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Abstract: This paper provides a new approach to recover relative entropy measures of
contemporaneous dependence from limited information by constructing the most entropic copula
(MEC) and its canonical form, namely the most entropic canonical copula (MECC). The MECC
can effectively be obtained by maximizing Shannon entropy to yield a proper copula such that
known dependence structures of data (e.g., measures of association) are matched to their empirical
counterparts. In fact the problem of maximizing the entropy of copulas is the dual to the problem
of minimizing the Kullback-Leibler cross entropy (KLCE) of joint probability densities when the
marginal probability densities are fixed. Our simulation study shows that the proposed MEC
estimator can potentially outperform many other copula estimators in finite samples.
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1. Introduction

There has been a substantial literature on estimation and inference of relative entropy measures
of joint dependence as measures of serial correlation. These particular measures of dependence were
first proposed by Joe [1] and extended by Granger and Lin [2]. Relative entropy based measures of
dependence have so far received much interest in econometrics because they provide very general
concepts for gauging joint dependence; and they can be used for a set of variables that can be a
mixture of continuous, ordinal-categorical, and nominal-categorical variables. Interested readers are
referred to [3–5] for a concise review of important contributions in this area.

Econometricians have recently become interested in the computation of maximum entropy
densities (see, e.g., Golan [6], Usta and Kantar [7], and references therein for the background
and discussions regarding maximum entropy (ME) densities.) The ME densities are derived by
maximization of an information criterion (the level of uncertainty) subject to mass and mean
preserving constraints. The justification for using the ME in this context can be found in [8]. Rockinger
and Jondeau [9] apply the ME method to determine the ME return distribution which is then utilized
to extend Bollerslev’s GARCH into autoregressive conditional skewness and kurtosis. Maasoumi
and Racine [10] employ a metric entropy measure of dependence to examine the predictability of
asset returns. Hang [11] uses the ME to determine flexible functional forms of regression functions
subject to side conditions. Miller and Liu [12] propose a method to recover a joint distribution
function by applying the KLCE distance while imposing a required degree of dependence through
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the joint moments. An example is the normal distribution which is completely characterized by
first and second moments. In this case, the minimum KLCE distribution is the multivariate Normal
distribution where the dependence is specified through conventional linear correlation.

There has been a great deal of interest in copulas, especially in financial economics, as they have
the potential to model and explain asymmetric dependence between random variables separately
from their marginal distributions. For example, Patton [13] employs various families of copulas to
investigate the inter-relationship between univariate skewnesses, asymmetric dependence between
asset returns, and the optimal portfolios of assets. Rodriguez [14] models financial contagion using
copulas. Chollete, Heinen, and Valdesogo [15] propose a multivariate regime-switching copula to
capture asymmetric dependence and regime-switching in portfolio selection. Ning, Xu, and Wirjanto
[16] investigate asymmetric pattern in volatility clustering by employing a semi-parametric copula
approach. Detailed indications of various econometric aspects or applications of copulas in economics
and finance can be found, for instance, in the survey papers by Patton [17] and Fan and Patton [18].
A comprehensive treatment of copula theory is presented in the monograph by Nelsen [19].

Given the broad context described above, we propose a theoretical framework to recover relative
entropy measures of joint dependence from limited information by constructing a set of the most
entropic copulas (MEC’s), which can essentially be done by maximizing Shannon entropy subject to
constraints on the uniform marginal distributions and other constraints on the copula-based measures
of dependence (or the distance between the MEC and an arbitrary nested copula). In the class of
MECs, there exists a simplified form, namely the most entropic canonical copula (MECC). Moreover,
it can be shown that the proposed MEC approach and the KLCE approach in Miller and Liu [12]
are dual in the sense that they can recover the same joint distribution. Applications of MEC’s to
economics include Chu [20], Dempster, Medova, and Yang [21], Friedman and Huang [22], Veremyev,
Tsyurmasto, Uryasev, and Rockafellar [23], Zhao and Lin [24].

We shall now discuss the contributions of the current paper in relation to [20]. The similarity
between the two papers is that rank correlations are employed as prior information about dependence
in order to construct the MECC. This paper differs from [20] in several respects. First, in [20],
Carleman’s condition permits constraints on moments to be employed so as to ensure that the MEC
satisfies all the properties of a copula while, in the present paper, constraints are explicitly imposed
on marginal copula densities. Therefore the entropy maximization problem defined in [20] is merely
a good approximation of the entropy maximization problem in this study. Second the main problem
in [20] is the standard entropy maximization problem while the main problem in the present paper
involves a continuum of constraints on the marginal distributions, which can be written as integrals
with varying end-points that need to be smoothed out by using kernels. This kernel-smoother can
generate MECs with smooth densities whilst the discrete approximation technique proposed by [21]
can only allow for MECs with discrete densities. The feasibility and benefits of the proposed approach
to construct MECs will then be demonstrated through a Monte-Carlo simulation study presented in
Section 3.

Although our analysis is restricted to the bivariate case, the multivariate case is a straightforward
extension. The remainder of the paper is organized in three sections. In Section 2, we formulate
and approximate most entropic copulas (MECs). Next, we discuss the link between the MEC and
the minimum KLCE density and the extent to which the MEC is more flexible than the KLCE
method. We then compute the MEC and the MECC subject to marginal constraints and other
constraints on various copula-based dependence measures such as Spearman’s rho and tau. We
also outline the large sampling properties of the relevant parameter estimators. We present these
results in Theorems 2.1–2.4. A simulation study is presented in Section 3, demonstrating that the
MEC fits data well when compared with other competing procedures (e.g., parametric copulas and
kernel estimators). Derivation of statistical properties for the proposed copula estimator is rather
challenging and will be left for future research. Finally, to facilitate reading of this paper, we collect
all materials of technical flavour into the three main appendices at the end of this paper.
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2. Recovering the Most Entropic Copulas

2.1. Maximum Entropy and Copula

This section provides a brief explanation of entropy and copula. We refer to [25] for a
comprehensive review of entropy econometrics and [19] for important results concerning copulas.

Shannon entropy has been used as an information criterion to construct the probability densities
for economic or financial variables such as stock returns, income, GDP, etc. (see, inter alia, [26–28]).
A univariate ME density is generally obtained by maximizing Shannon entropy, −

∫
p(x) log p(x)dx,

with respect to p(x) under probability and moment constraints. A bivariate ME density that is
closest to a given reference density, say the product of two univariate densities, can be obtained by
minimizing the KLCE under joint moment constraints (see, e.g., [1] and [12]):

min
f

KLCE( f : g) = min
f

∫
supp(g1)×supp(g2)

f (x, y) log
f (x, y)

g1(x)g2(y)
dxdy (1)

subject to ∫
supp(g1)×supp(g2)

h(x, y) f (x, y)dxdy = µ0,

where f is a bivariate density, g1 and g2 are some univariate densities, supp(g1) = {x ∈ R : g1(x) 6=
0}, supp(g2) = {y ∈ R : g2(y) 6= 0}, and h is an arbitrary function such that µ0 < ∞.

The copula is proposed by Sklar [29] as a method to construct joint distributions with given
marginals. The advantage of copulas is that dependence between random variables can be
parametrically specified entirely independently from their marginals. A bivariate copula is defined
as a function C(·, ·) from [0, 1]2 to [0, 1] with the following properties: 1) for every u, v ∈ [0, 1],
it holds that C(u, 0) = C(0, v) = 0, C(u, 1) = u, and C(1, v) = v; 2) C(u, v) is 2-increasing, i.e.,
C(u2, v2)− C(u2, v1)− C(u1, v2) + C(u1, v1) ≥ 0 for every u1, u2, v1, v2 ∈ [0, 1] such that u1 ≤ u2 and
v1 ≤ v2 (see, e.g., [19], p. 8)). Note that Property (2) always holds if C(u, v) has a positive density
c(u, v), and Property (1) implies that a copula is a function with Uniform[0,1] marginals. Sklar’s
theorem links a copula, C(u, v), to a joint distribution, F(X, Y), via F(X, Y) = C(G1(X), G2(Y)), where
G1 and G2 are the marginals.

