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Abstract: This paper considers a functional-coefficient spatial Durbin model with nonparametric
spatial weights. Applying the series approximation method, we estimate the unknown functional
coefficients and spatial weighting functions via a nonparametric two-stage least squares (or 2SLS)
estimation method. To further improve estimation accuracy, we also construct a second-step
estimator of the unknown functional coefficients by a local linear regression approach. Some Monte
Carlo simulation results are reported to assess the finite sample performance of our proposed
estimators. We then apply the proposed model to re-examine national economic growth by
augmenting the conventional Solow economic growth convergence model with unknown spatial
interactive structures of the national economy, as well as country-specific Solow parameters, where
the spatial weighting functions and Solow parameters are allowed to be a function of geographical
distance and the countries’ openness to trade, respectively.
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1. Introduction

Ever since the seminal work of [1], there has been a significant amount of empirical work
studying variation in economic growth rates across countries. Particularly, more and more economists
have paid attention to the impacts of economic interaction and spillover effects on the regional and
national economy in the past two decades; see, e.g., [2] for taxation and the global allocation of
capital, [3] for cross-border foreign direct investment decisions, [4,5] for economic growth models
with worldwide interactions, [6] for country interactions in discretionary fiscal policy and [7] for
an overview of empirical studies of strategic interaction among governments over environmental
standards and public expenditures. In the meanwhile, econometric theory in parametric spatial
regression models has been introduced and well developed to analyse the spatial and economic
externalities; for a detailed survey on parametric spatial econometric models, see [8–11]. This paper
joins the others to examine the impact of cross-country economic externalities on national growth
through a Solow growth model augmented with economic externalities.

The role of spatial dependence in regional economic growth has received substantial attention in
the empirical growth literature in the recent decade; see, e.g., [12] for a survey on economic growth
and space. It has been recognized that a nation’s per capita GDP growth rate is affected not only by its
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own values of determinants, such as savings, population growth rate and initial level of income, but
also by its neighbouring nations’ per capita GDP growth rates and the values of these determinants.
For example, Ertur and Koch [4] developed a theoretical growth model with spatial externality
resulting from technological interdependence among economies and proposed a spatially-augmented
Solow economic growth model yielding a conditional convergence equation with heterogeneous
Solow parameters. Note that heterogeneous Solow parameters are also supported by similar studies
with no spatial interactions; see, e.g., [13–15].

Fitting a spatial Durbin model (SDM) using data from 91 non-oil regions/and countries for the
period from 1960 to 1995, Ertur and Koch [4] found positive and significant spatial dependence
across these economies together with predicted signs for all coefficients. However, their study
suffers from two potential problems. First, the parametric SDM requires researchers to pre-determine
the non-stochastic spatial dependence structure among economies before estimating parameters
appearing in the model, and the misspecified spatial interactive relations can incur inconsistent
estimation and misleading inference. Second, the subsampling method may not be the best way
of studying heterogeneous Solow parameters. In this paper, working on the same dataset used in [4],
we therefore aim to re-examine the spatial spillover effects of economic growth, while estimating in a
nonparametric way the true spatial dependence structure among economies and allowing the Solow
parameters to vary with respect to the trade openness of an economy.

Specifically, we propose a functional-coefficient spatial Durbin model with nonparametric spatial
weights and estimate the unknown spatial weights and coefficient curves via a series approximation
approach by a nonparametric two-stage least squares method. Based on the first-step consistent
estimator, we then construct a second-step estimator for the unknown functional coefficients, which
is oracle efficient in the sense that the limit distribution of the second-step estimator is the same
regardless of whether the spatial weights are known. Moreover, we give our inference on spatial
dependence through average direct and indirect impact values with standard errors calculated from
the bootstrap method.

The remainder of this paper is organized as follows. Section 2 introduces our proposed
semiparametric spatial Durbin model. Section 3 presents our estimation methodology. Section 4
reports results from a small Monte Carlo simulation to examine the finite sample performance of our
proposed estimators. Section 5 gives our empirical results. Section 6 concludes.

2. Model

In the empirical economic growth literature, DeLong and Summers [16], to the best of our
knowledge, is the first study to investigate spatial correlation taking geographical distance into
account. Using a sample of 61 countries for the period from 1960 to 1985, they find no significant
spatial correlation in their sample. Moreno and Trehan [17], on the other hand, augments [1]’s model
with a spatial interactive term and find highly significant spillover effects between geographical
neighbours, and they argue that using a border dummy variable instead of a spatial lag term
neglects the influence of neighbour countries that do not have a common border with the country
of interest; relevant literature includes [18–20]. Moreover, Ertur, le Gallo, and Baumont [21] provide
strong evidence of spatial dependence in economic convergence processes among European regional
economies. Using 155 European regions over the period 1988–2000, Basile [22] also finds some
evidence of spatial spillovers across countries.

The question of how to measure spatial interactive relations between any pair of spatial units is
answered by defining a neighbourhood set for each spatial unit according to some selected relevant
variables. For example, Cliff and Ord [8] specify spatial weights for spatial unit i as the ratio of
the length of the common border between units i and j to the geographical distance between them,
gij = bβ

ij/dα
ij, with some parameters α > 0 and β > 0. A common approach in practice is to

use only distance-based weights with a decay parameter α; i.e., the spatial weight from unit j on
unit i is defined as gij = g

(
dij, α

)
, where g (·) is a known function and α is a parameter to be
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estimated. The popularly-used distance function includes an inverse power function gij = 1/dα
ij

or a negative exponential function gij = exp(−αdij) (e.g., [23]) for some α > 0. Moreover,
if a cut-off distance is not used, then a non-sparse spatial weight matrix is constructed. This implies
that every region is a neighbour of other regions, but the spatial weights depreciate as the distance
between two regions increases. For recent studies on spatial weights, see [24,25]. Moreover, the term
“neighbours” can also refer to contiguities defined by economic distances (e.g., [26–28]) and social
networks ([29]).

