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Abstract: Allowing for misspecification in the linear conditional quantile function, this paper
provides a new interpretation and the semiparametric efficiency bound for the quantile regression
parameter β(τ) in Koenker and Bassett (1978). The first result on interpretation shows that under
a mean-squared loss function, the probability limit of the Koenker–Bassett estimator minimizes a
weighted distribution approximation error, defined as FY(X′β(τ)|X) − τ, i.e., the deviation of the
conditional distribution function, evaluated at the linear quantile approximation, from the quantile
level. The second result implies that the Koenker–Bassett estimator semiparametrically efficiently
estimates the quantile regression parameter that produces parsimonious descriptive statistics for
the conditional distribution. Therefore, quantile regression shares the attractive features of ordinary
least squares: interpretability and semiparametric efficiency under misspecification.
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1. Introduction

This paper revisits the approximation properties of the linear quantile regression under
misspecification ([1–3]). The quantile regression estimator, introduced by the seminal paper of
Koenker and Bassett [4], offers parsimonious summary statistics for the conditional quantile function
and is computationally tractable. Since the development of the estimator, researchers have frequently
used quantile regression, in conjunction with ordinary least squares regression, to analyse how the
outcome variable responds to the explanatory variables. For example, to model wage structure
in labour economics, Angrist, Chernozhukov, and Fernández-Val [1] study returns to education at
different points in the wage distribution and changes in inequality over time. A thorough review of
recent developments in quantile regression can be found in [5]. The object of interest of this paper is
the quantile regression (QR) parameter that is the probability limit of the Koenker–Bassett estimator
without assuming the true conditional quantile function to be linear. Two results are presented: a
new interpretation and the semiparametric efficiency bound for the QR parameter.

The topic of interest is the conditional distribution function (CDF) of a continuous response
variable Y given the regressor vector X, denoted as FY(y|X). An alternative for the CDF is the
conditional quantile function (CQF) of Y given X, defined as Qτ(Y|X) := inf{y : FY(y|X) ≥ τ}
for any quantile index τ ∈ (0, 1). Assuming integrability, the CQF minimizes the check loss function

Qτ(Y|X) ∈ arg min
q∈Q

E [ρτ(Y− q(X))]
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whereQ is the set of measurable functions of X, ρτ(u) = u(τ− 1{u≤0}) is known as the check function
and 1{·} is the indicator function. A linear approximation to the CQF is provided by the QR parameter
β(τ), which solves the population minimization problem

β(τ) := arg min
b∈Rd

E
[
ρτ(Y− X′b)

]
(1)

assuming the integrability and uniqueness of the solution, and d is the dimension of X. The QR
parameter β(τ) provides a simple summary statistic for the CQF. The QR estimator introduced in [4]
is the sample analogue

β̂(τ) ∈ arg min
b∈Rd

1
n

n

∑
i=1

ρτ(Yi − X′i b) (2)

for the random sample (Yi, X′i , i ≤ n) on the random variables (Y, X′). By the equivalent first-order
condition, this estimator β̂(τ) is also the generalized method of moments (GMM) estimator based on
the unconditional moment restriction ([6,7])

E[(τ − 1{Y≤X′β(τ)})X] = 0 (3)

This paper focuses on the population QR parameter defined by (1) or equivalently (3).
If the CQF is modelled to be linear in the covariates Qτ(Y|X) = X′β(τ) or FY(X′β(τ)|X) = τ,

the coefficient β(τ) satisfies the conditional moment restriction

E[τ − 1{Y≤X′β(τ)}|X] = 0 (4)

almost surely. In the theoretical and applied econometrics literature, this linear QR model is often
assumed to be correctly specified. Nevertheless, a well-known crossing problem arises: the CQF
for different quantiles may cross at some values of X, except when β(τ) is the same for all τ. A
logical monotone requirement is violated for Qτ(Y|X) or its estimator to be weakly increasing in the
probability index τ given X. The crossing problem for estimation could be treated by rearranging the
estimator (for example, see [8] and the references therein.1). However, the crossing problem remains
for the population CQF, suggesting that the linear QR model (4) is inherently misspecified. That is,
there is no β(τ) ∈ Rd satisfying the conditional moment (4) almost surely. Therefore, the parameter of
interest in this paper is the QR parameter β(τ) defined by (1) or (3) without the linear CQF assumption
in (4). We can view β(τ) as the pseudo-true value of the linear QR model under misspecification. As
the Koenker–Bassett QR estimator is widely used, it is important to understand the approximation
nature of the estimand.

For the mean regression counterpart, ordinary least squares (OLS) consistently estimates the
linear conditional expectation and minimizes mean-squared error loss for fitting the conditional
expectation under misspecification. Chamberlain [9] proves the semiparametric efficiency of the
OLS estimator, which provides additional justification for the widespread use of OLS. The attractive
features of OLS, interpretability and semiparametric efficiency, under misspecification, motivate my
investigation of parallel properties in QR. I study how this QR parameter approximates the CQF and
the CDF and calculate its semiparametric efficiency bound.

