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Abstract: We consider the problem of testing for a structural break in the spatial lag parameter in
a panel model (spatial autoregressive). We propose a likelihood ratio test of the null hypothesis
of no break against the alternative hypothesis of a single break. The limiting distribution of the
test is derived under the null when both the number of individual units N and the number of time
periods T is large or N is fixed and T is large. The asymptotic critical values of the test statistic can be
obtained analytically. We also propose a break-date estimator that can be employed to determine the
location of the break point following evidence against the null hypothesis. We present Monte Carlo
evidence to show that the proposed procedure performs well in finite samples. Finally, we consider
an empirical application of the test on budget spillovers and interdependence in fiscal policy within
the U.S. states.
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1. Introduction

Spatial dependence represents a situation where values observed at one location or region depend
on the values of neighboring observations at nearby locations. One may ask two questions: first,
does this dependence stay the same over time; and second, what might cause the dependence to
change? This paper answers the first question by proposing a likelihood ratio test of the null hypothesis
of no change against the alternative hypothesis of a one-time change. In case there is evidence against
the null hypothesis, the paper consequently proposes a break-date estimator. The second question has
been reflected upon through an empirical application of budget spillovers in the U.S. states.

In the setup of spatial panel models with N individual units (geographic locations, such as
countries and zip codes, or network units, like firms and individuals) observed over T number of
periods, where the outcome of each unit depends on its “neighbor’s” outcome, there exists a problem
of endogeneity. Hence, such models are estimated using maximum likelihood or the generalized
method of moments. Similar to the univariate time series case, in this paper a sup LR test is proposed,
and the asymptotics are derived for large T cases.

In comparison to the vast literature on the change point for univariate series, the corresponding
literature for panel data is quite small. One of the most popular and early tests in the univariate
literature is the popular F test of Chow (1960) [1], which has been modified for cases of unknown and
multiple break dates in Andrews (1993) [2], Andrews and Ploberger (1994) [3], and Bai and Perron
(1998) [4], among others. Bai (1997) [5], Bai et al. (1998) [6], and Qu and Perron (2007) [7] have extended
the single equation break models to multiple ones. They show that using multiple system improves
the estimation precision of the break dates and the power of the tests. Perron (2006) [8] provides a
survey of the literature.
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In the panel data literature, Bai (2010) [9] establishes the consistency of the estimated common
break point, achievable even if there is a single observation in a regime. The paper proposes a new
framework for developing the limiting distribution for the estimated break point and lays down steps
to construct confidence intervals. The least squares method is used for estimating breaks in means.
Feng et al. (2009) [10] study a multiple regression model in a panel setting where a break occurs at an
unknown common date. They establish the consistency and rate of convergence both for a fixed time
horizon and large panels. In Feng et al. (2009) [10], the limiting distribution is derived without the
assumption of shrinking magnitude of break. Liao (2008) [11] uses the Bayesian method for estimation
and inference about structural breaks in a panel.

Han and Park (1989) [12] develop a multivariate CUSUM test in order to test for a structural break
in panel data, and they apply the test to U.S. manufacturing goods trade data. Kao (2000) [13] proposes
two classes of test statistics for detecting a break at an unknown date in panel data models with the
time trend. The first is a fluctuation test, while the second is based on the mean and exponential Wald
statistics of Andrews and Ploberger (1994) [3] and the maximum Wald statistic of Andrews (1993) [2].
De Wachter and Tzavalis (2012) [14] develop a break detecting testing procedure for the AR(p) linear
panel data with exogenous or pre-determined regressors. The method accommodates structural break
in the slope parameters, as well as fixed effects, and no assumption is imposed on the homogeneity of
cross-sectional fixed effects. Pauwels et al. (2012) [15] provide a structural break test for heterogeneous
panel data models, where the break affects some, but not all cross-section units in the panel. The test is
robust to auto-correlated errors. The test statistic is based on comparing pre- and post-break sample
statistics as in Chow (1960) [1].

A higher availability of geocoded socio-economic datasets has led to a vast expansion of the
study of spatial interaction between economics agents. Moreover, the recursive relationship between
agents in a network can be modeled using spatial econometric methods. Spatial dependence represents
the transmission of developments across “neighboring” agents. Elhorst (2010) [16] provides detailed
methodologies for estimating spatial panels and to compare competing models. The above tests in the
panel literature do not explicitly consider the endogeneity problem in the model, which arises from
the spatial dependence. We consider a spatial autoregressive model and provide a test for a break
in the spatial lag parameter. To test for a change in the spatial dependence parameter, we propose
a sup LR test similar to Bai (1999) [17]. Yu et al. (2008) [18] and Lee and Yu (2010) [19] provide the
asymptotic properties of quasi-maximum likelihood estimators for spatial autoregressive panel data
models with fixed effects. The results from Yu et al. (2008) [18] are used to derive the limit distribution
of the sup LR test for large T. An estimator for the break date is proposed that can be employed
once evidence against no break in the spatial lag parameter is obtained. The performance of this
estimator, as well as the proposed test statistic in small samples is evaluated via a Monte Carlo study.
Wied (2013) [20] develops a CUSUM-type test for time-varying parameters in a spatial autoregressive
model for stock returns.