As the functional form g (·) is unknown in practice, to avoid misspecifying the wrong spatial
weighting function, one can alternatively estimate the unknown spatial weighting function g (·) from
the data via a nonparametric series estimation method. Compared to the parametric spatial modelling
approach, the nonparametric approach enables researchers to impose less restrictive assumptions
on the spatial weight function; see [27,30] for details. Alternatively, Ahrens and Bhattacharjee [31]
proposed to estimate the unknown spatial weights via the LASSO estimation method when the
unknown spatial weights matrix is sufficiently sparse.

Ertur and Koch [4] derive a theoretical Solow economic growth model augmented with global
technological interdependence. They then approximate their theoretical model by a parametric
spatial Durbin model via a linearization procedure and calculate the spatial weights from both the
inverse power function and the exponential function of geographic distances with α = 2 for the
sake of robustness, as the true spatial weighting function is unknown. As the linearization and
selected parametric spatial weights may result in a model misspecification problem, in this paper,
in order to better approximate [4]’s theoretical model, we therefore propose a semiparametric growth
model that extends [4]’s parametric model by allowing nonparametric spatial weights, as well as
varying Solow coefficients. Specifically, our proposed functional-coefficient spatial Durbin model
with nonparametric spatial weights is given by:

Yi = ∑
j 6=i

g(Zij)Yj +
p

∑
t=1

∑
j 6=i

mt(Zij)Xtj + XT
i θ(Di) + ui, i = 1, ..., n, (1)

where Yi is a scalar dependent variable, Xi =
[
X1i, . . . , Xpi

]T is a p × 1 vector, Di is a continuous
scalar random variable and Z is a non-stochastic spatial covariate with Zii = 0 and Zij > 0 for i 6= j.
Moreover, g(·), mt(·) for t = 1, ..., p and θ(·) are all unknown measurable smooth functions with
g(0) = 0 and mt(0) = 0, t = 1, .., p. In Model (1), Xi has a functional coefficient depending on Di,
and the unknown spatial weights are a function of non-stochastic geographic distance Zij. The first
two terms in the right-hand side of Equation (1), ∑j 6=i g(Zij)Yj and ∑j 6=i mt(Zij)Xtj for each t = 1, ..., p,
are called the spatial lag of the dependent variable and the spatially-lagged exogenous variables,
respectively. In the spatial econometrics literature, this kind of model specification is referred to as
the spatial Durbin model, where (Xi, Di, ui) are independently distributed across i while only the
dependent variable Yi is dependently distributed across spatial units. The detailed data information
on Xi, Di, Yi and Zij is delayed to Section 5. If the model includes only the spatial lag of the dependent
variable, it is called a pure spatial autoregressive (SAR) model. Basile et al. [32] introduced the
spatial autoregressive semiparametric geoadditive models to account for spatial dependence, spatial
unobserved heterogeneity and unknown functional curves of regressors simultaneously, where the
spatial autoregression is represented by a pre-determined spatial lag term of the dependent variable.

Let Gn and Mn,t be n × n unknown spatial weight matrices with its (i, j)th element being
gij = g(Zij) and mt,ij = mt(Zij), respectively, for t = 1, ..., p, i = 1, ..., n, j = 1, ..., n. We then
obtain a reduced form of Model (1) written in matrix form:

Y = (In − Gn)
−1 [

p

∑
t=1

Mn,tXt + mtk {X, θ(D)}+ U], i = 1, ..., n, (2)
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where Y = [Y1, . . . , Yn]
T , Xt = [Xt1, · · · , Xtn]

T and U = [u1, . . . , un]
T are all n × 1 vectors and

mtk {X, θ(D)} is an n× 1 vector with the ith element equal to XT
i θ(Di). Furthermore, In is an n× n

identity matrix.
Let λi (An) be the ith eigenvalue of an n× n matrix An, ρ (An) = max1≤i≤n |λi (An)| and ‖An‖∞

= max1≤i≤n ∑n
j=1
∣∣aij
∣∣ and ‖An‖1 = max1≤j≤n ∑n

i=1
∣∣aij
∣∣ be the respective row and column norm of

An. Furthermore, C > 0 is a finite positive number that takes different values at different appearances.
Below, we impose some regularity conditions on Model (1).

Assumption A1: (i) {Yi} is generated from Model (1), and {(Xi, Di)} is independently
distributed with finite second moments; (ii) g (·), mt (·) and θ (·) are all uniformly bounded up to
their respective pth-order derivatives for some p > 2; (iii) {ui} is an independent sequence with zero
mean, E[ui|Xi = x, Di = d] = 0 and E[u2

i |Xi = x, Di = d] = σ2
i (x, d) > 0 for all i and (x, d) ∈ Rp × R,

and sup(x,d)∈Rp×R max1≤i≤n E[|ui|2+δ|Xi = x, Di = d] ≤ C < ∞ for some δ > 0 and a positive
constant C.

