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Supplementary Materials: Higher Order Bias
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Appendix A. Technical Lemmas and Proofs

This Appendix provides a series of lemmas and their proofs that are useful to derive the main
results presented in the paper.

Appendix A.1. Some Preliminary Lemmas

Lemma A.1. (Uniform Weak Convergence Theorem with Compactness) Suppose (i) {z;:i=1,...,n}
are iid; (i) m(z,0) is continuous at each 6 € © for all z € Z with probability one;
(iii) E [supgeg ||m(zi,0)||] < oo; (iv) © is compact. Then, E [||m(z;,0)|)] is continuous for all 6 € © and

SUPyce H%E?:l m(z;,0) — E [m (z,-,G)]H = o0p(1).

Proof. This result is implied by Lemma 1 of Tauchen (1985) [1] or can be verified by showing
the stochastic equicontinuity of {%Z?:l (m(z;,0) —E[m(z;,0)]):n> 1} for 0 € © as in
Newey (1991) [2] observing that E [supg g ||7(z;,0)||] < oo is stronger than the Lipschitz condition
used in Newey (1991) [2]. The continuity of E[||m(z;,0)||] is obtained from the Dominated
Convergence theorem with the dominating function supg g || (z;,6)|| < co. Here we provide an
alternative proof for the stochastic equicontinuity. We use the following definition of the stochastic
equicontinuity:

Definition A.1. {M,(0)|n > 1} is stochastically equicontinuous on ® if Ve > 0 35 > 0 such that

lim P (sup sup ||Ma(8') — Mu(0)|| > ¢ | <e.
n=re0 \ 9€® 0'eB(8,0)

Now define M,(0) = %Z?:l m(z;,0) — E[m(z;,0)] and Y, = supy.e SUPycg(,0)
||m (z;,0") —m (z;,0)||. Note E[Y;s] < 2E [sup,eg ||m(zi,0)|]] < oo by Condition (iii). We claim
that E[Yjs] — 0 as 6 — 0 by noting Y;s — 0 as 6 — 0 with probability one, since Condition
(ii) and (iv) implies uniform continuity. Furthermore, Yj; < 2sup,_q ||m(z;,0)| V6 > 0 and
E [supyeg ||m(zi,0)]|] < co by Condition (iii) and hence from the dominated convergence theorem,
the claim follows. Now let ¢ > 0, then

limy, ;0P (Supee@) SUPyep(g,6) | Mn(0') — Mu(0)]| > 8) < limy 0P (% i1 (Yis + E[Yis]) > 8)
< TimyeoF [% o (Yis+ E[Ym])} /e =2E[Y;s)/e — 0asd — 0,

where the first inequality follows by Triangle inequality, the second holds by Markov inequality,
and the last equality holds by E[Y;s] — 0 as 6 — 0. This proves M,(0) is stochastically
equicontinuous and the uniform convergence follows noting Condition (iii) is sufficient for the
pointwise weak convergence. This is proved when © is bounded (not necessarily compact) in the
proof of Lemma A.2. O

Lemma A.2. (Uniform Weak Convergence Theorem without Compactness) Suppose (i) {z; :i =1,...,n} are
iid; (ii) m(z;, 0) satisfies the Lipschitz condition in 6 as ||m(z;,01) — m(z;,02)| < B(z;) |61 — 62]|, V61,02 €
© for some function B(-): Z — Rand E [B(-)**] < oo; (iii) E {sup%@ Hm(zi,6)||2+5} < oo for some
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d > 0; (iv) O is bounded. Then, ﬁ Y4 (m(z;,0) — E[m(z;,0)]) is stochastically equicontinuous and thus

SuPyco ||3 iy m (zi,0) — E [m (23,0)] | = 0,(1).

Proof. From condition (ii), we note that m(-,-) belongs to Type II class in Andrews (1994) [3] with
envelopes given by max(sup,.q ||7(+,0)||, B(-)) and hence satisfies Pollard’s entropy condition by
Theorem 2 in Andrews (1994) [3], which is Assumption A of Theorem 1 in Andrews (1994) [3].
Condition (iii) implies Assumption B of Theorem 1 in Andrews (1994) [3]. Condition (i) is stronger
than Assumption C for Theorem 1 in Andrews (1994) [3] and hence stochastic equicontinuity
follows. Now noting Condition (iii) is sufficient for pointwise weak convergences of 1 Y | m (z;,6)
to E[m(z;,0)] for all & € © and combining this with the stochastic equicontinuity result, we
have the uniform convergence as assuming © is bounded. To be more precise, first, note that the
stochastic equicontinuity of % " (m(z;,0) — E[m(z;,0)]) implies the stochastic equicontinuity of
Ly (m(z;,0) — E[m(z;,0)]). Now define v,(8) = 1Y, (m(z;,6) — E[m(z;,0)]) and lete > 0
and take a ¢ such that limy,_.P (supge@ SUPy ¢ (9,0 |on(0") — va(0)] > E) < &. Such J exists by
the definition of the stochastic equicontinuity. Now note that from the boundedness of ®, we can
construct a finite cover of @ as {B(0;,9) : j = 1,...,]}. Then it follows

limy oo P (SUpg g ||vn(07)] > 2¢)
< limy 0P ( max;<; (supeleB(ejl(s) |on(8") — 0u(6)) | + HU”(QJ')H) > 28)
< limy o P max; <y SUPy cp (g, 4) an(G’) — vn(Gj)|| > £> + limy,—yeo P (max]-g ||vn(6]-)|| > s)
< limy 0P (supyeg SUPyr < 5(g,0) l02(8") — vn(8)] > s) + limy—y00 P (maxi<; an(G]«)H >¢) <g,
where the first inequality is from Triangle Inequality and by the construction of {B(0;,9) : j =

1,...,]}. The last inequality comes from the stochastic equicontinuity of v,(0) and the pointwise
weak convergence of v, (0) and hence the uniform convergence result follows. [

In addition to the assumption of 0 being consistent, we provides two alternative primitive
conditions that satisfy the higher level conditions used in Lemma 1. The first possible set of primitive
conditions is

Assumption A.1. (i) {z;}} are iid; (ii) s(z,0) is k-times continuously differentiable in a neighborhood of
8o, denoted by O for all z € Z, x > 3 with probability one; (iii) E [s,upee(90 1V¥s(z,0) ||} < oo, v =
{0,1,2,...x}, x > 3; (iv) © is compact; (v) Oy is in the interior of ® and is the only 0 satisfying (1).

Assumption A.2. E [||Vvs(z, 90)||2} <oo,v=1{0,1,2,...x},x > 3.
Assumption A.3. E [Vs(z,6))] is nonsingular.
Instead of Assumption A.1, alternatively we may assume
Assumption A4. (i) {z;}}, are iid; (i) VVs(z,0) satisfies the Lipschitz condition in 0 as
IVYs(z,61) — VYs(z,07)|| < By(z) ||01 — 62| V61,6, € Op

for some function By(+): Z — Rand E [By(-)*™°] < o0, v ={0,1,2,...x} in a neighborhood of 6y, denoted
by Oq for all z € Z, x > 3 with probability one; (iii) E {supee(90 ||Vvs(z,6)||2+5} < oofor3d >0,
v=140,1,2,...x}, xk > 3; (iv) © is bounded; (v) 6y is in the interior of © and is the only 6 satisfying (1).
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Lemma A.3. (Local Uniform Weak Convergence wz’th Compactness)
Suppose Assumption A.1 holds, then we have ' 1 Vs (2;,0) — E[VYs (z;,60)] H op(1) for 6 = 6y +

0p(1)and v € {0,1,2,...,x}.