Case et al. (1993) [21] show that a state’s budget expenditure depends on the spending of similar1

states. Therefore, a rise in a “neighboring” state’s expenditure results in an increase in the state’s own
expenditure. As an empirical application, we apply the likelihood ratio test to the budget dependence
of U.S. states over time. The data consist of annual observations for the continental United States
during the period 1960–2011. States that are economically similar are defined as neighbors. The test
result shows that the null hypothesis of no break in the spatial dependence parameter is rejected, and
the break date is estimated as 1982. The budget spillover is more pronounced post-break. Details of
the results and intuitions on why there might be a break are discussed.

1 Case et al. (1993) [21] defines similar states in three different ways: (1) similar in location, (2) similar in income and (3) similar
in racial composition.
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The paper is organized as follows: in Section 2, the spatial lag model is presented and discussed.
Section 3 provides motivating examples where the test can be applied. We propose a sup LR test,
which is described in Section 4. The limiting distribution of the test is stated in Section 5. The outline
of the proof is also provided in this section (details are in the Appendix A). In the event of a rejection
of the null hypothesis, we propose a break date estimator in Section 6. The finite sample properties of
the test and the estimator are discussed in Section 7. Finally, we apply the test to budget spillovers in
U.S. states, in Section 8. It shows that there was a change in the budget dependence between similar
income states. In Section 9, we provide the conclusion and possible next steps in research.

2. Spatial Lag Model

Let us consider a simple pooled linear regression model

yit = xitβ + εit, (1)

where i is an index of cross-sectional dimension, with i = 1,..., N, and t is an index for the time dimension,
with t = 1,..., T. We discuss all of the results using “time” as the second dimension; however, for
a general spatial lag model, the second dimension could very well reflect another cross-sectional
characteristic, such as the industry sector or the number of classes or groups. yit is an observation on
the dependent variable at i and t, xit a 1× K vector of observations on the (exogenous) explanatory
variables including the intercept, β a matching K × 1 vector of regression coefficients and εit an error
term. In stacked form, the simple pooled regression can be written as

y = xβ + ε, (2)

with y a NT × 1 vector, X a NT × K matrix and ε a NT × 1 vector. In general, spatial dependence is
present whenever the correlation across cross-sectional units is non-zero, and the pattern of non-zero
correlations conforms to a specified neighbor relation. When the spatial correlation pertains to the
dependent variable, it is known as a spatial lag model. The neighbor relation is expressed by means of
a spatial weight matrix.

A spatial weights matrix W is a N×N positive matrix in which the rows and columns correspond
to the cross-sectional observations. An element wij of the matrix expresses the prior strength of
the interaction between location i (in the row of the matrix) and location j (column). This can be
interpreted as the presence and strength of a link between nodes (the observations) in a network
representation that matches the spatial weights’ structure. In the simplest case, the weights matrix
is binary, with wij = 1 when i and j are neighbors and wij = 0 when they are not. The choice of the
weights is typically driven by geographic criteria, such as contiguity (sharing a common border) or
distance. However, generalizations that incorporate notions of “economic” distance are increasingly
being used, as well. By convention, the diagonal elements wii = 0. For computational simplicity and
to aid the interpretation of the spatial variables, the weights are almost always standardized, such that
the elements in each row sum to one, or ws

ij = wij/ ∑j wij. Using the subscript to designate the matrix
dimension, with WN as the weights for the cross-sectional dimension and the observations stacked, the
full NT × NT weights matrix becomes: WNT = IT ⊗WN , with IT an identity matrix of dimension T.

Unlike the time series case, where “neighboring” observations are directly incorporated into a
model specification through a shift operator (example t− 1), in the spatial literature, the neighboring
observations are included in the model specification by applying a spatial lag operator (W) to the
dependent variable. A spatial lag operator constructs a new variable, which consists of the weighted
average of the neighboring observations, with the weights as specified in W. The spatial lag model
or mixed regressive spatial autoregressive model includes a spatially-lagged dependent variable as
an explanatory variable in the regression specification. The word “spatial lag” is used to specify the
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inclusion of the neighboring observations. Similar to the time series “lag operator”, Wy emphasizes
the first-order location lag in the dependent variable. The spatial lag model can be written as

y = ρ(IT ⊗WN)y + Xβ + ε (3)

where ρ is the spatial autoregressive parameter and the parameter of interest in this paper.