Assumption A2: (i) There exist a positive integer N and a constant cG ∈ (0, 1), such that for all
n > N, ρ (Gn) ≤ cG; (ii) ‖Gn‖j ≤ C < ∞, ‖Mn,t‖j ≤ C < ∞ for all t and

∥∥∥(In − Gn)
−1
∥∥∥

j
≤ C < ∞ for

j = 1 and ∞ and some finite value C > 0.
Assumption A1 (i) states that the explanatory variables (Xi, Di) are independent, while the

dependent variable Yi exhibits spatial dependence; and Assumption A1 (iii) allows the error
term, ui, to be independent with heteroskedasticity, and the bounded higher order moment is
required for deriving the limiting normal distribution of the proposed estimator. By [33] (p. 421),
Assumption A2 (i) ensures that In − Gn is a non-singular matrix with (In − Gn)

−1 = ∑∞
j=0 Gj

n,
which implies that {Yi} is spatially stationary. In addition, we have max1≤i,j≤n

∣∣gij
∣∣ ≤ ρ (Gn) <

1 by Properties 4.66 and 4.67 in [33] (p. 68). It is ready to show that n−1YTY = Op (1),
and E

(
Y2

i |X1 = x1, . . . , Xn = xn, D1 = d1, . . . , Dn = dn
)

is continuously differentiable and uniformly
bounded under Assumptions A1 and A2. In addition, Assumption A2 (ii) is a regularity condition
(see, e.g., Assumption 1 in [34]), and it holds if the spatial weight function, g (z), decreases to zero for
large z and:

lim
n→∞

n−1
n

∑
i=1

n

∑
j=1

I
(
Zij ∈ Z

)
< ∞ for any fixed bound set Z , (3)

where the indicator function I (A) = 1 if event A holds, and zero otherwise.
Note that a parametric SDM is given by Yi = ρ ∑j 6=i wijYj +δ ∑

p
t=1 ∑j 6=i pt,ijXtj +XT

i θ0 +ui, i =
1, ..., n, where Wn and Pn,t are spatial weight matrices with their respective (i, j)th element equal to wij
and pt,ij. Therefore, if the parametric spatial Durbin model holds true, the spatial weight matrices Gn

and Mn,t in Model (1) are equivalent to ρWn and δPn,t in the spatial Durbin model, respectively. From
an estimation and econometric modelling viewpoint, the normalization of spatial weight matrices in
the spatial Durbin model is used to identify the spatial multiplier parameters (ρ, δ), but this is not
necessary in our proposed Model (1). Therefore, allowing nonparametric spatial weights saves us
from applying an ad hoc spatial weight matrix normalization procedure as in the parametric SDM.

3. Estimation Methodology

If the dependent variable exhibits spatial autocorrelation, it must be accounted for by
incorporating the spatially-lagged dependent variable into the model. If this variable is not included
in the model, there would be an omitted variable type specification error due to the fact that
unobserved factors may have a direct effect on the response variable. Moreover, the presence
of the spatial lag-dependent variable in the model results in a simultaneity bias problem. This
can be seen explicitly from the reduced form Model (2). From Model (2), we see E(GnYUT) =

Gn(In −Gn)−1E
(
UUT) is a non-zero matrix, so that the spatial lag of the dependent variable, GnY, is

correlated with the error term, U, which, therefore, results in an endogeneity problem in Model (1).
Therefore, the ordinary least squares (or OLS) estimator would be biased and inconsistent. Moreover,
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the term (In−Gn)−1 in Equation (2) explains that region i is affected not only by its own determinants,
but also by its neighbouring regions’ values. This has been called a global interaction effect in [4]
(p. 1044) and [24] (p. 15). Another source of the spatial endogeneity problem is due to the endogeneity
of spatial covariate in the model. Recently, Kelejian and Piras [35] and Sun [30] estimated the spatial
panel data model and the SAR model with an endogenous spatial weight matrix in a nonparametric
way, respectively. Moreover, Qu and Lee [36] proposed estimators for the parametric SAR model with
an endogenous spatial covariate. This paper only deals with the endogeneity of the spatial lag of the
dependent variable, as our spatial weight matrix is non-stochastic.

The endogeneity problem can be addressed by using the maximum likelihood estimation (or
MLE) method, as well as the instrumental variable (or IV) approach. Ord [37] was the first to
examine the MLE of SAR models. He proposed to use the eigenvalues of the spatial weights
matrix to alleviate the computational complexity of the MLE method in large sample sizes. Lee [38]
derived the large sample properties of the quasi-MLE without a normality assumption on error terms,
while Bao and Ullah [39] obtained the second order bias of the maximum likelihood estimator for
spatial autoregressive models. As the (quasi-) maximum likelihood estimator can be computationally
difficult in moderate or large-sized samples, Kelejian and Prucha [40] proposed a two-stage least
squares (or 2SLS) estimator for a SAR model with spatial autoregressive errors, while Lee [41]
proposed an asymptotically-optimal 2SLS estimator. As the spatial weights in Model (1) are
unknown, the 2SLS estimation methods derived in [40,41] are not feasible; we therefore use a series
approximation method to recover the unknown spatial weight function and estimate all unknown
functions via a nonparametric 2SLS (or NP2SLS) estimation method. For an overview of the sieve
estimation method, see [42].

Specifically, we approximate the unknown weighting functions g(·) and mt(·), t = 1, ..., p, and
the vector of functional coefficients θ(·) by series expansions:

g∗(z) =
Ln

∑
l=1

αlφl(z), (4)

m∗(z) = [m∗1(z), ..., m∗p(z)]
T = [

Ln

∑
l=1

γ1lφl(z),
Ln

∑
l=1

γ2lφl(z), ...,
Ln

∑
l=1

γplφl(z)]T , (5)

and:

θ∗(d) = [θ∗1 (d), ..., θ∗p(d)]
T = [

Ln

∑
l=1

β1lφl(d),
Ln

∑
l=1

β2lφl(d), ...,
Ln

∑
l=1

βplφl(d)]T , (6)

respectively, where α = (α1, α2, ..., αLn)
T , γt = (γt1, γt2, ..., γtLn)

T and βt = (βt1, βt2, ..., βtLn)
T for

t = 1, ..., p are all Ln × 1 vectors of unknown coefficients, {φj(·)}Ln
j=1 is a sequence of square integrable

orthonormal basis functions over the interval [0, ∞) and Ln denotes the number of basis functions.
The following assumption regulates the sparseness of the weight matrix and the smoothness of
unknown functions.

