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1. Introduction

Symmetry and conditional symmetry play a key role in numerous fields of economics and
finance. Economists’ focuses are often on asymmetry of price adjustments (Bacon [1]), innovations
in asset markets (Campbell and Hentschel [2]) or policy shocks (Clarida and Gertler [3]). In addition,
the mean-variance analysis in finance is consistent with investors’ portfolio decision making if and
only if asset returns are elliptically distributed (e.g., Chamberlain [4]; Owen and Rabinovitch [5];
Appendix B in Chapter 4 of Ingersoll [6]). Moreover, conditional symmetry in the distribution of
the disturbance is often a key regularity condition for regression analysis. In particular, convergence
properties of adaptive estimation and robust regression estimation are typically explored under this
condition. For the former, Bickel [7] and Newey [8] demonstrate that conditional symmetry of the
disturbance distribution in the contexts of linear regression and moment-condition models, respectively,
suffices for adaptive estimators to attain their efficiency bounds. For the latter, Carroll and Welsh [9]
warn invalidity in inference based on robust regression estimation when the regression disturbance
is asymmetrically distributed. Indeed, symmetry of the disturbance distribution is often a key
assumption for consistency of parameter estimators in certain versions of robust regression estimation
(e.g., Lee [10,11]; Zinde-Walsh [12]; Bondell and Stefanski [13]). Based on their simulation studies,
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Baldauf and Santos Silva [14] also argue that lack of conditional symmetry in the disturbance
distribution may lead to inconsistency of parameter estimates via robust regression estimation.

In view of the importance in the existence of symmetry, a number of tests for symmetry and
conditional symmetry have been proposed. The tests can be classified into kernel and non-kernel
methods. Examples for the former include Fan and Gencay [15], Ahmad and Li [16], Zheng [17],
Diks and Tong [18], and Fan and Ullah [19]. The latter falls into the tests based on: (i) sample moments
(Randles et al. [20]; Godfrey and Orme [21]; Bai and Ng [22]; Premaratne and Bera [23]); (ii) regression
percentile (Newey and Powell [24]); (iii) martingale transformation (Bai and Ng [25]); (iv) empirical
processes (Delgado and Escanciano [26]; Chen and Tripathi [27]); and (v) Neyman’s smooth test
(Fang et al. [28]). Our focus is on the test by Fernandes, Mendes and Scaillet [29] (abbreviated as “FMS”
hereafter). While this test can be viewed as the kernel-smoothed one, it has a unique feature. When a
probability density function (“pdf”) is symmetric about zero, its shapes on positive and negative
sides must be mirror images each other. Then, after estimating pdfs on positive and negative sides
separately using positive and absolute values of negative observations, respectively, FMS examine
whether symmetry holds through gauging closeness between two density estimates. By this nature,
we call the test the split-sample symmetry test (“SSST”) hereafter. One of the features of the SSST
is that it relies on asymmetric kernels with support on [0, ∞) such as the gamma (“G”) kernel by
Chen [30]. Asymmetric kernel estimators are nonnegative and boundary bias-free, and achieve the
optimal convergence rate (in the mean integrated squared error sense) within the class of nonnegative
kernel estimators. It is also reported (e.g., p. 597 of Gospodinov and Hirukawa [31]; p. 651 of
FMS) that asymmetric kernel-based estimation and inference possess nice finite-sample properties.
The split-sample approach is expected to result in efficiency loss. However, it can attain the same
convergence rate as the smoothed symmetry tests using symmetric kernels do. Furthermore, unlike
these tests, the SSST does not require continuity of density derivatives at the origin.

The aim of this paper is to ameliorate the SSST further through combining it with the generalized
gamma (“GG”) kernels, a new class of asymmetric kernels with support on [0, ∞) that have
been proposed recently by Hirukawa and Sakudo [32]. Our particular focus is on two special
cases of the GG kernels, namely, the modified gamma (“MG”) and Nakagami-m (“NM”) kernels.
While superior finite-sample performance of the MG kernel has been reported in the literature, the NM
kernel is also anticipated to have an advantage when applied to the SSST. It is known that finite-sample
performance of a kernel density estimator depends on proximity in shape between the underlying
density and the kernel chosen. As shown in Section 2, the NM kernel collapses to the half-normal
pdf when smoothing is made at the origin, and the shape of the density is likely to be close to those
on the positive side of single-peaked symmetric distributions. We also pay particular attention to
the smoothing parameter selection. While existing articles on asymmetric kernel-smoothed tests
(e.g., Fernandes and Grammig [33]; FMS) simply borrow the choice method based on optimality for
density estimation, we tailor the idea of test-oriented smoothing parameter selection by Kulasekera
and Wang [34,35] to the SSST.

The SSST with the GG kernels plugged in preserves all appealing properties documented
in FMS. First, the SSST has a normal limit under the null of symmetry and it is also consistent
under the alternative. Hence, unlike the tests by Delgado and Escanciano [26] and Chen and
Tripathi [27], no simulated critical values are required. Second, Monte Carlo simulations indicate
superior finite-sample performance of the SSST smoothed by the GG kernels. The performance is
confirmed even when the entire sample size is 50, despite a nonparametric convergence rate and a
sample-splitting procedure. Remarkably, the superior performance is based simply on first-order
asymptotic results, and thus the assistance of bootstrapping appears to be unnecessary, unlike most of
the smoothed tests employing fixed, symmetric kernels. This result complements previous findings on
asymmetric kernel-smoothed tests by Fernandes and Grammig [33] and FMS.

The remainder of this paper is organized as follows. In Section 2 a brief review of a family of
the GG kernels is provided. Section 3 proposes symmetry and conditional symmetry tests based
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on the GG kernels. Their limiting null distributions and power properties are also explored. As an
important practical problem, Section 4 discusses the smoothing parameter selection. Our particular
focus is on the choice method for power optimality. Section 5 conducts Monte Carlo simulations to
investigate finite-sample properties of the test statistics. Section 6 summarizes the main results of the
paper. Proofs are provided in the Appendix.

This paper adopts the following notational conventions: Γ (a) =
∫ ∞

0 ya−1 exp (−y) dy (a > 0)
is the gamma function; 1 {·} signifies an indicator function; b·c denotes the integer part;
‖A‖ = {tr (A′A)}1/2 is the Euclidian norm of matrix A; and c (> 0) denotes a generic constant, the

quantity of which varies from statement to statement. The expression “X d
= Y” reads “A random

variable X obeys the distribution Y.” The expression “Xn ∼ Yn” is used whenever Xn/Yn → 1 as
n→ ∞. Lastly, in order to describe different asymptotic properties of an asymmetric kernel estimator
across positions of the design point x (> 0) relative to the smoothing parameter b (> 0) that shrinks
toward zero, we denote by “interior x” and “boundary x” a design point x that satisfies x/b→ ∞ and
x/b→ κ for some 0 < κ < ∞ as b→ 0, respectively.

2. Family of the GG Kernels: A Brief Review

Before proceeding, we provide a concise review on a family of the GG kernels. The family
constitutes a new class of asymmetric kernels, and it consists of a specific functional form and a set
of common conditions, as in Definition 1 below. The name “GG kernels” comes from the fact that
the pdf of a GG distribution by Stacy [36] is chosen as the functional form. A major advantage of the
family is that for each asymmetric kernel generated from this class, asymptotic properties of the kernel
estimators (e.g., density and regression estimators) can be delivered by manipulating the conditions
directly, as with symmetric kernels.

Definition 1. (Hirukawa and Sakudo [32], Definition 1) Let (α, β, γ) = (αb (x) , βb (x) , γb (x)) ∈ R3
+

be a continuous function of the design point x and the smoothing parameter b. For such (α, β, γ), consider the
pdf of GG (α, βΓ (α/γ) /Γ {(α + 1) /γ} , γ), i.e.,

KGG (u; x, b) =

γuα−1 exp

[
−
{

u
βΓ
(

α
γ

)
/Γ
(

α+1
γ

)
}γ]

{
βΓ
(

α
γ

)
/Γ
(

α+1
γ

)}α
Γ
(

α
γ

) 1 {u ≥ 0} . (1)

This pdf is said to be a family of the GG kernels if it satisfies each of the following conditions:

Condition 1. β =

{
x for x ≥ C1b
ϕb (x) for x ∈ [0, C1b)

, where 0 < C1 < ∞ is some constant, the function ϕb (x)

satisfies C2b ≤ ϕb (x) ≤ C3b for some constants 0 < C2 ≤ C3 < ∞, and the connection between x and ϕb (x)
at x = C1b is smooth.

Condition 2. α, γ ≥ 1, and for x ∈ [0, C1b), α satisfies 1 ≤ α ≤ C4 for some constant 1 ≤ C4 < ∞.
Moreover, connections of α and γ at x = C1b, if any, are smooth.

Condition 3. Mb (x) :=
Γ
(

α
γ

)
Γ
(

α+2
γ

)
{

Γ
(

α+1
γ

)}2 =

{
1 + (C5/x) b + o (b) for x ≥ C1b
O (1) for x ∈ [0, C1b)

, for some constant

0 < |C5| < ∞.

Condition 4. Hb (x) :=
Γ
(

α
γ

)
Γ
(

2α
γ

)
21/γΓ

(
α+1

γ

)
Γ
(

2α−1
γ

) =

{
1 + o (1) for interior x
O (1) for boundary x

.
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Condition 5. Ab,ν (x) :=

{
γΓ
(

α+1
γ

)
β

}ν−1
Γ
{

ν(α−1)+1
γ

}
ν

ν(α−1)+1
γ

{
Γ
(

α
γ

)}2ν−1
∼
{

VI (ν) (xb)
1−ν

2 for interior x
VB (ν) b1−ν for boundary x

,

ν ∈ R+, where constants 0 < VI (ν) , VB (ν) < ∞ depend only on ν.

The family embraces the following two special cases1. Putting

(α, β) =

{ ( x
b , x
)

for x ≥ 2b(
1
4
( x

b
)2

+ 1, x2

4b + b
)

for x ∈ [0, 2b)

and γ = 1 in (1) generates the MG kernel

KMG (u; x, b) =
uα−1 exp {−u/ (β/α)}

(β/α)α Γ (α)
1 {u ≥ 0} .

It can be found that this is equivalent to the one proposed by Chen [30] by recognizing that α = ρb (x)
on p. 473 of Chen [30] and β/α = b. The same (α, β) and γ = 2 also yields the NM kernel

KNM (u; x, b) =
2uα−1 exp

[
−
{

u/
(

βΓ
(

α
2
)

/Γ
(

α+1
2

))}2
]

{
βΓ
(

α
2
)

/Γ
(

α+1
2

)}α
Γ
(

α
2
) 1 {u ≥ 0} .