Proof. Consider

n

L Vs (2;,0) — E[V' (%%)]H
< r o Vs (=08) - [vva,\MWEvv@un E[V"s (21, 60)] |
Ssupmx%Ha V75 (24,0) = E [V (z.0)] | + [[E [9 (2.8)] — E Vs (2, 00)] .

We have supy.g, |11 Y7 Vs (z2;,0) — E[VYs(2;,0)] || = 0,(1) from Lemma A.1 by letting m(z,0) =
Vs (z,6) and noting Assumptlon A1 satisfies all the conditions in Lemma A.1 for 6 € ©®p. The
continuity of E[VYs(z;,0)] at 6y (by the Dominated Convergence theorem with the dominating

function supy g [|Vs(z;,0)|) implies that || E [V¥s (2;,0)] — E[V's (z;,60)]|| = 0p(1), since § = 6 +
0p(1) and hence from this and the result above, it follows that H Ly VU (z;,0) — E[VUs (z;,60)] H =
0p(1). O

Lemma A.4. (Local Uniform Weak Convergence without Compactness)
Under Assumption A.4, we have H% 1 VY (z;,0) — E[VVs (z, 60)]H = 0p(1) for 0 = 0y + 0p(1) and
ve{0,1,2,...,x}.

Proof. Again noting Assumption A.4 satisfies all the conditions in Lemma A.2 for § € ©, we
have the uniform convergence and the dominated convergence theorem assures the continuity of
E[VVs(z;,0)] for 6 € ©p and hence the result follows. O

Now we show that conditions (i)-(viii) in Lemma 1 are satisfied under Assumption A.1-A.3 or
Assumption A.4, A.2-A.3. Condition (i) and (iia) are directly assumed. Condition (iib) is by the
dominated convergence theorem with the dominating function given by supy.q, I V3s(z,0) | under
Condition (i), (iia), and E [supge@O H V3s(z,0) ||] < o0. Condition (iii) holds from Lemma A.3 or A.4.

Condition (iv) holds by the stochastic equicontinuity of ﬁ Yy (V25 (z;,0) — E[V?s(z;,0)]) for
0 € @y as discussed in A.2 with m(z,0) = V2s(z,0). Condition (iv) is used to show that

(3 50 ¥ (28) = 2 T, Ps ot ) (5 00) @ ((-0))) = 0,727

in the proof of Lemma 1. Alternatively, it can be shown as

| GEia ¥ (200) 32 Pt )) (0-00) @ ((0-0)) )|
% ) [7- oo
= [|E [¥3s (z1,00)] +0p(D)]| |0 — 0| [P - 60H2 = 0,(n"3/2),

where 5 (5) lies between 0 (@) and 6y noting 6 — b = Op ﬁ) The second last equality is
obtained from Lemma A.3 under Assumption A.1. This implies that Condition (iv) can be replaced
with another local uniform convergence condition H% 1 V3 (24,0) — E [V (2;,60)] H = 0p(1) for
6 = 6y + 0p(1) under Assumption A.1. Condition (v) is assumed in Assumption A.3. Condition
(vi)-(viii) are by CLT provided that E [HVUS(Z, 90)||2} < oo, v = {0,1,2} respectively, which are
satisfied under Assumption A.2.
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Now to establish additional preliminary lemmas, we need a stronger set of conditions as
Assumption 1-2 or 3-2. Note that Assumption 1-2 implies Assumption A.1-A.3 and Assumption A .4 is
weaker than Assumption 3. First, under Assumption 1 or 3, we have the uniform weak convergences
(U-WCON) for the normalized sums of functions in VVs(z,0),v = {0,1,2,...x} up to the second
order as in a neighborhood of 6, denoted by ®g and hence it is not difficult to show that

Lemma A.5. Under Assumption 1 or 3, we have

1
sup | Y 1915 25, 0)19°%s (20l ~ EIIVs (2,0l IV (=5 0) ]| = 0p(1), (4D
€

forvy,vp € {0,1,2,...,k},k > 4

Proof. Provided Assumption 1 holds, (Al) is obtained by applying the Uniform Convergence
theorem of Lemma A.1 by letting m(z,0) = || VV1s (2;,0)] || V'2s (z;,0)]|. Noting

2
|

v . 2 v, .
E [Sup%@o vals (Zi/f))H HVUZS (Zi/G)H} <E {Supge@() [[V¥s(z;,0)]| ;HV 25(z;,0) )

< E [supgee, 19715 (2:,0)|%] /2 + E [supgeq, | V25 (21,0)°] /2 < oo,

which is satisfied by Assumption 1 (iii), all the conditions for Lemma A.1 are trivially satisfied.

Alternatively under Assumption 3, we obtain (A1) directly from Theorem 1-3 in Andrews
(1994) [3], which is a quite general result and hence we rather provide a simple proof for our specific
purpose. Noting other conditions for Lemma A.2 are trivially satisfied under Assumption 3, the
uniform convergence result of (A1) is obtained upon verifying the Lipschitz condition for V8;,6, € ©
as

1915 (2,00) | 11725 (2, 01)]| — [[ V1 (2, 62)]| [ V725(z, 62)
< (19715 (=, 00| [V%25(2,00) | — 1715 (2, 00)|| [ V*2s(z, 62)]

+ 117715 (2, 00)[ [ V°25(2, 82) | — V915 (2, 02)|| [ V*2s (=, 62)]
= Vs (2,00) | [1V"2s(z,00) | — V725 (2, 62) [ + V725 (2, 62) | [ V7152, 60) | — [|V¥15(z, 62)]]
< V15 (2,01) | Buy (2) 1161 — ]| + [ V25 (2, 65)]| B, (2) 61 — 02|
< SuPgee V715 (2,0) | Boy (2) 161 — Ba]] + supgeo V725 (2,0)]] By (2) 61 — 2]
= (suPpee 1715 (2,0)|| Boy (2) + supgee V25 (2,0) | Boy (2)) [161 — 62| = M(z) |63 — 6],

where the first inequality is by Triangle Inequality and the second inequality is obtained by the
Lipschitz conditions for VVs(z, ) and V25(z, 0), since for v = vy, vy, ||| VVs(z,601) || — || VUs(z,602) ]| <
|Vs(z,01) — Vs(z,6,)| by Triangle Inequality. Now we need to verify that E [M(z)?*?] < oo, which
is true, since

E [supgeo V%5 (2,0)|*"* By, (2)*°| < E [ (supgeq V%75 (z,0) |71 + By, (2)+%) /2] < oo (A3)

for (vg,vp) € {(v1,02),(v2,v1)} under E{sup%@”V"s (z,0)]] < oo for v = vy, vy,

E [Bvl (z)4+5’} < c0,and E [sz (z)4+5/} < cowithd' =26, O

4+5’}

Lemma A.6. (Consistency of 8°) Suppose 0y is the unique solution of (1) and 8  solves (7) and further
suppose sUpg.g ||+ L1, 5(z1,0) — E[s(z,0)] H =0, (1) and sup, g ||C(0)|| = Op(1), then 8" is a consistent
estimator of 6.