The first contribution of this paper is on how β(τ) minimizes the distribution approximation
error, defined by FY(X′β(τ)|X)− τ, under a mean-squared loss function. The first-order condition (3)

1 Chernozhukov, Fernández-Val, and Galichon [8] rearrange an estimator Q̂τ(Y|X) to be monotonic. The original estimator
can be computationally tractable. The rearranged monotonic estimated CDF is F̂Y(y|X) =

∫ 1
0 1{Q̂τ (Y|X)≤y}dτ. The

rearranged quantile estimation is Q̂∗τ(Y|X) = inf{y : F̂Y(y|X) ≥ τ}.
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can be understood as the orthogonality condition of the covariates X and the distribution
approximation error in the projection model. I show that the QR parameter β(τ) minimizes
the mean-squared distribution approximation error, inversely weighted by the conditional density
function fY(X′β(τ)|X). Angrist, Chernozhukov, and Fernández-Val [1] (henceforth ACF) show that
β(τ) minimizes the mean-squared quantile specification error, defined by Qτ(Y|X)− X′β(τ), using
a weight primarily determined by the conditional density. ACF’s study, as well as my own results,
suggests that QR approximates the CQF more accurately at points with more observations, but the
corresponding CDF evaluated at the approximated point FY(X′β(τ)|X) is more distant from the
targeted quantile level τ. This trade-off is controlled by the conditional density, which is distinct
from OLS approximating the conditional mean, because the distribution and quantile functions are
generally nonlinear operators. This observation is novel and increases the understanding of how the
QR summarizes the outcome distribution. A numerical example in Figure 1 in Section 4 illustrates
this finding.

The second result is the semiparametric efficiency bound of the β(τ). Chamberlain’s results
in [9] on the mean regression based on differentiable moment restrictions cannot be applied to
semiparametric efficiency for QR, due to the lack of moment function differentiability in (3).
Although Ai and Chen [10] provide general results for sequential moment restrictions containing
unknown functions, which could cover the quantile regression setting, I calculate the efficiency
bound accommodating regularity conditions specifically for the QR parameter β(τ) using the method
of Severini and Tripathi [11]. It follows that the misspecification-robust asymptotic variance of
the QR estimator β̂(τ) in (2) attains this bound, which means no regular2 estimator for (3) has
smaller asymptotic variance than β̂(τ). This result might be expected for an M-estimator, but, to
my knowledge, the QR application has not been demonstrated and discussed rigorously in any
publication. Furthermore, I calculate the efficiency bounds for jointly estimating QR parameters
at a finite number of quantiles for both linear projection (3) and linear QR (4) models. Employing
the widely-used method of Newey [12], Newey and Powell [13] find the semiparametric efficiency
bound for β(τ) of the correctly-specified linear CQF in (4). Note that the efficiency bounds for (3) do
not imply the bounds for (4); nor does the converse hold.

In Section 2, I discuss the interpretation of the misspecified QR model in terms of approximating
the CDF and the CQF. The theorems for the semiparametric efficiency bounds are in Section 3. In
Section 4, I discuss the parallel properties of QR and OLS. The paper is concluded by a review of
some existing efficient estimators for linear projection model (3) and linear QR model (4).

2. Interpreting QR under Misspecification

Let Y be a continuous response variable and X be a d× 1 regressor vector. The quantile-specific
residual is defined as the distance between the response variable and the CQF, ετ := Y − Qτ(Y|X)

with the conditional density fετ (e|X) at ετ = e or fY(y|X) at Y = y = e + Qτ(Y|X) for any τ ∈ (0, 1).
This is a semiparametric problem in the sense that the distribution functions of ετ and X, as well as the
CQF, are unspecified and unrestricted other than by the following assumptions, which are standard
in QR models. I assume the following regularity conditions, based on the conditions of Theorem 3
in ACF.

(R1) (Yi, Xi, i ≤ n) are independent and identically distributed on the probability space (Ω,F , P) for
each n;

(R2) the conditional density fY(y|X = x) exists and is bounded and uniformly continuous in y,
uniformly in x over the support of X;

(R3) J(τ) := E [ fY(X′β(τ)|X)XX′] is positive definite for all τ ∈ (0, 1), where β(τ) is uniquely
defined in (1);

2 See [12] for the definition of regular estimators.
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(R4) E‖X‖2+ε < ∞ for some ε > 0;
(R5) fY(X′β(τ)|X) to be bounded away from zero.

The identification of the pseudo-true parameter β(τ) is assumed in (R3). The bounded conditional
density function of the continuous response variable Y given X in (R2) is needed for the existence of
the CQF for any τ ∈ (0, 1). The uniform continuity guarantees the existence and differentiability
of the distribution function, i.e., dFY(y|X)/dy = fY(y|X) and FY(y|X) =

∫ y
−∞ fY(u|X)du with

probability one. (R4) is used for the asymptotic normality of
√

n(β̂(τ) − β(τ)). The covariates X
are allowed to contain discrete components. (R5) guarantees that the objective function defined
below in Equation (6) is finite ∀β ∈ Rd, where β(τ) is the parameter of interest uniquely defined
by Equation (1).

The parameter of interest β(τ) is equivalent to solving

E
[

X
(

FY
(
X′β(τ)

∣∣X)− τ
)]

= 0 (5)

by applying the law of iterated expectations on Equation (3). Equation (5) states that X is orthogonal
to the distribution approximation error FY

(
X′β(τ)

∣∣X)− τ. The following theorem interprets QR via
a weighed mean-squared error loss function on the distribution approximation error.

Theorem 1. Assume (R1)–(R5). Then, β̄(τ) = β(τ) solves the equation

β̄(τ) = arg min
b∈Rd

E
[(

fY(X′ β̄(τ)|X)
)−1(FY(X′b|X)− τ

)2
]

. (6)

Furthermore, if E
[(

fY(X′b|X) + (FY(X′b|X) − τ) f ′Y(X′b|X)/ fY(X′b|X)
)
XX′

]
is positive definite at

b = β(τ), then β̄(τ) = β(τ) is the unique solution to this problem (6).