The GG kernels are designed to inherit all appealing properties that the MG kernel possesses.
We conclude this section by referring to the properties. Two properties below are basic ones.
First, by construction, the GG kernels are free of boundary bias and always generate nonnegative
density estimates everywhere. Second, the shape of each GG kernel varies according to the position
at which smoothing is made; in other words, the amount of smoothing changes in a locally adaptive
manner. To illustrate this property, Figure 1 plots the shapes of the MG and NM kernels at four
different design points (x = 0.0, 0.5, 1.0, 2.0) at which the smoothing is performed. For reference,
the G kernel is also drawn in each panel. When smoothing is made at the origin (Panel (A)), the NM
kernel collapses to a half-normal pdf, whereas others reduce to exponential pdfs. As the design point
moves away from the boundary (Panels (B–D)), the shape of each kernel becomes flatter and closer to
symmetry. We should stress that Figure 1 is drawn with the value of the smoothing parameter fixed
at b = 0.2. Unlike variable bandwidth methods for fixed, symmetric kernels (e.g., Abramson [37]),
adaptive smoothing of these kernels can be achieved by a single smoothing parameter, which makes
them much more appealing in empirical work.

The remaining three properties are on density estimates using the GG kernels. Third, when best
implemented, each GG density estimator attains Stone’s [38] optimal convergence rate in the mean
integrated squared error within the class of nonnegative kernel density estimators. Fourth, the leading
bias of each GG density estimator contains only the second-order derivative of the true density over
the interior region, unlike many other asymmetric kernels including the G kernel. Fifth, the variance of
the GG estimator tends to decrease as the design point moves away from the boundary. This property
is particularly advantageous to estimating the distributions that have long tails with sparse data.

1 Hirukawa and Sakudo [32] present the Weibull kernel as yet another special case. However, it is not confirmed that this
kernel satisfies Lemma 1 below, and thus the kernel is not investigated throughout.
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Figure 1. Shapes of the GG Kernels When b = 0.2.

3. Tests for Symmetry and Conditional Symmetry Smoothed by the GG Kernels

3.1. SSST as a Special Case of Two-Sample Goodness-of-Fit Tests

This section proposes to combine the SSST with the GG kernels, explores asymptotic properties of
the test statistic, and finally expands the scope of the test to testing the null of conditional symmetry.
The SSST can be characterized as a special case of two-sample tests for equality of two unknown
densities investigated by Anderson, Hall and Titterington [39]. Suppose that we are interested in testing
symmetry of the distribution of a random variable U ∈ R. Without loss of generality, we hypothesize
that the distribution is symmetric about zero. If U has a pdf, then under the null, its shapes on positive
and negative sides of the entire real line R must be mirror images each other. Let f and g be the pdfs
to the right and left from the origin, respectively. Then, we would like to test the null hypothesis

H0 : f (u) = g (u) for almost all u ∈ R+

against the alternative

H1 : f (u) 6= g (u) on a set of positive measure in R+.

Accordingly, a natural test statistic should be built on the integrated squared error (“ISE”)

I =
∫ ∞

0
{ f (u)− g (u)}2 du

=
∫ ∞

0
{ f (u)− g (u)} dF (u)−

∫ ∞

0
{ f (u)− g (u)} dG (u) ,

where F and G are cumulative distribution functions corresponding to f and g, respectively.
The name of the SSST comes from the way to construct a sample analog to I. A random sample

of N observations {Ui}N
i=1 is split into two sub-samples, namely, {Xi}n1

i=1 := {Ui : Ui ≥ 0}n1
i=1 and

{Yi}n2
i=1 := {−Ui : Ui < 0}n2

i=1, where N = n1 + n2. Given the sub-samples, f and g can be estimated
using a GG kernel with the smoothing parameter b as

f̂ (u) =
1
n1

n1

∑
i=1

KGG (Xi; u, b) and ĝ (u) =
1
n2

n2

∑
i=1

KGG (Yi; u, b) ,
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respectively2. Similarly, (F, G) is replaced with their empirical measures (Fn1 , Gn2). In addition,
because n1 ∼ n2 under H0, without loss of generality and for ease of exposition, we assume that N
is even and that n := n1 = n2 = N/2. Using a short-handed notation KX (Y) = KGG (Y; X, b) finally
yields the sample analog to I as

Īn =
1
n

n

∑
i=1

{
f̂ (Xi) + ĝ (Yi)− ĝ (Xi)− f̂ (Yi)

}
=

n

∑
i=1

1
n2

{
KXi (Xi) + KYi (Yi)− KYi (Xi)− KXi (Yi)

}
+

n

∑
j=1

n

∑
i=1,i 6=j

1
n2

{
KXj (Xi) + KYj (Yi)− KYj (Xi)− KXj (Yi)

}
= I1n + In.

Although we could use Īn itself as the test statistic, the probability limit of I1n plays a role in a
non-vanishing center term of the asymptotic null distribution. Because the term is likely to cause
size distortions in finite samples, we focus only on In to construct the testing statistic. Now In can be
rewritten as

In := ∑
1≤i<j≤n

Φn
(
Zi, Zj

)
:= ∑

1≤i<j≤n

1
n2

{
φn
(
Zi, Zj

)
+ φn

(
Zj, Zi

)}
,

where Zi := (Xi, Yi) and φn
(
Zi, Zj

)
:= KXj (Xi) + KYj (Yi) − KYj (Xi) − KXj (Yi). Observe that

Φn
(
Zi, Zj

)
is symmetric between Zi and Zj and that E

{
Φn
(
Zi, Zj

)∣∣ Zi
}
= 0 almost surely under

H0. It follows that In is a degenerate U-statistic, and thus we may apply a martingale central limit
theorem (e.g., Theorem 1 of Hall [40]; Theorem 4.7.3 of Koroljuk and Borovskich [41]).

Before describing the asymptotic properties of In, we make two remarks. First, applying the
idea of two-sample goodness-of-fit tests to the symmetry test is not new. Ahmad and Li [16]
and Fan and Ullah [19] have also studied the symmetry test based on closeness of two density
estimates measured by the ISE. They estimate densities using two samples, namely, the original
entire sample {Xi}N

i=1 := {Ui}N
i=1 and the one obtained by flipping the sign of each observation

{Yi}N
i=1 := {−Ui}N

i=1 in our notations. Because each of X and Y has support on (−∞, ∞) by
construction, a standard symmetric kernel is employed for density estimation unlike the SSST.
Second, if X and Y are taken from two different distributions with support on [0, ∞), then In can
be viewed as a pure two-sample goodness-of-fit test. It can be immediately applied to the testing
for equality of two unknown distributions of nonnegative economic and financial variables such as
incomes, wages, short-term interest rates, and insurance claims.

To present the convergence properties of In, we make the following assumptions.

Assumption 1. Two random samples {Xi}n1
i=1 and {Yi}n2

i=1 are drawn independently from univariate
distributions that have pdfs f and g with support on [0, ∞), respectively.

Assumption 2. f and g are twice continuously differentiable on [0, ∞), and E |X f ′′ (X)|2,
E
∣∣X2 f ′′ (X) g′′ (X)

∣∣, E
∣∣Y2 f ′′ (Y) g′′ (Y)

∣∣, E |Yg′′ (Y)|2 < ∞.

Assumption 3. The smoothing parameter b (= bn) satisfies b + (nb)−1 → 0 as n→ ∞.

2 It is possible to use different asymmetric kernels and/or different smoothing parameters to estimate f and g. For convenience,
however, we choose to employ the same asymmetric kernel function and a single smoothing parameter.
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Assumption 4. Let (X1, X2) and (Y1, Y2) be two independent copies of X and Y, respectively.
Then, the followings hold:

(a) E
{

KX2 (X1)KY2 (X1)
}
∼ E { f (X) g (X)}; and E

{
KY2 (Y1)KX2 (Y1)

}
∼ E { f (Y) g (Y)}.

(b) E
{

KX2 (X1)KX1 (X2)
}
∼ b−1/2VI (2) E

{
X−1/2 f (X)

}
; E
{

KX2 (Y1)KY1 (X2)
}
∼

b−1/2VI (2) E
{

X−1/2g (X)
}

; E
{

KY2 (X1)KX1 (Y2)
}
∼ b−1/2VI (2) E

{
Y−1/2 f (Y)

}
;

and E
{

KY2 (Y1)KY1 (Y2)
}
∼ b−1/2VI (2) E

{
Y−1/2g (Y)

}
, where VI (2) is a kernel-specific

constant given in Condition 5 of Definition 1.

Assumptions 1–3 are standard in the literature of asymmetric kernel smoothing. On the other
hand, Assumption 4 has a different flavor. Convergence results on In are built on several different
moment approximations. While Definition 1 implies the statements in Lemma A2 in the Appendix,
it is unclear whether the definition may even admit such approximations as in Assumption 4.
The difficulty comes from the fact that unlike symmetric kernels, roles of design points and data
points are nonexchangeable in asymmetric kernels. What makes the problem more complicated is
that functional forms of (α, β, γ) = (αb (x) , βb (x) , γb (x)) in the GG kernels are not fully specified
in Definition 1. Considering that not all GG kernels may admit the moment approximations (a) and
(b), we choose to make an extra assumption. Note that the MG and NM kernels fulfill Assumption 4,
as documented in the next lemma.

Lemma 1. If Assumptions 1–3 hold, then each of the MG and NM kernels satisfies Assumption 4.

The theorem below delivers the convergence properties of In and provides a consistent estimator
of its asymptotic variance.

Theorem 1. Suppose that Assumptions 1–4 and n1 = n2 = n hold.

(i) Under H0, nb1/4 In
d→ N

(
0, σ2) as n→ ∞, where

σ2 = 2VI (2) E
[

X−1/2 { f (X) + g (X)}+ Y−1/2 { f (Y) + g (Y)}
]

,

which reduces to σ2 = 8VI (2) E
{

X−1/2 f (X)
}

under H0, and VI (2) is a kernel-specific constant given
in Condition 5 of Definition 1.

