+bT Ŝ′t + T−1ŜtŜ′t+bT

)
. (A5)

For the kernels in Class 3, we have

Ω̂ = T−2 ∑ ∑
|t−s|<bT

T−1Ŝt

(
T2∆2

t,s

)
Ŝ′s +

1
bT

T−bT

∑
s=1

T−1/2ŜsT−1/2Ŝ′s+bT

(
K(1)− K(1− 1

bT )
1

bT

)

− 1
bT

T−bT

∑
s=1

T−1/2ŜsT−1/2Ŝ′s+bT

(
K(−1 + 1

bT )− K(−1)
1

bT

)
.

(A6)
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Proof of Proposition 1. The limit of the fî follows immediately under Assumptions 1 and 2. Also,
plugging the limits of β̂1 and β̂2 into Equation (4) yields, for r ≤ λ,

T−1/2Ŝ[rT] ⇒
(

Λ 0
0 Λ

)((
Wp(r)− r

λ Wp(λ)
)

0

)
,

and for r > λ,

T−1/2Ŝ[rT] ⇒
(

Λ 0
0 Λ

)(
0(

Wp(r)−Wp(λ)− r−λ
1−λ

(
Wp(1)−Wp(λ)

))) .

Thus, we can rewrite this result by using indicator functions as

T−1/2Ŝ[rT] ⇒
(

Λ 0
0 Λ

)
Fp (r, λ) ≡

(
Λ 0
0 Λ

)(
F(1)

p (r, λ)

F(2)
p (r, λ)

)
,

where

F(1)
p (r, λ) =

(
Wp(r)− r

λ Wp(λ)
)
· 1(r ≤ λ) and F(2)

p (r, λ) =
(

Wp(r)−Wp(λ)− r−λ
1−λ

(
Wp(1)−Wp(λ)

))
· 1(r > λ).

Proof of Lemma 1. Plugging the limit of the partial sum process in Proposition 1 into the HAC
estimators in (A4)–(A6), the desired result follows from direct application of the continuous mapping
theorem to obtain the desired result in (12).

Proof of Theorem 1. Recall that

Wald(F) = T
(

Rβ̂
)′ (

RQ̂−1
λ Ω̂(F)Q̂−1

λ R′
)−1 (

Rβ̂
)

.

Using R = (R1, − R1) it follows that

T1/2
(

Rβ̂
) H0= R1

(
T1/2

(
β̂1 − β1

)
− T1/2

(
β̂2 − β2

))
⇒

R1Q−1Λ
(

1
λ

Wp (λ)−
1

1− λ

(
Wp (1)−Wp (λ)

))
.

Using Assumption 1 and Lemma 1,

RQ̂−1
λ Ω̂(F)Q̂−1

λ R′ ⇒
(

1
λ

R1Q−1Λ,
−1

1− λ
R1Q−1Λ

)
×P

(
b, Fp (r, λ)

)
×
(

1
λ

R1Q−1Λ,
−1

1− λ
R1Q−1Λ

)′
.

By writing P
(
b, Fp (r, λ)

)
in the form (A1)–(A3) using Fp (r, λ)′ =

(
F(1)

p (r, λ)′ , F(2)
p (r, λ)′

)
, we obtain,

after some algebra, the following expression for the above limit:

R1Q−1ΛP
(

b,
1
λ

F(1)
p (r, λ)− 1

1− λ
F(2)

p (r, λ)

)
Λ′Q−1R′1.

Now apply the transformation: R1Q−1ΛWp(r)
d
= AWl(r) with R1Q−1ΛΛ′Q−1R′1 = AA′,

and conclude

RQ̂−1
λ Ω̂(F)Q̂−1

λ R′ ⇒ AP
(

b,
1
λ

F(1)
l (r, λ)− 1

1− λ
F(2)

l (r, λ)

)
A′,
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yielding the desired result:

Wald(F) ⇒
(

1
λ

Wl(λ)−
1

1− λ
(Wl(1)−Wl(λ))

)′

×
(

P
(

b,
1
λ

F(1)
l (r, λ)− 1

1− λ
F(2)

l (r, λ)

))−1
×
(

1
λ

Wl(λ)−
1

1− λ
(Wl(1)−Wl(λ))

)
.