Proof of Theorem 1. The objective function in (6) is finite by the assumptions. Any fixed point b = β̄(τ)

would solve the first-order condition, E
[
X
(

FY
(
X′b
∣∣X) − τ

)]
= 0. By the law of iterated expectations, (3)

implies the above first-order condition. Therefore, β(τ) solves (6). When the second-order condition holds,
i.e., E

[(
fY(X′b|X) + (FY(X′b|X)− τ) f ′Y(X′b|X)/ fY(X′b|X)

)
XX′

]
is positive definite at b = β(τ), β(τ)

solves (6) uniquely. 2

Theorem 1 states that β(τ) is the unique fixed point to an iterated minimum distance
approximation, with a weight of a function of X only. The mean-squared loss makes it clear how the
linear function matches the CDF to the targeted probability of interest. The loss function puts more
weight on points where the conditional density fY(X′β(τ)|X) is small. As a result, the distribution
approximation error is smaller at points with smaller conditional density.

Now, I discuss the approximation nature of QR based on the distributional approximation
error and quantile specification error. ACF interpret QR as the minimizer of the weighted
mean-squared error loss function for quantile specification error, defined as the deviation between
the approximation point X′β(τ) and the true CQF Qτ(Y|X),3

β(τ) = arg min
β∈Rd

E
[
w̄τ(X, β(τ))

(
X′β−Qτ(Y|X)

)2
]

, where (7)

w̄τ(X, β(τ)) =
1
2

∫ 1

0
fετ

(
u
(
X′β(τ)−Qτ(Y|X)

)∣∣∣X)du. (8)

ACF define w̄τ(X, β(τ)) in (8) to be the importance weights that are the averages of the response
variable over a line connecting the approximation point X′β(τ) and the true CQF. ACF note that

3 For estimation, [14] studies different approaches based on the distribution regression and quantile regression.
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the regressors contribute disproportionately to the QR estimate and the primary determinant of the
importance weight is the conditional density.

Moreover, the first-order condition implied by (7) E
[
w̄τ(X, β(τ))X

(
X′β(τ) − Qτ(Y|X)

)]
=

0 is a weighted orthogonal condition of the quantile specification error. A Taylor expansion
provides intuition to connect the distribution approximation error and the quantile specification
error:

(
fY(X′β|X)

)−1(FY(X′β|X)− τ
)2 ≈ fY(X′β|X)

(
Qτ(Y|X)− X′β

)2 by fY(X′β|X) = fετ (X′β−
Qτ(Y|X)|X). This observation implies the quantile specification error is smaller at points where the
conditional density fY(X′β|X) is larger. On the other hand, the distribution approximation error
is larger at points with larger fY(X′β|X). Comparing with the OLS, where the mean operator
is linear, the CDF and its inverse operator, the CQF, are generally nonlinear. The distribution
approximation error can be interpreted as the distance after a nonlinear transformation by the CDF,
FY(X′β(τ)|X) − FY(Qτ(Y|X)|X). A Taylor expansion linearizes the distribution function to the
quantile specification error multiplied by the conditional density function. The conditional density
plays a crucial role on weighting the distribution approximation error and the quantile specification
error. The above discussion provides additional insights to how the QR parameter approximates the
CQF and fits the CDF to the targeted quantile level.

Remark 1 (Mean-squared loss under misspecification). The linear function X′β(τ) is the best linear
approximation under the check loss function in (1). While β(.5) is the least absolute derivations estimation,
the QR parameter β(τ) for τ 6= 0.5 is the best linear predictor for a response variable under the asymmetric
loss function ρτ(·) in (1). ACF note that the prediction under the asymmetric check loss function is often not
the object of interest in empirical work, with the exception of the forecasting literature, for example [15]. For
the mean regression counterpart, OLS consistently estimates the linear conditional expectation and minimizes
mean-squared error loss for fitting the conditional expectation under misspecification. The robust nature of OLS
also motivates research on misspecification in panel data models. For example, Galvao and Kato [16] investigate
linear panel data models under misspecification. The pseudo-true value of the fixed effect estimator provides the
best partial linear approximation to the conditional mean given the explanatory variables and the unobservable
individual effect.4

3. The Semiparametric Efficiency Bounds

Section 3.1 presents the semiparametric efficiency bound for the unconditional moment
restriction (3). Section 3.2 discusses the existing results on the semiparametric efficiency bound for
the conditional moment restriction (4).

3.1. QR under Misspecification

I calculate the semiparametric efficiency bound for the unconditional moment restriction (3)
by the approach of Severini and Tripathi [11].

Theorem 2. Assume (R1)–(R4). The semiparametric efficiency bound for estimating the population QR
parameter β(τ), defined in (1) or equivalently (3), is J(τ)−1Γ(τ, τ)J(τ)−1, where J(τ) is defined in (R3) and

Γ(τi, τj) := E
[(

τi − 1{Y<X′β(τi)}

) (
τj − 1{Y<X′β(τj)}

)
XX′

]
for any τi, τj ∈ T := a closed subset of [ε, 1− ε] for ε > 0.

In general, the semiparametrically-efficient joint asymptotic covariance of the estimators for
(β′(τ1), β′(τ2), ..., β′(τm)′ is J(τi)

−1Γ(τi, τj)J(τj)
−1, for any τi, τj ∈ T , i, j = 1, 2, ..., m, for a finite integer

m ≥ 1.

4 Galvao and Kato [16] show that misspecification affects the bias correction and convergence rate of the estimator and
provide a misspecification-robust inference procedure. In panel models under time series misspecification, Lee [17]
proposes bias reduction methods for the incidental parameter.
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Proof of Theorem 2. See the Appendix. 2

My proof accommodates the regularity assumptions for quantile regression and modifies
Section 9 of [11]. For example, the covariate X can contain discrete components, by constructing two
tangent spaces for the conditional density of Y given X and the marginal density of X, respectively.
In the efficiency bound, J(τ) := E [ fY(X′β(τ)|X)XX′] is obtained by assuming the interchangeability
of integration and differentiation for the nonsmooth check function.5

The method in [11] has been used in the monotone binary model in [18], Lewbel [19] latent
variable model in [20] and the partial linear single index model in [21], for example. I work in the
Hilbert space of tangent vectors of the square-root density functions and using the Riesz–Fréchet
representation theorem. Another equivalent approach in [12] works in a Hilbert space of random
variables and uses the projection on the linear space spanned by the scores from the one-dimensional
subproblems to find the efficient influence function. The efficiency bound is then the second moment
of the efficient influence function, J(τ)−1X(τ − 1{Y≤X′β}). Newey’s efficient influence function is the
score function evaluated at the unique representers by the Riesz–Fréchet theorem used in [11]; a more
detailed comparison of these two approaches is discussed in [11].