(ii) A consistent estimator of σ2 is given by

σ̂2 = 2VI (2)
1
n

n

∑
i=1

[
X−1/2

i

{
f̂ (Xi) + ĝ (Xi)

}
+ Y−1/2

i

{
f̂ (Yi) + ĝ (Yi)

}]
. (2)

We make a few remarks. First, it follows from Lemma 1 and Theorem 1 that the MG and
NM kernels can be safely employed for the SSST, where values of VI (2) for these kernels are

(VI,MG (2) , VI,NM (2)) =
(

1/
(
2
√

π
)

, 1/
√

2π
)

. It also follows from Proposition 1 of FMS and

Theorem 1 that limiting null distributions of nb1/4 In using the G and MG kernels coincide, as expected.
Second, while a similar form to the asymptotic variance σ2 can be found in Proposition 1 of FMS,
σ2 takes a more general form. Accordingly, the variance estimator σ̂2 is consistent under both H0 and
H1. Third, it can be inferred from Theorem 1 that the test statistic becomes Tn := nb1/4 In/σ̂. As a
consequence, the SSST is a one-sided test that rejects H0 in favor of H1 if Tn > zα, where zα is the upper
α-percentile of N (0, 1).

The next proposition refers to consistency of the SSST. Observe that the power approaches one
for local alternatives with convergence rates no faster than nb1/4, as well as for fixed alternatives.
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Proposition 1. If Assumptions 1–4 hold, then under H1, Pr (Tn > Bn)→ 1 as n→ ∞ for any non-stochastic
sequence Bn satisfying Bn = o

(
nb1/4

)
.

3.2. SSST When Two Sub-Samples Have Unequal Sample Sizes

Convergence results in the previous section rely on the assumption that the sample sizes of
two sub-samples {Xi}n1

i=1 and {Yi}n2
i=1 are the same, i.e., so far n1 = n2 has been maintained. In reality,

n1 6= n2 is often the case, in particular, when the entire sample size N = n1 + n2 is odd or when H1

is true.
Handling this case requires more tedious calculation. When n1 6= n2, In can be rewritten as

In1,n2 =
n1

∑
j=1

n1

∑
i=1,i 6=j

1
n2

1
KXj (Xi) +

n2

∑
j=1

n2

∑
i=1,i 6=j

1
n2

2
KYj (Yi)

−
n2

∑
j=1

n1

∑
i=1,i 6=j

1
n1n2

KYj (Xi)−
n1

∑
j=1

n2

∑
i=1,i 6=j

1
n1n2

KXj (Yi) . (3)

Following Fan and Ullah [19], we deliver convergence results under the assumption that two sample
sizes n1 and n2 diverge at the same rate. The asymptotic variance of n1b1/4 In1,n2 and its consistent
estimate are also provided. Because the essential arguments are the same as those for Theorem 1 and
Proposition 1, we omit the proofs of Theorem 2 and Proposition 2 and simply state the results. Observe
that when n1 = n2 = n, these results collapse to Theorem 1 and Proposition 1, respectively.

Theorem 2. Suppose that Assumptions 1–4 and n1/n2 → λ for some constant λ ∈ (0, ∞) hold.

(i) Under H0, n1b1/4 In1,n2
d→ N

(
0, σ2

λ

)
as n1 → ∞, where

σ2
λ = 2VI (2)

[
E
{

X−1/2 f (X)
}
+ λE

{
X−1/2g (X)

}
+λE

{
Y−1/2 f (Y)

}
+ λ2E

{
Y−1/2g (Y)

}]
,

which reduces to σ2
λ = 2 (1 + λ)2 VI (2) E

{
X−1/2 f (X)

}
under H0.

(ii) A consistent estimator of σ2
λ is given by

σ̂2
λ = 2VI (2)

{
1
n1

n1

∑
i=1

X−1/2
i f̂ (Xi) +

(
n1

n2

)
1
n1

n1

∑
i=1

X−1/2
i ĝ (Xi)

+

(
n1

n2

)
1
n2

n2

∑
i=1

Y−1/2
i f̂ (Yi) +

(
n1

n2

)2 1
n2

n2

∑
i=1

Y−1/2
i ĝ (Yi)

}
. (4)

Proposition 2. If Assumptions 1–4 and n1/n2 → λ ∈ (0, ∞) hold, then under H1, Pr (Tn1,n2 > Bn1) :=

Pr
(

n1b1/4 In1,n2 /σ̂λ > Bn1

)
→ 1 as n1 → ∞ for any non-stochastic sequence Bn1 satisfying Bn1 =

o
(

n1b1/4
)

.

The next corollary is a natural outcome from Theorem 2 and comes from the fact that under H0,
n1 ∼ n2 or λ = 1 holds. Because N could be odd in this context, n should read n = bN/2c.

Corollary 1. If Assumptions 1–4 and n1/n2 → 1 hold, then n1, n2 ∼ n = bN/2c so that n1b1/4 In1,n2 =

nb1/4 In + op (1).
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3.3. Extension to a Test for Conditional Symmetry

So far we have maintained the assumption that the random variable U is observable and has a
distribution that is symmetric about zero. However, often U is unobservable or the axis of symmetry
is not zero. The former is typical when we are interested in symmetry of the distribution of the
disturbance conditional on regressors in regression analysis. In this scenario, the test is conducted
after U is replaced with the residual. For the latter, the test should be based on location-adjusted
observations, i.e., transformed observations with an estimate of the axis of symmetry (e.g., the sample
mean or the sample median) subtracted from U. These aspects motivate us to generalize the SSST to
the testing for conditional symmetry.

Following FMS, we consider a testing for symmetry in the conditional distribution of V1|V2 with
(V1, V2) ∈ R×Rd within the framework of a semiparametric context. Specifically, for a parameter
space Θ1 and a function ξ1 : Rd ×Θ1 → R, it suffices to check whether the conditional distribution of
V1|V2 is symmetric about ξ1

(
V2; θ0

1
)

for some θ0
1 ∈ Θ1. Observe that this is equivalent to test whether

there is θ0
1 ∈ Θ1 such that the conditional distribution of V|V2 := V1 − ξ1

(
V2; θ0

1
)∣∣V2 is symmetric

about zero.
However, implementing this type of testing strategy requires to estimate the conditional pdf

of V|V2 nonparametrically. This is cumbersome, considering the curse of dimensionality in V2 and
another smoothing parameter choice. Instead, as in Zheng [17], Bai and Ng [25] and Delgado and
Escanciano [26], we assume that there are a parameter space Θ2 and a function ξ2 : Rd+1 ×Θ2 → R
that can attain symmetry of the marginal distribution of U := ξ2

(
V1, V2; θ0

2
)

about zero for some
θ0

2 ∈ Θ2. Given the dependence of V (and thus U) on Θ1, we can finally rewrite our testing scheme as
the one that tests, for a suitable parameter space Θ and a function ξ : Rd+1 ×Θ→ R, symmetry of the
marginal distribution of U = ξ (V1, V2; θ0) about zero for some θ0 ∈ Θ.

Accordingly, the procedure of the conditional symmetry test takes the following two steps.
First, we estimate ξ (·, ·; θ0) given N observations {(V1i, V2i)}N

i=1 and denote a consistent estimator of

(ξ, θ0) as
(
ξ̂, θ̂
)
. Second, the test is conducted using

{
Ûi
}N

i=1 :=
{

ξ̂
(
V1, V2; θ̂

)}N
i=1. As before, the entire

sample is split into two sub-samples
{

X̂i
}n1

i=1 :=
{

Ûi : Ûi ≥ 0
}n1

i=1 and
{

Ŷi
}n2

i=1 :=
{
−Ûi : Ûi < 0

}n2
i=1.

Then, the test statistics, namely, In
(
ξ̂, θ̂
)

and In1,n2

(
ξ̂, θ̂
)

for equal (n1 = n2 = n) and unequal (n1 6= n2)
sample sizes, can be obtained by replacing (X, Y) = (X (ξ, θ0) , Y (ξ, θ0)) in In (ξ, θ0) and In1,n2 (ξ, θ0)

with
(
X̂, Ŷ

)
, respectively.

Our remaining task is to demonstrate that there is no asymptotic cost in the test statistics

with (ξ, θ0) replaced by its estimator
(
ξ̂, θ̂
)
, as long as

(
ξ̂, θ̂
) p→ (ξ, θ0) at a suitable rate of

convergence. To control the convergence rate, we make Assumption 5 below. Observe that it allows
for nonparametric rates of convergence; see Hansen [42], for instance, for uniform convergence rates
of kernel estimators.

Assumption 5. Nr
∥∥θ̂ − θ0

∥∥ p→ 0 and Nr
∣∣ξ̂ − ξ

∣∣ p→ 0 uniformly over Rd+1 ×Θ for some r ∈ (0, 1/2].

Theorem 3 below provides combinations of the shrinking rate q for b and the convergence
rate r for

(
ξ̂, θ̂
)

that can establish the first-order asymptotic equivalence between nb1/4 In (ξ, θ0)

(n1b1/4 In1,n2 (ξ, θ0)) and nb1/4 In
(
ξ̂, θ̂
)

(n1b1/4 In1,n2

(
ξ̂, θ̂
)
) when two sub-samples have equal (unequal)

sample sizes.

Theorem 3. If Assumptions 1–5 hold, then under H0,

nb1/4 In
(
ξ̂, θ̂
)
= nb1/4 In (ξ, θ0) + op (1)

as n→ ∞ when n1 = n2 = n and

n1b1/4 In1,n2

(
ξ̂, θ̂
)
= n1b1/4 In1,n2 (ξ, θ0) + op (1)
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as n1 → ∞ when n1/n2 → λ ∈ (0, ∞), provided that (q, r) belong to the set
{(q, r) : r > −5q/4 + 1, r > q/2, r ≤ 1/2}.

The set given in the theorem can be expressed as the triangular region formed by the corners
(2/5, 1/2), (4/7, 2/7) and (1, 1/2) on the q− r plane. The theorem also indicates that we must employ
the sub-optimal smoothing parameter b = o

(
n−2/5

)
or undersmooth the observations to avoid

additional cost of estimating (ξ, θ0), as is the case with other kernel-smoothed tests. Moreover, FMS set
b = o

(
n−4/9

)
and obtain the lower bound of r as 4/9. Indeed, the set provided in Theorem 3 overlaps

the one derived by FMS {(q, r) : q > 4/9, r > 4/9}.