2.1. Endogeneity Problem

The problem in the estimation of the model (3) is that, unlike the time series case, the spatial
lag term is endogenous. This is the result of the two-directionality of the neighbor relation in
space (“I am my neighbor’s neighbor”), in contrast to the one-directionality in time dependence.
Rewriting equation (3) in a reduced form:

y = [IT ⊗ (IN − ρWN)
−1]Xβ + [IT ⊗ (IN − ρWN)

−1]ε (4)

indicating that the joint determination of the values of the dependent variable in the spatial system is a
function of the explanatory variables and error terms at all locations in the system. The presence of
the spatially lagged errors in the reduced form illustrates the joint dependence of WNyt and εt in each
cross-section. In model estimation, the simultaneity is usually accounted for through instrumentation
(IV and GMM estimation) or by specifying a complete distributional model (maximum likelihood
estimation). In this paper, we use maximum likelihood estimation.

2.2. Maximum Likelihood Estimation

Assuming a Gaussian distribution for the error term, with ε ∼ N(0, σ2
ε INT), the log-likelihood can

be written as:
lnL = −NT

2
ln2πσ2

ε + Tln|IN − ρWN | −
1

2σ2
ε

ε′ε (5)

where ε = y − ρ(IT ⊗WN)y − Xβ and |IT ⊗ (IN − ρWN)| = Tln|IN − ρWN | is the Jacobian of the
spatial transformation. To avoid singularity or explosive processes, the parameter space P for the true
spatial autoregressive parameter ρ is compact, and ρ0 is in the interior of P.

Lee (2004) [22] discusses the asymptotic properties of the maximum likelihood estimators for the
cross-section case. Yu et al. (2008) [18] and Lee and Yu (2010) [19] derive the properties for the spatial
panel model with fixed effects. We use the properties of the maximum likelihood estimators to derive
the asymptotic distribution of the test statistic.

3. Motivation

We consider the following model in a spatial lag model:

yit =


xitβ + ρ1

N
∑

j=1
wijyjt + εit for t = 1, ..., ko,

xitβ + ρ2
N
∑

j=1
wijyjt + εit for t = ko + 1, ..., T

(6)

ρ1 6= ρ2 means there is a change at an unknown date k0. We propose a sup LR test of the null hypothesis
of ρ1 = ρ2 against the alternative hypothesis of a change: ρ1 6= ρ2. The test detects a structural break in
the spatial dependence parameter. Following are some empirical models where the test can be applied,
providing motivation for the test.
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3.1. Sectoral Output

Acemoglu et al. (2012) [23] look into the intersectoral input-output linkages in the U.S. and shows
how microeconomic idiosyncratic fluctuations lead to aggregate fluctuations. Defining the sectoral
production function as,

xi = zilα
i

n

∏
j=1

x
βwij
ij (7)

where xi is the output of sector i, li is the amount of labor hired by the sector, α ∈ (0,1) is the share of
labor, xij is the amount of commodity j used in the production of good i and zi is the idiosyncratic
productivity shock to sector i. The exponent wij ≥ 0 designates the share of good j in the total
intermediate input use of firms in sector i. In particular, wij = 0 if sector i does not use good j as input
for production.

Acemoglu et al. (2012) [23] assume that the input shares of all sectors add up to one, so ∑j wij = 1.
With the assumption of market clearing, equation (7) can be rewritten (taking the log on both sides) as
equation (3). In this case, labor will be an exogenous variable, and β1 6= β2 would mean changes in the
Cobb-Douglas parameter over time.

3.2. Cigarette Sales

Baltagi and Li (2004) [24] estimate a demand model for cigarettes based on a panel from 46 U.S.
states and defining W based on the neighboring states:

log(Cit) = β1log(Pit) + β2log(Yit) + ρ
N

∑
j=1

wijlog(Cjt) + εit (8)

where Cit is real per capita sales of cigarettes by persons of smoking age (14 years and older). This is
measured in packs of cigarettes per capita. Pit is the average retail price of a pack of cigarettes measured
in real terms. Yit is real per capita disposable income. The spatial autocorrelation parameter shows the
dependence of cigarette sales in the neighboring states. The tax policy on per packet cigarette differs
by states, and this leads to substantial cross-state sales. However, over time, tax per packet has become
more homogeneous, and hence, one could expect the parameter ρ to change over time. By testing the
hypothesis that ρ1 = ρ2 against the alternative hypothesis of ρ1 6= ρ2, we can check if the dependence
on neighboring states has changed over time.

3.3. Budget Spillovers

Case et al. (1993) [21] showed that the U.S. states’ budget expenditure depends on the spending
of similar states:

Git = Xitβ + ρ
N

∑
j=1

wijGjt + εit (9)

where Git is the per capita real government expenditure of state i in year t, Xit includes relevant
control variables, income and demographic and wij > 0 if a state is the “neighbor” of another state.
Case et al. (1993) [21] define “neighbor” in three different ways in the paper: (1) neighbors in location;
(2) states having similar income and (3) states having similar racial composition. They found that if
the neighboring state increases its budget spending by a dollar, then the state increases its budget
expenditure by 70 cents. Policies have changed over the years, and one might be interested in testing if
the spillover effect remains the same.
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3.4. Other Network Motivations

In many of the network studies, the impact of the network is usually estimated by including Wy
in the model, where W is the weighting matrix defining the network and y is the variable of concern.
For example, a weighted average of the math test scores of students sitting beside student i determines
student i’s test score.