ACF show that the QR process β̂(·) is asymptotically mean-zero Gaussian with the covariance
function J(τ1)

−1Γ(τ1, τ2)J(τ2)
−1 for any τ1, τ2 ∈ T , which is the semiparametric efficiency

bound in Theorem 2. This asymptotic covariance under misspecification for a single quantile,
J(τ)−1Γ(τ, τ)J(τ)−1, has been presented in [2] and [3]. Hahn [3] further shows the QR estimator
is well approximated by the bootstrap distribution, even when the linear quantile restriction is
misspecified. An alternative estimator for the misspecification-robust asymptotic covariance matrix
of β̂(τ) is the nonparametric kernel method in ACF.

3.2. QR for Linear Specification

Assuming the linear QR model in (4) is correctly specified, i.e., Qτ(Y|X) = X′β(τ) almost
surely, the asymptotic covariance for the QR process β̂(·) derived by ACF is simplified to
J(τ1)

−1Γ0(τ1, τ2)J(τ2)
−1, where Γ0(τ1, τ2) := (min {τ1, τ2} − τ1τ2) E[XX′] for any τ1, τ2 ∈ (0, 1). The

asymptotic covariance J(τ)−1Γ0(τ, τ)J(τ)−1 for a single quantile τ, first derived by Powell [7], is
widely used for inference in most empirical studies, which implicitly assume correct specification.

The semiparametric efficiency bound for the correctly-specified quantile regression (4)
is τ(1− τ)

(
E
[
XX′ f 2

ετ
(0|X)

])−1, where fY(X′β(τ)|X) = fετ (0|X) a.s. and E
[
XX′ f 2

ετ
(0|X)

]
is

assumed to be finite and nonsingular. This is first calculated in [13] using the method developed
in [12]. If, in addition, the conditional density function of ετ given X is independent of X,
i.e., fY(Qτ(Y|X)|X) = fετ (0|X) = fετ (0), and fετ (0) > 0, the semiparametric efficiency bound
becomes τ(1 − τ)

(
E[XX′]

)−1/ f 2
ετ
(0). This asymptotic covariance is attained by β̂(τ), first shown

in [4]. This has an interesting resemblance to the fact that the OLS estimator is semiparametrically
efficient in a homoskedastic regression model, i.e., e = Y− X′β, E[e|X] = 0, and E[e2|X] = E[e2].

I further show, in general, that the semiparametrically-efficient joint asymptotic covariance of
the estimators for (β′(τ1), ..., β′(τm))′ is

(
min

{
τi, τj

}
− τiτj

) (
E
[

XX′ fετi
(0|X) fετj

(0|X)
])−1

(9)

for any τi, τj ∈ T , i, j = 1, 2, ..., m, for any finite integer m ≥ 1. The regularity conditions imposed,
(R1), (R2) and (R4), are weaker than the assumptions in [13]; for example, they assume f (ε, X) is

5 Severini and Tripathi construct the tangent space for the continuous and bounded joint density f (X, Y) in Section 9 of [11].
Additionally, they define J on the derivative of the moment restriction.
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absolutely continuous in ε, which implies uniform continuity in (R2). See the Appendix for the
detailed proof for (9).

4. Discussion and Conclusions

Misspecification is a generic phenomenon; especially in quantile regression (QR), the true
conditional quantile function (CQF) might be nonlinear or different functions of the covariates
at different quantiles. Table 1 summarizes the parallel properties of QR and OLS. Under
misspecification, the pseudo-true OLS coefficient can be interpreted as the best linear predictor of
the conditional mean function, E[Y|X], in the sense that the coefficient minimizes the mean-squared
error of the linear approximation to the conditional mean. The approximation properties of OLS
have been well studied (see, for example, [22]). With respect to the QR counterpart, I present the
inverse density-weighted mean-squared error loss function based on the distribution approximation
error FY(X′β|X)− τ. This result complements the interpretation based on the quantile specification
error in [1]. My results imply that the Koenker–Bassett estimator is semiparametrically efficient for
misspecified linear projection models and correctly specified linear quantile regression models when
fY(Qτ(Y|X)|X) = fετ (0|X) does not depend on X. Alternatively, the smoothed empirical likelihood
estimator using the unconditional moment restriction in [23] has the same asymptotic distribution as
the Koenker-Bassett estimator and, hence, attains the efficiency bound.

Table 1. Summary properties of OLS and quantile regression (QR).