We shall use measures of association and rank correlations to construct the MEC, which
we discuss next. Measures of association are, unlike joint moments, invariant under nonlinear
transformations of the underlying random variables, and thus they are natural measures of
dependence for non-elliptical random variables (see Appendix A for formal definitions of measures of
association). A measure of association is, in general, defined as τ =

∫
[0,1]2 h(u, v)dC(u, v), where h is a

bivariate function such that |τ| < +∞. This measure, based on C, is also referred to as the copula-based
measure of dependence. In practice, τ can be estimated by the rank statistic τ̂ = 1

N ∑N
i=1 h( Ri

N , Si
N ),

where (Ri, Si) represents the ranks of (Xi, Yi) in a sample of size N. An advantage of using rank
statistics as nonparametric measures of nonlinear dependence is that they are robust—in the sense
that they will be insensitive to contamination and maintain a high efficiency for heavier tailed
elliptical distributions as well as for multivariate normal distributions (see, e.g., [30] for a detailed
treatment of rank statistics). Examples of τ̂ include Spearman’s rho and Blest’s rank correlations (see,
e.g., [31]), which are summarized in Table 1.
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Table 1. Blest’s measures of rank correlation.

Measures of Association Rank Correlation

Spearman’s rho: ρS = 12
∫
[0,1]2

uvc(u, v)dudv− 3, and ρS ∈ [−1, 1], ρ̂S = 12
N3−N

∑N
i=1 Ri Si − 3 N+1

N−1 .

Blest’s measure I: ν1 = 2− 12
∫
[0,1]2

(1− u)2vc(u, v)dudv, and ν1 ∈ [−1, 1], ν̂1 = 2N+1
N−1 −

12
N2−N

∑N
i=1

(
1− Ri

N+1

)2
Si .

Blest’s measure II: ν2 = 2− 12
∫
[0,1]2

u(1− v)2c(u, v)dudv, and ν2 ∈ [−1, 1], ν̂2 = 2N+1
N−1 −

12
N2−N

∑N
i=1 Ri

(
1− Si

N+1

)2
.

Blest’s measure III: η = 6
∫
[0,1]2

u2v2c(u, v)dudv− 1
5 , and η ∈ [0, 1], η̂ = 6

N2−N
∑N

i=1

(
Ri

N+1

)2 ( Si
N+1

)2
− (1/5)N+1

N−1 .

Blest’s measure IV: φ =
∫
[0,1]2

[10(1− u)3v− 3u2v2 ]c(u, v)dudv− 9/10, and φ ∈ [−1, 1]), φ̂ = 1
N2−N

∑N
i=1

[(
1− Ri

N+1

)3 Si
N+1 −

(
Ri

N+1

)2 ( Si
N+1

)2
]
− 0.9N+1

N−1 .

Nonetheless, it is worth mentioning that the definition of τ is somewhat restrictive since it does
not include Kendall’s tau, for example.1 Moreover, not every rank correlation can be formulated
in terms of the above general rank statistic τ̂. For instance, the statistic R̂g, which was proposed
by Gideon and Hollister [32] as a coefficient of rank correlation resistant to outliers even in a small
sample, has the form:

R̂g =
1

[N/2]

(
max

i

i

∑
s=1

1(ps < N + 1− i)−max
i

N

∑
s=1

1(Rs ≤ i < Ss)

)
,

where ps is the value of Si with the subscript i satisfying Ri = s, and [•] is the greatest integer notation.
In addition, R̂g estimates a copula-based measure of dependence, Rg = 2

∫
[0,1]2 [supw∈[0,1] 1(u ≤

w, v < 1− w)− supw∈[0,1](1(u ≤ w)− 1(u ≤ w, v < w))]c(u, v)dudv.
In the present paper, we use the bivariate Shannon entropy of a copula, given by

W(c) = −
∫
[0,1]2

c(u, v) log c(u, v)dudv, where c(u, v) =
∂2C(u, v)

∂u∂v
. (2)

By Sklar’s theorem the Shannon entropy of a copula is then equivalent to the KLCE:

W(c) = −KLCE( f : g).

Hence, minimization of the KLCE and maximization of the bivariate Shannon entropy are dual
problems. Let ĉ(u, v) denote the MEC. Then, in view of [1], the relative entropy measure of
dependence (recovered from limited information) is given by −W(ĉ). Generally speaking, a
multivariate Shannon entropy can be defined in an obvious way, and this dual relationship holds.
However, as pointed out in Friedman and Huang [22] the problem of maximizing a multivariate
Shannon entropy of copulas can suffer from the curse of dimensionality because the number of
constraints (on the marginal densities) needed for the MEC to satisfy all the properties of a copula
increases as the problem involve more dimensions.

2.2. The Most Entropic Copula

We assume for the rest of this paper that the MEC is a differentiable function so that its copula
density exists. The bivariate MEC (or the MEC) is obtained by maximizing the bivariate Shannon
entropy (2) under two following constraints: (1) the marginals of c(u, v) are Uniform[0,1]; and (2) the
measures of association, defined in Section 2.1, are set equal to the corresponding rank correlations.
We call this Problem EM.

Problem EM: Maximize W(c) = −
∫
[0,1]2

c(u, v) log c(u, v)dudv (3)

1 We are indebted to a referee for pointing this out.
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subject to ∫
[0,1]2

c(u, v)dudv = 1, (4)∫
(0,u]

∫
[0,1]

c(x, v)dxdv = u, ∀ u ∈ [0, 1], (5)∫
[0,1]

∫
(0,v]

c(u, y)dudy = v, ∀ v ∈ [0, 1], (6)∫
[0,1]2

h(u, v; θ̂N)c(u, v)dudv = 0, (7)

where (4) implies that c(u, v) is a joint density on the unit circle; Equations (5) and (6) imply that
the marginals of c(u, v) are Uniform[0,1] distributions; Equation (7) imposes a constraint on the joint
behavior of U and V. To give an example, let h(u, v; θ̂N) = 12uv− 3− ρ̂S, then the left-hand side of (7)
becomes Spearman’s rho and θ̂N = ρ̂S (note that, in what follows, we sometimes omit ‘N’ for brevity)
is the rank correlation associated with Spearman’s rho. To give another example, suppose that the
true data generating copula, say C0(u, v), belongs to a family, C0. Given this prior information, to
recover a MECC from the data, one may randomly choose a copula, C1(u, v; β), from C0, then use
it to construct (7) with h(u, v; θ̂) = 4C1(u, v; β̂) − 1 − τ̂, where θ̂ = {β̂, τ̂}′ and τ̂ is an estimate
of the difference between the probabilities of concordance and discordance (cf. Appendix A). By
doing this, it is expected that some feature of the family C0 could be effectively incorporated into
the MECC. Other examples of Equation (7) also include Blest’s coefficients or Gideon and Hollister’s
(1987) coefficient, etc. Also note that we may have more than one constraint like (7). It is to be
stressed at this point that some versions of the MEC problem may exhibit boundary solutions due to
theoretical restrictions on the measures of dependence employed (e.g., the Hoeffding-Frechet bounds
on correlation statistics). Consequently, the large-sample theory stated in Section 2.3 below only holds
for interior solutions to the stated problem.2

For future reference, we shall denote by ĉ(u, v) = c(u, v, Λ̂), where Λ̂ is a vector of coefficients,
as the MEC [that solves Problem EM]. The MECs (accordingly the MECC) can then be approximated
by replacing the continuums of varying end-points in (5) and (6) by sets of definite integrals. We now
present an approximate solution to Problem EM in Theorem 2.1 below.