Assumption A3: (i) There exists a positive constant sequence {vn}, such that:

max
1≤l≤Ln ,1≤i≤n

n

∑
j 6=i
|φl(Zij)| ≤ Cvn and max

1≤l≤Ln ,1≤j≤n

n

∑
i=1
|φl(Zij)| ≤ Cvn. (7)

(ii) There exist Ln × 1 vectors α, γt, and βt for t ∈ {1, ..., p}, such that:

max
1≤i≤n

∑
j 6=i
|g(Zij)− αTΦLn(Zij)| = O(L−ζ

n ) (8)

max
1≤t≤p

max
1≤i≤n

∑
j 6=i
|mt(Zij)− γT

t ΦLn(Zij)| = O(L−ζ
n ) (9)
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and:
sup
d∈R

max
1≤t≤p

|θt(d)− βT
t ΦLn(d)| = O(L−ζ

n ),

respectively, for some ζ > 2 as Ln → ∞, where ΦLn(z) = [φ1(z), φ2(z), ..., φLn(z)]
T is an Ln × 1 vector

of basis functions.
It is not necessary to know the exact order of υn in Assumption A3 (i), and the consistency

of our proposed estimator does not require υn ≡ 1, as assumed in [27]’s Assumption (vi). From
approximation theory in mathematics, Assumption A1 (ii) is a necessary condition for Assumption
A3 (ii). However, (8) and (9) also require spatial units expanding sparsely as more spatial units are
included, for example when (3) holds true; and the consistency of our proposed estimator relies on
increasing domain asymptotic theory. Moreover, we use Laguerre polynomial series to approximate
the unknown functions, as it is one of the common choices for series expansions when a function has
a domain over [0, ∞) ([42] (p. 5574)). In addition, Ln acts as a smoothing parameter that increases
slowly with the sample size. In other words, it is required to have Ln → ∞ and Ln/n → 0 as n → ∞.
An introduction of series estimation methods in a nonparametric framework can be found in [43]
(Chapter 15).

Now, we approximate Model (1) by:

Yi ≈
Ln

∑
l=1

αl ∑
j 6=i

φl(Zij)Yj +
p

∑
t=1

Ln

∑
l=1

γtl ∑
j 6=i

φl(Zij)Xtj +
p

∑
t=1

Ln

∑
l=1

βtlφl(Di)Xti + ui, i = 1, ..., n. (10)

To derive our first-step estimator, we rewrite Model (10) in matrix form as follows:

Y ≈ Vnξ + U, (11)

where we denote the ith row vector of an n× [(2p + 1)Ln] matrix Vn by:

VT
n,i = [(∑

j 6=i
ΦLn(Zij)Yj)

T , (∑
j 6=i

ΦLn(Zij)X1j)
T , ..., (∑

j 6=i
ΦLn(Zij)Xpj)

T ,

(ΦLn(Di)X1i)
T , ..., (ΦLn(Di)Xpi)

T ]

and a [(2p + 1)Ln]× 1 vector of parameters ξ = [αT , γT
1 , γT

2 , ..., γT
p , βT

1 , βT
2 , ..., βT

p ]
T .

The specification of the instrumental variable matrix is of great importance to obtain a consistent
estimator. Since the number of endogenous variables increases with the number of approximating
functions, Ln, it is intuitively appealing to instrument the endogenous variables, ∑j 6=i φl(Zij)Yj,
l = 1, ..., Ln, by (∑j 6=i ΦLn(Zij)Xt1 j)Xt2i and ∑j 6=i ΦLn(Zij)Dj, t1, t2 ∈ {1, 2, ..., p} for p > 1 as
in our empirical application; see, e.g., [44]. Since Xt1 jXt2i and Dj are exogenous and relevant in
predicting Yj, we would expect the proposed instrumental variables to serve as valid instruments for
∑j 6=i ΦLn(Zij)Yj. Therefore, we define the ith row vector of an n × [(2p + 2)Ln] instrumental matrix
Qn as:

QT
n,i = [((∑

j 6=i
ΦLn(Zij)X1j)X1i)

T , (∑
j 6=i

ΦLn(Zij)X1j)
T , ..., (∑

j 6=i
ΦLn(Zij)Xpj)

T ,

(ΦLn(Di)X1i)
T , ..., (ΦLn(Di)Xpi)

T , (∑
j 6=i

ΦLn(Zij)Dj)
T ].

We then can estimate ξ from (11) by the 2SLS estimation method. Note that we do not pursue optimal
instrument variables in this paper due to the complexity of this approach in the semiparametric setup
and the fact that the oracle efficiency of the second-step estimator of θ (·) does not rely on the use of
optimal instruments in the first-step estimation.
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To ensure the existence of our 2SLS estimator, we assume that the exogenous regressors matrix
Xn, the instrumental variables matrix Qn and VT

n Qn(QT
n Qn)−1QT

n Vn all have full column rank.
Moreover, for the relevance of the instruments, we assume that E[QT

n Vn] has a full column rank.
Otherwise, we can remove linearly-dependent terms as long as the number of instruments in Qn

is more than the number of endogenous variables Ln plus the number of exogenous regressors 2p.
Lee [45] (p. 493) argues that the 2SLS estimator would be inconsistent if (Xi, Di) are both irrelevant in
predicting {Yi}. Therefore, throughout this paper, we assume that X and D contain relevant variables
in predicting {Yi} and θ (·) takes non-zero values over any non-empty interval, so that there is no need
to use the quadratic moments as additional orthogonal relations, as suggested in [45]. Our empirical
application in this paper satisfies this assumption by both economic theory and empirical findings
observed from the economic growth literature.