OLS QR

Linear Projection Model

objective minimized E[(Y− X′β)2] E[ρτ(Y− X′β(τ))]
(interpretation) E[(E[Y|X]− X′β)2] E[w̄τ(Qτ(Y|X)− X′β(τ))2]

E[ fY(X′β(τ)|X)−1(FY(X′β(τ)|X)− τ)2]

unconditional moment E[X(Y− X′β)] = 0 E[X(1{Y≤X′β(τ)} − τ)] = 0
(interpretation) E[X(E[Y|X]− X′β)] = 0 E[X(FY(X′β(τ)|X)− τ)] = 0

E
[
w̄τ X

(
X′β(τ)−Qτ(Y|X)

)]
= 0

efficient estimators arg minβ∈Rd
1
n ∑n

i=1(Yi − X′i β)2 arg minβ∈Rd
1
n ∑n

i=1 ρτ(Yi − X′i β)

= (∑n
i=1 XiX′i )

−1(∑n
i=1 XiYi) (Koenker–Bassett)

(OLS)

asymptotic covariance Q−1ΩQ−1 ∗ J−1ΓJ−1

efficiency bounds Chamberlain (1987) [9] Theorem 2

Linear Regression Model

conditional moment E[Y|X] = X′β Qτ(Y|X) = X′β(τ)
or FY(X′β(τ)|X) = τ

efficiency bounds Chamberlain (1987) [9] † Newey and Powell (1990) [13]

homoscedasticity-type var[Y|X] = σ2 fετ (0|X) = fετ (0)condition
efficient estimators OLS Koenker–Bassett
∗ Q = E[XX′] and Ω = E[XX′e2] where e = Y − X′β; † The feasible generalized least squares
estimator is semiparametrically efficient, for example.

Under the linear quantile regression model, the Koenker–Bassett estimator consistently estimates
the true β(τ), although it is not semiparametrically efficient given heteroskedasticity. Researchers
have proposed many efficient estimators for the correctly-specified linear quantile regression
parameter, for example the one-step score estimator in [13], the smoothed conditional empirical
likelihood estimator in [24] and the sieve minimum distance (SMD) estimator in [25,26]. However,
for all of these estimators, the pseudo-true values under misspecification are different, and their
interpretations have not been thoroughly studied. Therefore, the semiparametric efficiency bounds
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of these pseudo-true values are also different. For example, an unweighted SMD estimator converges
to a pseudo-true value βSMD that minimizes E

[
(FY(X′β|X)− τ)2

]
.6 The first-order condition is

E [X (FY(X′βSMD|X)− τ) fY(X′βSMD|X)] = 0, which is the unconditional moment used in [13] for
the semiparametrically efficient GMM estimator under correct specification. The conditional density
weight is similar to the generalized least squares in the mean regression in that it uses a weight
function of the conditional variance to construct an efficient estimator.

It is interesting to note that the pseudo-true value of the SMD estimator minimizes
E
[
(FY(X′β|X)− τ)2

]
≈ E

[
f 2
Y(Qτ(Y|X)|X) (X′β−Qτ(Y|X))2

]
. The distribution approximation

error is weighted evenly over the support of X for βSMD, in contrast to the QR parameter, which is
weighted more at points with smaller conditional density in Theorem 1. Therefore, the SMD estimator
might have more desirable and reasonable approximation properties than QR. Nevertheless, the SMD
estimator is computationally more demanding than the Koenker–Bassett estimator. A numerical
example in Figure 1 illustrates how the Koenker and Bassett (KB) and SMD estimators approximate
the CQF and the CDF.
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Figure 1. This numerical example is constructed by X ∼ Uni f orm[1, 2], e|X = x ∼ Uni f orm[0, x]
and Y = cos(2X) + e. Therefore, fY(y|X) = 1/X, FY(y|X) = (y − cos(2X))/X and
Qτ(Y|X) = τX + cos(4X). Set τ = 0.5 for the median. The red solid line is for the QR parameter
βKB defined in (3) and estimated by the Koenker-Bassett (KB) estimator. The blue dashed line is the
approximation by the SMD estimator βSMD minimizing E[(FY(X′β|X) − τ)2]. The approximations
are X′βKB = −0.324 + 0.161X and X′βSMD = −0.204 + 0.078X. The left panel shows the linear
approximations X′βKB, X′βSMD and the true CQF. The green circles are 300 random draws from the
DGP. The right panel shows the corresponding CDFs FY(X′βKB|X) and FY(X′βSMD|X). For smaller x
where the conditional density is larger, the quantile specification error of SMD is smaller than that of
KB in the left panel. For the distribution approximation error in the right panel, SMD weights more
evenly over the support of X, while KB has smaller distribution approximation error at larger x with
smaller density.

This discussion leads to open-ended questions: What is an appropriate linear approximation
or a meaningful summary statistic for the nonlinear CQF? How should economists measure the

6 The conditional moment restriction in (4) can be expressed as m(X, β) = τ − FY(X′β|X) = 0. In [26], an unweighted
penalized sieve minimum distance estimator minimizes a possibly penalized consistent estimate of the minimum distance
criterion, E[m(X, β)2].
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marginal effect of the covariates on the CQF? An approach that circumvents this problem is
measuring the average marginal response of the covariates on the CQF directly. The average
quantile derivative, defined as E[W(X)∇Qτ(Y|X)] where W(X) is a weight function, offers such
a succinct summary statistic ([27]). Sasaki [28] investigates the question that quantile regressions
may misspecify true structural functions. He provides a causal interpretation of the derivative of
the CQF, which identifies a weighted average of heterogeneous structural partial effects among the
subpopulation of individuals at the conditional quantile of interest. Sasaki’s work adds economic
content to this misspecified question. This paper complements the prior literature on understanding
how the QR statistically summarizes the outcome distribution.
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also thank Yuya Sasaki for helpful discussion. I would also like to thank three anonymous referees for their
suggestions. All remaining errors are mine.
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Appendix

Proof of Theorem 3. I implement the main results in [11]. I start with the definitions and construct the
Hilbert space. The unknown probability density or mass function of the random vector (Y, X′)′ ∈ Ω =

SY × SX with respect to the measure P, the products of the Lebesgue measure µY and µX ,7 is written as
f (Y, X) = f (Y|X) f (X) := ψ2

0(Y|X)φ2
0(X). The functionals ψ0 and φ0 belong to the following sets defined

by the regularity conditions

ΨY :=
{

ψ ∈ SY × SX → R, ψ2(Y|X) > 0, bounded and uniformly continuous in y,

uniformly in x over the support of X,
∫

SY

ψ2(y|X)dy = 1
}

and

Φ :=
{

φ ∈ L2(SX ; µX), φ2(X) > 0,
∫

SX

φ2(x)µX(dx) = 1,∫
SX

‖x‖2+εφ2(x)µX(dx) < ∞, for some ε > 0
}

.