THEOREM 2.1. The MEC, ĉ(u, v), can be approximated by an approximator, ĉn,Nh(u, v), as follows:

ĉ(u, v) = lim
n→∞

Nh→∞
ĉn,Nh(u, v)

with

ĉn,Nh(u, v) =
En,Nh(u, v)∫

[0,1]2 En,Nh(u, v)dudv
, (8)

where

En,Nh(u, v) = exp

{
−

2n−1

∑
k=0

[
λ̂k
(
Φ(Nh(k2−n − u)) + Φ(−Nh((k + 1)2−n − u))

)
+ γ̂k

(
Φ(Nh(k2−n − v)) + Φ(−Nh((k + 1)2−n − v))

)]
− λ̂2n h(u, v, θ̂)− b0 c̃(u, v)

}
(9)

2 We are indebted to a referee for suggesting to us this point.
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and Λ̂n =
{

λ̂0 . . . , λ̂2n−1, γ̂0, . . . , γ̂2n−1

}
contains the minimal values of the following potential function:

Qn,Nh(Λn, θ̂) =
∫
[0,1]2

exp
{
−

2n−1

∑
k=0

[
λk
(
Φ(Nh(k2−n − u)) + Φ(−Nh((k + 1)2−n − u))− 1 + 2−n)

+ γk
(
Φ(Nh(k2−n − v)) + Φ(−Nh((k + 1)2−n − v))− 1 + 2−n)]

− λ2n h(u, v, θ̂)− b0 c̃(u, v)
}

dudv for a given b0 and c̃(u, v). (10)

Note that Φ(x) = 1
2
√

π

∫ x
−∞ exp{− 1

2 y2}dy is the standard normal cdf (arising from smoothing indicator
functions, I (u ∈ [k2−n, (k + 1)2−n]), with the Gaussian kernel) and c̃(u, v) is an arbitrary copula (which
may involve a nuisance parameter that needs to be estimated).

In particular, the MEC, ĉ(u, v), can be symmetrized by letting λk be equal to γk (∀ k = 1, . . . , (2n − 1))
and h(u, v, θ̂) be a symmetric function.

Proof: The proof utilizes the standard method of Variational Calculus for maximization of functions
in normed linear spaces (see, e.g., [33], p. 129). See Appendix D.

As we can see, the MEC density nests an arbitrary copula, c̃(u, v), (cf. Equation (9)). Indeed,
the MEC depends on both b0 and c̃(u, v), thus no uniqueness is obtained. However, we can obtain a
canonical form, which is called the MECC, by setting b0 to zero. This idea of a canonical model can be
traced back to Jeffreys3 who proposed to use the principle of simplicity for deductive inference—that
is, for any given set of data, there is usually an infinite number of possible laws that will “explain”
the data precisely; and the simplest model should be chosen.

It is also worth noting at this point that, like the empirical copula, the MECC is a valid
distribution function; however, it satisfies the Uniform[0,1] marginal constraints only asymptotically.
In addition the potential function Qn,Nh(Λ, θ̂) in the above theorem is a multivariate convex function
of Λ, which in general has a unique minimum because it is the product of (positive) univariate
convex functions.

We can claim that the MECC, ĉ(u, v), is equivalent to a maximum likelihood estimator (MLE).
Now, we need to verify this claim—given a bivariate sample (Xi, Yi) for i = 1, . . . , N, the average
maximum log-likelihood function is given by

`(Λ̂n) =
1
N

N

∑
i=1

log ĉn,Nh(ui, vi, Λ̂n)

=
1
N

N

∑
i=1

log En,Nh(ui, vi)− log
∫
[0,1]2
En,Nh(u, v)dudv,

where ĉn,Nh (ui, vi)
.
= ĉn,Nh

(
ui, vi, Λ̂n

)
is defined in (8),

ui =
1
N

N

∑
s=1

1(Xs ≤ Xi) =
Ri

N + 1
,

and

vi =
1
N

N

∑
s=1

1(Ys ≤ Yi) =
Si

N + 1
,

3 Jeffreys, H. (1961). Theory of Probability. Oxford: Clarendon, pp. 2–3.
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in which Ri and Si are the ranks of Xi and Yi in the sample, respectively. Assuming that N is greater
than n and that n is large enough, in view of (9) with b0 = 0, we obtain the following representation:

`(Λ̂n) = − 1
N

N

∑
i=1

(
λ̂−1 +

2n−1

∑
k=0

([
λ̂k
(
Φ(Nh(k2−n − ui)) + Φ(−Nh((k + 1)2−n − ui))

)
+ γ̂k

(
Φ(Nh(k2−n − vi)) + Φ(−Nh((k + 1)2−n − vi))

)]
+ λ̂2n h(ui, vi)

))
≈ −

(
λ̂−1 +

2
2n

2n−1

∑
k=0

(
λ̂k + γ̂k

)
+ λ̂2n

1
N

N

∑
i=1

h(ui, vi)

)
= −W(ĉ(u, v)),

where λ̂−1 = log
∫
[0,1]2 En,Nh(u, v)dudv; the approximation (≈) follows because 1

N ∑N
i=1 (Φ (Nh(k2−n − ui))

+Φ (−Nh((k + 1)2−n − ui)) ≈ 1
2n for every k = 0, . . . , (2n − 1); and the last equality holds because∫

[0,1]2 h(u, v, θ̂)c(u, v)dudv is set equal to its consistent rank estimator, 1
N ∑N

i=1 h(Ri/(N + 1, Si/(N + 1)).
Hence, the claim has been verified.

REMARK 2.1. To compute the MECC, we could use either a Monte-Carlo integration procedure or Gaussian
quadratures to approximate the potential function (10) (see Appendix C for further details), and then employ
a global optimization technique (for example the stochastic search algorithm proposed by Csendes [34]) to
minimize this function.

In general, we can also approximate ĉ(u, v) by using a collection of equally-spaced partitions
of the unit interval [0, 1], and then, a high-order kernel smoothing of the indicator function. This is
stated in Theorem 2.2:

THEOREM 2.2. The MEC, ĉ(u, v), can be approximated by an approximator, ĉL,h(u, v), as follows:

ĉ(u, v) = lim
L→∞
h→0

ĉL,h(u, v)

with

ĉL,h(u, v) =
EL,h(u, v)∫

[0,1]2 EL,h(u, v)dudv
,

where

EL,h(u, v) = exp

{
− 1

L

L

∑
k=1

[
λ̂k

(
1
h

∫ k
L

k−1
L

K
(

u− w
h

)
dw

)
+ γ̂k

(
1
h

∫ k
L

k−1
L

K
(

v− w
h

)
dw

)]
− λ̂2n h(u, v, θ̂)− b0 c̃(u, v)

}
for some kernel function, K(•), in Kr(R), where Kr(R) is the space of symmetric, Lebesgue integrable, kernel
functions of order, r, (cf. Definition B.1) and Λ̂L = {λ̂1, . . . , λ̂L, γ̂1, . . . , γ̂L} contains the minimal values of
the following potential function:

QL,h(ΛL, θ̂) =
∫
[0,1]2

exp

{
− 1

L

L

∑
k=1

[
λk

(
1
h

∫ k
L

k−1
L

K
(

u− w
h

)
dw− 1

L

)

+ γk

(
1
h

∫ k
L

k−1
L

K
(

v− w
h

)
dw− 1

L

)]
− λ2n h(u, v, θ̂)− b0 c̃(u, v)

}
dudv

for a given b0 and c̃(u, v).
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Proof: The proof is very similar to Theorem 2.1 combined with Lemma B.1. So we shall omit its details
here.