4. Smoothing Parameter Selection

How to choose the value of the smoothing parameter b is an important practical problem.
Nonetheless, it appears that the issue has not been well addressed in the literature on testing
problems using asymmetric kernels. While Fernandes and Grammig [33] adopt a method inspired by
Silverman’s [43] rule-of-thumb, FMS adjust the value chosen via cross validation. Both methods choose
the smoothing parameter value from the viewpoint of optimality for density estimation. Such choices
cannot be justified in theory or practice, because estimation-optimal values may not be equally
optimal for testing purposes. In contrast, there are a few works on test-oriented smoothing parameter
selection. For the test of equality in two unknown regression curves, Kulasekera and Wang [34,35],
analytically explore the idea of choosing the smoothing parameter value that maximizes the power
with the size preserved. Gao and Gijbels [44] combine this idea with the Edgeworth expansion for a
bootstrap specification test of parametric regression models.

Below we tailor the procedure by Kulasekera and Wang [35] to the SSST. For a realistic setup,
the case of n1 6= n2 is exclusively considered. Their basic idea is from sub-sampling. Without loss
of generality assume that {Xi}n1

i=1 and {Yi}n2
i=1 are ordered samples. Then, the entire sample{

{Xi}n1
i=1 , {Yi}n2

i=1

}
can be split into M sub-samples, where M = Mn1 is a non-stochastic sequence that

satisfies 1/M + M/n1 → 0 as n1 → ∞. Given such M and (k1, k2) := (bn1/Mc , bn2/Mc), the mth

sub-sample is defined as
{{

Xm+(i−1)M

}k1

i=1
,
{

Ym+(i−1)M

}k2

i=1

}
, m = 1, . . . , M. This sub-sample yields

the analogues to (3) and (4) as

Ik1,k2 (m) =
k1

∑
j=1

k1

∑
i=1,i 6=j

1
k2

1
KXm+(j−1)M

(
Xm+(i−1)M

)
+

k2

∑
j=1

k2

∑
i=1,i 6=j

1
k2

2
KYm+(j−1)M

(
Ym+(i−1)M

)

−
k2

∑
j=1

k1

∑
i=1,i 6=j

1
k1k2

KYm+(j−1)M

(
Xm+(i−1)M

)
−

k

∑
j=1

k2

∑
i=1,i 6=j

1
k1k2

KXm+(j−1)M

(
Ym+(i−1)M

)
and

σ̂2
λ (m) = 2VI (2)

{
1
k1

k1

∑
i=1

X−1/2
m+(i−1)M f̂m

(
Xm+(i−1)M

)
+

(
k1

k2

)
1
k1

k1

∑
i=1

X−1/2
m+(i−1)M ĝm

(
Xm+(i−1)M

)
+

(
k1

k2

)
1
k2

k2

∑
i=1

Y−1/2
m+(i−1)M f̂m

(
Ym+(i−1)M

)
+

(
k1

k2

)2 1
k2

k2

∑
i=1

Y−1/2
m+(i−1)M ĝm

(
Ym+(i−1)M

)}
,

where

f̂m (u) =
1
k1

k1

∑
i=1

KGG

(
Xm+(i−1)M; u, b

)
and

ĝm (u) =
1
k2

k2

∑
i=1

KGG

(
Ym+(i−1)M; u, b

)
.
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It follows that the test statistic using the mth sub-sample becomes

Tk1,k2 (m) :=
k1b1/4 Ik1,k2 (m)

σ̂λ (m)
, m = 1, . . . , M.

Also denote the set of admissible values for b = bn1 as Hn1 :=
[

Bn−q
1 , Bn−q

1

]
for some prespecified

exponent q ∈ (0, 1) and two constants 0 < B < B < ∞. Moreover, let

π̂M
(
bk1

)
:=

1
M

M

∑
m=1

1
{

Tk1,k2 (m) > cm (α)
}

,

where cm (α) is the critical value for the size α test using the mth sub-sample. We pick the power-maximized
b̂k1 = B̂k−q

1 = arg maxbk1
∈Hk1

π̂M
(
bk1

)
, and the smoothing parameter value b̂n1 := B̂n−q

1 follows.

The behavior of π̂M
(
bk1

)
can be examined by considering the local alternative

H′1 : f (u) = g (u)+
h (u)√
n1b1/4

,

where h (u) satisfies
∫∞

0 h (u) du = 0 and Ih :=
∫∞

0 h2 (u) du ∈ (0, ∞). Also let π (bn1) := Pr{Tn1,n2 > c (α)},
where c (α) is the critical value for the size α test using the entire sample. For such π (bn1), define b∗n1

:=
B∗n−q

1 = arg maxbn1∈Hn1
π (bn1). Then, b̂n1 is optimal in the sense of Proposition 3. The proof is omitted,

because it is a minor modification of the one for Theorem 2.1 of Kulasekera and Wang [35]; indeed it

can be established by recognizing that Tn1,n2
d→ N (Ih/σλ, 1) under H′1, as in Proposition 3 of Fernandes

and Grammig [33].

Proposition 3. If Assumptions 1–4, 1/M + M/n1 → 0 and n1/n2 → λ ∈ (0, ∞) hold, then B∗/B̂
p→ 1

as n1→ ∞.

We conclude this section by stating how to obtain b̂n1 in practice. Step 1 reflects that M should be
divergent but smaller than both n1 and n2 in finite samples. Step 3 follows from the implementation
methods in Kulasekera and Wang [34,35]. Finally, Step 4 considers that there may be more than one
maximizer of π̂M

(
bk1

)
.

Step 1: Choose some δ ∈ (0, 1) and specify M = min
{⌊

nδ
1
⌋

,
⌊
nδ

2
⌋}

.
Step 2: Make M sub-samples of sizes (k1, k2) = (bn1/Mc , bn2/Mc).
Step 3: Pick two constants 0 < H < H < 1 and define Hk1 =

[
H, H

]
.

Step 4: Set cm (α) ≡ zα and find b̂k1 = inf
{

arg maxbk1
∈Hk1

π̂M
(
bk1

)}
by a grid search.

Step 5: Obtain B̂ = b̂k1kq
1 and calculate b̂n1 = B̂n−q

1 .

5. Finite-Sample Performance

5.1. Setup

It is widely recognized that asymptotic results on kernel-smoothed tests are not well transmitted to
their finite-sample distributions, which reflects that omitted terms in the first-order asymptotics on the
test statistics are highly sensitive to their smoothing parameter values in finite samples. On the other
hand, Fernandes and Grammig [33] and FMS report superior finite-sample properties of asymmetric
kernel-smoothed tests. To see which perspective dominates, this section investigates finite-sample
performance of the test statistic for the SSST via Monte Carlo simulations.

To make a direct comparison with the results by FMS, we specialize in the conditional symmetry
test using the same linear regression model y = β0 + β1x+ u as used in FMS. The data are generated
in the following manner. First, the regressor x is drawn from N (0, 1). Second, the disturbance u,
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which is independent of x, is drawn from one of eight distributions with means of zero given in Table 1.
Distributions with “S” (symmetric) and “A” (asymmetric) are used to investigate size and power
properties of the test statistic, respectively. All the distributions are popularly chosen in the literature;
the generalized lambda distribution (“GLD”) by Ramberg and Schmeiser [45], in particular, is known
to nest a wide variety of symmetric and asymmetric distributions3. Finally, the dependent variable y is
generated by setting β0 = β1 = 1.

Table 1. Distributions of the Disturbance u in the Simulation Study.

Distribution Skewness Kurtosis

S1 N (0, 1) 0.00 3.00
S2 t10 0.00 4.00
S3 DE (0, 1) or Standard Laplace 0.00 24.00
S4 U [−1, 1] or GLD with (λ1, λ2, λ3, λ4) = (0, 1, 1, 1) 0.00 1.80

A1 LN (0, 1)− exp (1/2) 6.18 113.94
A2 χ2

3 − 3 1.63 7.00
A3 GLD with (λ1, λ2, λ3, λ4) = (12.601,−0.00980045,−0.11,−0.0001) −2.92 19.52
A4 GLD with (λ1, λ2, λ3, λ4) = (−9.7726,−0.0151878,−0.001,−0.13) 3.16 23.75

Note: “S” and “A” stand for symmetric and asymmetric distributions, respectively. “GLD” denotes the
generalized lambda distribution by Ramberg and Schmeiser [45]. The distribution is defined in terms of the

inverse of the cumulative distribution function F−1 (u) = λ1 +
{

uλ3 + (1− u)λ4
}

/λ2 for u ∈ [0, 1].

We are interested in testing symmetry of the conditional distribution of y given x. For this purpose
the SSST is applied for the least-squares residual ûi := yi − β̂0 − β̂1xi using the sample {(yi, xi)}N

i=1,
where

(
β̂0, β̂1

)
are least-squares estimates of (β0, β1). Finite-sample size and power properties of the

test statistic Tn1,n2 for two sub-samples with unequal sample sizes are examined against nominal 5%
and 10% levels. The MG and NM kernels (denoted as “Tn1,n2 -MG” and “Tn1,n2 -NM”, respectively) are
employed as examples of the GG kernels.

Finite-sample properties of Tn1,n2-MG and Tn1,n2-NM are evaluated in comparison with other
versions of the SSST. First, two versions of FMS’s original test statistic built on an equivalence to our In

using the G kernel are considered. “FMS-G-O” is FMS’s truly original statistic, whereas “FMS-G-AltVar”
is the one with the variance estimator replaced by σ̂2

λ given in Theorem 2. Second, Tn1,n2 using the G
kernel (denoted as “Tn1,n2-G”) is also calculated. Notice that FMS-G-AltVar and Tn1,n2-G take exactly
the same form. The only difference is the method of choosing the smoothing parameter b, which
will be discussed shortly. Effects of changing the variance estimator, the method of choosing b, and
the kernel choice can be examined by weighing FMS-G-O with FMS-G-AltVar, FMS-G-AltVar with
Tn1,n2 -G, and Tn1,n2 -G with Tn1,n2 -MG or Tn1,n2 -NM, respectively.

The smoothing parameter b for FMS-G-O and FMS-G-AltVar is determined via making an
adjustment for the value chosen by a cross-validation criterion; see p. 657 of FMS for details.
On the other hand, the values of b for Tn1,n2-G, Tn1,n2-MG and Tn1,n2-NM are selected by the
power-optimality criterion in the previous section. Implementation details are as follows: (i) all
critical values in π̂M

(
bk1

)
are set at z0.05 = 1.645; (ii) the shrinking rate of b is set at q = 4/9 because of

N1/2-consistency of least-squares estimates and Theorem 3; (iii) three different values are considered
for δ, namely, δ ∈ {0.3, 0.5, 0.7}; and (iv) the interval for bk1 is set equal to Hk1 = [0.01, 0.64]. The
sample size is N ∈ {50, 100, 200}, and 1000 replications are drawn for each combination of the sample
size N and the distribution of u.