Let A := ΨY ×Φ.

Definition 1. A vector ξ̇ = (ψ̇, φ̇) is said to be tangent to A at ξ0 if it is the slope of ξt := (ψt, φt) at t = 0,
i.e., limt→0‖t−1(ξt − ξ0)− ξ̇‖ = 0.

Definition 2. The tangent space toA at the true value ξ0, denoted as lin T(A, ξ0) is the smallest linear space,
which is closed under the L2-norm and contains all ξ̇ ∈ L2(Ω; µY × µX) tangent to A at ξ0.

Severini and Tripahi [11] show that the tangent space lin T(A, ξ0) is the product of lin T(ΨY, ψ0)

and lin T(Φ, φ0), where

lin T(ΨY, ψ0) :=
{

ψ̇ ∈ L2(Ω; µY × X),
∫

SY

ψ̇(y|X)ψ0(y|X)µY(dy) = 0 with probability 1(w.p.1)
}

lin T(Φ, φ0) :=
{

φ̇ ∈ L2(SX ; µX),
∫

SX

φ̇(x)φ0(x)µX(dx) = 0
}

.

The pseudo-true model is the unconditional moment restriction E0
[
(τ − 1{Y≤X′β0})X

]
= 0 in

(3). Here, E0 is the expectation with respect to the true density functions ξ0 = (ψ0, φ0), and β0

denotes the pseudo-true β(τ) for notational simplicity. The objective is to estimate the efficiency
bound for estimating β0. Equivalently, I can instead look at the efficiency bound for estimating the
functional η(ψ0, φ0) := c′β0 for any arbitrary vector c ∈ Rd. Severini and Tripahi [11] parameterize

7 µX may not be a Lebesgue measure, since I allow discrete components in the covariates X.
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ξ0 = (ψ0, φ0) ∈ A and β0 as a one-dimensional subproblem. For some t0 > 0, let t 7→ (ξt, βt)

be a curve from [0, t0] into A × Rd, which passes through (ξ0, β0) at t = 0. That is, estimating
η(ξt) = c′βt = t at the true parameter t = 0 is equivalent to estimating t = 0. The likelihood
of estimating t using a single observation (Y, X′)′ is given by ψ2

t (Y|X)φ2
t (X). Therefore, the score

function for estimating t = 0 is

S0(Y, X) :=
d
dt

log
[
ψ2

t (Y|X)φ2
t (X)

]∣∣
t=0 = 2

ψ̇(Y|X)

ψ0(Y|X)
+ 2

φ̇(X)

φ0(X)
.

Then, the Fisher information at t = 0 can be written as

iF = E[S0(Y, X)S′0(Y, X)] =
∫

SX

∫
SY

S0(y, x)S′0(y, x)ψ2
0(y|x)φ2

0(x)µY(dy)µX(dx)

= 4EX

[ ∫
SY

ψ̇(y|X)ψ̇′(y|X)µY(dy)
]
+ 4

∫
SX

φ̇(x)φ̇′(x)µX(dx)

:=< (ψ̇, φ̇), (ψ̇, φ̇) >F,

where the third equality is because ξ̇0 = (ψ̇0, φ̇0) ∈ lin T(A, ξ0), and EX denotes integrals with
respect to the distribution of X. Therefore, the Fisher information inner product < ·, · >F and the
corresponding norm ‖ · ‖F are defined as

< ξ̇1, ξ̇2 >F := 4EX

[ ∫
SY

ψ̇1(y|X)ψ̇′2(y|X)µY(dy)
]
+ 4

∫
SX

φ̇1(x)φ̇′2(x)µX(dx) and

‖ξ̇1‖2
F = ‖(ψ̇1, φ̇1)‖2

F :=< (ψ̇1, φ̇1), (ψ̇1, φ̇1) >F

for any ξ̇1.ξ̇2 ∈ lin T(A, ξ0), which is a closed subset of L2(Ω; P). Hence, I have constructed the
Hilbert space (lin T(A, ξ0),< ·, · >F).

Now, I am ready to derive the efficiency bounds. It is known that the information inequality
holds for all regular estimators, i.e., the asymptotic covariance of the estimator ≥ 1/iF = ‖ξ̇0‖−2

F .
The semiparametric bound can be interpreted as the supremum of the asymptotic covariance over
the parametric submodels. By [11], the lower bound is

l.b. = sup{ξ̇∈(lin T(A,ξ0):ξ̇ 6=0,∇η(ξ̇)=1}‖ξ̇‖
−2
F = sup{ξ̇∈(lin T(A,ξ0):‖ξ̇‖F=1}|∇η(ξ̇)|2

= ‖∇η‖2
∗ = ‖ξ∗‖2

F. (10)

The third equality is the norm of the linear functional∇η, the path-wise derivative of η (p. 105 in [29]).
The forth equality is from the Riesz–Fréchet theorem: there exists a unique ξ∗ ∈ lin T(A, ξ0) for the
continuous linear functional ∇η on the Hilbert space (lin T(A, ξ0),< ·, · >F), such that ∇η(ξ̇) ≤
ξ∗, ξ̇ >F for all ξ̇ ∈ lin T(A, ξ0), i.e.,

∇η(ψ̇, φ̇) = c′ β̇ =< (ψ∗, φ∗), (ψ̇, φ̇) >F

= 4EX

[ ∫
SY

ψ∗ψ̇′µY(dy)
]
+ 4

∫
SX

φ∗φ̇′µX(dx). (11)

Therefore, to find the lower bound by (10), I need to find ξ∗, which is known as the representer
of the continuous linear functionals ∇η.