2.3. Large Sample Properties with Unknown Parameters of Dependence

The approximate MECC densities are members of a statistical exponential family parametrized
by the Lagrange multipliers. Since the true parameters of dependence Θ0 in (7) are unknown, a
random sample of size N is then used to form their consistent estimates Θ̂N . Therefore, the sampling
properties of Λ̂N may be derived from the associated sampling properties of Θ̂N . Let Qn(Λ, Θ)

represent the approximate potential function with the dependence parameters Θ as formulated in
Section 2, where Λ̂N and Λ0 denote the minimal values of Qn(Λ, Θ) for Θ = Θ̂N and Θ = Θ0

respectively. The Hessian matrices of Qn(Λ, Θ) are H1,n(Λ, Θ) = ∇
ΛΛ
′Qn(Λ, Θ) and H2,n(Λ, Θ) =

∇
ΛΘ

′Qn(Λ, Θ). The following assumptions are maintained

AS1. Θ̂N
p−→ Θ0 ∈ int(M), whereM is some non-empty compact set; dim(M) is the number of

dependence constraints. Further,

N =
{

Λ ∈ Rdim(Λ) : ∇ΛQn(Λ, Θ) = 0, ∀ Θ ∈ M
}

is also a non-empty and compact set, where dim(Λ) is the number of the Lagrange multipliers
in Qn(Λ, Θ). Therefore, the number of marginal constraints is dim(Λ)− dim(M).

AS2. The map from M to N is a diffeomorphism (i.e., one-to-one, continuous and onto in both
directions).

AS3. Qn(Λ, Θ) is a strictly convex function of Λ for all Θ and uniformly continuous (in probability)
in Θ, i.e.

sup
Λ∈N

∣∣∣Qn(Λ, Θ̂N)−Qn(Λ, Θ0)
∣∣∣ p−→ 0, as |Θ̂N −Θ0| p−→ 0.

AS4. The vector of dependence parameter estimates is asymptotically normal such that

N1/2(Θ̂N −Θ0)
d−→ N(0, Ψ), (11)

where Ψ is an asymptotic variance-covariance matrix of Θ̂N .

AS2 states that the relationship betweenM andN is one-to-one in both directions (i.e., for a given set
of dependence parameter estimates Θ̂N inM there exists uniquely a set of the Lagrange multipliers
Λ̂N in N which contains a unique subset of the Lagrange multipliers determining the dependence
constraints). This assumption ensures that the potential function has uniquely minimal values for
a given set of parameters. Conversely, these minimal values are uniquely determined by a set of
parameters. Regarding AS4, Θ̂N may be a set of sample moments after N draws from the kernel
densities constructed from actual data. If all the moments exist and Carleman’s condition holds, then
Θ̂N are consistent asymptotically normal estimates of Θ0 (see, e.g., Hardel, Muller, Sperlich, and
Werwatz [35]).

THEOREM 2.3. In view of AS1–AS4, we obtain

Λ̂N
p−→ Λ0.

N1/2(Λ̂N −Λ0)
d−→ N(0,H−1

1,n(Λ
0, Θ0)H2,n(Λ

0, Θ0)ΨH′2,n(Λ
0, Θ0)H−1

1,n

′
(Λ0, Θ0)).

Proof: See Appendix D.
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If the dependence constraints are linear in their parameters, i.e., h(u, v, Θ) = h(u, v)−Θ, we can
redefine the potential function associated with the constraints of Problem EM as follows:

Qn(Λ, Θ̂) =
∫
[0,1]2

exp

{
λ−1 +

2n−1

∑
k=0

[
λk
(
Φ(k− 2nu) + Φ(2nu− k− 1)− 1 + 2−n)

+ γk
(
Φ(k− 2nv) + Φ(2nv− k− 1)− 1 + 2−n)]

− κ
′(

h(u, v)− Θ̂
)}

dudv− λ−1, (12)

where Λ = {λ−1, λ0, γ0, . . . , λk, γk, . . . , λ2n−1, γ2n−1, κ
′}, and λ−1 is the Lagrange multiplier for the

constraint
∫
[0,1]2 c(u, v)dudv = 1.

THEOREM 2.4. If (12) satisfies AS1–AS4, then we have

Λ̂N
p−→ Λ0.

N1/2(Λ̂N −Λ0)
d−→ N(0,H−1

1,n(Λ
0, Θ0)IΨI

′H−1
1,n(Λ

0, Θ0)
′
),

where I is a dim(Λ0)× dim(Θ0) diagonal matrix.

Proof: Noting thatH2,n(Λ
0, Θ) = I, the proof follows directly from Theorem 2.3.

Theorem 2.4 suggests that in general the efficiency of the estimators Λ̂N can be improved by
using more marginal constraints. However, adding too many marginal constraints can decrease
efficiency since this may increase the probability that the covariances of {u, v, h(u, v, Θ̂N)} in
Qn(Λ, Θ̂N) are negative. Thus, the Hessian matrix H1,n(Λ

0, Θ0) contains some negative elements
which may cause the asymptotic variance of N1/2(Λ̂N − Λ0) to increase overall. Theorems 2.3 and
2.4 can be used to develop tests of hypotheses about the “distance” between the MECC and another
copula of the exponential function family.

3. Simulation

In this section, we perform some simulations to investigate the finite-sample properties of the
MECC approximators (proposed above). We shall address three main issues in these simulations.
First, the MECC can outperform the parametric copulas used in this study (the Gaussian copula,
Student’s t copula, the Clayton copula, and the Gumbel copula) while its performance remains
comparable to other nonparametric estimators (i.e., the “shrinked” local linear (LLS) type kernel
copula estimator and the “shrinked” mirror-reflection (MRS) kernel copula estimator proposed by
Omelka, Gijbels, and Veraverbeke [36]). Second, an increase in the number of marginal constraints
leads to an improvement in the performance of the MECC. Third the MECC, for the most part,
becomes as stable as other parametric copulas as more marginal constraints are utilized.

To accomplish the above objectives, we choose Frank’s copula,

C(u, v; θ) = −1
θ

log
(
(1− e−θ)− (1− e−θu)(1− e−θv)

(1− e−θ)

)
,

where θ ∈ (−∞, ∞)/{0}, as the true model whereby samples are generated. (See [37,38] for
the statistical properties of Frank’s copula.) This copula is radially symmetric and close to the
independence as θ approaches the origin, i.e., limθ→0 C(u, v; θ) = uv. Later, we shall use two
values, 0.1 and 0.8, for the true parameter θ; these values, roughly speaking, correspond to the
close-to-independence case and the weak dependence case respectively.
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The simulation procedure is outlined as follows. First, we generate 100 samples of 5000
observations from Frank’s copula for each value of θ. With these samples in hand, we estimate four
commonly-used parametric copulas, mentioned above, by using MLE method. We also estimate
12 MECCs (that is, MECC(L, M) with combinations of L = 4, 16, 64 marginal constraints and
M = 1, 2, 3, 4 joint moment constraints) by using our proposed method. To gauge the errors of these
estimators, we shall use the integrated mean squared error (IMSE );

∫ 1

0

∫ 1

0

{
E
[
(c(u, v; θ)− ĉ(u, v))2

]}
dudv =

∫ 1

0

∫ 1

0
|E[ĉ(u, v)− c(u, v; θ)]|2 dudv

+
∫ 1

0

∫ 1

0
E
[
(ĉ(u, v)− E[ĉ(u, v)])2

]
dudv

= Int. Bias2 + Int. Var.,

where c(u, v; θ) is the density of Frank’s copula; and ĉ(u, v) represents an estimate using one of the
above-mentioned parametric copulas or a MECC. Next, for each copula, we use the 100 samples
of 5000 observations drawn from Frank’s copula to estimate the squared bias and the variance
(as the functions of u and v). Both the integrated squared bias (Int. Bias2) and the integrated

variance (Int. Var.) are then obtained by evaluating the estimated squared bias (B̂ias
2
(u, v) =∣∣∣Ê[ĉ(u, v)− c(u, v; θ)]