3 Although the GLDs corresponding to A3 and A4 are used in Zheng [17] and FMS, they are found to have non-zero means.
Therefore, we adjust the values of λ1 and λ2 with skewness and kurtosis maintained so that the resulting distributions have
means of zero.
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5.2. Simulation Results

Table 2 presents finite-sample rejection frequencies of each test statistic against nominal 5% and
10% levels across 1000 Monte Carlo samples. Critical values are simply based on the first-order normal
limit, i.e., 1.645 and 1.280 correspond to the 5% and 10% levels, respectively.

Table 2. Size and Power of the SSST.

(A) Size (%)

Distribution

S1 S2 S3 S4N Test δ

5% 10% 5% 10% 5% 10% 5% 10%

50 FMS-G-O − 4.8 9.4 4.9 9.5 6.0 10.8 7.4 12.6
FMS-G-AltVar − 4.7 9.3 4.4 8.9 5.8 10.9 6.9 12.6

Tn1,n2 -G 0.3 3.5 7.5 3.1 7.0 4.5 8.7 5.2 9.6
0.5 3.8 6.8 3.0 7.3 4.4 7.9 5.4 10.2
0.7 3.4 6.7 3.4 7.3 4.5 8.9 5.4 10.5

Tn1,n2 -MG 0.3 3.6 7.7 3.9 7.5 4.9 9.5 5.3 9.7
0.5 4.0 7.2 3.7 7.2 4.9 8.7 5.4 10.2
0.7 3.3 6.8 3.8 7.3 4.7 9.1 5.3 10.7

Tn1,n2 -NM 0.3 3.4 7.3 3.1 6.7 4.3 8.3 5.2 9.3
0.5 3.9 6.7 3.1 6.4 4.2 7.9 5.2 9.8
0.7 3.3 7.0 3.1 6.4 4.4 8.1 5.2 10.3

100 FMS-G-O − 5.2 9.8 6.7 10.8 5.6 10.1 7.4 12.5
FMS-G-AltVar − 4.9 8.9 6.4 10.6 5.3 9.9 6.6 12.6

Tn1,n2 -G 0.3 4.0 7.0 6.1 9.3 5.1 8.8 7.3 11.9
0.5 3.6 7.3 5.8 9.1 5.2 8.9 7.1 11.4
0.7 3.8 7.6 5.9 9.5 4.8 9.3 6.6 11.8

Tn1,n2 -MG 0.3 4.5 7.4 6.2 9.5 5.8 9.6 7.3 12.1
0.5 3.7 7.7 6.1 9.6 5.7 9.0 7.2 11.6
0.7 3.8 8.1 5.8 9.6 5.1 9.4 6.7 12.1

Tn1,n2 -NM 0.3 4.2 6.8 5.3 8.9 4.3 8.4 7.1 12.4
0.5 4.0 6.6 5.3 8.7 4.9 8.7 7.2 11.6
0.7 4.2 6.8 5.3 8.8 4.9 8.4 7.3 11.7

200 FMS-G-O − 4.1 7.3 6.0 9.3 5.8 8.9 8.9 14.1
FMS-G-AltVar − 4.1 7.0 6.1 8.9 5.4 9.3 8.7 15.1

Tn1,n2 -G 0.3 3.3 6.3 4.9 8.0 4.9 8.7 8.9 12.9
0.5 3.2 6.4 4.9 8.6 5.3 8.7 8.7 13.3
0.7 3.5 6.8 5.2 9.2 5.4 8.9 8.4 13.9

Tn1,n2 -MG 0.3 3.5 6.7 5.5 8.4 5.5 9.4 9.0 13.4
0.5 3.5 6.8 5.2 9.0 5.7 8.8 8.7 13.6
0.7 3.5 7.0 5.5 9.8 5.7 9.1 8.6 13.7

Tn1,n2 -NM 0.3 3.5 6.0 4.0 7.5 4.4 8.5 8.7 13.3
0.5 3.6 5.9 4.4 7.6 4.4 8.4 8.7 13.3
0.7 3.6 5.8 4.6 7.4 4.5 8.4 8.8 13.1
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Table 2. Cont.

(B) Power (%)

Distribution

A1 A2 A3 A4N Test δ

5% 10% 5% 10% 5% 10% 5% 10%

50 FMS-G-O − 42.0 51.6 21.4 30.3 26.3 37.2 28.8 40.8
[43.7] [52.4] [22.7] [31.0] [27.6] [38.1] [30.5] [42.0]

FMS-G-AltVar − 24.9 37.0 13.3 22.4 39.8 52.2 43.1 55.3
[27.5] [39.0] [13.9] [24.1] [41.5] [53.6] [44.9] [57.4]

Tn1,n2 -G 0.3 31.3 41.5 17.3 24.7 30.8 41.3 33.8 44.3
[35.4] [46.6] [20.8] [29.5] [35.1] [46.3] [38.7] [50.8]

0.5 29.5 39.7 16.0 23.8 29.4 39.1 31.4 42.9
0.7 27.8 38.7 14.5 22.6 28.0 36.8 30.2 40.6

Tn1,n2 -MG 0.3 32.1 42.2 17.9 25.8 31.6 41.8 35.5 45.5
[35.2] [45.7] [20.9] [29.3] [35.0] [45.8] [39.1] [49.5]

0.5 30.1 40.8 16.5 24.5 30.2 40.3 32.2 43.1
0.7 28.0 38.9 15.1 23.0 28.5 37.5 30.8 41.1

Tn1,n2 -NM 0.3 33.8 42.5 18.2 25.2 32.9 42.5 35.2 46.5
[36.6] [48.8] [20.7] [30.4] [36.8] [48.5] [39.2] [53.5]

0.5 33.5 42.2 17.7 24.9 32.4 42.2 34.6 45.8
0.7 33.0 41.4 17.4 24.2 32.2 41.6 34.5 45.7

100 FMS-G-O − 73.0 81.5 41.4 51.4 59.1 71.2 64.2 74.6
[72.7] [81.8] [40.7] [52.3] [58.7] [71.8] [63.8] [74.6]

FMS-G-AltVar − 56.4 70.2 30.3 43.4 73.7 80.7 77.2 83.7
[58.1] [71.6] [32.2] [44.4] [74.4] [81.8] [78.1] [84.4]

Tn1,n2 -G 0.3 72.3 80.5 37.9 48.6 70.3 78.4 74.1 80.5
[75.4] [84.4] [40.2] [54.9] [72.8] [82.3] [76.1] [84.1]

0.5 67.1 77.2 33.9 45.0 65.2 75.7 69.5 78.2
0.7 62.9 73.6 31.9 42.5 61.7 72.3 65.2 75.8

Tn1,n2 -MG 0.3 73.1 80.2 38.3 49.3 70.5 78.3 73.6 81.0
[74.8] [83.6] [40.9] [53.5] [72.4] [80.7] [75.4] [83.3]

0.5 67.4 77.5 34.6 45.4 65.6 75.4 69.5 77.9
0.7 62.9 73.5 32.0 42.3 62.2 72.5 65.3 75.2

Tn1,n2 -NM 0.3 76.8 84.0 41.7 51.9 75.5 82.1 76.8 84.0
[79.6] [87.2] [44.8] [58.0] [77.6] [85.0] [79.7] [86.9]

0.5 77.0 84.0 40.1 51.0 75.1 82.0 75.7 83.0
0.7 76.4 83.7 39.6 50.1 74.9 81.9 75.6 82.9

200 FMS-G-O − 97.4 98.3 71.5 80.7 95.6 98.1 97.1 97.8
[97.8] [98.6] [75.0] [84.2] [96.9] [98.6] [97.4] [98.4]

FMS-G-AltVar − 93.4 96.3 60.4 72.8 98.7 99.0 98.4 99.1
[95.2] [97.5] [69.1] [78.5] [98.8] [99.2] [99.0] [99.2]

Tn1,n2 -G 0.3 97.7 99.1 77.0 84.8 98.6 99.1 98.6 99.2
[98.7] [99.4] [82.7] [90.3] [98.8] [99.4] [98.9] [99.2]

0.5 97.2 98.1 71.3 80.9 97.7 98.9 97.9 98.7
0.7 96.4 97.6 65.4 75.8 96.7 98.8 97.2 98.3

Tn1,n2 -MG 0.3 97.9 99.1 76.2 85.3 98.6 99.1 98.5 99.1
[98.6] [99.4] [81.8] [89.8] [98.7] [99.4] [98.7] [99.2]

0.5 97.3 98.1 71.4 80.3 97.6 98.9 97.9 98.6
0.7 96.5 97.6 65.5 75.9 96.7 98.7 97.2 98.3

Tn1,n2 -NM 0.3 98.9 99.0 84.8 91.1 98.8 99.2 98.6 98.9
[99.0] [99.2] [91.1] [95.8] [99.4] [99.7] [99.5] [99.7]

0.5 96.8 97.0 81.2 88.2 98.3 98.6 98.4 98.6
0.7 95.6 95.7 80.9 88.3 98.3 98.6 98.4 98.6

Note: Numbers in brackets are size-adjusted powers.

Panel (A) reports size properties. At first glance, we can find that the results of FMS-G-O are
close to what is reported in Table 3 of FMS. It has the tendency of over-rejecting the null slightly
against the nominal size. Comparing FMS-G-O with FMS-G-AltVar reveals that replacing the variance
formula is likely to decrease the rejection frequencies. Changing the choice method of b further
reduces the rejection frequencies, and Tn1,n2-G tends to result in mild under-rejection of the null.
Effects of alternative kernel choices are mixed. While Tn1,n2-G and Tn1,n2-MG have similar size
properties, Tn1,n2-NM looks more conservative in the sense that its rejection frequencies are slightly
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smaller. Impacts of varying δ are found to be minor at best. A concern is that all test statistics
exhibit size distortions for S4. However, the distribution is platykurtic and has sharp boundaries
at ±1. A platykurtic distribution is an exception rather than a rule in economics and finance, and a
distribution with a compact support violates Assumption 1. In sum, all test statistics exhibit good
size properties, although their convergence rates are nonparametric ones, effective sample sizes are
(roughly) a half of the entire sample size N, and no size correction devices such as bootstrapping
are used.