To construct a consistent estimator for g(·), mt(·) and θt(·), t = 1, ..., p, we consider the following
nonparametric 2SLS objective function:

min
ξ

[
QT

n (Y−Vnξ)
]T [

QT
n (Y−Vnξ)

]
. (12)

The nonparametric 2SLS estimator of ξ solves (12) and is given by:

ξ̂ = [VT
n Qn(QT

n Qn)
−1QT

n Vn]
−1VT

n Qn(QT
n Qn)

−1QT
n Y,

and hence, the corresponding nonparametric 2SLS estimators 1 of unknown functions are given by:

ĝ(z) =
Ln

∑
l=1

α̂lφl(z), (13)

m̂(z) = [m̂1(z), ..., m̂p(z)]T = [
Ln

∑
l=1

γ̂1lφl(z),
Ln

∑
l=1

γ̂2lφl(z), ...,
Ln

∑
l=1

γ̂plφl(z)]T , (14)

and

θ̂(d) = [θ̂1(d), ..., θ̂p(d)]T = [
Ln

∑
l=1

β̂1lφl(d),
Ln

∑
l=1

β̂2lφl(d), ...,
Ln

∑
l=1

β̂plφl(d)]T . (15)

Next, we propose a second-step estimator for the functional coefficients, θ(d), using the local
linear regression approach. We would expect the local linear estimate of θ(d), θ̃(d), to have
an improvement over the first-step estimator, θ̂(d). Sun [30] considered a semiparametric spatial
autoregressive model that has a mathematical representation of Model (1) with Mn,t = 0 for all
t = 1, . . . , p and has recently shown that the local linear estimator of θ(·) can be oracle efficient under
some regularity conditions in the sense that its limiting distribution does not depend on whether
or not the spatial weights are known. This is a general result from non-/semi-parametric additive
models. As the unknown functions

(
g
(
Zij
)

, m1
(
Zij
)

, . . . , mp
(
Zij
))

and θ (Di) enter Model (1)
additively, we expect that θ̃(d) is oracle efficient, as well. We assume that as n → ∞, h → 0, nh → ∞
and nh5 → c ∈ (0, ∞), where h is the bandwidth, which controls the size of the local neighbourhood
around an interior point d. Moreover, let K(·) be a kernel function, which assigns more weights to the
data closer to point d, satisfying: (i)

∫
K(a)da = 1; (ii) K(a) = K(−a); and (iii)

∫
a2K(a)da > 0.

The estimation procedure for θ̃(d) is given as follows:
(i) We replace g(z) and mt(z) in (1) by ĝ(z) and m̂t(z), respectively, and treat Ŷi = Yi −

∑j 6=i ĝ(Zij)Yj −∑
p
t=1 ∑j 6=i m̂t(Zij)Xtj as the dependent variable.

1 The asymptotic properties of the series estimator without an endogenous variable follows from [46] and with some
extensions from [47]. Moreover, we expect the asymptotic properties of our proposed estimators closely follow [30].
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(ii) Applying the first-order Taylor series expansion of θ(D) around d, θ(D) ≈ θ(d) + θ′(d)(D−
d), we calculate the local linear estimator from a minimization of a kernel-weighted objective function:

(
θ̃(d), θ̃′(d)

)
= arg min

θ(d),θ′ (d)

n

∑
i=1

[Ŷi − XT
i θ(d)− XT

i θ′(d)(Di − d)]2K((Di − d)/h) (16)

where θ̃(d) estimates θ(d) and θ̃′(d) estimates θ′(d), the first order derivative of θ (d).
For a complete treatment of local linear estimator, see [48]. As the mathematical proofs of the

consistency of the first-step estimator of
(

ĝ(z), m̂1(z), . . . , m̂p(z), θ̂(d)T)T
and the limiting result of the

second-step estimator θ̃(d) closely follow those given in [30], the proofs are omitted from the paper.

4. Monte Carlo Simulations

In this section, we present the results from a very small Monte Carlo simulation study to assess
the finite-sample properties of our estimators and more simulation results can be obtained from the
authors upon request. We generate the data from the following regression model:

Yi = ∑
j 6=i

g(Zij)Yj + ∑
j 6=i

m(Zij)Xj + Xi exp(− (4Di − 1)2) + ui, i = 1, 2, ..., n, (17)

where we randomly draw ui ∼ i.i.d.N(0, 0.5), Di ∼ i.i.d.U[0, 1] and Xi = 0.5Di +ηi with ηi ∼
i.i.d.N(0, 1) independent of {ui}. For the exogenous variable, Z, we first randomly generate n
observations from the U[0, Rn] distribution with Rn = 0.001n1.6, by which we control the sparseness
of spatial units. Then, we calculate Zij as the absolute distance between observations i and j.
The specification of spatial weight functions requires that g(·) and m(·) are both decreasing and
non-negative functions. We therefore set g(z) = m(z) = 0.01exp(−z/0.01) for z > 0 with g(0) = 0
and m(0) = 0. The random variables, ui, Di and Zi, are all mutually independent.