With increasing network data availability, we could have repeated samples from such network
experiments and then be curious to know how the impact of the network changes over time.
Our structural break test could be used in this respect.

4. Test

In this section, we describe the test statistic. The spatial lag model is given by:

yit = xitβt + ρt

N

∑
j=1

wijyjt + εit (10)

where εit ∼ N(0, σ2
εit). We want to test the null hypothesis:

H0 : ρ1 = .... = ρT and β1 = ... = βT and σ2
εi1 = ... = σ2

εiT
against the alternative
H1 : β1 = ... = βT and σ2

εi1 = ... = σ2
εiT , but there is an integer k0, 1 < k0 < T,

such that ρ1 = .... = ρk0 6= ρk0+1 = .... = ρT .

Rewriting the panel model with a change point at k0 in the parameter ρ,

yit =


xitβ + ρ1

N
∑

j=1
wijyjt + εit for t = 1, ..., ko,

xitβ + ρ2
N
∑

j=1
wijyjt + εit for t = ko + 1, ..., T

(11)

where ρ1 6= ρ2 means there is a change at an unknown date k0. The problem can be described as testing
ρ1 = ρ2 against ρ1 6= ρ2.

Let us write twice the likelihood ratio as

2Λk = 2(lnLk(ρ̂k, β̂k, σ̂2
k ) + lnL∗k (ρ̂

∗
k , β̂k, σ̂2

k )− lnLT(ρ̂T , β̂T , σ̂2
T)), (12)

where

• lnLk(ρ̂k, β̂k, σ̂2
k ) is the log-likelihood defined for the sample that includes the observations t = 1, .., k

• lnL∗k (ρ̂
∗
k , β̂k, σ̂2

k ) is the log-likelihood defined for the sample that includes the observations
t = k + 1, ..., T

• lnLT(ρ̂T , β̂T , σ̂2
T) is the log-likelihood defined for the sample that includes the observations

t = 1, ..., T

As k0 is unknown, we use a maximally selected likelihood ratio and reject H0 if

Zt = max
[Tu]≤k≤[T(1−u)]

2Λk (13)

is large, where 0 < u < 1/2, typically a small number is the trimming and [.] denotes the largest integer
that is less than or equal to the argument. Therefore, the suggested test is to calculate the difference
between the log-likelihood under an alternative hypothesis and the log-likelihood under null for every
[Tu] < k < [T(1− u)], and then, the test statistic is the maximum difference between them.
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5. Limiting Distribution

In this section, we derive the asymptotic distribution of the test statistic. However, before that we
specify the assumptions.

5.1. Assumptions

Assumptions on WN :

Assumption 1. wij ≥ 0, i 6= j for the off-diagonal elements of the spatial weight matrix WN and its diagonal
elements satisfy wn,ii = 0 for i = 1,..,N.

Assumption 2. WN is uniformly bounded in both row and column sums.

Assumption 3. |IT ⊗ (IN − ρWN)| is invertible for all ρ ∈ P; moreover, P is compact, and ρ0 is in the
interior of P.

Assumptions on X and ε:

Assumption 4. εit are iid across i and t with ε ∼ N(0, σ2
ε INT) and E|εit|4+η < ∞ for some η > 0.

Assumption 5. The matrices 1
Nj ∑N

i=1 ∑
j
t=1 XitX′it and 1

Nj ∑N
i=1 ∑T

t=j+1 XitX′it have minimum eigenvalues
bounded away from zero in probability for large j. Furthermore, it is assumed that E||X4

it|| < ∞.

Assumption on N and T:

Assumption 6. N is a non-decreasing function of T and T → ∞

The following assumption is made to establish the theoretical result of the paper.

Assumption 7. Let GN = WN [IN − ρNWN ]
−1 and 1√

N
(GNXNtβ0)

′ = HNt then HNt ⇒ H∗ and
1

NT (GNXNtβ0)
′(GNXNtβ0)⇒ H∗

′
H∗.

Assumption 1 is a standard normalization assumption in spatial econometrics, while
Assumption 2 is also used in Lee (2004) [22] and Yu et al. (2008) [18]. Assumption 3 guarantees that
Model (4) is valid. Furthermore, compactness is a condition for the theoretical analysis. In empirical
applications, where WN is row-normalized, one just searches over (−1,1). Assumption 4 provides
regularity assumptions for εit. The normality assumption on errors is used to construct the likelihood
function. However, the limit result does not depend on it. The result only needs quasi-maximum
likelihood estimation (QMLE). Assumption 5 makes sure that the regressors are asymptotically
stationary. Assumption 6 allows two cases: (i) N → ∞ as T → ∞, such that N

T → k < ∞, for
k ≥ 0, and (ii) N is fixed as T → ∞.