Panel (B) refers to power properties. We can immediately see that the rejection frequencies of
each test statistic approach to one with the sample size N, which confirms consistency of the SSST.
There is substantial improvement in power as the sample size increases from N = 50 to 100. Most of
rejection frequencies become nearly one for as small as N = 200. After a closer look, we can find it
hard to judge whether changing the variance formula from FMS-G-O to FMS-G-AltVar may affect
power properties favorably or adversely. However, once the smoothing parameter value is chosen
via the power-optimality criterion, power properties are improved in general. Power properties of
Tn1,n2-G and Tn1,n2-MG again look alike, whereas Tn1,n2-NM appears to be more powerful than these
two. Because the power tends to decrease with δ, it could be safe to choose δ = 0.3 from the viewpoint
of power-maximization. Indeed, for N = 200 and δ = 0.3, each of Tn1,n2-G, Tn1,n2-MG and Tn1,n2-NM
exhibits better power properties than FMS-G-O and FMS-G-AltVar.

For convenience, Panel (B) presents size-adjusted powers, where the best case scenario (i.e., δ = 0.3)
is considered for Tn1,n2-G, Tn1,n2-MG and Tn1,n2-NM. These three test statistics again outperform FMS’s
original statistics in terms of size-adjusted powers, and Tn1,n2-NM appears to have the best power
properties among three. All in all, Monte Carlo results indicate superior size and power properties of
the SSST with the GG kernels plugged in.

6. Conclusions

The SSST developed by FMS is built on the idea of gauging the closeness between right and left
sides of the axis of symmetry of an unknown pdf. To implement the test, we split the entire sample
into two sub-samples and estimate both sides of the pdf nonparametrically using asymmetric kernels
with support on [0, ∞). This paper has improved the SSST by combining it with the newly proposed
GG kernels. The test statistic can be interpreted as a standardized version of a degenerate U-statistic.
We deliver convergence properties of the test statistic and provide the asymptotic variance formulae
for the cases of two sub-samples with equal and unequal sample sizes separately. It is demonstrated
that the SSST smoothed by the GG kernels has a normal limit under the null of symmetry and is
consistent under the alternative. As a part of the implementation method we also propose to select
the smoothing parameter in a power-optimality criterion. Monte Carlo simulations indicate that
the GG kernel-smoothed SSST with the power-maximized smoothing parameter value plugged in
enjoys superior finite-sample properties. It should be stressed that the good performance of the SSST is
grounded on the first-order normal limit and a small number of observations, despite its nonparametric
convergence rate and sample-splitting procedure.

Appendix A. Appendix

Appendix A.1. Proof of Lemma 1

Because the proof for the MG kernel is basically the same as those for Lemmata 1(e) and 2 of FMS,
we prove the case of the NM kernel. Among all statements, we concentrate on demonstrating that

E
{

KX2 (X1)KY2 (X1)
}
∼ E { f (X) g (X)} , and (A1)

E
{

KX2 (Y1)KY1 (X2)
}
∼ b−1/2VI (2) E

{
X−1/2g (X)

}
. (A2)
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All the remaining statements can be shown in the same manner. To approximate the gamma function,
we frequently refer to the following well-known formulae:

1. Stirling’s formula (“SF”):

Γ (z + 1) =
√

2πzz+1/2e−z
{

1 +
1

12z
+

1
288z2 +O

(
z−3
)}

as z→ ∞.

2. Legendre’s duplication formula (“LDF”):

Γ (z) Γ
(

z +
1
2

)
=

√
π

22z−1 Γ (2z) for z > 0.

In addition, proofs of the above statements require the following lemma. Its proof is virtually the
same as those for Lemmata A.1 and A.2 of Fernandes and Monteiro [46], and thus it is omitted.

Lemma A1. For a constant D > 0 and two numbers x, y > 0,

exp

{
− (y− x)2

Dx

}
≤
(

x
y

) y−x
D
≤ exp

{
− (y− x)2

Dx
+

(y− x)3

2Dx2

}
(A3)

if x ≤ y, and

exp

{
− (y− x)2

Dx
+

(y− x)3

2Dy2

}
≤
(

x
y

) y−x
D
≤ exp

{
− (y− x)2

Dx

}
(A4)

if y < x.

Proof of (A1). We apply the trimming argument as on p. 476 of Chen [30]. For some ε ∈ (0, 1/2),

E
{

KX2 (X1)KY2 (X1)
}

=
∫ ∞

b1−ε

[∫ ∞

b1−ε

{∫ ∞

0
Lb (u; x, y) f (x1) dx1

}
g (y) dy

]
f (x) dx +O

(
b1−ε

)
,

where Lb (u; x, y) := KNM (u; x, b)KNM (u; y, b) for interior x, y. Then, the proof takes a multi-step
approach including the following steps:

Step 1: approximating J (x, y) :=
∫ ∞

0 Lb (u; x, y) f (u) du.
Step 2: approximating J :=

∫ ∞
b1−ε

{∫ ∞
b1−ε J (x, y) g (y) dy

}
f (x) dx.

Step 1: Define

Pz (b) :=
zΓ
( z

2b
)

Γ
(

z
2b +

1
2

) (A5)

for z = x, y, x + y. Then,

Lb (u; x, y) =
2
{

Px (b) Py (b)/
√

P2
x (b) + P2

y (b)
} x+y

b −1
Γ
(

x+y
2b −

1
2

)
Px/b

x (b) Γ
( x

2b
)

Py/b
y (b) Γ

( y
2b
)

×

2u(
x+y

b −1)−1 exp

−{ u
Px(b)Py(b)/

√
P2

x (b)+P2
y (b)

}2


{
Px (b) Py (b)/

√
P2

x (b) + P2
y (b)

} x+y
b −1

Γ
(

x+y
2b −

1
2

) , (A6)
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where the first term is denoted as Bb (x, y), and the second term can be viewed as the pdf of

GG
(
(x + y)/b− 1, Px (b) Py (b)/

√
P2

x (b) + P2
y (b), 2

)
. Moreover, Bb (x, y) can be further rewritten as

B1bB2bB3b :=
2Γ
(

x+y
2b −

1
2

)
Γ
( x

2b
)

Γ
( y

2b
)
{

P2
x (b) + P2

y (b)
}1/2

Px (b) Py (b)
Py/b

x (b) Px/b
y (b){

P2
x (b) + P2

y (b)
} x+y

2b

, (A7)

and an approximation to each of B1b, B2b and B3b is provided separately.
By LDF, B1b becomes

B1b =

(
2

x+y
2b −

1
2

)
Γ
(

x+y
2b + 1

2

)
Γ
( x

2b
)

Γ
( y

2b
) =

b
√

π

2
x+y

b −3 (x + y− b)

Γ
(

x+y
2b

)
Γ
( x

2b
)

Γ
( y

2b
)

Γ
(

x+y
2b

) .

Then, by SF, an approximation to B1b is given by

B1b =

√
2
π

( √
xy

x + y

)(
x + y

x

) x
2b
(

x + y
y

) y
2b
{1 + o (1)} . (A8)

Next, it follows from LDF and SF that

Pz (b) =
2z/b−1
√

π

zΓ2 ( z
2b
)

Γ
( z

b
) = (2bz)1/2

{
1 +

b
4z

+O
(

b2
)}

. (A9)

Hence,

B2
2b =

1
P2

x (b)
+

1
P2

y (b)
=

b−1

2

(
x + y

xy

)
{1 + o (1)} ,

and thus

B2b =
b−1/2
√

2

(√
x + y
√

xy

)
{1 + o (1)} . (A10)

Furthermore, (A9) also implies that

Py/b
x (b) = (2bx)

y
2b exp

( y
4x

)
{1 + o (1)} ;

Px/b
y (b) = (2by)

x
2b exp

(
x

4y

)
{1 + o (1)} ; and

{
P2

x (b) + P2
y (b)

} x+y
2b

= {2b (x + y)}
x+y
2b exp

(
1
2

)
{1 + o (1)} .

Then,

B3b = x
y
2b y

x
2b (x + y)−

x+y
2b exp

{
1
4

(y
x
− 1
)}

exp
{

1
4

(
x
y
− 1
)}
{1 + o (1)} . (A11)

Substituting (A8), (A10) and (A11) into (A7) finally yields

Bb (x, y) := b−1/2B̃b (x, y)
(

x
y

) y−x
2b
{1 + o (1)} ,

where

B̃b (x, y) =
1√

π
√

x + y
exp

{
1
4

(y
x
− 1
)}

exp
{

1
4

(
x
y
− 1
)}

.
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Then, for a random variable ζx
d
= GG

(
(x + y)/b− 1, Px (b) Py (b)/

√
P2

x (b) + P2
y (b), 2

)
,

J (x, y) =
∫ ∞

0
Lb (u; x, y) f (u) du {1 + o (1)}

= b−1/2B̃b (x, y)
(

x
y

) y−x
2b

E { f (ζx)} {1 + o (1)} .

By the property of GG random variables, (A5), (A9), and (A10),

E (ζx) = B−1
2b

Γ
(

x+y
2b

)
Γ
(

x+y
2b −

1
2

) =
√

xy {1 +O (b)} .

In the end, a first-order Taylor expansion of f (ζx) around ζx =
√

xy gives

J (x, y) = b−1/2B̃b (x, y) f (
√

xy)
(

x
y

) y−x
2b
{1 + o (1)} ,

which completes Step 1.

Step 2: For some t ∈ (0, 1), we split the interval for y into four subintervals as follows:

J =
∫ ∞

b1−ε

{∫ (1−t)x

b1−ε
+
∫ x

(1−t)x
+
∫ (1+t)x

x
+
∫ ∞

(1+t)x
J (x, y) g (y) dy

}
f (x) dx

= J1 + J2 + J3 + J4 (say).

