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Abstract: We investigate the direct connection between the uncertainty related to estimated
stable ratios of stock prices and risk and return of two pairs trading strategies: a conditional
statistical arbitrage method and an implicit arbitrage one. A simulation-based Bayesian procedure
is introduced for predicting stable stock price ratios, defined in a cointegration model. Using this
class of models and the proposed inferential technique, we are able to connect estimation and model
uncertainty with risk and return of stock trading. In terms of methodology, we show the effect that
using an encompassing prior, which is shown to be equivalent to a Jeffreys’ prior, has under an
orthogonal normalization for the selection of pairs of cointegrated stock prices and further, its effect
for the estimation and prediction of the spread between cointegrated stock prices. We distinguish
between models with a normal and Student ¢ distribution since the latter typically provides a
better description of daily changes of prices on financial markets. As an empirical application,
stocks are used that are ingredients of the Dow Jones Composite Average index. The results show
that normalization has little effect on the selection of pairs of cointegrated stocks on the basis of
Bayes factors. However, the results stress the importance of the orthogonal normalization for the
estimation and prediction of the spread—the deviation from the equilibrium relationship—which
leads to better results in terms of profit per capital engagement and risk than using a standard
linear normalization.

Keywords: Bayesian analysis; cointegration; linear normalization; orthogonal normalization;
pairs trading; statistical arbitrage

JEL: C11; C15; C32; C58; G17

1. Introduction

In this paper we consider statistical arbitrage strategies. Such strategies presume that the
patterns observed in the historical data are expected to be repeated in the future. That is, a statistical
arbitrage is a purely advanced descriptive approach designed to exploit market inefficiencies.
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Khandani and Lo [1] consider a specific strategy—first proposed by Lehmann [2] and Lo and
MacKinlay [3]—that can be analyzed directly using individual equities returns. Given a collection
of securities, they consider a long/short market-neutral equity strategy consisting of an equal dollar
amount of long and short positions, where at each rebalancing interval, the long positions are made
up of “losers” (underperforming stocks, relative to some market average) and the short positions
are made up of “winners” (outperforming stocks, relative to the same market average). By buying
yesterday’s losers and selling yesterday’s winners at each date, such a strategy actively bets on
mean reversion across all stocks, profiting from reversals that occur within the rebalancing interval.
For this reason, such strategies have been called “contrarian” trading strategies that benefit from
market overreaction, i.e., when underperformance is followed by positive returns and vice-versa for
outperformance. The same key idea is the basis of pairs trading strategies, which constitute another
form of statistical arbitrage strategies.

The idea of pairs trading relies on long-term equilibrium among a pair of stocks. If such
an equilibrium exists, then it is presumed that a specific linear combination of prices reverts to
zero. A trading rule can be set up to exploit the temporary deviations (spread) to generate profit.
When the spread between two assets is positive it is sold; that is, the outperforming stock is shorted
and the long position is opened in the underperforming stock. In the opposite case, when the spread
is negative: one buys. Gatev ef al. [4] investigate the performance of this arbitrage rule over a period
of 40 years and they find huge empirical evidence in favor of it. It is fundamental for the pairs trading
strategy to precisely estimate the current and expected spread among the stock prices.

In this paper we interpret spread as the temporary deviation from the equilibrium in a
cointegration model. Equilibrium in a cointegration model is interpreted as time series behavior that
is characterized by stable, or otherwise stated stationary, long-run relations to which actual series
return after temporary deviations. This approach differs from Gatev et al. [4], who implement a
nonparametric framework. These authors choose a matching partner for each stock by finding the
security that minimizes the sum of squared deviations between the two normalized price series;
pairs are thus formed by exhaustive matching between normalized daily prices, where price includes
reinvested dividends. However, as argued above, in the cointegration analysis that we perform,
the spread between two assets is modeled as the temporary deviation from the long-run stable
relations among the time series of asset prices. This deviation is computed as a linear combination of
stock prices, where the weights in the linear combination are given by the cointegrating vector.
Long-run stability also implies that there exists a finite uncertainty in the predictibility of stock
prices that can be used in devising trading strategies. Therefore, pairs trading strategies are strongly
dependent on the stability of ratios of pairs of stocks.