∣∣∣2 , where Ê denotes the empirical mean calculated using 100 samples) and the

estimated variance (V̂ar.(u, v) = Ê
[
(ĉ(u, v)− E[ĉ(u, v)])2

]
) at 10000 pseudo-random Uniform [0,1]

points, then taking their individual averages, i.e.,

Int. Bias2 ≈ 1
10000

10000

∑
i=1

B̂ias
2
(ui, vi),

Int. Var. ≈ 1
10000

10000

∑
i=1

V̂ar.(ui, vi),

where {(ui, vi)}10000
i=1 denotes a sample of 10000 points (drawn from the Uniform [0,1] distribution)

whereby both c(u, v, θ) and ĉ(u, v) are evaluated. To gauge the errors of the nonparametric copula
estimators, we shall use the expressions for the asymptotic bias and variance given in [36,39]; the
optimal bandwidth is obtained by minimizing the integrated asymptotic MSE [39]. We report our
simulation results in Table 2.

First, it can be noticed from Table 2 that the MECCs significantly outperform elliptical copulas
(i.e., the Normal copula and Student’s t copula) in terms of Int. Bias2 and IMSE. However, with
a small number of marginal constraints the MECCs are mostly less stable than other parametric
copulas; the only way to improve the stability (Int. Var.) of the MECCs is to increase the number of
marginal constraints. For the close-to-independence case (θ = 0.1), the asymmetric copulas (i.e., the
Clayton copula and the Gumbel copula) outperform the MECCs. The intuition for these asymmetric
copulas to have small Int. Bias2 and Int. Var. is that Frank’s copula, the Clayton copula, and the
Gumbel copula all behave like the independence copula for θ = 0.1. It is also interesting to note
that the MECCs often outperform the LLS and MRS estimators in terms of Int. Bias whilst these
nonparametric estimators outperform the MECCs in terms of Int. Var. The reason for the existence
of non-zero Int. Bias in the LLS and MRS estimators is that the optimal bandwidth (being shrinked
close to zero at the corners of the unit square) can keep the bias bounded, but does not completely
remove the bias.
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Table 2. IMSE for the MECC and parametric copulas: Frank copula as the true copula.

Copula θ = 0.1 (Kendall’s τ = 0.011) θ = 0.8 (Kendall’s τ = 0.1)

Int. Bias2 Int. Var. IMSE Int. Bias2 Int. Var. IMSE

Normal 27.9150 1.0416×e−13 27.9150 28.3512 1.0641×e−13 28.3512
Clayton 0.0002 2.8924×e−15 0.0002 0.0176 2.9086×e−15 0.0176
Gumbel 0.0002 2.8745×e−15 0.0002 0.0203 2.6789×e−15 0.0203
Student’s t 1203.8600 2.9161×e−12 1203.8600 955.8010 3.3985×e−12 955.8010
LLS kernel 0.6180 0.0004 0.6185 0.6290 0.0004 0.6294
MRS kernel 0.6180 0.0004 0.6183 0.6290 0.0004 0.6292
MECC(4,1) 0.0028 0.0342 0.0371 0.0083 0.0048 0.0132
MECC(16,1) 0.0149 0.0014 0.0164 0.0157 0.0016 0.0173
MECC(64,1) 0.0126 0.0007 0.0133 0.0158 0.0005 0.0163
MECC(4,2) 0.0145 0.0878 0.1023 0.0132 0.0674 0.0806
MECC(16,2) 0.0170 0.0070 0.0241 0.0182 0.0074 0.0256
MECC(64,2) 0.0112 0.0017 0.0130 0.0134 0.0040 0.0175
MECC(4,3) 0.2667 11.4610 11.7277 0.1528 6.8401 6.9929
MECC(16,3) 0.0192 0.0804 0.0997 0.0196 0.1781 0.1977
MECC(64,3) 0.0184 0.0159 0.0343 0.0104 0.1360 0.1464
MECC(4,4) 0.1858 10.3994 10.5852 0.6811 25.2689 25.9500
MECC(16,4) 0.0487 1.7230 1.7718 0.0755 2.1647 2.2402
MECC(64,4) 0.0302 0.2109 0.2411 0.0230 0.1424 0.1655

Note: MECC(L, M) denotes the MECC estimated by using L marginal constraints and M moment
constraints. All the figures are rounded to four decimal places. LLS is the “shrinked" version of
the local linear-type kernel estimator of a copula [36,39]. MRS is the “shrinked" version of the
mirror-reflection kernel estimator of a copula [36,40].

Second, when θ = 0.8 the data will become less independent, leading to a significant increase
in Int. Bias2 pertaining to the estimation of the Clayton copula and Gumbel copula by using
samples drawn from Frank’s copula. In this case, MECC(4,1), MECC(16,1), MECC(64,1), MECC(4,2),
MECC(64,2), and MECC(64,3) all show significant improvements in Int. Bias2 over all the other
estimators. It is also important to note at this point that, for a fixed number of marginal constraints,
Int. Bias2 and Int. Var. tend to deteriorate as one increases the number of joint moment constraints.
To ameliorate this, it suffices to increase the number of marginal constraints as one adds one more
joint moment constraint into the MEC problem. Indeed, as shown in Table 2, for one joint moment
constraint, one merely needs four marginal constraints to yield MECC(4,1) with minimum Int.
Bias2 and IMSE; meanwhile, for two joint moment constraints, one needs to use up to 64 marginal
constraints to yield MECC(64,2) with minimum Int. Bias2, Int. Var., and IMSE. Our final observation
is that, for a fixed number of moment constraints, an increase in the number of marginal constraints
will always lead to a significant reduction in Int. Var.

Finally, to check the general validity of the obtained simulation results, we also replicate the
above simulation study using data generated from Clayton copulas. Table 3 shows that the good
performance of the MECCs relative to other copula estimators is still carried over to this case when a
sufficient number of marginal constraints is being used.
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Table 3. IMSE for the MECC and parametric copulas: Clayton copula as the true copula.

Copula θ = 0.1 (Kendall’s τ = 0.05) θ = 0.8 (Kendall’s τ = 0.3)

Int. Bias2 Int. Var. IMSE Int. Bias2 Int. Var. IMSE

Normal 28.0325 1.0580×e−13 28.0325 33.8124 1.2673×e−13 33.8124
Frank 0.0137 0.0035 0.0172 0.1751 6.4080×e−11 0.1751
Gumbel 0.0990 4.6433×e−7 0.0990 4.1741 3.9633×e−7 4.1741
Student’s t 73.7077 4.6044 78.3122 23.1521 0.8711 24.0233
LLS kernel 0.6251 0.0005 0.6256 0.7183 0.0003 0.7186
MRS kernel 0.6253 0.0005 0.6256 0.7199 0.0003 0.7201
MECC(4,1) 0.0363 0.0907 0.1271 0.1006 0.1244 0.2251
MECC(16,1) 0.0245 0.0014 0.0259 0.0329 0.0026 0.0356
MECC(64,1) 0.0070 0.0009 0.0079 0.0188 0.0011 0.0200
MECC(4,2) 0.0149 0.6796 0.6946 0.2090 3.2983 3.5073
MECC(16,2) 0.0226 0.0049 0.0275 0.0821 0.0142 0.0964
MECC(64,2) 0.1801 0.1165 0.2966 0.2485 0.1658 0.4143
MECC(4,3) 0.2833 9.1560 9.4393 0.4628 17.1669 17.6297
MECC(16,3) 0.0304 0.4528 0.4833 0.4002 0.2889 0.6891
MECC(64,3) 0.0110 0.1303 0.1414 0.2430 0.1982 0.4412
MECC(4,4) 0.2993 14.8533 15.1526 1.8968 41.9359 43.8328
MECC(16,4) 0.0596 1.5987 1.6583 0.2976 2.1513 2.4489
MECC(64,4) 0.0608 0.2037 0.2645 0.2659 0.3957 0.6616

Note: MECC(L, M) denotes the MECC estimated by using L marginal constraints and M moment
constraints. All the figures are rounded to four decimal places. LLS is the “shrinked" version of
the local linear-type kernel estimator of a copula [36,39]. MRS is the “shrinked" version of the
mirror-reflection kernel estimator of a copula [36,40].