Also denote h (x, y) := B̃b (x, y) f
(√

xy
)

g (y). Then, by (A4) and the change of variable
v := (y− x)/

√
2bx,

J1 ≤
∫ ∞

b1−ε

[∫ (1−t)x

0
b−1/2h (x, y) exp

{
− (y− x)2

2bx

}
{1 + o (1)} dy

]
f (x) dx

≤
∫ ∞

b1−ε

√
2x

[∫ − t√
2

√ x
b

− 1√
2

√ x
b

h
(

x, x + v
√

2bx
)

e−v2 {1 + o (1)} dv

]
f (x) dx→ 0

as b→ 0.
Next, it follows from (A4) that

J2 ≥
∫ ∞

b1−ε

[∫ x

(1−t)x
b−1/2h (x, y) exp

{
− (y− x)2

2bx
+

(y− x)3

4by2

}
{1 + o (1)} dy

]
f (x) dx

≥
∫ ∞

b1−ε

[∫ x

(1−t)x
b−1/2h (x, y) exp

{
− (y− x)2

2bx
(1 + τ1)

}
{1 + o (1)} dy

]
f (x) dx,

where τ1 := t (2− t)/
{

2 (1− t)2
}

. By the change of variable w := (y− x)
√
(1 + τ1)/ (2bx),

the right-hand side becomes

∫ ∞

b1−ε

√
2x

1 + τ1

[∫ 0

−t
√

1+τ1
2

√ x
b

h

(
x, x + w

√
2bx

1 + τ1

)
e−w2 {1 + o (1)} dw

]
f (x) dx.
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Because
∫ 0
−∞ e−v2

dv =
√

π/2 and h (x, x) = f (x) g (x)/
√

2πx, we have

lim inf
b→0

J2 =
1
2

√
1

1 + τ1

∫ ∞

0
f (x) g (x) dF (x)→ 1

2
E { f (X) g (X)}

by letting t shrink toward zero. On the other hand, again by (A4) and the change of variable
v = (y− x)/

√
2bx,

J2 ≤
∫ ∞

b1−ε

[∫ x

(1−t)x
b−1/2h (x, y) exp

{
− (y− x)2

2bx

}
{1 + o (1)} dy

]
f (x) dx

≤
∫ ∞

b1−ε

√
2x

[∫ 0

− t√
2

√ x
b

h
(

x, x + v
√

2bx
)

e−v2 {1 + o (1)} dv

]
f (x) dx,

so that
lim sup

b→0
J2 =

1
2

∫ ∞

0
f (x) g (x) dF (x) =

1
2

E { f (X) g (X)} .

Hence, we can conclude that J2 → (1/2) E { f (X) g (X)}.
It can be also demonstrated that J3 → (1/2) E { f (X) g (X)} and J4 → 0 with the assistance of

(A3). Therefore, J → E { f (X) g (X)}, and thus (A1) is established.

Proof of (A2). Again for some ε ∈ (0, 1/2),

E
{

KX2 (Y1)KY1 (X2)
}
=
∫ ∞

b1−ε

[∫ ∞

b1−ε
Mb (x, y) g (y) dy

]
f (x) dx +O

(
b−ε
)

,

where Λb (x, y) := KNM (y; x, b)KNM (x; y, b) for interior x, y and the order of the remainder term is
O (b−ε) = o

(
b−1/2

)
by construction. Observe that

Λb (x, y) =
4yx/b−1xy/b−1

Px/b
x (b) Py/b

y (b) Γ
( x

2b
)

Γ
( y

2b
) exp

{
− y2

P2
x (b)

}
exp

{
− x2

P2
y (b)

}
. (A12)

It follows from (A9) that

Pz/b
z (b) = (2bz)

z
2b exp

(
1
4

)
{1 + o (1)} (A13)

for z = x, y. Similarly,

exp
{
− y2

P2
x (b)

}
= exp

(
− y2

2bx

)
exp

{
1
4

(y
x

)2
}
{1 + o (1)} , and (A14)

exp

{
− x2

P2
y (b)

}
= exp

(
− x2

2by

)
exp

{
1
4

(
x
y

)2
}
{1 + o (1)} . (A15)

Substituting (A13)–(A15) into (A12) and using SF, we have

Λb (x, y) =
b−1

π
√

x
√

y

(
x
y

)(y−x)/b
exp

{
− (y + x) (y− x)2

2bxy

}

× exp
[

1
4

{(y
x

)2
− 1
}]

exp

[
1
4

{(
x
y

)2
− 1

}]
{1 + o (1)} .
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As before, for some t ∈ (0, 1), consider

Λ =
∫ ∞

b1−ε

{∫ (1−t)x

b1−ε
+
∫ x

(1−t)x
+
∫ (1+t)x

x
+
∫ ∞

(1+t)x
Λb (x, y) g (y) dy

}
f (x) dx

= Λ1 + Λ2 + Λ3 + Λ4 (say).

It follows from (A4) that

Λ1 ≤
∫ ∞

b1−ε

[∫ (1−t)x

0

b−1

π
√

x
√

y
exp

{
− (y− x)2

bx
− (y + x) (y− x)2

2bxy

}

× exp
{

1
4

((y
x

)2
− 1
)}

exp

{
1
4

((
x
y

)2
− 1

)}
{1 + o (1)} g (y) dy

]
f (x) dx

≤
∫ ∞

b1−ε

[∫ (1−t)x

0

b−1

π
√

x
√

y
exp

{
−τ2 (y− x)2

2bx

}

× exp
{

1
4

((y
x

)2
− 1
)}

exp

{
1
4

((
x
y

)2
− 1

)}
{1 + o (1)} g (y) dy

]
f (x) dx,

where τ2 := (4− t)/ (1− t). Then, by the change of variable η := (y− x)
√

τ2/ (2bx),

b1/2Λ1 ≤
∫ ∞

b1−ε

1
π

√
2
τ2

∫ −t
√

τ2
2

√ x
b

−
√

τ2
2

√ x
b

1√
x + η

√
2bx
τ2

e−η2
exp

1
4


 x + η

√
2bx
τ2

x

2

− 1




× exp

1
4


 x

x + η
√

2bx
τ2

2

− 1


 {1 + o (1)} g

(
x + η

√
2bx
τ2

)
dη

 f (x) dx

→ 0,

or Λ1 = o
(

b−1/2
)

.
Next, (A4) implies that

Λ2 ≥
∫ ∞

b1−ε

[∫ x

(1−t)x

b−1

π
√

x
√

y
exp

{
− (y− x)2

bx
+

(y− x)3

2by2 − (y + x) (y− x)2

2bxy

}

× exp
{

1
4

((y
x

)2
− 1
)}

exp

{
1
4

((
x
y

)2
− 1

)}
{1 + o (1)} g (y) dy

]
f (x) dx

≥
∫ ∞

b1−ε

[∫ x

(1−t)x

b−1

π
√

x
√

y
exp

{
− (y− x)2

2bx
(3 + τ3)

}

× exp
{

1
4

((y
x

)2
− 1
)}

exp

{
1
4

((
x
y

)2
− 1

)}
{1 + o (1)} g (y) dy

]
f (x) dx,

where τ3 := (1− t)−2. By the change of variable µ := (y− x)
√
(3 + τ3)/ (2bx), the right-hand

side becomes
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∫ ∞

b1−ε

b−1/2

π

√
2

3 + τ3

∫ 0√
3+τ3

2

√ x
b

1√
x + µ

√
2bx

3+τ3

e−µ2
exp

1
4


 x + µ

√
2bx

3+τ3

x

2

− 1




× exp

1
4


 x

x + µ
√

2bx
3+τ3

2

− 1


 {1 + o (1)} g

(
x + µ

√
2bx

3 + τ3

)
dµ

 f (x) dx,

so that

lim inf
b→0

b1/2Λ2 =
1

2
√

π

√
2

3 + τ3

∫ ∞

0
x−1/2g (x) dF (x)→ 1

2
VI,NM (2) E

{
X−1/2g (X)

}
by letting t shrink toward zero, where VI,NM (2) := 1/

√
2π. Notice that we may safely assume that

E
{

X−1/2g (X)
}
< ∞: Assumption 2 ensures that f and g are bounded, and thus it must be the case

that x−1/2 f (x) g (x) ≤ cx−1/2 in the vicinity of the origin. On the other hand, (A4) also yields

Λ2 ≤
∫ ∞

b1−ε

[∫ x

(1−t)x

b−1

π
√

x
√

y
exp

{
− (y− x)2

bx
− (y + x) (y− x)2

2bxy

}

× exp
{

1
4

((y
x

)2
− 1
)}

exp

{
1
4

((
x
y

)2
− 1

)}
{1 + o (1)} g (y) dy

]
f (x) dx

≤
∫ ∞

b1−ε

[∫ x

(1−t)x

b−1

π
√

x
√

y
exp

{
−2 (y− x)2

bx

}

× exp
{

1
4

((y
x

)2
− 1
)}

exp

{
1
4

((
x
y

)2
− 1

)}
{1 + o (1)} g (y) dy

]
f (x) dx.

By the change of variable ω := (y− x)
√

2/ (bx),

Λ2 ≤
∫ ∞

b1−ε

b−1/2
√

2π

∫ 0

−t
√

2
√ x

b

1√
x + ω

√
bx
2

e−ω2
exp

1
4


 x + ω

√
bx
2

x

2

− 1




× exp

1
4


 x

x + ω
√

bx
2

2

− 1


 {1 + o (1)} g

(
x + ω

√
bx
2

)
dω

 f (x) dx,

and thus

lim sup
b→0

b1/2Λ2 =
1

2
√

2π

∫ ∞

0
x−1/2g (x) dF (x) =

1
2

VI,NM (2) E
{

X−1/2g (X)
}

.

Hence, we can conclude that Λ2 ∼ b−1/2 (1/2)VI,NM (2) E
{

X−1/2g (X)
}

.

It also follows from (A3) that Λ3 ∼ b−1/2VI,NM (2) (1/2) E
{

X−1/2g (X)
}

and Λ4 = o
(

b−1/2
)

.

Therefore, Λ ∼ b−1/2/VI,NM (2) E
{

X−1/2g (X)
}

, and thus (A2) is also established.
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Appendix A.2. Proof of Theorem 1

Because (ii) is obvious given that (i) is true, we concentrate only on (i). The proof strategy for
(i) largely follows the one for Theorem 1.1 of Fernandes and Monteiro [46]. The proof of (i) also requires
three lemmata below.

Lemma A2. Let (X1, X2) and (Y1, Y2) be two independent copies of X and Y, respectively. Then, under Assumptions
1–3, the followings hold:

(a) E
{

K2
X2

(X1)
}
∼ b−1/2VI (2)E

{
X−1/2 f (X)

}
; E
{

K2
X2

(Y1)
}
∼ b−1/2VI (2)E

{
X−1/2g (X)

}
;

E
{

K2
Y2
(X1)

}
∼ b−1/2VI (2)E

{
Y−1/2 f (Y)

}
; and E

{
K2

Y2
(Y1)

}
∼ b−1/2VI (2)E

{
Y−1/2g (Y)

}
,

where VI (2) is given in Condition 5 of Definition 1.
(b) E

{
KX2 (X1)KY2 (Y1)

}
∼ E { f (X)}E {g (Y)}; E

{
KX2 (Y1)KY2 (X1)

}
∼ E {g (X)}E { f (Y)};

E
{

KX2 (Y1)KX1 (Y2)
}
∼ E2 {g (X)}; and E

{
KY2 (X1)KY1 (X2)

}
∼ E2 { f (Y)}.