We consider a sample size n ∈ {100, 200, 400}. The number of replications is 1000 for each n in
the Monte Carlo experiments. Moreover, we set Ln = 1, 2, 3 for each sample size, respectively. In the
second-step estimation of coefficient functions, we select the bandwidth via a cross-validation method
and use the Gaussian kernel function. To measure the performance of the estimators, we compute the
root mean squared errors (or RMSEs) for each simulation. In Table 1, we report the averages of the
RMSEs computed over 1000 repetitions, where ĝ(·), m̂(·) and θ̂(·) denote the NP2SLS estimators of
g(·), m(·) and θ(·), respectively; θ̃(·) is the second-step estimator of θ(·), and ~θ(·) is the local linear
estimator of θ(·), while g(·) and m(·) are known. Furthermore, we also estimate the average direct
impact (ADI) and the average indirect impact (AII) and report their corresponding RMSEs in Table 1.
Specifically, we first obtain the reduced form model from (17):

Y = (In − Gn)
−1[MnX + θ (D) ◦ X + U], (18)

where Y, X, θ (D) and U are all n × 1 vectors, and “�” denotes the Hadamard multiplication.
Then, the expected marginal effect of X is given by the following n× n matrix:

∂E(Y|X, D)

∂X
≡ (In − Gn)

−1[Mn + diag{θ (D)}] = S (Gn, Mn, D)

from which we obtain ADI= n−1tr {S (Gn, Mn, D)} and AII= n−1i′nS (Gn, Mn, D) in−ADI; see
LeSage and Pace [10], where in is the n × 1 vector of ones and diag{θ (D)} is a diagonal matrix.
Replacing the two unknown spatial weight matrices and θ (D) by their estimates, we obtain the
estimates for ADI and AII.

From Table 1, we observe that there is a decrease in the RMSEs for all three estimators as the
sample size increases in each design. Moreover, the second-step estimator always performs better
than the nonparametric 2SLS estimator. The relative ratios of the RMSEs of the second-step estimator
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and ~θ(·) generally reduce as the sample size increases. Therefore, our simulation results support the
consistency of our proposed estimators. As for the ADI and AII, we also see an overall decreasing
pattern in the RMSEs as the sample size increases, where the AII is less accurately estimated than the
ADI, as the former is calculated from n (n− 1) terms and the latter is calculated from n elements only.

Table 1. Average RMSEs.

n ĝ(·) m̂(·) θ̂(·) θ̃(·) ~θ(·) ADI AII

100 0.2109 0.0734 0.3535 0.2159 0.1557 0.1061 0.4386
200 0.1901 0.0593 0.2579 0.1680 0.1168 0.0761 0.2913
400 0.0500 0.0160 0.2013 0.1001 0.0859 0.0432 0.2989

5. Empirical Application

Monte Carlo simulations results given in Section 4 support the consistency of our proposed
estimation method. We are now in a position to re-investigate cross-country growth patterns.
We want to evaluate the impact of a country’s initial income, savings rate, population growth rate
and openness, as well as neighbour countries’ economic growth spillovers on a country’s economic
growth rate. We follow [4] in using a sample of 91 countries listed in [1], which is the Heston-Summers
data taken from Penn World Table 6.1. Consider the following conditional convergence Solow growth
model 2:

Yi = ∑
j 6=i

g(Zij)Yj + ∑
j 6=i

m(Zij) ln(y60j) + θ1(lopeni) + θ2(lopeni) ln(y60i)

+θ3(lopeni) ln(si) + θ4(lopeni) ln(ni + 0.05) + ui, (19)

for i = 1, 2, ..., 91, where Yi is the ith country’s average growth rate of real GDP per capita between
1960 and 1995, y60i is the ith country’s initial real GDP per capita in 1960, si is the ith country’s average
saving rate, ni is the ith country’s average growth rate of working-age population (ages between
15 and 64), lopeni is a scalar development index of a country defined as the logarithm of the ith

country’s average ratio of total imports plus exports over its real GDP over the period from 1960 to
1995, and Zij is the great-circle distance between ith and jth countries’ capitals 3.

We approximate g(·), m(·) and θi(·), i = 1, 2, 3, 4, using the Laguerre polynomials with
Ln = 2. Moreover, a cross-validation selected bandwidth, hopt, is calculated as 0.5285. We obtained
ρ(Ĝn) = 0.041, which suggests a spatial stationarity in the data. The distribution of the
estimated residuals is approximately normal as the q-q plot of estimated residuals is close to linear.
The coefficient estimates, θ̃1(·), θ̃2(·), θ̃3(·) and θ̃4(·) are presented in Figure 1, where the solid
lines with circles display the second-step estimates. The dashed lines represent the estimates of the
spatially-augmented Solow growth model of [4] using the inverse power spatial weight function,
which we include as a baseline. We interpret Figure 1 as follows. First, in Figure 1b, we see
that there is a negative relation between the initial level of income and the economic growth rate,
except for Mauritius, Hong Kong, Zambia, Cameroon and Singapore, which confirms a conditional
β-convergence hypothesis. Moreover, we observe that θ̃2(·) is increasing in openness, which,

2 Since the sample size is less than 100, we include only one spatially-lagged exogenous variable, Mn ln(y60), to have better
finite sample estimation accuracy. Moreover, the reason behind this choice is that spatial lag effects from the savings rate
and the population growth rate were not found significant in Ertur and Koch [4]’s Table IV.

3 We follow [4] in calculating the variable Zij:

Zij = radius ∗ arccos[cos
(∣∣longi − longj

∣∣) cos (lati) cos
(
latj
)
+ sin (lati) sin

(
latj
)
],

where radius is taken as the Earth’s radius and lati and longi are the latitude and longitude for country i, respectively.



Econometrics 2016, 4, 6 10 of 16

however, results in a gradually declining degree of convergence. In addition, we see that the
nonparametric model reveals slightly weaker conditional economic growth convergence as compared
to the parametric model.