Econometrics 2016, 4, 48; d0i:10.3390/econometrics4040048 S5 of S20

Proof. Lete > 0. Then, there exists § > 0 such that whenever 8 € ®\B(6y, ¢), we have || E[s(z;,0)]]| >
0 provided that 6 is the unique solution of (1). This implies

Pr( 0 —QOH >£) <Pr(HE 21,9 )‘
< Pr ’E 5(zi,07)] — 1T 5(2;,0 H+

< Pr (supgee [[Els(zi ﬂ Ly 5(z0,0) | + 1 supgeo 16(0) | > &)
= Pr (0p(1) > 6) —

>4)

>@_mq5zﬁn 1yn s(z,0) — 1e(0")
0

@] >

where the second inequality is by Triangle Inequality and the last equality is obtained provided that
the uniform convergence of 1Y, s(z;,0) to E[s(z,0)] over § € © and sup, g [|C(8)]| = Op(1).
The uniform convergence holds by Lemma A.1 or Lemma A.2 with m(z,0) = s(z,0) provided
that all the conditions in Lemma A.1 or Lemma A.2 are satisfied. The second necessary condition
SUPyce ||€(0)]| = Op(1) is satisfied assuming conditions in Assumption 1-2 or Assumption 3-2 hold
for the whole parameter space ® instead of ®¢ similarly with Lemma A.7. [

Lemma A.7. Under Assumption 1-2 or 3-2 (a) we have ¢(0) = c(6) + 0, (1) uniformly over § € @y C @

and (b) moreover, we have ¢(6y) = c(6p) + Op (ﬁ)
Proof. Lemma A.7 (a)

First we note that c¢(f) is bounded uniformly over § € ©) under Assumption 1 (ii)-(iii)
and Assumption 2.  This is obvious, since we can bound sup,cq, [c(f)|| by sums and
products of supy.e, |Q (0) ], supyeq, I|Vs(zi,0) 1, and Supgeg, 15(2i,0) & using Triangle Inequality,
Cauchy-Schwarz Inequality, and the Dominated Convergence theorem. In what follows, we bound
each term uniformly over § € @ and suppress the sup-norm over 6 € @y otherwise it is noted. Now
for any 0 € O, note

£(6) — c(6)
- 2 (Hz< )G L 10O)s(2,0) & Q0)s(z: 0)) ~ o) FIO)s(z,6) & Q0)s <zi,0>1>><A4>
+ (5 2 [75(,000@)s(a1.0)] - EVs(z1,0)Q(0)s(z0)]) (a5)
Now rewrite (A5) as
%E; [vs(zi,e)é(e)s(zi,e)} — E[Vs(2;,0)Q(6)s(z;,0)]
= Ly [s(ai0)Q0)s(zi,0) — Vs(z:,0)Q(0)s(21,0)] (A6)
Y [Vs(z 0)Q(0)s(zi,0) — E [V(z;, 0)Q(0)s(z:,0)]. (A7)

Then we have for (A6),

Ty [s(en) (Q60) - Q(6)) st 0)] H < Y 95z 0)] sz 0)1]|G06) — (o) | (a8

by Triangle Inequality and Cauchy-Schwarz Inequality. In what follows, again we treat

H(6) (: —@(9)_1) as nonsingular for 6 € ©. This is innocuous, since by Lemma A.1 or A.2 with
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m(z,0) = Vs(z,0) and Assumption 2, with probability approaching to one, H (8) is nonsingular for
6 € ©y. Now note

|06) - 00| (A9)
= |la® (@) -y t) Qe < 1e@ ||| [o®) - ae) | = op)

by the uniform convergence of Q(#) ! to Q(f) ! and Assumption 2 applying the Slutsky theorem.
We have 1Y Vs (z;,0)| ||s(z:,0)|| = Op(1) by (A2) and Lemma A.5 with v; = 1 and v, = 0.

n

Together with (A9), this implies (A6) is 0,(1). Now note we have

E [supyce, || Vs (z:,6) Q(6)s (21,0)]
< E [supgeq, lIs (210 V5 (2 0) [ |Q(O)II| < CE [supgeo lls (z1:0) | s (z:,6) | < oo,

from (A2) and supyg, [|Q(6)]| < oo or Lipschitz condition as

V5 (2,61) Q(61)s(z,61) — Vs (2,62) Q(62)s(z,62) |
< suppea, [Q(O)s(z 0)] Vs (2,61) — Vs (z,6:)|

+ supgeq, QO Vs(2,0)] |15 (2,01) — 5 (2,0)]| +5upyee, |15 (2.0) Ts(z, )] [Q(61) — Q(6)]
< supgeq, Q6] supyco, l15(2,0) B (2) 161 — 0o

+suPace, Q(0) | supsco, I Vs(z0)| Bo(z) oy — 62l

+ suPgeq, [15(2,6) | supgeo, [ V5(20) | (supgeo, [1QON) supgeo, |IVHi(6)] 61 — 6]
= M(2) [}ey 0o,

where the first inequality is obtained by Triangle Inequality and Cauchy-Schwarz Inequality and
the second inequality is obtained by Lipschitz conditions for s(z,0) and Vs(z,60) and since

1Q(61) — Q(B2) [l = 1RO |Q 1 (1) — Q1 (62)]| - [Q(62)]|. In the last equality, we set

M(z) = supycay [Q(6) | supoco, 1520 B1(2) + supseo, |1Q(O)] supaca, Vs(z )1 Bo(2)
+supgeo, [15(2 0) | supgeo, 1 V5(2,0) | (supgee, 11Q(O)])” suppea, VHL(O)]

and we have E[M(z)?*’] < o by a similar argument with (A3) provided that
4+4' 4+¢' 5/

E {supee(90 Is(z,0)]|*" } < oo, E {supee(90 | Vs(z,0)||*" } < oo, E {Bl(z)“"] < oo, and

E {Bo(z)‘“&,} < oo with ¢’ = 24, and also assuming supy.q, [VHi(6)|| < oo. Therefore, we

can apply the Uniform Convergence theorem of Lemma A.1 or Lemma A.2 to (A7) and have

1
n

Z?:l [Vs(z;,0) Q(0)s (z;,0) — E[Vs(z;,0) Q(0)s (zi,G)]]H = 0p(1). (A10)

sup9€®g
From (A6)=0,(1) and (A10), we conclude (A5) is 0,(1) uniformly over § € ©g. Now consider
SuPgce, || F2(6) — Ha(8)|| = 0p(1) (A11)

by the uniform convergence from Lemma A.1 or A.2 with m(z,0) = V2s(z,0) and that

1

- Z?:l s(zi,0)s(z;,0) — E [s(z;,0)s(z;,0)']|| = 0p(1) (A12)
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uniformly over 6 € O by the uniform convergence result of Lemma A.1 with m(z,0) = s(z;,0)s(z;,0)’
provided that E {supe€®0 l|s(zi,6) ||2] < o0 or Lemma A.2 by verifying the Lipschitz condition as

H s(z,01)s(z,601) —s(z,02) s ( H (A13)
< Hs(z 01)s(z,01) —s(z,01)s(z H + H s(z,01)s(z,02) —s(z,02)s(z,6,) H
< 250p s (2,0) s (2, 01) - < (80)] < 25up s (2,0) | Bof2) 61 — ]

by Triangle Inequality and noting that E {sup%@ ||s(z,9)||2+‘5 Bo(z)”‘s} < oo under

E [sup(;e@ ||s(z,9)|\4+5,} < oo and E {Bo(z)‘”y} < oo with §/ = 26. From (A9), (All), and
(A12), it follows that

>(0) (L [Q(0)s 002 QO ,0)])
= Hy(0) (vec( (9) ( "5 (zi,0)5(z;,0) Q(0) ))
= (H2(0) + 0,(1)) (vec ( +op [ (z;,0) s (2,6 }4—0;7(1)) (Q(Q)—i—op(l))/)) (A14)
= H, (6 (vec (Q 0) ( { (z;,0)s(z;,0 D Q(e) ) +0p(1