4. Conclusions

We propose to employ the entropy-maximization principle to recover copulas from limited
information regarding contemporaneous dependence between random variables. The main results
of this article are twofold. First, we provide an entropy approach to recover relative entropy
measures of joint dependence that are independent of marginal distributions by constructing most
entropic copulas (MECs), in particular, their canonical forms, namely most entropic canonical copulas
(MECC). Second, as a consequence of the MEC, we can construct ME joint distributions with a fixed
dependence structure given by a MEC. Our method is shown to incorporate Miller and Liu [12]’s
approach and can handle both moment-based and copula-based measures of dependence. Simulation
results confirm that the accuracy of the approximate MECC can effectively be improved by increasing
the number of side constraints.
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Appendix

A. Known Results

DEFINITION A.1 (Adapted and modified from Nelsen [19], Chapter 5). Let τ denote the difference
between the probabilities of concordance and discordance of (X1, Y1) and (X2, Y2), i.e., let

τ = P{(X1 − X2)(Y1 −Y2) > 0} − P{(X1 − X2)(Y1 −Y2) < 0}, (A1)
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where (X1, Y1) and (X2, Y2) are independent vectors of continuous random variables with joint distributions
F1(X, Y) and F2(X, Y) respectively which have common marginals G1(X) (of X1, X2) and G2(Y) (of Y1, Y2).
When (X1, Y1) and (X2, Y2) have the same joint distribution function F(X, Y), τ is Kendall’s tau (τK). The
other measures of dependence such as Spearman’s rho and Gini’s gamma can be defined similarly.

THEOREM A.1 (Nelsen [19], Chapter 5). Let C1 and C2 denote the copulas of (X1, Y1) and (X2, Y2)
respectively so that F1(X, Y) = C1(G1(X), G2(Y)) and F2(X, Y) = C2(G1(X), G2(Y)), then

τ = Q(C1, C2) = 4
∫
[0,1]2

C2(u, v)dC1(u, v)− 1. (A2)

If C2(u, v) is the Falier-Gumbel-Mogernstern (FGM) copula, i.e., C2(u, v) = uv + θuv(1− u− v− uv) then
τ = τFGM. Note that we choose the FGM copula as a reference copula because it consists of quadrants of u, v
which then enter τFGM as uniform joint moments.

If C2(u, v) = uv then τ = ρS (Spearman’s rho).
If C2(u, v) = 2(|u + v− 1| − |u− v|) then τ = γG (Gini’s gamma).

B. Auxiliary Results

DEFINITION B.1. A kernel function K : R → R of real order r > 0 is a symmetric, Lebesgue integrable,
function such that

(i)
∫

R
K(y)dy = 1,

(ii)
∫

R
yjK(y)dy = 0 for j = 1, . . . , [r], and

(iii)
∫

R
|y|r|K(y)|dy < ∞, where [r] is the integer part of r.

LEMMA B.1. Let g(x) represent a measurable function of Rn such that

i
∫
|g(x)|dx < ∞,

ii lim‖x‖−→0 ‖x‖
n |g(x)| = 0,

iii sup |g(x)| < ∞,

where ‖x‖ is the Euclidean norm of x. Let f (x) be another function on Rn such that
∫
| f (x)| < ∞. Then, at

every point, x0, of continuity of f ,

1
hn

T

∫
Rn

g
(

x0 −w
hT

)
f (w)dw −→ f (x0)

∫
g(w)dw

as T −→ ∞, where hT is a sequence of positive constants such that h→ 0 as T → ∞.

Proof: See ([41], p. 362).

LEMMA B.2. Let Ω = [0, 1], let P denote Lebesgue measure, and let f = f (x) ∈ L1(Ω). Put

fn(x) = 2n
∫
[k2−n ,(k+1)2−n ]

f (y)dy, x ∈ [k2−n, (k + 1)2−n). (B1)

Then fn(x) P−as−→ f (x), where {k2−n} is a compact dyadic sequence dense in Ω. (Note that a sequence is defined
to be dense in an interval if for every point of the interval, there exist a point of the sequence which is arbitrarily
close to it. (See [42], p. 515.))

LEMMA B.3. [DuBois-Reymond’s lemma] Let a function b(t) be continuous on the interval [t0, t1].
Assuming that the following equality holds for any continuous function v(t) with mean value zero (i.e.∫ t1

t0
v(t)dt = 0) ∫ t1

t0

b(t)v(t)dt = 0. (B2)

Then, b(t) = b0 = const. Vice versa, if b(t) = const then
∫ t1

t0
b(t)v(t)dt = 0. (See [43], p. 400)
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LEMMA B.4. The indicator function 1y>x(y) can be approximated by a continuous function ΦN(y, x), where
ΦN(y, x) is given by

ΦN(y, x) =
N
2π

∫ y

−∞
exp{−(v− x)2N2/2}dv; (B3)

ΦN(y, x) has the following properties:

lim
N−→∞

ΦN(y, x) =⇒ 1y>x(y),

lim
N−→∞

∂ΦN(y, x)
∂y

=⇒ δ(y− x),

where δ(•) is Dirac’s delta function. (See [44] (p. 30))

C. Approximation of Potential Functions

We now present a Gaussian-Legendre quadrature method to approximate the potential
function (10) for the MECC. Using affine transformations, x1(u) : [0, 1] −→ [−1, 1] with x1 = 2u− 1
and x2(v) : [0, 1] −→ [−1, 1] with x2 = 2v− 1, (10) can be rewritten as follows:

Qn,Nh(Λ, θ̂) =
1
4

∫
[−1,1]2

exp

{
2n−1

∑
k=0

[
λk

(
Φ
(
k− 2n−1(x1 + 1)

)
+ Φ

(
2n−1(x1 + 1)− k− 1

)
− 1 + 2−n

)
+ γk

(
Φ
(
k− 2n−1(x2 + 1)

)
+ Φ

(
2n−1(x2 + 1)− k− 1

)
− 1 + 2−n

)]
− λ2n

(
h
( x1 + 1

2
,

x2 + 1
2

)− θ̂

)}
dx1dx2

=
1
4

∫
[−1,1]2

exp{−Λ
′
Ψ(X)}dX, (C1)

where X = {x1, x2}, Λ
′
= {λ0, γ0, . . . , λk, γk, . . . , λ2n−1, γ2n−1, λ2n}, and Ψ(X) has an obvious

meaning.
The function exp{−Λ

′
Ψ(X)} can be expanded into a series of the orthogonal Legendre

polynomials, that is,

exp{−Λ
′
Ψ(X)} =

∞

∑
n=0

∞

∑
m=0

anmPnm(X), (C2)

where Pnm(X) = Pn(x1)Pm(x2) are products of two Legendre orthogonal polynomials (see, e.g., [45]
for further details of the Legendre polynomials),

anm =
(2n + 1)(2m + 1)

4

∫
[−1,1]2

exp{−Λ
′
Ψ(X)}Pnm(X)dX,

and
a00 =

1
4

∫
[−1,1]2

exp{−Λ
′
Ψ(X)}dX.