Theorem 1. Let =⇒ denote weak convergence in the distribution under the Skorokhod topology. Under
Assumptions 1–6 and H0, the limiting distribution of Zt is:

Zt =⇒ sup
s∈(u,1−u)

B2
1(s)

s(1− s)
(14)

where B1(s), is a standard Brownian bridge and u, the trimming parameter, is a small positive number.
For a known break k0:

Zt
D−→ χ2(1) (15)
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Proof of Theorem 1. To prove the result, we first take a Taylor approximation of 2Λk around the
true parameter ρ0. It is found that the approximations involve partial sums of Gaussian random
vectors that are independently and identically distributed. Using results from the maximum likelihood
estimation of the spatial panel model, we obtain uniform convergence to Wiener processes. As a
next step, the partials sums are manipulated to obtain a Brownian bridge distribution. For a fixed k,
it is then easy to show that the asymptotic distribution is chi-square. The detailed proof is provided
in the Appendix A.

The intuition as to why the asymptotic distribution from the univariate time series test
(Cörgö and Horváth (1997) [25]) is still valid in this case is because the spatial dependence is contained
in time; the dependent variable of unit i only depends on the contemporaneous dependent variable
of the neighboring units. Therefore, the endogeneity does not spread over time, and hence, the
distribution is similar to the one found in the univariate time series case.

There is an explicit form of the distribution function of the limit random variable. The critical
values are provided in Kiefer (1959) [26] (p. 438). Some of the relevant critical values are for size = 10%,
1.4978; for size = 5%, 1.8444 and for size = 1%, it is 2.649 for a 5% trimming.

6. Estimation

Following evidence against the null hypothesis, it is important to determine the location of the
break date. The proposed estimator of the break date is the one that maximizes the likelihood under
the alternative hypothesis,

k̂ = arg max
k

lnLA (16)

where lnLA is the log likelihood under the alternative defined as: lnLA = lnLk + lnL∗k where

lnLk = −
Nk
2

ln2πσ2
ε + kln|IN − ρWN | −

1
2σ2

ε

N

∑
i=1

k

∑
t=1

εitεit

lnL∗k = −N(T− k)
2

ln2πσ2
ε + (T− k)ln|IN − ρWN | −

1
2σ2

ε

N

∑
i=1

T

∑
t=k+1

εitεit

where lnLk is the log-likelihood defined for t = 1, · · · , k and lnL∗k is the log-likelihood for the sample
that includes the observations t = k + 1, · · · , T.

The asymptotic properties of the estimator, including the consistency, rate of convergence and limit
distribution, are currently under investigation. Simulation evidence, presented is Section 7, shows that
the estimator performs very well in small samples in terms of bias and root mean squared error.
The root mean squared error is shown to decrease as the sample size increases, thereby suggesting that
the estimator is indeed consistent.

7. Monte Carlo Results

To evaluate the finite sample performance of the LR test and the performance of the estimator,
this section reports the results of a limited set of sampling experiments. All results reported are for
1000 simulations. We consider the data generating process:

yit =


1 + xit + 0.6

N
∑

j=1
wijyjt + εit pre-break

1 + xit + ρ2
N
∑

j=1
wijyjt + εit post-break

(17)

where xit from N(0, 1) and εit from N(0, 1.3).
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We first look into the power of the proposed test. Let ρ1 = 0.6, and the actual break date is
k0 = T/2 in each of the cases. We find that the test has high power even with N and T = 50, as seen in
Table 1. The power increases with increases in N and/or T (see Table 2).

Table 1. Power of the test: I.

N T Rho2 Frequency of Rejection

50 50 0.7 0.957
50 50 0.65 0.337
50 50 0.55 0.263
50 50 0.5 0.807
50 50 −0.6 1

Table 2. Power of the test: II.

N T Rho2 Frequency of Rejection

50 100 0.65 0.657
50 100 0.55 0.551
50 200 0.65 0.932
50 200 0.55 0.881

100 50 0.65 0.515
100 50 0.55 0.401
100 100 0.65 0.852
100 100 0.55 0.741
100 200 0.65 0.989
100 200 0.55 0.971

Next, we look into graphical comparisons between empirical and asymptotic distributions of the
test presented in Figure 1. The continuous lines are the asymptotic distributions, and the dotted lines
are the empirical CDF. It is found that even with a small T, there is no size distortion, and the empirical
distribution matches closely the asymptotic distribution. As T increases, the two distributions overlap.

For a known break date, the asymptotic distribution is chi-square with one degree of freedom.
The graphical comparison presented in Figure 2 shows that even with N = 50, T = 50, with a known
break date, the empirical distribution is very close to the asymptotic chi-square distribution.

(a) N = 50, T = 50

Figure 1. Cont.
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(b) N = 200, T = 200

(c) N = 50, T = 500

(d) N = 500, T = 500

Figure 1. Emprical versus Asymptotic Distribution of the test.
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Figure 2. CDF plot for empirical distribution with a known break.