The estimated and predicted spreads are both computed from the estimated cointegration model.
We introduce a simulation-based Bayesian estimation procedure that allows us to combine estimation
and model uncertainty in a natural way with decision uncertainty associated with a decision process
like a trading strategy. For the Bayesian estimation of the cointegration model, we work with a
Metropolis-Hastings (M-H) type of sampler derived under an encompassing prior where we show
that the encompassing prior is equivalent under certain conditions to the well-known Jeffreys” or
Information matrix prior. This sampling algorithm is derived by Kleibergen and Van Dijk [5] for
the Simultaneous Equations Model and extended by Kleibergen and Paap [6] for the cointegration
model. The latter authors specify a linear normalization to identify the parameters in the model.
However, Strachan and Van Dijk [7] point at possible distortions of prior beliefs associated with the
linear normalization. Moreover, in our application we find out that the distribution of the spread is
particularly sensitive to the choice of normalization.

Therefore we make use of an alternative normalization, the orthogonal normalization, in order
to identify the parameters in the cointegration model. Given that one is usually only interested in a
linear combination of price series, this normalization is a natural one since it treats the variables in
the series in a symmetric way. More details are given in Section 3. Hence, we implement the M-H
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sampler for the cointegration model under this normalization. We compare the performance of the
pairs trading strategy under the orthogonal normalization with the performance of the counterpart
under the linear normalization and find that, for our set of data, the orthogonal normalization
is highly favored over the linear normalization with respect to the profitability and risk of the
trading strategies.

The results imply that within the statistical arbitrage approach of pairs trading based on the
cointegration model, the normalization is not only a useful device easing the parameter identification
but it primarily becomes an important part of the model.

To take into account the non-normality of the conditional distribution of daily returns, we extend
our approach of using the normal distribution to the case of the Student-t distribution.

The outline of the paper is as follows. In Section 2 the conditional and implicit statistical arbitrage
approaches are discussed. In Section 3 our Bayesian analysis of the cointegration model under the
encompassing prior is explained. In Section 4 we consider an empirical application using stocks in
the Dow Jones Composite Average index. Section 5 concludes. The appendices contain technical
derivations and additional tables with detailed results from our empirical application.

2. Pairs Trading: Implicit and Conditional Statistical Arbitrage

Suppose that there exists a statistical fair price relationship [8] between the prices y;1 and y;» of
two stocks, where the spread

st = B1ye1 + Bayio 1)

is the deviation from this statistical fair price relationship, or “statistical mispricing”, at the end of
day t. In this paper we consider two types of trading strategies that are based upon the existence
of such a long-run equilibrium relationship: conditional statistical arbitrage (CSA) and implicit
statistical arbitrage (ISA), where we use the classification of Burgess [8]. We will implement these
strategies in such a way that at the end of each day the holding is updated, after which the holding is
kept constant for a day. In the CSA strategy the desired holding at the end of day ¢ is given by

CSA(st,k) = sign(E(Asi11|Z1)) |E(Asi|To) [, @

where 7; is the information set at the end of day f, and where we consider k = 0 and k = 1.
A positive value of CSA(st, k) means that we buy CSA(s;, k) spreads and a negative value of
CSA(st, k) means that we short CSA(s¢, k) spreads. That is, if 1 > 0 and B, < 0, then a positive
value of CSA(st, k) means that we buy B1 X CSA(st, k) of stock 1 and short (—B2) x CSA(st, k) of
stock 2. For k = 1 the obvious intuition of the CSA strategy is that we want to invest more in periods
with larger expected profits. In this way we consider the accuracy of the used method. In the case of
k = 0 we only look at the sign of the expected change in the next day. In this way we consider the
directional accuracy of the used method. Note that the expectation in (2) is taken over the distribution
of As;.1 (given the information set Z; and the ‘fixed” values of 8; and 7). In the sequel of this paper,
we use the posterior median to obtain estimates of model parameters, where the expectation in (2) will
still be taken given these “fixed” estimated values. We use the posterior median, since the posterior
distribution has Cauchy type tails in one of the model specifications that we investigate and these
Cauchy type tails imply that the coefficients have no posterior means.
In the ISA strategy the desired holding at the end of day ¢ is given by:

ISA(st) = —st. 3)

A positive value of ISA(s;) means that we buy ISA(s;) spreads and a negative value of ISA(s;)
means that we short ISA(s;) spreads. Or equivalently, a negative value of s; means that we buy —s;
spreads and a positive value of s; means that we short s; spreads. That is, if ;1 > 0 and 2 < O,
then a positive value of ISA(s;) means that we buy B1 x ISA(st) = B1 x (—s¢) of stock 1 and short



Econometrics 2016, 4, 14 4 0f 19

(—=PB2) x (—ISA(st)) = (—PB2) x st of stock 2. In the sequel of this paper, we will substitute the
posterior medians of $1 and > to obtain an estimate of the spread in (1).

The CSA and ISA strategies raise several questions. First, how do we define such long-run
equilibrium relationships? How are the coefficients 1 and 8, estimated? Second, how do we find
pairs of stocks that satisfy such a long-run equilibrium relationship? Third, how do we estimate
how the stock prices adjust towards their long-run equilibrium relationship? In the next section,
we consider how our Bayesian analysis of the cointegration model (under linear or orthogonal
normalization) provides answers to all these questions. In order to answer the first and third
questions we use the posterior distribution (more precisely, the posterior median) of the parameters
in the cointegration model. In order to answer the second question we compute the Bayes factor of
a model with a cointegration relationship versus a model without a cointegration relationship for a
large number of pairs of stocks.

At this point, we stress why we make use of the CSA and ISA strategies, rather than the approach
of Gatev ef al. [4]. In the strategy of Gatev et al. [4] a holding is taken as soon as it is found that a pair
of prices has substantially diverged. After that, the holding remains constant until the prices have
completely converged to the equilibrium relationship. A disadvantage of that trading strategy is that
there is not much trading going on (i.e., in most periods there is no trading at all), which makes it
more difficult to investigate the difference in quality between different models given a finite period,
or equivalently a very long period may be required to be able to find substantially credible differences
in trading results between models.

3. Bayesian Analysis of the Cointegration Model Under Linear and Orthogonal Normalization

Consider a vector autoregressive model of order 1 (VAR(1)) for an n-dimensional vector of time
series {Y;}1_,
Y =®Y; 1+, (4)

g; is an independent n-dimensional vector normal process with zero mean and n x n positive definite
symmetric (PDS) covariance matrix £. We will consider two alternative distributions for ¢;: a
multivariate normal distribution and a multivariate Student’s ¢ distribution. & is an n X n matrix
with with autoregressive coefficients. The initial values in Y] are assumed fixed. The VAR model in
(4) can be written in error correction form

AYt = H/Yt_1 + &, (5)

where IT" = @ — I, (with I, the n x n identity matrix) is the long-run multiplier matrix, see
e.g., Johansen [9] and Kleibergen and Paap [6].

If IT is a zero matrix, the series Y; contains n unit roots and there is no opportunity for long
term predictibility with finite uncertainty. If the matrix IT has full rank, the univariate series in Y; are
stationary and long-run equilibrium relations are assumed to hold. Cointegration appears if the rank
IT equals r with 0 < r < n. The matrix I'T" can be written as the outer product of two full rank n x r
matrices «’ and B:

I =da'p.

The matrix B contains the cointegration vectors, which reflect the stationary long-run
(equilibrium) relations between the univariate series in Y;; that is, each element of B'Y; can
be interpreted as a temporary deviation from a long-run (equilibrium) relations. The matrix
« contains the adjustment parameters, which indicate the speed of adjustment to the long-run
(equilibrium) relations.

To save on notation, we write (5) in matrix notation

AY =Y (Il +¢
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with (T — 1) x n matrices AY = (AY>,...,AYT), Y 1= (Y1,...,Yr_1) and e = (e3,...,€T).
Under the cointegration restriction IT = Ba, this model is given by: !