Now, let Xi,j = (x1i, x2j), ∀ i = 1, . . . , N and j = 1, . . . , M, be the roots of the polynomials
PN(x1) = 0 and PM(x2) = 0 respectively – Xi,j are also called the abscissae of the Legendre
polynomials – then, choose weights, ωij, satisfying the following M×N relations:{

∑N
i=1 ∑M

j=1 ωijP00(Xi,j) = ∑N
1 ∑M

1 ωij = 1,

∑N
1 ∑M

1 ωijPkh(Xi,j) = 0, ωij ≥ 0,
(C3)
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where (k, h) ∈ (1, . . . , N)⊗ (1, . . . , M). We obtain:

N

∑
i=1

M

∑
j=1

ωij exp{−Λ
′
Ψ(Xij)} =

∞

∑
n=0

∞

∑
m=0

anm

N

∑
i=1

M

∑
j=1

ωijPnm(Xij)

= a00 +
∞

∑
n=N+1

∞

∑
m=M+1

anm

N

∑
i=1

M

∑
j=1

ωijPnm(Xij). (C4)

Hence,

a00 = Qn,Nh(Λ, θ̂) =
N

∑
i=1

M

∑
j=1

ωij exp{−Λ
′
Ψ(Xij)} −

∞

∑
n=N+1

∞

∑
m=M+1

anm

N

∑
i=1

M

∑
j=1

ωijPnm(Xij)

=
N

∑
i=1

M

∑
j=1

ωij exp{−Λ
′
Ψ(Xij)}︸ ︷︷ ︸

The Approximation

+ RNM, (C5)

where RNM = −∑∞
n=N+1 ∑∞

m=M+1 anm ∑N
i=1 ∑M

j=1 ωijPnm(Xij) is an error term, and (M, N) are
large enough.

We now present a Quasi-Newton algorithm to minimize (C5).

(1) Given a starting point Λ0, a convergence tolerance ε > 0 and an initial step length α0 > 0,
(ρ, c) ∈ [0, 1]2, an initial inverse Hessian matrix H0 and the numbers of Gaussian quadratures N, M.

(2) While ‖∇Qn(Λk, Θ̂)
(2n+1×1)

‖ > ε:

pk
2n+1×1

= −Hk∇Qn(Λk, Θ̂) (search direction).

repeat until Qn(Λk + αpk, Θ̂) ≤ Qn(Λk, Θ̂) + cα∇′Qn(Λk, Θ̂)pk
α← ρα

Stop with αk = α (step length satisfies the Goldstein condition (see, e.g., [46])
Set Λk+1

2n+1×1
= Λk − αkpk

(3) Define sk
2n+1×1

= Λk+1 −Λk and yk
2n+1×1

= ∇Qn(Λk+1, Θ̂)−∇Qn(Λk, Θ̂)

Compute the updated Hessian matrix:
Hk+1 = (I− ρksky

′
k)Hk(I− ρkyks

′
k) + ρksks

′
k, where ρk =

1
y′ksk

k← k + 1
end;

where∇Qn(Λ, Θ̂) is the first-order gradient vector of Qn(Λ, Θ̂) and || • || is a standard matrix norm.
To compute the MECC, we used a stochastic search algorithm to minimize (C5) whilst setting

M = N = 30.

D. Proofs

Proof of Theorem 2.1: Since (5)–(6) are continuums of constraints with varying end-points, we need
to replace these continuums with sets of definite integrals:∫

[a,b]

∫
[0,1]

c(u, v)dudv =
∫
[0,1]

∫
[a,b]

c(u, v)dudv = b− a, (D1)
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where a and b are arbitrary numbers in [0, 1]. Using a dense dyadic sequence in [0, 1], (D1) can be
approximated by

k=k2

∑
k=k1

∫
[k2−n ,(k+1)2−n ]

∫
[0,1]

c(u, v)dudv =
k=k2

∑
k=k1

∫
[0,1]

∫
[k2−n ,(k+1)2−n ]

c(u, v)dudv =
k2 − k1

2n ,

where k1 and k2 are chosen such that |a− k12−n| ≤ ε and |b− k22−n| ≤ ε, where ε is small enough.
Hence, (D1) is equivalent to∫

[k2−n ,(k+1)2−n ]

∫
[0,1]

c(u, v)dudv =
∫
[0,1]

∫
[k2−n ,(k+1)2−n ]

c(u, v)dudv =
1
2n

∀k = 0, 1, 2, . . . , (2n − 1), and n is large enough. (D2)

The Lagrangian function of Problem EM can be formulated as follows:

L(c, Λn; θ̂) = −
∫
[0,1]2

c(u, v) log c(u, v)dudv− λ−1
[ ∫

[0,1]2
c(u, v)dudv− 1

]
−

2n−1

∑
k=0

{
λk

∫
[k2−n ,(k+1)2−n ]

∫
[0,1]

[
c(u, v)− 2−n]+ γk

∫
[0,1]

∫
[k2−n ,(k+1)2−n ]

[
c(u, v)− 2−n]}

− λ2n

∫
[0,1]2

h(u, v, θ̂)c(u, v)dudv

= −
∫
[0,1]2

{
c(u, v) log c(u, v) + λ−1[c(u, v)− 1]

+
2n−1

∑
k=0

(
λkI(u ∈ [k2−n, (k + 1)2−n]) + γkI(v ∈ [k2−n, (k + 1)2−n])

)
[c(u, v)− 2−n]

+ λ2n h(u, v, θ̂)c(u, v)

}
dudv. (D3)

Taking the first derivative of L(c, Λn; θ̂) with respect to c leads to

∫
[0,1]2

{
log c(u, v) + (1 + λ−1) +

2n−1

∑
k=0

[
λkI(u ∈ [k2−n, (k + 1)2−n])

+ γkI(v ∈ [k2−n, (k + 1)2−n])

]
+ λ2n h(u, v, θ̂)

}
dudv = 0. (D4)

Define bn(u, v) .
= log c(u, v) + (1 + λ−1) + ∑2n−1

k=0

[
λkI(u ∈ [k2−n, (k + 1)2−n]) + γkI(v ∈

[k2−n, (k + 1)2−n])
]
+ λ2n h(u, v, θ̂), then applying Lemma B.3 to the function

b(u, v) =
bn(u, v)

c̃(u, v)− 1
, (D5)
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where c̃(u, v) is an arbitrary copula density such that
∫
[0,1]2(c̃(u, v) − 1)dudv = 0, we obtain the

following representation:

ĉn,Nh(u, v) = exp

{
− (1 + λ−1 − b0)−

2n−1

∑
k=0

[
λkI(u ∈ [k2−n, (k + 1)2−n]) + γkI(v ∈ [k2−n, (k + 1)2−n])

]

− λ2n h(u, v, θ̂)− b0 c̃(u, v)

}
, (D6)

and b0 is a generic constant. Now, by substituting (D6) into (4) the leading term, 1 + λ−1 − b0, is
canceled out, then we obtain:

ĉn,Nh(u, v) =
En,Nh(u, v)∫

[0,1]2 En,Nh(u, v)dudv
, (D7)

where

En,Nh(u, v) = exp

{
−

2n−1

∑
k=0

[
λ̂kI(u ∈ [k2−n, (k + 1)2−n]) + γ̂kI(v ∈ [k2−n, (k + 1)2−n])

]
− λ̂2n h(u, v, θ̂)

− b0 c̃(u, v)} .