Proof of Proposition 2. Standard algebra gives

β̂ =
(

∑T
t=1 X̃tX̃′t

)−1 (
∑T

t=1 X̃tỹt

)
=
(

∑T
t=1 X̃tX̃′t

)−1 (
∑T

t=1 X̃tX̃′tβ + ∑T
t=1 X̃tut −∑T

t=1 X̃tz′t(Z′Z)−1Z′u
)

=
(

∑T
t=1 X̃tX̃′t

)−1 (
∑T

t=1 X̃tX̃′tβ + ∑T
t=1 X̃tut

)
,

and it immediately follows that

T1/2
(

β̂− β
)
=
(

T−1 ∑T
t=1 X̃tX̃′t

)−1 (
T−1/2 ∑T

t=1 X̃tut

)
=
(

T−1 ∑T
t=1
(
Xt − X′Z(Z′Z)−1zt

) (
X′t − z′t(Z′Z)−1Z′X

))−1

×
(

T−1/2 ∑T
t=1
(
Xt − X′Z(Z′Z)−1zt

)
ut

)
.

Under Assumptions 3 and 4, it follows in a straightforward manner that

√
T(β̂− β)⇒ Q−1

X̃X̃

(
Λ1Wp+q(λ)− λQxZQ−1

ZZΛ2Wp+q(1)
Λ1
(
Wp+q(1)−Wp+q(λ)

)
− (1− λ)QxZQ−1

ZZΛ2Wp+q(1)

)
(A7)

In order to derive the limit of
√

T(Rβ̂− r), the following standard results are useful:

QXZ ≡ p lim

(
T−1

T

∑
t=1

Xtz′t

)
=

(
λQxZ

(1− λ)QxZ

)
2p×q

,

QXX ≡ p lim

(
T−1

T

∑
t=1

XtX′t

)
=

(
λQxx 0

0 (1− λ)Qxx

)
2p×2p

,

QX̃X̃ = p lim

(
T−1

T

∑
t=1

X̃tX̃′t

)
= QXX −QXZQ−1

ZZQ′XZ.

Also, well known matrix algebra properties (see e.g., Schott (1997) [29]), we can write

Q−1
X̃X̃

= Q−1
XX + Q−1

XXQXZ

(
QZZ −Q′XZQ−1

XXQXZ

)−1
Q′XZQ−1

XX , (A8)

and using (A8), one can further show that

Q−1
X̃X̃

=

(
1
λ Q−1

xx + P P
P 1

1−λ Q−1
xx + P

)
, (A9)

where
P = Q−1

xx QxZ

(
QZZ −Q′xZQ−1

xx QxZ

)−1
Q′xZQ−1

xx .

Now plug (A9) into (A7) to conclude that
√

T(Rβ̂− r)
H0=
√

TR
(

β̂− β
)
⇒ R1Q−1

xx Λ1

(
1
λ Wp+q(λ) +

1
1−λ

(
Wp+q(λ)−Wp+q(1)

))
.
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The following lemma is used in the proof of Lemma 3.

Lemma 3. Let K = QxZQ−1
ZZQ′xZ. Then it holds that Q−1

xx KP = P−Q−1
xx KQ−1

xx .

Proof of Lemma 3. One can easily show

QX̃X̃ =

(
λQxx 0

0 (1− λ)Qxx

)
−
(

λ2QxZQ−1
ZZQ′xZ λ(1− λ)QxZQ−1

ZZQ′xZ
λ(1− λ)QxZQ−1

ZZQ′xZ (1− λ)2QxZQ−1
ZZQ′xZ

)
.

The desired result comes from the identity QX̃X̃Q−1
X̃X̃

= I by substituting Equation (A9) for Q−1
X̃X̃

.