= Hy(0) (E[Q(6)s (z;,6) © Q(0)s (2;,6)]) + 0p(1),

S Zl/

where the first and the last equality come from vec(gg’') = ¢ ® g for a column vector ¢ and hence
we bound (A4) as 0,(1) uniformly over 6§ € @q. This concludes ¢(0) = c(0) + 0,(1) uniformly over
0@y O

Proof. Lemma A.7 (b)
Note

Vi (Q(60) — Q(60)) = 0,(1) (A15)
by the Slutsky theorem and that

\/ﬁ(ﬁz(eo) Ha(6) ) WZ’ 1( s (zi,00) — [vzs (zi,Go)D =0,(1) (A16)
by the CLT under E[[|V25(z;, 6p)||*] < co and that by the CLT
le 15(2i,00)s(zi,60)" — E [s(z;,00)s(zi,00)'] = Op(1) (A17)
under E [||s(zi,90)s(zi,90)'||2] —E [||s(zi,90)|\4] < 0. We can also apply the CLT to
le 1 1Vs(zi,00) || 1s(zi, 60) | = E[[[Vs(zi, 60) | lIs(zi, 60) (1] + Op(1) (A18)

under (a) E [HVS(ZZ,OO)H IIs(zi,60)]] } < o0 and to

f Y. [Vs(2i,60) Q(60)s(zi,60) — E [V's (i,60) Q(60)s (i, 60)]] = Op(1) (A19)
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under (b) E [||Vs(zi, 60)Q(60)s(z;,6p) ||2} < 0. Both (a) and (b) are satisfied provided that
E [Hs (zi, 90)||4] <ooand E [||vs (zi, 90)||4] < o0, since

E [|[Vs (2i,00) Q(00)s (21, 00)1*] < 1Q(00)I E [IIs (21, 00)I* Vs (=, 60) ]
< C(E[(IIs Gi00) I + 1175 (z:,00)[*) /2] ) < oo
by Cauchy-Schwarz Inequality. Applying the results of (A15), (A16), and (Al17) to (Al4), we can

show that (A4)=0,, (1 / \/ﬁ) for 6 = 6. Similarly, plugging the results of (A15), (A18), and (A19) into
(A7) and (A8), we obtain (A5)=0, (1/+/n) for 6 = 6y and hence we conclude that ¢(6y) = c(6p) +

Op (1/4/n). O

To characterize V¢(6), we introduce some matrix differentiation results consistent with our
notation. We denote a m x n matrix D as (d;;)};, where d;; is the i-th row and the j-th column element
of D. Also we denote a m x k" matrix E as [e;j]}}, where e;; is a 1 x k vector such that

€11 e elknfl
E = [e]y = :

em1 ‘e emk"*

and hence ¢;; = (E; (j_1)k+1, Ei (j—1)k+2, - - -, Ei j.k) by defining E,, , as the u-th row and the v-th column
element of E.

Remark A.1. For k x k matrices A and B, we have V (AB) = AVB+ B'V (A').
Proof. Let C = AB. Then, we have ¢;; = ZL1 a;b;j and hence
VC = [Veij], = {V(lel ailblj)} = [21:1 ailVble + [21:1 bleﬂizL
k
= (aij)k [Vbij], + (bji)f [Vaji], = AVB+B'V (A')
O

Remark A.2. Fora k™ x k" matrix A and a k" x 1 vector b with m,n =0,1,2, ..., we have

V (Ab) = AVb+vec (V'V (A')),

a1

where vec* ((ay,ap,...,a;)) = : and ajisalXx k vector for j = 1,...,k. For completeness, we let
ag

vec (c) = c for a scalar c.

Proof. Letc = Aband note V¢; = Y5, a; Vb + YK, b;Va;. This implies

m kn km k}’l km
Vel = [Zl:l “ilVbl} . T [21:1 bIVﬂiz]l
V[Vanl§
= (a)k, Vb+ : — AVb+ovec’ (b'V (A")).
b/[vajkm]]l{n
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Remark A.3. Moreover, we have V (vec* ()) = vec* (V (+)) by definition of vec*.

Proof. Fora 1l x k™ vector ¢ = (cy,...,cm) with¢;tobeal x kvectorand i = 1,...,m, consider

\Y (UEC* (c))
c1 Ve
=V (vec* ((c1,...,¢m))) =V : = : =vec ((Vey,...,Vem)) = vec (Ve).

Cm Ve

O

Remark A.4. For matrices (including column and row vectors) A and B, we have
V(A®B)=(A®VB)+ (VA& B),

where we define ® for matrices D (m x k") and E (p x q) as

D® E
dienn -+ dpey dygn-1€11 -+ dym-reyg
dllepl ce dllepq dlkn—lepl s dlkn—lepq
dmen -+ dmeryg Aypn-1€11 + - dyyn-1e1g
dmlepl cee dmlepq dmkn—l eplr v dmkn—lepq
E®dy -+ E®dyua
E®dy - E®dus

for1l x kvectord;;,i=1,...,mandj=1,...,nand ey, is the u-th row and the v-th column element of E.

ijs

Proof. Consider

V(anB) -+ V(ayu1B)
V(A®B) = : :
V(omB) -V (ayiB)
a1VB -+ a;n1VB B®Vay; -+ B®Vapma
= : ; + : :
{lm1VB crr Agn—1 VB B® V{Ilml s B® Vamknq
— (A® VB) + (VA®* B).
O
Remark A.5. For an invertible matrix A (k x k), we have V (A™1) = —A"1(AN'V(A) =

—(A'A)IV(A).
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Proof. From (A’) ' A’ = I, we have V ((A’)*1 A’) = VI = 0 and hence from Remark A.1,
(AIV (A + AV (A1) = 0. Multiplying A~! each side, we have

AT ()T v (a) +av(aTh)) =0, (44)T YV (4)+V (A7) =0,
which gives V (A1) = —A~1(A") 7' V(4). O

Lemma A.8. Under Assumption 1-2 or 3-2,we have (a) HV” (Q(G)’) = HVUQ\(H)H = Op(1) and (b)
vu-1 (Q(eo)') —VU1(Q(60)') = O, (1//7) for 6 € @gand v = {1,2,3}

Proof. For 6 € @, note Remark A.5 implies (noting Q(6)~! = —H;(8) = —Lyn  Vs(z;,0) and
H,(0) = VH;(6) by definition)

-~ -~

v(@(e)’)——v((ﬁlw)” = (Fu(0)  Hi(0)'VHI(6) = Q6) Q(O)Ha(6)  (A20)

and hence || V(Q(0)")]] < ||Q(0)|2||H2(6)|| = Op(1) by (A9) and (A11). Now consider

)
v (Qor Q@)
a0+ 0o

[ (aer)]| - )0)|
< ||V (Qera®)| |0 + |[Qwrae)| |vae)| o
<2|Qey| |[va®| |m@)] + |awrae HHVHZ )|
<2|a0)| [veo| |mo| + [e@| [vAe| = oy,

noting HV (Q(G ) = HVQ(G)H and since

Vi) = | i Vst = [£[Ps@o)] | rom =0 @)

applying the Uniform Convergence theorem of Lemma A.1 or A.2 with m(z,8) = V3s(z,0). Similarly
we can show that