Figure 1. Estimated coefficient curves.

Second, in Figure 1c, we see that θ̃3(·) exhibits a positive, but not a monotonic, relation between
the real investment rate and the real GDP per capita growth rate. Our estimate of the coefficient of the
investment rate fluctuates as the trade openness of countries increases. For the economies with a trade
openness higher than 15% of GDP, our result indicates that the nonparametric model sees stronger
positive impact of the investment rate on the real GDP per capita growth rate than the parametric
model does. Third, in Figure 1d, it is observed that the population growth rate has a negative impact
on the real GDP per capita growth rate. For the countries whose trade openness ranges between 29%
and 65%, our estimates for the coefficient of the population growth rate are relatively flat. Moreover,
we note that the magnitude of the negative effect of the population growth rate is getting larger as
the trade openness of countries increases, especially when the trade openness is over 65% of GDP.
Overall, Figure 1 can be interpreted as the fact that an open economy suffers from higher negative
impact of the population growth rate, but at the same time takes the advantage of high initial real
GDP per capita.

Next, due to the cross-country interactions through spatial weights, the functional coefficient
estimates have a different interpretation than the one obtained from the non-spatial model. In order
to correctly interpret these estimates, we rewrite the estimated model in a reduced from as follows:

Y = (In − Ĝn)
−1[M̂n ln(y60) + θ̃1(lopen) + θ̃2(lopen)� ln(y60)

+θ̃3(lopen)� ln (s) + θ̃4(lopen)� ln(n + 0.05) + Ũ], (20)
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where Ũ is the n× 1 vector of residuals. Then, from Equation (20), the marginal effects are given by
the following n× n matrices:

∂E(Y|y60, s, n)
∂ ln(y60T)

≡ (In − Gn)
−1[Mn + diag{θ2(lopen)}]

∂E(Y|y60, s, n)
∂ ln(sT)

≡ (In − Gn)
−1diag{θ3(lopen)}

∂E(Y|y60, s, n)
∂ ln(nT + 0.05)

≡ (In − Gn)
−1diag{θ4(lopen)}

where we define diag{a} as an n× n diagonal matrix with the elements of an n× 1 vector, a, on the
main diagonal. Following LeSage and Pace [10], we label the diagonal elements of each matrix given
above as the direct impacts and off-diagonal elements as the indirect impacts.

In Table 2, we report the estimated average direct impact (ADI) and average indirect impact (AII)
of the explanatory variables, where the latter can be easily defined as the difference between average
total impact 4 and the average direct impact. Average direct and indirect impacts from the parametric
model of [4] are denoted as ADIEK and AIIEK, respectively. The interpretation of Table 2 is as follows.
Firstly, we observe that a 1% increase in the real initial GDP per capita of an economy, holding other
factors fixed, results in a decrease by 0.5% in its own real GDP per capita growth rate. However,
this change increases the rest of the economies’ economic growth rates by 0.01% on average due to
the spatial dependence. From another point of view, a 1% increase in all of the regions’/nations’
initial real GDP per capita speeds up this economy’s real GDP per capita growth by 0.01%. This
result indicates a positive spillover effect of the initial level of income. Secondly, a 1% increase in
this economy’s real investment rate increases its own real GDP growth rate by 2.08% on average.
However, this change slows down the rest of the nations’ real GDP growth by 0.08% on average.
Thirdly, we see that a 1% increase in the population growth rate of this economy retards its own
economic growth by 3.8% on average, but helps to improve the rate of economic growth of the rest of
the countries by 0.16% on average.

Fourthly, when comparing our results to [4]’s results, we find that both the nonparametric and
the parametric model give almost the same average direct effects of the initial per capita income,
investment rate and population growth rate on the economic growth rate and that both models
result in the same signs in the average direct and indirect effects. However, the AII values from the
nonparametric model are much smaller than the results from the parametric model in absolute value,
especially for the initial per capita income and the population growth rate. This is not surprising,
as the parametric model assumes that all of the spatial weights take non-negative values, while our
nonparametric spatial weights are estimated from the data without such a restriction. Although it
is popular practice to assume non-negative spatial weights, this is an assumption imposed without
support from econometric or economic theory. For example, trade treaties and monetary policies
are both double-edged swords that may bring opposite impacts to different national economies, and
non-negative spatial weights may not be able to capture the opposite interactions among different
economies. As both [4]’s parametric SDM and our proposed semiparametric SDM approximate the
unknown true relationships in their own best capacity, however, our model imposes less restrictions
than the parametric SDM and is believed to bring a better fit to the data and more reliable inference.
Although the numbers are different, both models give the same sign in estimated direct and indirect

4 As it is stated by LeSage and Pace [10] (p. 37), average total impact can be expressed in two different ways, however, which
give the same numerical results. The first viewpoint states an influence from a change in the initial real GDP per capita of
an economy on all of the regions, while the second viewpoint states an impact of changes in the initial real GDP per capita
of the entire economy on a region/nation.
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effects. Overall, we observe that the average direct and indirect effects can take opposite signs, and
the effect of the former is much stronger than that of the latter in absolute magnitude.

Table 2. Average direct and indirect impact estimates.

ln(y60) ln(s) ln(n + 0.05)

ADI −0.0050 0.0208 −0.0381
(−0.0122, −0.0005) (0.0089, 0.0341) (−0.0782, −0.0054)

ADIEK
−0.0119 0.0184 −0.0336

(−0.0159, −0.0078) (0.0139, 0.0229) (−0.0585, −0.0094)

AII 0.0001 −0.0008 0.0016
(−0.0077, 0.0056) (−0.0174, 0.0190) (−0.0347, 0.0289)

AIIEK
0.0140 −0.0018 0.0275

(0.0052, 0.0244) (−0.0169, 0.0124) (−0.0321, 0.0860)

Note: A 95% bootstrap percentile confidence interval is given in the parenthesis.