Proof of Lemma 2. First note that implicit in the proof of Proposition 2 is the result that p lim Q̂−1
X̃X̃

=

Q−1
X̃X̃

. For R = (R1, − R1), it follows that

p lim RQ̂−1
X̃X̃

= R1

(
1
λ

Q−1
xx , − 1

1− λ
Q−1

xx

)
(A10)

using (A9). The scaled partial sum process is given by

T−1/2Ŝξ
[rT] = T−1/2

[rT]

∑
t=1

X̃tût

= T−1/2
[rT]

∑
t=1

X̃tut − T−1
[rT]

∑
t=1

X̃tX̃′t
√

T(β̂− β)− T−1
[rT]

∑
t=1

X̃tz′t

(
Z′Z

T

)−1 (
T−1/2Z′u

)
. (A11)

For 0 ≤ r < λ, the first term in (A11) satisfies

T−1/2
[rT]

∑
t=1

X̃tut ⇒
(

Λ1Wp+q(r)− λQxZQ−1
ZZΛ2Wp+q(r)

−(1− λ)QxZQ−1
ZZΛ2Wp+q(r)

)
. (A12)

Hence with R = (R1, − R1) , from (A10) and (A12), it follows that

RQ̂−1
X̃X̃

T−1/2
[rT]

∑
t=1

X̃tut

⇒ R1

(
1
λ

Q−1
xx , − 1

1− λ
Q−1

xx

)(
Λ1Wp+q(r)− λQxZQ−1

ZZΛ2Wp+q(r)
−(1− λ)QxZQ−1

ZZΛ2Wp+q(r)

)
=

1
λ

R1Q−1
xx Λ1Wp+q(r).

For the first part of the second term in (A11), it follows that

T−1
[rT]

∑
t=1

X̃tX̃′t ⇒
(

rQxx 0p×p

0p×p 0p×p

)
−
(

rλQxZQ−1
ZZQ′xZ r(1− λ)QxZQ−1

ZZQ′xZ
0p×p 0p×p

)

−
(

rλQxZQ−1
ZZQ′xZ 0p×p

r(1− λ)QxZQ−1
ZZQ′xZ 0p×p

)
+ r

(
λ2QxZQ−1

ZZQ′xZ λ(1− λ)QxZQ−1
ZZQ′xZ

λ(1− λ)QxZQ−1
ZZQ′xZ (1− λ)2QxZQ−1

ZZQ′xZ

)

=

(
rQxx + (rλ2 − 2rλ)K −r(1− λ)2K
−r(1− λ)2K r(1− λ)2K

)
,

where K = QxZQ−1
ZZQ′xZ. Hence with R = (R1, − R1) ,

RQ̂−1
X̃X̃

T−1
[rT]

∑
t=1

X̃tX̃′t ⇒ R1

(
1
λ

Q−1
xx , − 1

1− λ
Q−1

xx

)
×
(

rQxx + (rλ2 − 2rλ)K −r(1− λ)2K
−r(1− λ)2K r(1− λ)2K

)
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= rR1

(
1
λ

I −Q−1
xx K,

λ− 1
λ

Q−1
xx K

)
,

which combined with (A7) and Lemma 3 immediately yields

RQ̂−1
X̃X̃

(
T−1

[rT]

∑
t=1

X̃tX̃′t

)
√

T(β̂− β)

⇒ rR1

(
1
λ

I −Q−1
xx K,

λ− 1
λ

Q−1
xx K

)
×
(

1
λ Q−1

xx + P P
P 1

1−λ Q−1
xx + P

)

×
(

Λ1Wp+q(λ)− λQxZQ−1
ZZΛ2Wp+q(1)

Λ1
(
Wp+q(1)−Wp+q(λ)

)
− (1− λ)QxZQ−1

ZZΛ2Wp+q(1)

)

= rR1

(
1

λ2 Q−1
xx , 0p×p

)
×
(

Λ1Wp+q(λ)− λQxZQ−1
ZZΛ2Wp+q(1)

Λ1
(
Wp+q(1)−Wp+q(λ)

)
− (1− λ)QxZQ−1

ZZΛ2Wp+q(1)

)
=

r
λ2 R1Q−1

xx Λ1Wp+q(λ)−
r
λ

R1Q−1
xx QxZQ−1

ZZΛ2Wp+q(1).