V3 (Qy) || = ||v2 (Qtoya® () |
<|[v2 (Qeram)| |Fo)] + [v (aeyae) | ||
+|[v (Qerae)| [ vax@ + e e |v2ae)|
:\vZ(Q(e)'Qe)\HHZ H+op1 +0p(1) +0p(1) = Op(1).

from (A9), (A20), (A21), and by the uniform convergence of V2H,(f) = %Z?:l V4s(z;,0) to
E [V*s(z,0)] from Lemma A.1 or A.2 with m(z,0) = V*s(z,6). The last equality is obtained noting
we have

o2 (aeram) | 2 v [vae] 2 oo

v2Q(0)[ = 0,(1)
from (A9), (A20), and (A21). Now to show the second result, first note that we can rewrite

Q60) = (—H1 — V/v/un) "' = Q+0, (1/vn) (A23)
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by the Slutsky theorem and V = O, (1) by CLT and also we rewrite
Hy(8p) = Ho + W//n=Hy +0, (1/v/1n), (A24)

since W = O, (1) by CLT. From (A20), consider

\Y% (Q(Go)/) = Q(60)'Q(60)Ha (o)
= (Q+0,(1/Vn) (Q+0p (1/f))(H2+O (1/v/n))
= Q'QHy+0, (1//n) =V (Q(8)) +O0p (1//n)
using (A23) and (A24). Similarly from (A21), we have V2 ( ) 2(Q(60)") +Op (1/+/n) from

(A23) and (A24)and noting V Hy (6p) = VH, + V (W//n) andV (W/\/n) =VW/\/n=Ws/\/n=
O, (1/y/n). O

In the following proof, we will apply Triangle Inequality and Cauchy-Schwarz Inequality
whenever they are necessary without noting them.

Lemma A.9. Under Assumption 1-2 or 3-2, Condition 1-3 are satisfied.

Proof. Condition 1
c(6p) = Op(1) is obvious from Lemma A.7. [J

Proof. Condition 2
Again we bound each term uniformly over § € ®y and suppress the sup-norm otherwise it is
noted. Now consider for 8 € O

V() (A25)

0)s(zi,0)| ) + L X1y [V(20,0)Q(0)s(zi,0)] )
)+V( w1 [Vs(2,0)0(0)s(z1,0)]

6) @ Q(0)s(z;,6)| ) + V (L [Vs(z,0)0(0)s(z:,0)] ),

using Remark A.2. For the first RHS term of the last equality in (A25), note

(N~ iy (o))
< H o |V ((V3(0)) | = & T [ 99s(z0,0)]| = E [[|Vs(z0,0)[] +0p(1) = 0,(1)

uniformly over § € @q applying the Uniform Convergence theorem of Lemma A.1 or Lemma A.2
with m(z,0) = V3s(z,0). We have shown that

(A26)

Y [00)s(z:,0)(6) © QO)s(z;0)(6)] ~ Q0) E [s(z:,0)s(z:,0)] Q(6)'

. —=0,(1) (A27)




Econometrics 2016, 4, 48; d0i:10.3390/econometrics4040048 S12 of S20

uniformly over 6 € Qg in (A14) and from this result with (A26), we bound the first RHS term of the
last equality in (A25) as

toee’ (A2 [00)s(210) 2 00)s(z0)] ) (7 (Fate))) )|
=33z [@(e)« )()m()@ o)) (v (o))
<[t [Q@)stz0) 0 QO o) | (v (et0)) | = 01
Now consider
v <711 Y [00)s(zi,0) Q(G)s(zi,e)]> (A28)
= Ly V[0 0) © Q)s(z: )]
= Iy (v(Q0)s(0) & A)s(0) (A29)
LT (Q0)5(21,0) 2 ¥ (Q@)s(21,0)) ) (a%0)

from Remark A.4. Noting V (Q(G)s(zi,e)) = Q(0)Vs(z,0) + vec (s(zi,G)’V (Q(GY)) from
Remark A.2, we rewrite (A29) as

%Z? 1 (@( )Vs(z;,0) + vec (s(zi,G)’V (Q(G)’)) ® Q(G)s(zi,9)> (A31)

= - z, 1 (QO)Vs(z,0) @ Q(0)s(1,0)) (A32)
4+ Zl . (vec (s z;,0)'V (Q(G)’)) ® Q(G)s(zi,9)> )

Now note that HA ® BH = ||[A®BJ|| = ||A|||B|| for matrices A and B including column or row
vectors. This implies for (A32)

1 ?1(Q( )Vs(z;,0) @ Q(G s(zi, 0 )H< il H( 5(zi, 0 )H (A33)
Q(f)

= 1T |Q(O)Vs(zi,0)| | Q()s(zi )| < & 2y [ 95(zi,0 >|||| IIHQ | =0

uniformly over 6 € @ by Lemma A.5 for (v1,v2) = (1,0) under E {sup%@o | Vs(z;,0) ||2} <oo,v =
1,0 and by (A9). This gives

12?1(vec* (s(z0)'V (Q(0))) & Q(®)s(z1,0)) |
<t e (5077 (00))) 00160 s
<3 Tia |szi,0)'V (Q)) || [ Q(O)s(:0)|
< 1r ls(z 0) 12 |Q@) | ||V (Qeey) | = 0p )

by the uniform convergence of 1 Y, ||s(z;, 0)| to E [||s(z, 0) ||2} < 00, (A9), and Lemma A.8 noting

||lvec*(+)|| = ||-]| and hence we show that (A29) is Op (1) uniformly over 6 € @ from (A33) and (A34).
Similarly we can show that (A30) is O, (1) around the neighborhood of 6y and hence we have

v (5 2 0650 2 00)s(a10)] ) = 0,(1) (A35)
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Together with (A11), this shows the second RHS term of the last equality in (A25) is O,(1). Now
consider for the third RHS term of the last equality in (A25),

V(L | Vs(20,0)Q(0)s(2i,0)] )
=-y Vs(zi,G)V(Q(G)s(zi,G)) 1?]6(1( s(z;, 0 V((Vs(zi,G))/>> (A36)
:lZ’-l Vs(z;,0) (Q(G)Vs(zl,9)+ve¢: ( z;,0 ( )))
+ 1y vec” (s(2;,0)'0(6)'V ((Vs(z;,0 >>)).
This implies
V(2o [Vs(z,0Q(0)s(zi,0)] ) | < 2 iy Vs(z,, 01 | Q0
H +( zmn[v”z, 0)) ||oec” (s uv(@ >))H el
+2 Hm((zﬂéw (¥ <9>))H
21 1195z, 0)[17 | Q0| + & £y 175(z,, 0)I| |s(z:,0)'V (Q(0) | (A37)
+ 3y stz 07 Qe >v(<Vs<zz, >>)
< 1y 1Vs(z:,0)|7||Q H+ i [1Vs(z, 0] 1s(z:,0) |7 (Qe0)) |
+ 5 iy lIs(zi,6 HHV2 o) HQ H

We have the first RHS term in the last inequality of (A37) equals to Op(1) uniformly over 6 € @
by (A9) and the uniform convergence of 1 Y, || Vs (z;,0 )|I? to E [||Vs (2,9)||2} < o0 by applying

Lemma A.1 under sup,.q E [||Vs (z,0)]| } < oo or by applying Lemma A.2 (Lipschitz condition
holds similarly with (A13) under E [supg.q || Vs (z,0)| B1(z)] < o) with m(z,0) = ||Vs (z,0)]>
Clearly the second RHS term of the last inequality is O, (1) uniformly over § € @ from Lemma A.5
and Lemma A.8. Finally, we obtain the last RHS term of the last inequality in (A37) equals to O, (1)
uniformly over € ©p from (A9) and Lemma A.5 with (vy,v) = (0,2) and thus we bound the
third RHS term of the last equality in (A25) to be O, (1) uniformly over 6 € @g. This completes the
proof. O