LeSage and Pace [10] (p. 39) explain how to obtain the standard errors for the ADI and AII
estimates via a simulation method. In the parametric setup, as the spatial weight matrices are known,
theoretically, one can apply the delta method to obtain the standard errors, and the simulation
method tends to provide at best an approximation as one does not know the exact distribution of
the estimated coefficients in finite samples; however, this method is feasible as the average direct
and indirect impacts only depend on a finite number of unknown parameters. As our proposed
semiparametric model contains both unknown spatial weights and unknown coefficient curves, the
simulation method would involve simulating from a joint distribution with dimension equal to
2n (n− 1) (two spatial weight matrix estimates) plus 4n (four coefficient curve estimates) or 16,744 in
our empirical application. Therefore, the simulation method is infeasible for our empirical interest
here. As both the ADI and AII are in the form of sample averages and it is well known that the
bootstrap method can be used to estimate the sample average and its standard error well (e.g., [49]),
we decide to report our bootstrap estimates of the confidence intervals for the ADI and AII.

Below, we explain a residual-based bootstrap method to test whether the ADI and AII are
significantly different from zero at the 5% significance level. We use the nonparametric bootstrap
percentile method to construct a 95% confidence interval. Following [50,51], we first estimate the
functional coefficients using an oversmoothed bandwidth, which tends to zero at a slower speed than
the optimal bandwidth. Then, we obtain estimated residuals. The rest of the bootstrap procedure is
given below.

1. Resample the estimated residuals and obtain the bootstrap errors, Ub.
2. Calculate:

Yb = (In − Ĝn)
−1[M̂n ln(y60) + θ̃∗1 (lopen) + θ̃∗2 (lopen)� ln(y60)+

θ̃∗3 (lopen)� ln (s) + θ̃∗4 (lopen)� ln(n + 0.05) + Ub],

where θ̃∗k (·), k = 1, 2, 3, 4 are coefficient estimates using a larger bandwidth than the optimal

bandwidth. Call
{

ln(y60i), ln(si), ln(ni + 0.05), Yb
}n

i=1
the bootstrap sample.

3. Estimate Model (19) from the bootstrap sample, and record θ̃b
1(·), θ̃b

2(·), θ̃b
3(·) and θ̃b

4(·), the
bootstrap estimates of the functional coefficients.

4. Calculate the bootstrap value of average direct and indirect impacts of the explanatory
variables, ADIb and AIIb, respectively.

5. Repeat Steps 1–4 for 999 times.
6. Find the 0.025th and 0.975th empirical percentile of the 999 bootstrap values of ADI and AII and

the point estimates given in Table 2 to establish the 95% bootstrap percentile confidence interval.
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The confidence intervals are reported in Table 2. We see that the ADI values are statistically
significantly different from zero at the 5% significance level. Moreover, we find that there is no
significant effect on average from neighbouring countries per capita initial income, savings rate and
population growth rate on economic growth rate of the country of interest. The same inference
is obtained for the parametric model, except that the parametric model sees a significant average
indirect impact of initial per capita income. Note that insignificant AIIs do not imply that the indirect
impact from economy i on economy j is insignificant for all (i, j).

Figure 2 presents estimated spatial weighting functions. We plot both estimated spatial
weighting functions, ĝ (·) and m̂ (·), for the geographic distances ranging from zero to 20 in 100 km, as
the estimated spatial weights in the absolute value have an average of 5.069× 10−7 and 3.893 × 10−9,
respectively, when z > 20. In Figure 2a,b, firstly, we see negative spatial weights, which greatly
contradicts traditional parametric spatial regression models, which often assume non-negative spatial
weights. Negative spatial interactions are indeed common in practice, especially in social networks;
see [52,53] for strategic interactions within the monetary policy committee of the Bank of England.
Secondly, both spatial weight functions are not strictly monotonic and exhibit convexity among
nations that are not very far apart, concavity among nations with moderately far distances and a zero
spatial weight function among nations that are far away. Moreover, the spatial weight functions take
bigger absolute values among nations with smaller distance apart and smaller absolute values among
far-away nations, which implies a relatively larger economic interaction among nearby nations than
among far-away nations. Lastly, in Figure 2b, we observe positive estimated spatial weights when the
distance ranges between 0.229 and 1.894, which correspond to 22.9 and 189.4 km, respectively. For
the distances greater than 189.4 km, negative spatial weights are getting closer to zero as the distance
between two countries increases. As the turning point 1.894 is really small and occurs for countries
with a small area, our results imply that spatial interaction is very strong and different between two
nearby small countries with small areas than between two countries with longer distances when at
least one country has a large area.

Figure 2. Estimated spatial weighting functions.

6. Conclusions

We employ a spatial Durbin model combined with the nonparametric spatial weighting
functions, as well as the unknown functional coefficients to estimate the augmented Solow growth
model with a sample of 91 countries over the period 1960 to 1995. We find a negative spatial lag
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effect of neighbouring country’s GDP per capita growth rate and initial GDP per capita on the
economic growth rate of country i. These effects are declining in magnitude as the geographical
distance between the two countries increases. Finally, allowing coefficients as a function of trade
openness of a country enables us to see the true country-specific effect of each determinant of
economic growth. Moreover, we find significant average direct impact from each production factors.
However, our findings show that the average indirect impact of these variables is insignificant at the
5% significance level.
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