Next, we compare the performance of the break-date estimator (see Table 3). The bias is almost
negligible. The root mean square decreases with increases in N. With increases in T, the standard
deviation does not go down. This is a well-known result in the univariate time series literature: only
the break fraction can be consistently estimated, not the break date.

Furthermore, we make a quick comparison with the ordinary least squares residuals-based
method (see Table 4), with the estimator defined by

k̂ = arg min
1≤k≤T

SSR(k) (18)

Here, SSR(k) is the sum of squared residuals of the model under the alternative assuming a break
at date k. The bias is comparable in the two cases, but the standard deviation and root mean square are
higher for the OLS residual-based estimate of break date.

Table 3. Estimator performance: likelihood method.

Rho1 Rho2 N T Break Date Bias SD RMSE

0.6 0.7 50 50 25 0.1 1.01 1.01
0.6 0.7 50 100 50 0.08 1.16 1.16
0.6 0.7 50 200 100 0.11 1.1 1.1

0.6 0.7 50 50 25 0.1 1.01 1.01
0.6 0.7 100 50 25 0.04 0.67 0.67
0.6 0.7 200 50 25 0.01 0.23 0.23

0.6 0.7 50 50 25 0.1 1.01 1.01
0.6 0.7 100 100 50 0.06 0.52 0.53

0.6 0.65 50 50 25 0.35 5.77 5.78
0.6 0.55 50 50 25 0.16 6.99 6.99
0.6 −0.6 50 50 25 0 0 0

Looking at the tables closely, an interesting pattern is observed: there is an asymmetry in the
behavior of the estimator and the power of the test. When ρ2 = 0.55, the power of the test is lower
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compared to that when ρ2 = 0.65. Similarly, the break date estimator has a lower standard deviation
and root mean square when the post-break parameter is increasing (ρ2 = 0.65) as compared to a
comparable reduction in the post-break parameter (ρ2 = 0.55). An explanation for such behavior could
be that, when the post-break parameter is increasing (ρ2 = 0.65), there is a higher signal of spatial
dependence. This leads to reduction in the variance and makes it easier to assess whether a break
is present and locate it. However, when the post-break parameter is comparably lower (ρ2 = 0.55),
the signal is lower, giving rise to more variation and making it more difficult to assess whether a break
is present and to locate it.

Table 4. Estimator performance: OLS residuals.

Rho1 Rho2 N T Break Date Bias SD RMSE

0.6 0.7 50 50 25 −0.2 2.53 2.54
0.6 0.7 50 100 50 −0.31 2.01 2.03
0.6 0.7 50 200 100 −0.36 1.85 1.88

0.6 0.7 50 50 25 −0.2 2.53 2.54
0.6 0.7 100 50 25 -0.14 1.17 1.18
0.6 0.7 200 50 25 −0.09 0.49 0.5

0.6 0.7 50 50 25 −0.2 2.53 2.54
0.6 0.7 100 100 50 −0.22 1.09 1.11

0.6 0.65 50 50 25 −0.51 8.95 8.96
0.6 0.55 50 50 25 −0.03 9.8 9.8
0.6 −0.6 50 50 25 0 0 0

The proposed likelihood-based estimator performs well in a finite sample. As N increases, the root
mean square error decreases, suggesting that the estimator is consistent.

8. Budget Spillovers

Case et al. (1993) [21] showed how a U.S. state’s budget expenditure depends on the spending of
similar states. Quoting Arkansas state Senator Doug Brandon (1989) 2 describing his state’s budgetary
policy as

“We do everything everyone else does.”

The proposed sup LR test is used to check the hypothesis that a state’s dependence on another’s
budget remained the same in the U.S. or has changed over time. The data consists of an annual panel
of U.S. states from 1960–2011. All dollar figures are calculated on a per capita basis and deflated using
the GDP deflator (the base year being 2009). The dependent variable is the government expenditure
of state i in the year t (Git). The budget expenditure is the sum of the direct spending of state and
local governments. The variables included in Xit other than the intercept are: the real per-capita
personal income (Y), income squared (Y2), real per capita total intergovernmental federal revenue to
state and local governments (F), population density (Popden), proportion of the population at least
65 years old (Pop65), proportion of the population between five and 14 years old (Pop5to14) and
proportion of the population that is black (Popblack). The income and revenue are the resources the
state government can use. The square of the income picks up possible non-linear effects of changing
resources. The population density captures the possibility that there are potential congestion effects
and scale economies in the provision of state and local government services. States with different age
and racial structures may have different demands for publicly-provided goods. Hence, demographic
variables are included.

2 Applebome, P. (1989), “Governors in the South Seek to Lift Their States”, New York Times, 12 Feb, L26.
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The model can be written as:

Git = Xitβ + ρ
N

∑
j=1

wijGjt + εit (19)

where X includes all of the control variables. We consider T = 52 from 1960–2011 and N = 49 states
in the U.S. Case et al. (1993) [21] use three different ways to define the weight matrix. We define the
elements of the weight matrix as wij = (1/|Yi −Yj|)/Si, where Yk is the mean income over the sample
period and Si is the sum ∑j 1/|Yi −Yj|. According to this definition of the weight matrix, rich states
are neighbors to rich states, and poor states are neighbors to poor states. The full model (1960–2011)
estimation results are presented in Table 5.