The Lagrangian multipliers Λ̂n =
{

λ̂0, . . . , λ̂2n , γ̂0, . . . , γ̂2n−1

}
can be solved out by substituting

(D7) into (5), (6), and (7), leading to the following system of equations:

1∫
[0,1]2 En,Nh

(u,v)dudv

∫
[0,1]2 I(u ∈ [k2−n, (k + 1)2−n])En,Nh(u, v)dudv = 2−n,

1∫
[0,1]2 En,Nh

(u,v)dudv

∫
[0,1]2 I(v ∈ [k2−n, (k + 1)2−n])En,Nh(u, v)dudv = 2−n,

1∫
[0,1]2 En,Nh

(u,v)dudv

∫
[0,1]2 h(u, v, θ̂)En,Nh(u, v)dudv = 0

(D8)

for all k = 0, . . . , (2n − 1). Since (D7) can be rewritten as

ĉn,Nh(u, v) =
−∑2n−1

k=0 (λ̂k2−n + γ̂k2−n)∫
[0,1]2 En,Nh(u, v)dudv

exp

{
−

2n−1

∑
k=0

[
λ̂k(I(u ∈ [k2−n, (k + 1)2−n])− 2−n)

+ γ̂k(I(v ∈ [k2−n, (k + 1)2−n])− 2−n)

]
− λ̂2n h(u, v, θ̂)− b0 c̃(u, v)

}
,

we can define the potential function as follows:

Qn,Nh(Λn, θ̂) =
∫
[0,1]2

exp

{
−

2n−1

∑
k=0

[
λk(I(u ∈ [k2−n, (k + 1)2−n])− 2−n)

+ γk(I(v ∈ [k2−n, (k + 1)2−n])− 2−n)

]
− λ2n h(u, v, θ̂)− b0 c̃(u, v)

}
dudv.

Then, (D8) is equivalent to the following system of equations:

∂
∂λk

Qn,Nh(Λn, θ̂) = 0,
∂

∂γk
Qn,Nh(Λn, θ̂) = 0,

∂
∂λ2n

Qn,Nh(Λn, θ̂) = 0
(D9)
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for all k = 0, . . . , (2n − 1). Also note that, since the second order derivatives of Qn,Nh(Λn, θ̂) is the

covariance matrix of
{

I(u ∈ [k2−n, (k + 1)2−n]), I(v ∈ [k2−n, (k + 1)2−n]), h(u, v, θ̂)

}2n−1

k=0
, thus

Qn,Nh(Λn, θ̂) is positive definite. It follows that the solutions to (D9) are the minimum values of
Qn,Nh(Λn, θ̂), which depend on θ̂, b0, and c̃(u, v).

Since the potential function Qn,Nh(Λn, θ̂) and the MEC (D7) are non-smooth, following common
practice, they need to be smoothed out. We can obtain their smoothings by using a continuous
approximation to the indicator function, ∑2n−1

k=0 λkI(u ∈ [k2−n, (k + 1)2−n]), for a sufficiently large
n. An application of Lemma B.4 yields

I(u ∈ [k2−n, (k + 1)2−n]) = 1− I(u < k2−n)− I(u > (k + 1)2−n)

= 1− lim
Nh−→∞

Nh√
2π

∫ k2−n

−∞
exp{−(x− u)2N2

h /2}dx

− lim
Nh−→∞

N√
2π

∫ −(k+1)2−n

−∞
exp{−(x + u)2N2

h /2}dx

= 1− lim
Nh−→∞

Φ
(

Nh(k2−n − u)
)
− lim

N−→∞
Φ
(
−Nh((k + 1)2−n − u)

)
.

We then immediately obtain:

Qn,Nh(Λn, θ̂) =
∫
[0,1]2

exp

{
2n−1

∑
k=0

[
λk

(
Φ(Nh(k2−n − u)) + Φ(−Nh((k + 1)2−n − u))− 1 + 2−n

)

+ γk

(
Φ(Nh(k2−n − v)) + Φ(−Nh((k + 1)2−n − v))− 1 + 2−n

)]

− λ2n h(u, v, θ̂)− b0 c̃(u, v)

}
dudv, (D10)

and

En,Nh(u, v) ≈ exp

{
2n−1

∑
k=0

[
λ̂k

(
Φ(Nh(k2−n − u)) + Φ(−Nh((k + 1)2−n − u))

)
+ γ̂k

(
Φ(Nh(k2−n − v)) + Φ(−Nh((k + 1)2−n − v))

)]

− λ̂2n h(u, v, θ̂)− b0 c̃(u, v)

}
, (D11)

where Λ̂n are the minimum values of (D10). In particular, ĉn,Nh(u, v) =
En,Nh

(u,v)∫ 1
0
∫ 1

0 En,Nh
(u,v)dudv

can be

symmetrized by letting λk = γk for every k = 0, . . . , (2n − 1) and letting h(u, v, θ̂) be a symmetric
function.

Finally, to complete this proof, we still need to prove that the MEC approximator, Ĉn,Nh(u, v) =∫ u
0

∫ v
0 ĉn,Nh(u, v)dudv, is 2-increasing. Let’s denote by [u1, u1 + ∆] × [v1, v1 + ∆] a rectangle in

[0, 1]2, we immediately establish that, since ĉn,Nh(u, v) is a (positive) exponential function, the mass
of the rectangle, Ĉn,Nh(u1 + ∆, v1 + ∆) − Ĉn,Nh(u1 + ∆, v1) − Ĉn,Nh(u1, v1 + ∆) + Ĉn,Nh(u1, v1) =∫ u1+∆

u1

∫ v1+∆
v1

ĉn,Nh(u, v)dudv, is thus nonnegative. Now, we can obtain the MECs by letting n and
Nh become sufficiently large.

Proof of Theorem 2.3: For all ΘT ∈ M, Qn(Λ, ΘT) has a unique finite supremum for all T in view

of AS1 and AS2. AS2 and Θ̂T
p−→ Θ0 implies that Prob{Λ̂T ∈ ∂N} −→ 0. Thus, Qn(Λ, Θ̂T) has
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a unique interior supremum Λ̂T for a sufficiently large T. Let Λ0 denote the unique supremum of

Qn(Λ, Θ0). In view of AS3, Θ̂T
p−→ Θ0 implies Λ̂T

p−→ Λ0.
An application of the mean-value theorem yields:

∇Qn(Λ̂T , Θ0) = ∇Qn(Λ
0, Θ0) +H1,n(Λ̂

∗
T , Θ0)(Λ̂T −Λ0),

where min(Λ̂T , Λ0) < Λ̂∗T < max(Λ̂T , Λ0). Thus, we have

Λ̂T −Λ0 = H−1
1,n(Λ̂

∗
T , Θ0)∇Qn(Λ̂T , Θ0).

Another application of the mean-value theorem yields:

∇Qn(Λ̂T , Θ̂T) = ∇Qn(Λ̂T , Θ0) +H2,n(Λ̂T , Θ̂∗T)(Θ̂T −Θ0),

where min(Θ̂T , Θ0) < Θ̂∗T < max(Θ̂T , Θ0). Thus, we obtain

T1/2(Λ̂T −Λ0) = −T1/2H−1
1,n(Λ̂

∗
T , Θ0)H2,n(Λ̂T , Θ̂∗T)(Θ̂T −Θ0).

Since Θ̂T
p−→ Θ0 implies Λ̂T

p−→ Λ0, the continuous mapping theorem yields:

H1,n(Λ̂
∗
T , Θ0)

p−→ H1,n(Λ
0, Θ0),

H2,n(Λ̂T , Θ̂∗T)
p−→ H2,n(Λ

0, Θ0).

Hence, Slutsky’s theorem and AS4 yield

T1/2(Λ̂T −Λ0)
d−→ N(0,H−1

1,n(Λ
0, Θ0)H2,n(Λ

0, Θ0)ΨH′2,n(Λ
0, Θ0)H−1

1,n

′
(Λ0, Θ0)).
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