For later uses, here we summarize the differentiation results of V¢(6) and Vc(6), respectively, as

toec’ ( (4 22 [005(210) 2 Q@)s(z10)]) (v (Fat0)))

1

A Ly (@< )Vs(21,0) ® Q(6)s(2:,0))
+3H2(6) iy, ( <s(zl,9)lv (Q(G)’)) ® Q(G)S(Z”e)) )
VE(9) = PO Ly (Q0)s(zi,0) © O(6)Vs(z;,0)) e
+3 +%Z' (Q( )s(ZZ,G)) ® vec* (5(21,9)/V Q(G)/))

+u Xie
+ Z ', vec* ((%9) Q( )V((Vs (2,0 ))
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Ve(8) = (A39)
Joec” ((E[Q( < )s(z:,6)))' (V (H2(0))) )

+1Ha(0) (E [ 0)Vs(zi,0) ® Q(0)s(z;,0)] +E [oee” (s(zi,0)'V (Q(6)") @ Q(O)s(zi,0)] )
+4Ha(60) (E1Q(0)s(z; > Q(O)Vs(zi,0)] + E [(Q(8)s(z,6)) @ vec* (s(z:,6)'V (Q(6)'))))
+E[Vs (z,0) (Q(6) Vi(zi,0) + vec” (s(z;,0)'V (Q(6)')))]

+E [vec (s(zl 6)'Q(6)'V ((Vs(zl ))')) .

Proof. Condition 3

In what follows, we will apply Triangle Inequality and Cauchy-Schwarz Inequality whenever
they are necessary without noting them. Again we bound each term uniformly over § € ®g and
suppress the sup-norm otherwise it is noted. From (A25), consider

v (oo (2 [<9>s< 0)50s(z0)]) (7 (Faer)) ) )
VEO) =1 4 (3007 (I [00)5(0) 2 0)s(ar )] ) o
V2 (L, [Vs(,000)s >})-

Considering ||V (Hz(8))|| = ||VH2(8)|| and || V2(H2(6))|| = ||V2H2(8)]|, for the first RHS term of
(A40), we have

uniformly over § € ©g from (A22), (A27), (A35), and since V2H, () = % Y, Vis(z;,0) =
E [V*s(z;,0)] + 0p(1) = Op(1) by the Uniform Convergence theorem of Lemma A.1 or Lemma A.2
with m(z,0) = V*s(z,0). Now we bound the second RHS term as

v (307 (3 £ [@()( 0) 2 0(0)s(z:0)] ) )|
<1HVH2 H’ (’1% [ s(z;, 0 ®Q(9)s(zi,e)DH (A41)
T

Note, for the first RHS term in (A41)
L [Q(0)s(z:,0) © Q(0)s(z:,0)] ) |
|V (2 [QO)s(z,0) © Q()s(z1,6) ] ) | = 0p(1)

by (A22) and (A35). From (A28) and (A31), for the second RHS term in (A41), we have

|v2 (3 11}@@( 0)© Q(0)s(z, >])!
)

HlVHE( )AY
<C ‘VHZ H

< ‘v( " (Q(0)Vs(z;,0 ) ®" Q(6)s(zi,0 ‘
[l oo @) quea] "
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First we bound the first RHS term of (A42) uniformly over 6 € © as

v (32t (Q0)Vstard) & Q0)sz10)) )|
<lyr [V (Q(6)Vs(z,0) 9)”
<y, |v(Qe )sz e)H HQ )H+ ¥, 1HQ )Vs(z;,0)[| |7 (Q@)s(z:,0))
=%Z”1Q() s(2,6) + (Vs(zi,0)) V (Q(0)) z,0)|

+1xr, Q) vs(z6 H oG VS(Z, 0) + vec* ((zl a)v(@(e)'))

<

L [1Vs(z mnzl|WQ )[[[va®)] + o, 193 o)l sz, 0)1 2|

1
F AL V(20,0 0@+ Ty 195 0)1 stz 0) ] | 0(@) | [vaee)|
= 0,(1) +0y(1) +0,(1) + 0,(1) = Op(1),

where the second inequality is from Remark A.4, the first equality is from Remark A.1 and
Remark A.2, the third inequality is from Remark A.3. The second last equality comes from
Lemma A.5, Lemma A.8 and (A9). For the second RHS term of (A42), from Remark A.2-A 4, it follows
that

( Y (vec* (s(zi,e) \Y (Q 9)’))

s%z& V (vec” (s(z:,0)% (Q(0)') ) ) || | Q(®)s(z:,0)
+ 1y et ((z e)v(cj(e)') ‘ V(Q(e)s(z 9))‘
1z"wvazmM|zeMW(ém'\@<w+ Ty stz 0)117 | 72 (Qeoy) | || Qo))
£ I (e, 0) [ 1Vs(z2,0) 1|V (Q0)) | Q)| + 2y Istzs,0)12 | v (@)

= Op(1) + Op(1) + Op(1) + Op(1)

uniformly over 6 € @q. The last equality comes from Lemma A.5, Lemma A.8, and (A9). Similarly
we can also bound the last RHS term of (A42) uniformly over 6 € @ as

|V (32t (Qst 002 ¥ (Qstas0)) )|

<iyn, 02@)( 0)) & (Q() 2 e)H+— o Qaﬂ<zhmcav2(éawazhm)u
< EE stz )1 [V (Q >0 +lZZHVsz9nHQ |
+2L T |1 Vs(zi,0)1| ls(zi,0) || Qe)]| | v
+ 10 stz 0))1> | Qo WV(@<U w1 15 0) 1 195z 0)11 | Q)| |7 (Qeey)
+—znwszeMWsz9nH@>2

= 0p(1) +0p(1) + Op(1) + Op(1) + Op(1) + Op(1) = Op(1)

using Remark A.2 and Remark A.4. The second last equality is obtained from Lemma A.5,
Lemma A.8, (A9), and by the uniform convergence of 1 Y7, ||Vs (z;,0)|* to E {HVS (Z,B)HZ] The
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results above together bound the second RHS term of (A40) to be O, (1). Finally we rewrite the third

RHS term of (A40) as
Zj’ Vs (zi, )Q(G)s(zi,B)D
Yio

v? (
zl, 0) (Q(G)Vs(zi,G) + vec* (S(Zifg)lv (Q(G)/>)) )
(6

( ryvec (s(2,0)Q(0)'V ((Vs(z:,0))') )
+V

= =

|
<

= V _, Vs(zi,0) (Q(())Vs(zi,()) + vec* (s(zi,())’v (Q(f))’)))) (A43)

( 27&&(%%m@wyvava%myn) (A48
from (A36). For (A43), note

V(%?fvx%>(mmVﬁ%>+w (@M”V(7@’D)
= %21”: (Vs(z,, Y% ( (0)Vs(z;,0 ) +(Vs(z;,0)) Q(@)/V (
+ % Y1 Vs(z;,0)vec* (V ( (zi,0)'V (Q(G)/»)

—
gl
A
Q-
95}
—~
N
N
~—
/N
O
—~
e
~—
<
N
/—\
N
S
\/
+
—
<
92)
—~
N
S
e
~—
~—
<
—
@)
—~
=
~—
~—
~——
—~
<
95}
—~
N
N
~—
~—
@)
—~~
~—
<
/N
—
<
92)
—~
N
S
~—
~—
~——
~——