Table 5. Full model estimate.

Coefficient Asymptotic t-Stat p-Value

Intercept 0.6974 0.2143 0.8303
Pop65 −0.4042 -4.8989 0

Pop5to14 −0.0589 −0.5739 0.566
Popblack −0.0562 −4.3041 0
Popden −0.0003 −2.2139 0.0268

F 1.7352 58.2555 0
Y 0.1301 14.289 0
Y2 0 1.622 0.1048

W × G 0.122 7.3024 0

All of the test results are based on tests with size 5%. We reject the null hypothesis of no break,
implying evidence for a break. The break date is estimated at 1982. The pre-break budget spillover
coefficient is estimated as 0.0229, while the post-break budget spillover coefficient is estimated as
0.1056. As to why there might be a break, there could be two reasons: (1) in 1981, Ronald Reagan
became the president of the United States and advocated many different policies across the U.S. states
(also known as Reagonomics); (2) the number of Democratic governors in the U.S. started decreasing
post-1983, suggesting synchronized Republican economic policies in different states.

To differentiate between trend behaviors and fluctuations, a Hodrick-Prescott filter is applied
on all of the dollar value variables to closely look into idiosyncratic budget spillovers in the U.S.
states. We reject the null hypothesis of no break. The break date is then estimated to be in 1977. The
pre-break ρ coefficient is 0.5718, and the post-break ρ coefficient is 0.3746. Firstly, this suggests that the
idiosyncrasy in budget expenditure for a state depends on “similarly”-situated states. Secondly, the
dependence goes down post-break. This can be attributed to more power given to the governors in the
1980s. For the federal government (central planner), the budget policies for each state will be similar;
compared to individual governors in each state who will adjust the budget expenditures for their states
based on individual needs. Therefore, overall, even though the spillovers increase (capturing overall
trend in the economy), the budget spillovers in the case of idiosyncracies reduce over time.

9. Conclusions

We consider the problem of structural break in the spatial dependence parameter in a panel model
and provide a likelihood ratio test.

We first describe the spatial panel model and the interpretation of the spatial lag or spatial
autoregressive parameter. Next we motivate the problem of structural break in such parameter.
The sup LR test statistic is proposed, and under large T, the limiting distribution is derived. The test is
easy to implement, and the critical values can be analytically obtained.

In case there is evidence to reject the null hypothesis, we propose a break date estimator based
on the argument that maximizes the likelihood ratio. The finite sample properties of the test and the



Econometrics 2017, 5, 12 14 of 17

break-date estimator are provided. The Monte Carlo simulations show that the test has good power
even in small samples. The estimator of the break date shows negligible bias, and the root mean square
decreases with increases in N, suggesting a consistent break-date estimator for a panel model.

We then consider the problem of budget spillovers across the U.S. states and the change in the
spatial dependence over time. The test rejects the null hypothesis of no break in budget spillovers
for (1) the spillover in the overall budget expenditure of the U.S. states and (2) the spillover in the
fluctuations of budget expenditure. The overall trend of spatial dependence in budget expenditure
is found to have increased post-break, but the idiosyncrasies in budget expenditure are less spatially
dependent post-break.

The following extensions to the paper are being considered: (1) the asymptotic limit distribution
of the test statistic for large N; (2) proving the consistency of the break date estimator and deriving the
limiting distribution; and (3) extending the test to multiple structural breaks.
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Appendix A. Proof of Theorem

Let θ = (ρ, β, σ2
ε ). Then,

lnLT(θ) = −
NT
2

ln2πσ2
ε + Tln|IN − ρWN | −

1
2σ2

ε

N

∑
i=1

T

∑
t=1

ε′itεit

lnLk(θ) = −
Nk
2

ln2πσ2
ε + kln|IN − ρWN | −

1
2σ2

ε

N

∑
i=1

k

∑
t=1

ε′itεit

lnL∗k (θ) = −
N(T − k)

2
ln2πσ2

ε + (T − k)ln|IN − ρWN | −
1

2σ2
ε

N

∑
i=1

T

∑
t=k+1

ε′itεit

Denoting lnLT(θ) = Lc, lnLk(θ) = L1 and lnL∗k (θ) = L2; furthermore, defining ρ̂k as the MLE
estimate for the pre-break regime under the alternative, ρ̂∗k as the MLE estimate for the post-break
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regime under the alternative and ρ̂T as the MLE estimate under the null. Taking a Taylor expansion of
2[L1 + L2 − Lc] around the true value ρ0 and denoting that by Rk

Rk = 2[L1(ρ0) + L2(ρ0)− Lc(ρ0)

+ L′1(ρ0)(ρ̂k − ρ0) +
L′′1 (ρ0)