The submodel (ψt, φt, βt) is also required to satisfy the unconditional moment restriction,
Et[(1{Y≤X′βt} − τ)X] = 0. For any τ1, τ2 ∈ (0, 1), βt := (β′t(τ1), β′t(τ2))

′ := (β′1t, β′2t)
′. I

simultaneously estimate β0 = (β′10, β′20)
′, a 2d-dimensional vector, so the unconditional moment

restriction is ∫
SX

∫
SY

( (
1{y≤x′β1t} − τ1

)
x(

1{y≤x′β2t} − τ2
)
x

)
ψ2

t (y|x)φ2
t (x)µY(dy)µX(dx) = 0.
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Taking the derivative with respect to t evaluated at t = 0,8

0 =
∫

SX

(
xx′ fY(x′β10|x)β̇1

xx′ fY(x′β20|x)β̇2

)
φ2

0(x)µX(dx)

+ 2
∫

SX

∫
SY

(
x1{y≤x′β10}
x1{y≤x′β20}

)
ψ0(y|x)ψ̇′(y|x)µY(dy)φ2

0(x)µX(dx)

+ 2
∫

SX

(
x
(

FY(x′β10|x)− τ1
)

x
(

FY(x′β20|x)− τ2
) ) φ0(x)φ̇′(x)µX(dx),

where the second term uses the fact that if ψ̇ ∈ lin T(ΨY, ψ0), then
∫

SY
ψ0ψ̇µY(dy) = 0. Note

that
∫

SX
xx′ fY(x′β0|x)φ2

0(x)µX(dx) = E0[XX′ fY(X′β0|X)] = J(τ), which is assumed to be positive
definite by (R3), so J(τ)−1 exists. Define

D :=

(
J(τ1) 0

0 J(τ2)

)
,

so D−1 exists. Then(
β̇1

β̇2

)
=− 2D−1

[ ∫
SX

∫
SY

(
x1{y≤x′β10}
x1{y≤x′β20}

)
ψ0(y|x)ψ̇′(y|x)µY(dy)φ2

0(x)µX(dx)

+
∫

SX

(
x
(

FY(x′β10|x)− τ1
)

x
(

FY(x′β20|x)− τ2
) ) φ0(x)φ̇′(x)µX(dx)

]
. (12)

I confirm that ∇η(ξ̇) = c′ β̇ is a continuous linear functional on lin T(A, ξ0), so η is indeed path-wise
differentiable. Using (12) to replace c′ β̇ in the left-hand side of (11), I can find the representer for
∇η as

φ∗(x) = −1
2

c′D−1

( (
FY(x′β10|x)− τ1

)
x(

FY(x′β20|x)− τ2
)
x

)
φ0(x) and

ψ∗(y|x) = −1
2

c′D−1

( (
1{y≤x′β10} − FY(x′β10|x)

)
x(

1{y≤x′β20} − FY(x′β20|x)
)

x

)
ψ0(y|x)

because ψ̇ ∈ lin T(ΨY, ψ0). It can be easily checked that (ψ∗, φ∗) ∈ lin T(A, ξ0). For notational
ease, denote 1i := 1{y≤x′βi0} and Fi := FY(x′βi0|x), i = 1, 2. Then, the lower bound for regular√

n-consistent estimators of c′β0 is

‖(ψ∗, φ∗)‖2
F

= c′D−1

{ ∫
SX

( (
F1 − τ1

)2xx′
(

F1 − τ1)(F2 − τ2
)

xx′(
F1 − τ1)(F2 − τ2

)
xx′

(
F2 − τ2

)2xx′

)
φ2

0(x)1{φ0(x)>0}µX(dx)

+ E

 E
[(

11 − F1
)2|X

]
XX′ E

[(
11 − F1

)(
12 − F2

)
|X
]

XX′

E
[(

11 − F1
)(

12 − F2
)
|X
]

XX′ E
[(

12 − F2
)2|X

]
XX′

}D−1c

= cD−1

(
Γ(τ1, τ1) Γ(τ1, τ2)

Γ(τ1, τ2) Γ(τ2, τ2)

)
D−1c,

8 The interchange of differentiation and integration is allowed, assumed throughout [11], by the smoothness of ξt(Y, X) in
t ∈ [0, t0] by the construction of regular parametric submodels; see [12] for details.
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where

Γ(τ1, τ2) := E
[

E
[
(F1 − τ1)(F2 − τ2) + (11 − F1)(12 − F2)|X

]
XX′

]
= E

[
E
[
τ1τ2 − τ1F2 − τ2F1 + 1112|X

]
XX′

]
= E

[
E
[(

τ1 − 1{y≤X′β10}
)(

τ2 − 1{y≤X′β20}
)
|X
]

XX′
]

= E
[(

τ1 − 1{y≤X′β10}
)(

τ2 − 1{y≤X′β20}
)
XX′

]
by the law of iterated expectations, and so, Γ(τ, τ) = E

[(
τ − 1{y≤X′β0}

)2XX′
]
.

Therefore, the lower bound for estimating β(τ) is J(τ)−1Γ(τ, τ)J(τ)−1. The asymptotic
covariance of the estimators for β(τ1) and β(τ2) cannot be smaller than J(τ1)

−1Γ(τ1, τ2)J(τ2)
−1.