+%B;(wﬁﬁewwv(@m9) v ((Vs(z0)))
by Remark A.1 and Remark A.3 and hence

HV (l ", Vs(z,0 )(Q( )Vs(zl, )+vec ( (z,0)'V (Q

)]

|
v(Qe))

< LT[ Vs(zi 6 szzu> \+ L Vs o)l |V

+ 1T 1 Vs(zi,0) 1P ||V(Q0))|| + & Ty I Vs(zi,0)1l ls(z:, 0| || 72(Q(0))

F L 155001 [725(2,0)] [TQ00)] = 0,(1) + 0,0) +0,(1) + 0,(1) + 0,(1) = 0,1
from (A9), (A2), and Lemma A. 8 and since i) -, Ly Vs (z;,0)] HV2 (z;,06 H = ) forv € {0,1}
by Lemma A.5 and since i) Y1 || Vs (z;, 0 )|| = Op( ) by the uniform Convergence. Now consider
for (A44)

~

’V (% Y vec* ( s(z;,0)'Q(0)'V ((Vs zi, 0 ’

1 En 1 vec* (V (5(21,9) @( )V ( (Vs( Zz/ ‘
T ||V (stzi 00 Qt0) qu%

S 1 9s( 0l [ 2s(z20) | &

+ 5 K sz 011 [[V2s(zi, 0)]|

I/\ I/\

H+ zlnzu|wv3a,HHQ )|
VO(6)|| = 0,(1) +0,(1) + 0, (1)

by (A9), Lemma A.8, and Lemma A.5 and hence we have the third RHS term of (A40) equals to Op(1)
uniformly over 6 € ©. This completes the proof. [

Appendix A.2. Additional Preliminary Lemmas for the Third Order Expansion

First, note that Lemma A.3 and Lemma A 4 trivially hold under Assumption 1 and Assumption
3, respectively considering that Assumption 1 and Assumption 3 are stronger than Assumption A.1
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and Assumption A.4, respectively. We establish conditions (i)-(ix) in Lemma 3 are satisfied
under Assumption 1-2 or Assumption 3-2. Again Condition (i) and (iia) are directly assumed.
Condition (iib) is by the dominated convergence theorem with the dominating function given
by supycg, |V4s(z,0)|| under Condition (i), (iia), and E[supycg, |V4s(z,0)||] < co. Condition
(iii) holds by the stochastic equicontinuity of ﬁz;‘: (V3s(z;,0) — E[V3s (2;,0)]) for § € Oy

as discussed in Lemma A.2 with m(z,0) = V3s(z,60) under Assumption 3. Instead, under
Assumption 1, Condition (iii) is replaced by another local uniform convergence condition as
' 1 Vs (z;,0) —E [V*s (zi,Go)]H = 0p(1) for 8 = 6y + 0,(1) similarly with our replacing

Condition (iv) of Lemma 1 with H% 1 V35 (2;,0) — E [V3s(z;,600)] H = 0p(1) for 0 = 6 +0,(1).
Condition (iv) is implied by Assumpt1on 2. Condition (v) through (viii) holds by CLT provided that
E MV”S(Z, o) Hz} < o0, v = {0,1,2,3} respectively, which are satisfied under Assumption 1 (iii) or 3
(iii). Condition (ix) is the result of Lemma 1. We also need to verify following lemmas.

Lemma A.10. Under Assumption 1-2 or 3-2, Condition 7 (i): V&(6y) = Ve(6y) + Op (1/+/n) is satisfied.
Proof. This can be proved similarly with Lemma A.7 (b). From (A38) and (A39), it follows that
1VE(6o0) — Ve(6o) |l

;vec*<(; 1 [Q0s(z1,00) © QlB0)s(z1,80)] ) (7 (Fale ))) As5)
—Tvec’ ((E [Q(60)s(zi,00) ® Q(80)s(zi,60)])’ (V (H2(90)')))
)

R lyn 00)Vs(z;, 0 0(80)s(zi, 0
2Ha(60) ( L1 n"%;z (EQEZO)G o (O>;®)/Q§ ;*S(Z O)> 0 )) )
. 7 it i»00) 0 (2,9 (A46)
1 E [Q(80) Vs(zi,00) & Q(60)s (=i, b0)
—QHZ(QO) *
+E [vec (s(2i,00)'V (Q(60)")) ® Q(6o)s (zi,Go)}
V60 LT (Q(B0)s(zi,00) © Q(60) Vs (1, 60)
T R (O(@0)s(z1,60) ) @ vee (s(z4,60)' (Q(60))) (Ad7)
_lHZ(G ) [Q(00)5<2i/00) ®Q(00)VS(Zi/60)]
2 0 E[(Q(60)s(z;,00)) @ vec* (s(z;,00)'V (Q(60)"))]
N lyn, Vs(z,-,é)o)( (60)Vs(z;, 00) + vec* ((Zifgo)'v (Q(Qo)/))) H (A48)
—E [V (21,600) (Q(60) Vs(zi, 80) + vec* (s(zi,60)'V (Q(60))))]
+ B Ei vec” (s(z0,60)/ Q(60)'V (V5 (Zi’go,))/D (A49)
—E {vec (s(zi, 00)' Q(6y)'V ((VS (zi,00)) ))}

We show (A45), (A46), (A47) (A48), and (A49) are O, (1/+/n), respectively. First, observe that
applying the CLT, we have Y7, [s(z;,00)s(z;,60)'] = E[s(zi,00)s(zi,00)'] + Op (1/4/n) under

E [lIs(z,60) |*] < oo and have V (Fa(60)') = V (Ha(80)') + Oy (1/ /) under E [ Vs(z;,60) || <
0. Recalling (A23), this implies

poec ((i o1 [Q(GO)S(Zir90)®Q(90) (i, 0 ]) ( ( ))>
v

— joec” (vee (QUO0) 2 (20 00)s(21,00)] 0(@0) ) (7 (at60)) )
= Lvec” (vec (Q(60)E [s(zi,60)s(zi,00)"] Q(60)’ )" (V (Ha(6 )/))> + Oy (1/+/n)
= %vec* (E [Q(60)s(zi,00) ® Q(80)s(zi,60)]) (V (Ha (o)’ ))) +0p (1/Vn)
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and hence (A45) is O, (1/+/n). Now for notational simplicity, define ||A|; = ||A[| and ||A[|, = A.
Then, for d1,dp,ds € {0,1}, we have

Ly ||(Q(00)™ sz, 60) @ Q(60) s (i, 60))

= [HQ(QO)d1Vs(zi, 00) ® Q(60)%s(z;,60)

d;

| +0, (1/va)

L

applying the CLT from
* 2
E [HQwo)dlw(zi,eo) " Q(B)"s(z, 00) } < 1Q(00) P E [|V5(z4,00) I [ Vs (2, 60) °] < o

under [|Q(6p)|| < oo, E [HvS(zi, 90)||4} < o0, and E [||s(zi, Go)lﬂ < co. Similarly, for Iy, I, 5 € {0,1},
we have

L | (vee (st 00) (¥ (@00 D") & (@) stz ),
= ove” (steu 0 (7 (@(@0))") @ Q@) sCas )], |+, (1/v)

by the CLT under
E [ stz 0 (¥ (Q60)))" " Q(eu)es(ai 00| < 10002 |17 (Q60)) |2 E [I5(zi80)1F] < o0

recalling that ||V (Q(60)")| = HQ(QQ)H2 |H2(6p)|| < oo. Applying these two results together with
(A23), (A24), and Lemma A.8 (b), we have (A46) equals to Oy (1/ \/ﬁ) by the Triangle inequality.
Similarly we have (A47)=0, (1/+/n).