2
(ρ̂k − ρ0)

2

+ L′2(ρ0)(ρ̂
∗
k − ρ0) +

L′′2 (ρ0)

2
(ρ̂∗k − ρ0)

2

− L′c(ρ0)(ρ̂T − ρ0) +
L′′c (ρ0)

2
(ρ̂T − ρ0)

2] + op(1)

Now, L1(ρ0) + L2(ρ0) = Lc(ρ0). Therefore, Rk can be rewritten as:

Rk = [2L′1(ρ0)(ρ̂k − ρ0) + L′′1 (ρ0)(ρ̂k − ρ0)
2

+ 2L′2(ρ0)(ρ̂
∗
k − ρ0) + L′′2 (ρ0)(ρ̂

∗
k − ρ0)

2

− 2L′c(ρ0)(ρ̂T − ρ0) + L′′c (ρ0)(ρ̂T − ρ0)
2] + op(1)

From Lee (2004) [22] and Yu et al. (2008) [18] under Assumptions 1–6

√
NT(ρ̂T − ρ0) =

[
− 1

NT
L′′c (ρ0)

]−1 1√
NT

L′c(ρ0) + op(1)

√
Nk(ρ̂k − ρ0) =

[
− 1

Nk
L′′1 (ρ0)

]−1 1√
Nk

L′1(ρ0) + op(1)√
N(T − k)(ρ̂∗k − ρ0) =

[
− 1

N(T − k)
L′′2 (ρ0)

]−1 1√
N(T − k)

L′2(ρ0) + op(1)

Using these relationships and rearranging the terms, Rk can be rewritten as:

Rk =
1√
Nk

L′1(ρ0)
[
− 1

Nk
L′′1 (ρ0)

]−1 1√
Nk

L′1(ρ0)

+
1√

N(T − k)
L′2(ρ0)

[
− 1

N(T − k)
L′′2 (ρ0)

]−1 1√
N(T − k)

L′2(ρ0)

− 1√
NT

L′c(ρ0)
[
− 1

NT
L′′c (ρ0)

]−1 1√
NT

L′c(ρ0) + op(1)

Let GN = WN [IN − ρNWN ]
−1, then

− 1
NT

L′′c (ρ0) =
1

σ2
ε0

T

∑
t=1

(
(WNYNt)WNYNt + tr(G2

N)
)
+ op(1)

where WNYNt = GN XNtβ0 + GNεNt.
Let, 1√

N
(GN XNtβ0)

′ = HNt. Then, by Assumption 7, HNt ⇒ H∗ and

− 1
NT L′′c (ρ0) =

1
NT (GN XNtβ0)

′(GN XNtβ0)⇒ H∗
′
H∗.

Furthermore,

1√
NT

L′c(ρ0) =
1

σ2
ε0

√
NT

T

∑
t=1

[
(GN XNtβ0)

′εNt
]
+

1
σ2

ε0

√
NT

T

∑
t=1

[
ε′NtG

′
NεNt − σ2

ε0
trGN

]
+ op(1)
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1√
NT

T

∑
t=1

[
ε′NtG

′
NεNt − σ2

ε0
trGN

]
= op(1)

1√
NT

T

∑
t=1

[
(GN XNtβ0)

′εNt
]
= Op(1)

Now, 1√
T ∑T

t=1
[ 1√

N
(GN XNtβ0)

′εNt
]
= T−1/2 ∑T

t=1 HNtεNt. As T → ∞, by the FCLT, we get:

1√
T

T

∑
t=1

HNtεNt ⇒ H∗W(1)

where W(t) is a standard Wiener process. Thus, if we let lim
T→∞

k
T = λ, then by the FCLT,

1√
k

k

∑
t=1

HNtεNt ⇒
H∗W(λ)√

λ

1√
T − k

T

∑
t=k+1

HNtεNt ⇒
H∗(W(1)−W(λ))√

1− λ

Hence, we get:

Rk ⇒
H∗W(λ)(H∗)−1

√
λ

H∗W(λ)(H∗)−1
√

λ

+
H∗(W(1)−W(λ))(H∗)−1

√
1− λ

H∗(W(1)−W(λ))(H∗)−1
√

1− λ

− H∗W(1)(H∗)−1H∗W(1)(H∗)−1

Let

R(λ) ≡ 1
λ
[W(λ)]2 +

1
1− λ

[W(1)−W(λ)]2 − [W(1)]2 =
[λW(1)−W(λ)]2

λ(1− λ)

Rearranging the terms, we get:

sup
λ∈(u,1−u)

Rk ⇒ sup
λ∈(u,1−u)

R(λ)

or sup
λ∈(u,1−u)

Rk ⇒ sup
λ∈(u,1−u)

B2
1(λ)

λ(1− λ)

where B1(λ) = [λW(1)−W(λ)] is a Brownian bridge.
For known k0, λ0 = k0

T , the limit distribution of R(λ0) is χ2
1.
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