(c) E
{

KX2 (X1)KX2 (Y1)
}
∼ E { f (X) g (X)}; and E

{
KY2 (Y1)KY2 (X1)

}
∼ E {g (Y) f (Y)}.

(d) E
{

KX2 (X1)KX1 (Y2)
}
∼ E { f (X) g (X)}; E

{
KY1 (X2)KX2 (X1)

}
∼ E

{
f 2 (Y)

}
;

E
{

KX1 (Y2)KY2 (Y1)
}
∼ E

{
g2 (X)

}
; and E

{
KY2 (Y1)KY1 (X2)

}
∼ E { f (Y) g (Y)}.

Lemma A3. If Assumptions 1–4 and n1 = n2 = n hold, then

E
{

Φ2
n (Z1, Z2)

}
∼ 4VI (2)

n4b1/2 E
[
X−1/2 { f (X) + g (X)}+Y−1/2 { f (Y) + g (Y)}

]
.

Lemma A4. If Assumptions 1–4 and n1 = n2 = n hold, then E
{

Φ2k
n (Z1, Z2)

}
< ∞ and

E
{

Υk
n (Z1, Z2)

}
+ n1−kE

{
Φ2k

n (Z1, Z2)
}

Ek {Φ2
n (Z1, Z2)}

→ 0

for some k ∈ (1, 3/2), where Υn (x, y) := E {Φn (Z1, x)Φn (y, Z1)}.

Appendix A.2.1. Proof of Lemma A2

The variance approximation in Theorem 1 of Hirukawa and Sakudo [32] and the trimming
argument on p.476 of Chen [30] yield (a). On the other hand, the bias approximation in Theorem 1
of Hirukawa and Sakudo [32] is applied to (b)–(d). As a consequence, (b) can be established by
recognizing that E

{
KX2 (X1)KY2 (Y1)

}
= E

{
KX2 (X1)

}
E
{

KX2 (X1)
}

, for instance. Moreover, (c) and
(d) follow from the proofs for (d) and (f) in Lemma A1 of FMS. �

Appendix A.2.2. Proof of Lemma A3

Because φn (Z1, Z2)
d
= φn (Z2, Z1), we have

E
{

Φ2
n (Z1, Z2)

}
=

2
n4

[
E
{

φ2
n (Z1, Z2)

}
+ E {φn (Z1, Z2)φn (Z2, Z1)}

]
.

With the assistance of Assumption 4 and Lemma A2, we can pick out the leading terms of
E
{

φ2
n (Z1, Z2)

}
and E {φn (Z1, Z2)φn (Z2, Z1)} as:
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E
{

φ2
n (Z1, Z2)

}
= E

{
K2

X2
(X1)

}
+ E

{
K2

X2
(Y1)

}
+ E

{
K2

Y2
(X1)

}
+ E

{
K2

Y2
(Y1)

}
+O (1)

= b−1VI (2)E
[
X−1/2 { f (X) + g (X)}+Y−1/2 { f (Y) + g (Y)}

]
+ o

(
b−1
)

; and

E {φn (Z1, Z2)φn (Z2, Z1)}
= E

{
KX2 (X1)KX1 (X2)

}
+ E

{
KX2 (Y1)KY1 (X2)

}
+ E

{
KY2 (X1)KX1 (Y2)

}
+ E

{
KY2 (Y1)KY1 (Y2)

}
+O (1)

= b−1VI (2)E
[
X−1/2 { f (X) + g (X)}+Y−1/2 { f (Y) + g (Y)}

]
+ o

(
b−1
)

.

The result immediately follows. �

Appendix A.2.3. Proof of Lemma A4

It follows from Lemma A3 that

Ek
{

Φ2
n (Z1, Z2)

}
= O

(
n−4kb−k/2

)
. (A16)

Next, by Jensen’s and Cr-inequalities,

E
{

Υk
n (Z1, Z2)

}
= EZ1,Z2

[
Ek

Z3
{Φn (Z3, Z1)Φn (Z2, Z3)}

]
≤ EZ1,Z2

[
EZ3 {Φn (Z3, Z1)Φn (Z2, Z3)}k

]
≤ n−4kEZ1,Z2

{
EZ3 |φn (Z3, Z1)φn (Z2, Z3) + φn (Z3, Z1)φn (Z3, Z2)

+ φn (Z1, Z3)φn (Z2, Z3) + φn (Z1, Z3)φn (Z3, Z2)|k
}

≤ n−4k22(k−1)EZ1,Z2

[
EZ3 |φn (Z3, Z1)φn (Z2, Z3)|k + EZ3 |φn (Z3, Z1)φn (Z3, Z2)|k

+EZ3 |φn (Z1, Z3)φn (Z2, Z3)|k + EZ3 |φn (Z1, Z3)φn (Z3, Z2)|k
]

= n−4k22(k−1) (Υ1 +Υ2 +Υ3 +Υ4) (say).

Furthermore, applying Cr-inequality repeatedly yields

Υ1 ≤ 24(k−1) · 8
[
E
{

Kk
X1

(X3)Kk
X3

(X2)
}
+ E2

{
Kk

X1
(X3)

}]
under H0. Essentially the same arguments as in the proofs of Lemmata 1 and A2 establish
that E

{
Kk

X1
(X3)Kk

X3
(X2)

}
is bounded by cb1−k ∫ ∞

0 x1−k f 3 (x) dx. It follows from k < 3/2 that

x1−k f 3 (x) ≤ cx−1/2 in the neighborhood of the origin, and thus
∫ ∞

0 x1−k f 3 (x) dx < ∞ holds.

Hence, E
{

Kk
X1

(X3)Kk
X3

(X2)
}
≤ O

(
b1−k

)
. Similarly, E2

{
Kk

X1
(X3)

}
≤ O

{(
b(1−k)/2

)2
}

= O
(

b1−k
)

,

and thus Υ1 ≤ O
(

b1−k
)

. It can be also shown that each of Υ2, Υ3 and Υ4 is bounded by O
(

b1−k
)

.
As a result,

E
{

Υk
n (Z1, Z2)

}
≤ O

(
n−4kb1−k

)
. (A17)

Using Cr-inequality and φn (Z1, Z2)
d
= φn (Z2, Z1), we also have



Econometrics 2016, 4, 28 24 of 27

E
{

Φ2k
n (Z1, Z2)

}
≤ n−4kE |φn (Z1, Z2) + φn (Z2, Z1)|2k

≤ n−4k22k−1
{

E |φn (Z1, Z2)|2k + E |φn (Z2, Z1)|2k
}

= n−4k22kE |φn (Z1, Z2)|2k .

Again, by Cr-inequality,

E |φn (Z1, Z2)|2k ≤ 4 · 22(2k−1)E
{

K2k
X2

(X1)
}
≤ cb

1−2k
2

∫ ∞

0
x

1−2k
2 f 2 (x) dx,

where x(1−2k)/2 f 2 (x) ≤ cx−(1−ε) for some ε ∈ (0, 1/2) as x → 0 so that
∫ ∞

0 x(1−2k)/2 f 2 (x) dx < ∞ is
ensured. Therefore,

E
{

Φ2k
n (Z1, Z2)

}
≤ O

(
n−4kb

1−2k
2

)
= o (1) (A18)

and thus E
{

Φ2k
n (Z1, Z2)

}
< ∞ is demonstrated.

In the end, by (A16)–(A18),

E
{

Υk
n (Z1, Z2)

}
Ek {Φ2

n (Z1, Z2)}
= O

(
b1−k/2

)
→ 0, and

n1−kE
{

Φ2k
n (Z1, Z2)

}
Ek {Φ2

n (Z1, Z2)}
= O

{(
nb1/2

)1−k
}
→ 0,

as long as 1 < k < 3/2. This completes the proof. �

Appendix A.2.4. Proof of Theorem 1

It follows from Lemma A4 that a martingale central limit theorem for a degenerate U-statistic
(Theorem 4.7.3 of Koroljuk and Borovskich [41], to be precise) applies. Moreover, by Lemma A3,
the asymptotic variance of the normal limit becomes

σ2 = lim
n→∞

n2b1/2Var (In)

= lim
n→∞

n2b1/2 n (n− 1)
2

E
{

Φ2
n (Z1, Z2)

}
= 2VI (2)E

[
X−1/2 { f (X) + g (X)}+Y−1/2 { f (Y) + g (Y)}

]
= 8VI (2)E

{
X−1/2 f (X)

}
under H0.

�

Appendix A.3. Proof of Proposition 1

The proof closely follows the one for Theorem 2.2 of Fan and Ullah [19]. Under H1, E (In) =∫ ∞
0 { f (u)− g (u)}2 du + O (b) = I + O (b). Moreover, Var (In) = O

(
n−2b−1/2

)
and σ̂2 p→ σ2,

regardless of whether H0 or H1 may be true. Therefore, In = I +O (b) +Op

(
n−1b−1/4

) p→ I > 0,

and thus nb1/4In/σ̂ is a divergent stochastic sequence with an expansion rate of nb1/4. The result
immediately follows. �
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Appendix A.4. Proof of Theorem 3

For brevity, we focus only on the case of equal sample sizes in two sub-samples. The proof largely
follow the one for Proposition 5 of FMS. FMS consider the Taylor expansion

In
(
ξ̂, θ̂
)
− In (ξ, θ0) = ∆1 (ξ, θ0)

(
ξ̂− ξ

)
+∆2 (ξ, θ0)

(
θ̂− θ0

)
+ Rn,

where ∆1 (ξ, θ0) and ∆2 (ξ, θ0) are partial derivatives of In with respect to the first and second arguments
evaluated at (ξ, θ0), respectively, and Rn is the remainder term of a smaller order. The only difference
between their proof and ours is that we derive the range of (q, r) within which

nb1/4 {∆1 (ξ, θ0)
(
ξ̂− ξ

)
+∆2 (ξ, θ0)

(
θ̂− θ0

)}
= op (1)

is the case. Because each of ∆1 and ∆2 is O (b) +Op

(
n−1b−3/4

)
, the left-hand side is bounded by

O
(

n1−rb5/4
)
+Op

(
n−rb−1/2

)
= O

(
n1−r−5q/4

)
+Op

(
n−r+q/2

)
.

This becomes op (1) if (q, r) satisfy r > −5q/4+ 1, r > q/2 and r ≤ 1/2. �
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