For t1,t, € {0,1}, now consider we have

1
=Y IVs(2i,00)Q(00)"1 Vs(zi, 00) ||,, = E ||| Vs(zi,60)Q(60)1Vs(zi,00)]|,, | +Op (1/+/n)
n 2 2

by the CLT under ||Q(6)||*" E [||Vs(z,-, GO)HZ} < o0 and have

%Z?:l HVS(Z,',QO)UEC* (s(zi, 60) (V (Q(Go)’))tl) .
=& [vsta e stz (v @@ )] | + 05 1/v7)

by applying the CLT provided that ||V (Q(6,))||*"* E [HVs(zi, 00) 1% |Is(zi, 90)||2} < oo that holds

under ||V (Q(6p)")|| < o, E [||v5(zi,90)|\4} < oo, and E [Hs(zi, 90)||4} < oo. Applying these two
results together with (A23) and Lemma A.8 (b), we have (A48)=0, (1 / \/ﬁ) Finally, for ji, j» € {0,1},
note

]2

] + 0y (1/y/n)

% i Hvec* (S(Zi, 60)' Q(6)'V ((VS (zi, 90))/>)
—E wvec* (s(zi, 00)' Q(60)'V ((vS (zi, 90))’))

J2
by the CLT since [Q(60)|*" E |[|V2s(z;, 60) | ls(z;,60)|*] < eo holds by [|Q(60)| < e,

E {HVZS(ZI', QO)Hﬂ < oo, and E {Hs(zi, 90)||4} < co. It implies (A49)=0,, (1/+/n) together with (A23).
This completes the proof. [
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Lemma A.11. Under Assumption 1-2 or 3-2 with x > 5, Condition 7 (ii):V3C(6) = O,(1) in the
neighborhood of 0y is satisfied.

Proof. This can be proved similarly with Lemma A.9 for Condition 3, which is straightforward but
still demands many algebras. Here we provide a simple proof for Condition 1-3 and 7 when dim(6) =
1 as an illustrational purpose. With dim(6) = 1, we can rewrite the correction term (5) as

c(0) = zHa(0)Q(6)°E [s(z;,0)*] + Q(O)E[Vs (2:,0) 5(z:,0)]
— m E [V2s(2;,0)] E [s(z;,0)%] — ME (Vs (zi,0)s(z;,0)].

Now define ¢(6) = t(E [m(z;,0)])

where T(ty,ty, t3,t4) = gababs — +ts, b = E[Vs(z;,0)], tp = E[V2s(2;,0)], t3 = E[s(z,6)?],

ty = E[Vs(z;,0)s(z;,0)],and m(z;,0) = (Vs(z;,0), V?s(z, ) s(z;,0)?,Vs (z;,0) 5(z;,0))". The sample
analogue of ¢(6), ¢() can be written as ¢c(0) = ( Lom(z, 0 ) accordingly. Further define
. 2
m(0) = E [m(zi,0)] ((6) = § Ty m(zi,0)), T (0) = M( Tn(6) = G, T (6) = TS
(Tm (0) = ?3;:1(®am’) and Tymm(0) = % (Trmm (0) = %) noting 7(-) is a smooth

function. Also define 7i1g(0), gy (6), and i7iggy(6) are the first, the second, and the third derivative
i (0) with respect to 6.
For 6 € ©y, now consider

c0) = t(m(8)), V(6) = Tu(0)m(0)
vZ(6) T (6) (7719 (0) © 1119(0)) + T (6) 77166 (6)
VIE(8) = T (6) (7g(8) @ iig(6) @ fitg (6))

From the Slutsky theorem, it follows that
T (0) = T (0) +0p(1), Tum (0) = Tium (0) + 0, (1), andTmm (0) = Tnmm (0) 4 0p(1),

since m(0) = m(0) + op(1) by Lemma A5 under E {supee(a0 ||Vs(zi,6)||2} < oo,
E {supee(90 ||V25(zi,6)||} < oo, and E [supge@0 Hs(zi,0)||2} < oo, if we assume Assumption 1.
Also it is clear that i7ig(0) = 71g(0) + 0,(1), ige(0) = Tiigg(0) + 0, (1), and 7iggg(0) = Trigeg(6) + 0p(1)
by Lemma A.5 under E[supyq, || V's(z;,6) HZ] < coforv = {0,1,2,3,4} and E[sup,.e, || V°s(z:,0)|]
< 0, if we assume Assumption 1. These imply that

c0) = t(m(0)) =t(m(0)) +0p(1) = c(6) +0p(1)
Ve() = Tu(0)g(0) = Tm(0)mg(6) +0p(1) = Ve(0) +0,(1)
VZE(0) = Tum(0) (iflg(8) @ 7iig(6)) + T (6)Tige (6)
= Tum(0) (9(0) ©7719(0)) + T (0)799(0) + 0p(1) = V7c(6) + 0p(1)
VIE(O) = T (6) ( )

uniformly over § € ©), which imply Condition 1 (i), 2, 3, 7 (ii), respectively. Moreover, it is also clear
that 77i(6p) = 7i(6g) + O, (1/+/n) by the CLT under E[||s(z;,60)[|*] < oo, E[||Vs(z;,60)[*] < co, and
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E[HVZS(ZZ-,GO)Hz] < oo and that iiig(6y) = 7ig(6y) + Op (1/+/n) by the CLT under E[HVUS(ZiIGO)H ] <

oo for U = {0,1,2} and E[||V3s(z;, BO)HZ] < o0. Also note that T, (6) = Tm(60) + Op (1/+/1) by the
Slutsky theorem and 7i(6y) = 7(6p) + Op (1/+/n). These imply that ¢(6y) = c(69) + Op (1/+/n) and
VE(8y) = Ve(by) + Op (1/+/n), which are Condition 1 (ii) and 7 (i), respectively. [

Lemma A.12. Under Assumption 1-2 or 3-2, Condition 4-6 are satisfied.

Proof. Condition 4: Note

§£90)*B(90)=Q(90) c(60) — Q(80)c(80) + Q(60)c(60) — Q(6o)c(6o)
= Q(60) (&(80) — c(60)) + (Q(60) — Q(60) ) c(80) = Op (1) Op (1//1) + Oy (1//1),

since ¢(6p) — c(6p) = Op (1/+/n) by Condition 1 (i) and Q(6y) — Q(6p) = O, (1/+/n) by Lemma A 8.
Condition 5: From Remark A.2, Condition 1 (ii), Condition 7 (i), Q(6y) = Q(6y) + O, (1/+/n),

and V (Q(GO)’) =V (Q(60)") +Op (1/+/n) by Lemma A.8, we have

VB(8) = V (Q(80)e(60) ) = Q(60) Ve(6o) +vec” (€(60)'V (Q60)'))
= Q(80) V(o) +vec” (c(60)'V (Q(60)") + Oy (1/v/n) = VB(6y) + 0, (1/ V).

Condition 6: From Remark A.1-A.5, we have

|20 =72 (Q@=®) | = [ (2 90>VC<90>)+V(W* (e (@) )|
<|[e@] |va@ H”HVQ V@] +[v2a®)] @] = opw.
H—Op 1), and Condition2 and 3. O
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