Finally, premultiplying the third term in (A11) by RQ̂−1
X̃X̃

gives

RQ̂−1
X̃X̃

T−1
[rT]

∑
t=1

X̃tz′t

(
Z′Z

T

)−1 (
T−1/2Z′u

)
= RQ̂−1

X̃X̃
T−1

[rT]

∑
t=1

(
Xt − X′Z(Z′Z)−1zt

)
z′t

(
Z′Z

T

)−1 (
T−1/2Z′u

)
⇒ R1

(
1
λ

Q−1
xx , − 1

1− λ
Q−1

xx

)
×
(

r(1− λ)QxZ
−r(1− λ)QxZ

)
Q−1

ZZΛ2Wp+q(1)

=
r
λ

R1Q−1
xx QxZQ−1

ZZΛ2Wp+q(1).

Combining the results for the three terms gives

RQ̂−1
X̃X̃

T−1/2Ŝξ
[rT] ⇒ R1Q−1

xx Λ1
1
λ Wp+q(r)− R1Q−1

xx Λ1
r

λ2 Wp+q(λ)

+R1Q−1
xx QxZQ−1

ZZΛ2
r
λ Wp+q(1)− R1Q−1

xx QxZQ−1
ZZΛ2

r
λ Wp+q(1)

= R1Q−1
xx Λ1

(
1
λ Wp+q(r)− r

λ2 Wp+q(λ)
)
= R1Q−1

xx Λ1
1
λ F(1)

p+q (r, λ) .

(A13)

Similar results can be obtained for λ ≤ r ≤ 1 :

RQ̂−1
X̃X̃

T−1/2
[rT]

∑
t=1

X̃tut ⇒ R1Q−1
xx Λ1

(
1
λ

Wp+q(λ)−
1

1− λ

(
Wp+q(r)−Wp+q(λ)

))
,

RQ̂−1
X̃X̃

(
T−1 ∑

[rT]
t=1 X̃tX̃′t

)√
T(β̂− β)

⇒ R1Q−1
xx Λ1

(
1
λ Wp+q(λ) +

r−λ
(1−λ)2 Wp+q(λ)− r−λ

(1−λ)2 Wp+q(1)
)
− R1Q−1

xx QxZQ−1
ZZΛ2

1−r
1−λ Wp+q(1),

and

RQ̂−1
X̃X̃

T−1
[rT]

∑
t=1

X̃tz′t

(
Z′Z

T

)−1 (
T−1/2Z′u

)
⇒ 1− r

1− λ
R1Q−1

xx QxZQ−1
ZZΛ2Wp+q(1).
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Now combining the results for the three terms gives RQ̂−1
X̃X̃

T−1/2Ŝξ
[rT] ⇒ −R1Q−1

xx Λ1 · 1
1−λ F(2)

p+q(r, λ).
Thus, we obtain for r ∈ [0, 1],

RQ̂−1
X̃X̃

T−1/2Ŝξ
[rT] ⇒ R1Q−1

xx Λ1

(
1
λ

F(1)
p+q (r, λ)− 1

1− λ
F(2)

p+q (r, λ)

)
.

Proof of Theorem 2. To save space, the proof for this Theorem is provided only for the case of the
Bartlett kernel with M = T (i.e., b = 1). However, the proof given here is applicable to other kernels
and different values of b. Note that with b = 1, the HAC estimator can be rewritten as (see Kiefer and
Vogelsang (2002a) [2]) Ω̂(F)

b=1 = 2
T ∑T−1

t=1 T−1/2Ŝξ
t T−1/2Ŝξ′

t . With this HAC estimator, the term within the
inverse in (24) is given by

2
T

T−1

∑
t=1

R

(
T−1

T

∑
s=1

X̃sX̃′s

)−1

T−1/2Ŝξ
t T−1/2Ŝξ′

t

(
T−1

T

∑
s=1

X̃sX̃′s

)−1

R′


⇒ P

(
1, R1Q−1

xx Λ1

(
1
λ

F(1)
p+q (r, λ)− 1

1− λ
F(2)

p+q (r, λ)

))
where the limit is obtained directly from Lemma 3 and the continuous mapping theorem. The result
for (24) can be obtained by using similar arguments as those used in Theorem 1 where we use

the transformation: R1Q−1
xx Λ1Wp+q(r)

d
= Ξ ·Wl(r), 0 ≤ r ≤ 1 for a p.d. matrix Ξ

l×l
satisfying

ΞΞ′ = R1Q−1
xx Λ1Λ′1Q−1

xx R′1.
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