2

Remark 2. Consider the efficiency bound for estimating one single quantile β(τ) using Newey’s approach
in [12]. Severini and Triphathi [11] claim that the efficient influence function for c′β(τ) is 2ψ∗/ψ0 +

2φ∗/φ0 = c′ J(τ)−1X(τ − FY(X′β|X)) + c′ J(τ)−1X(FY(X′β|X) − 1{Y≤X′β}) = c′ J(τ)−1X(τ −
1{Y≤X′β}). Then, the efficient influence function for β0 is (E[SS′])−1S, where the efficient score
S = J(τ)Γ(τ, τ)−1X(τ − 1{Y≤X′β}). Newey shows that the semiparametric bound is (E[SS′])−1.

Proof of the Semiparametric Efficiency Bound for the Linear QR Model (4). Under the linear
specification, FY(X′β0|X) = τ. The random vectors (Y, X) satisfy the conditional moment restriction
E
[
1{Y≤X′β0} − τ|X

]
= 0, i.e.,

∫
SY

(
1{y≤X′β0} − τ

)
ψ2

0(y|X)µY(dy) = 0, where the joint distribution of

(Y, X) is ψ2
0(Y|X)φ2

0(X). The Hilbert space (lin T(A, ξ0),< ·, · >F) and A = (ΨY, Φ) are defined
in the proof of Theorem 2. Consider any τ1.τ2 ∈ (0, 1), βt := (β′t(τ1), β′t(τ2))

′ := (β′1t, β′2t)
′.

The parameterized submodel (ψt, φt, βt) also has to satisfy the moment condition

∫
SY

( (
1{y≤X′β1t} − τ1

)(
1{y≤X′β2t} − τ2

) )ψ2
t (y|X)µY(dy) = 0.

Taking the derivative with respect to t evaluated at t = 0, I have(
fY(X′β1|X)X′ β̇1

fY(X′β2|X)X′ β̇2

)
+ 2

∫
SY

( (
1{y≤X′β10} − τ1

)(
1{y≤X′β20} − τ2

) )ψ0(y|X)ψ̇′(y|X)dy = 0, (13)

where fY(y|X) = ψ2
0(y|X). Define

D(X) :=

(
fY(X′β1|X)X′ 0

0 fY(X′β2|X)X′

)
.

Note that (13) has an over-identifying moment restriction that cannot uniquely solve β̇. To locally
identify β̇, [11] give the sufficient condition by W(X), which is some nonsingular (w.p.1) 2 × 2
matrix, such that E[D(X)′W(X)D(X)] is nonsingular. By assumption, E[XX′ f 2

Y(X′β(τ)|X)] =

E[XX′ f 2
ετ
(0|X)] exists and is nonsingular, so the same holds for E[D′(X)D(X)]. Hence, I can choose

W(X) = 1, the identity matrix. Multiplying (13) by D′(X),

D′(X)D(X)

(
β̇1

β̇2

)
+ D′(X)2

∫
SY

( (
1{y≤X′β10} − τ1

)(
1{y≤X′β20} − τ2

) )ψ0(y|X)ψ̇′(y|X)dy = 0.



Econometrics 2015, 4, 2 13 of 14

Taking expectations on both sides with respect to X and solve for β̇,(
β̇1

β̇2

)
= −2

(
E[D′(X)D(X)]

)−1
E
[

D′(X)2
∫

SY

( (
1{y≤X′β10} − τ1

)(
1{y≤X′β20} − τ2

) )ψ0(y|X)ψ̇′(y|X)dy
]
.

Then, for any arbitrary c ∈ R2d, the representer for ∇η((ψ̇, φ̇)) = c′ β̇ is

ψ∗(y|X) = −1
2

c′
(

E[D′(X)D(X)]
)−1

D′(X)

( (
1{y≤X′β10} − τ1

)(
1{y≤X′β20} − τ2

) )ψ0(y|X)

∈ lin T(ΨY, ψ0)

by the conditional moment restriction. Additionally, φ∗ = 0, since φ0 is just ancillary in this

conditional moment case. Define A :=
(

E
[
D′(X)D(X)

])−1
and 1i := 1{Y≤X′βi0} for i = 1, 2 for

notational ease. Without loss of generality, assume τ1 < τ2. Therefore, the lower bound is

‖(ψ∗, φ∗)‖2
F

= c′E

AD′(X)

 E
[(

11 − τ1
)2
∣∣∣X] E

[(
11 − τ1

)(
12 − τ2

)∣∣∣X]
E
[(

11 − τ1
)(

12 − τ2
)∣∣∣X] E

[(
12 − τ2

)2
∣∣∣X]

D(X)A

 c

= c′AE

[
D′(X)

(
τ1(1− τ1) τ1(1− τ2)

τ1(1− τ2) τ2(1− τ2)

)
D(X)

]
Ac

= c′

 τ1(1− τ1)
{

E
[
XX′ f 2

ετ1
(0|X)

]}−1
τ1(1− τ2)

{
E
[
XX′ fετ1

(0|X) fετ2
(0|X)

]}−1

τ1(1− τ2)
{

E
[
XX′ fετ1

(0|X) fετ2
(0|X)

]}−1
τ2(1− τ2)

{
E
[
XX′ f 2

ετ2
(0|X)

]}−1

 c,

since fY(X′β|X) = fετ (0|X) for correct specification. 2

Remark 3. Consider the efficiency bound for estimating one single quantile β(τ) by Newey’s approach
in [12]. Severini and Triphathi [11] claim that Newey’s efficient influence function for c′β(τ) is
2ψ∗/ψ0 = c′

(
E
[

f 2
ετ
(0|X)XX′

])−1 fετ (0|X)X(τ − 1{Y≤X′β}). Then, the efficient influence function for
β0 is (E[SS′])−1S, where the efficient score S = (τ − τ2)−1 fετ (0|X)X(τ − 1{Y≤X′β}). Newey shows the
semiparametric bound is (E[SS′])−1.
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