AY =Y_1Ba+e. (6)

The individual parameters in Ba are non-identified as fa = BBB~!a for any nonsingular
r X r matrix B. That is, postmultiplying B by an invertible matrix B and premultiplying « by its
inverse leaves the matrix fa unchanged. Therefore, r X r identification restrictions are required to
identify the elements of § and «, so that these become estimable. In this paper we will consider
two different normalization restrictions for identification purposes. The first normalization is the
linear normalization, which is commonly used, where we have

I,
ﬁ—<52>- @)

That is, the r X r elements of the first r rows must form an identity matrix. The intuition behind
this normalization is that for the case of two series it is assumed that the second series has an effect
on the first series that is similar to the case of the linear regression model, where on measures the
effect of a right-hand side explanatory variable on a left-hand side dependent variable. The second
normalization is the orthogonal normalization, where we have

BB=1I. )

Here the interpretation is that the two series are treated as symmetrically effective and only
the linear combination matters. This normalization and interpretation comes natural for a set of
time series of different, symmetrically treated prices, where one is mainly interested in stable linear
combinations.

In this paper we consider the case of n = 2 time series (of stock prices) in Y; = (y;1,Y¢2), where
the rank of ITis equal to r = 1:

Ayiq a1 €1
, B | E 9
( Ayt > < oy ) (Bryi-11+ Bayicr2) < €42 ) ©

with spread
st = P1yia + Bayt2 (10)
and
(e )= (2] o= (2 ) =
so that
E(Ast11|Te) = B1E(Ayi10) + P2E(Ayri12) = (a1f1 + azp2)st. (12)

From (10) and (12) it is clear that our ISA trading strategy depends on f; and B>, whereas our CSA
trading strategy also depends on a; and «5.
Under the linear normalization we have §; = 1:

1
ﬁ:<ﬁ2>, (13)

We also considered models with a constant term inside the cointegration relationship and/or drift terms in the model
equation. The inclusion of such terms did not change the conclusions of our paper.

1
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whereas under the orthogonal normalization we have

BB=F+p=1, (14)

which is (under the further identification restriction S > 0) equivalent with

Br=1/1- B2 (15)

Since the adjustment coefficients a; and a; may be close to 0, there may be substantial
uncertainty about the equilibrium relationship. The linear normalization allows B, to take values
in (—oo, ), whereas the orthogonal normalization allows f; to take values in [—1,1] and B, in [0, 1].
One may argue that the spread under the linear normalization is just a re-scaled version of the spread
under the orthogonal normalization (where the spread under the linear normalization would result
by dividing the spread under the orthogonal normalization by $1). However, we will consider a
moving window, where the parameters will be updated every day, so that the re-scaling factor is not
constant over time. Therefore, the profit/loss of the ISA strategy under the linear normalization is
not just a re-scaled version of the profit/loss of the ISA strategy under the orthogonal normalization.
Further, we estimate the parameters using their posterior median, where the posterior median of 8
under the linear normalization will typically differ from the ratio of the posterior medians of 3, and 3
under the orthogonal normalization. The profit/loss of the strategies under the linear normalization
may be much affected by a small number of days at which the B, is estimated very large (in an
absolute sense), whereas under the orthogonal normalization the profit/loss may be more evenly
affected by the different days, as (the estimates of) By and B, can not ‘escape’ to extreme values
outside [—1,1] x [0,1].

3.1. The Encompassing and Jeffreys’ Framework for Prior Specification and Posterior Simulation

As mentioned above, we consider the case of n = 2 time series (of stock prices), where the
rank of IT = Ba is equal to r = 1. That is, the matrix IT needs to satisfy a reduced rank restriction.
A natural way to specify a prior for « and B is given by the encompassing framework, in which one
first specifies a prior on IT without imposing a reduced rank restriction and then obtains the prior in
our model as the conditional prior of II given that the rank of I is equal to 1.

As singular values are generalized eigenvalues of non-symmetric matrices, they are a natural
way to represent the rank of a matrix. Using singular values we can artificially construct the full
rank specification of IT via an auxiliary parameter given by the (n —r) x (n — r) matrix A; i.e., A is
a scalar in our case with n = 2 and r = 1. The reduced rank matrix Bua is extended into the full
rank specification:

IM=Ba+ B 0y, (16)

where B | and &/, are n x (n — r) matrices that are specified such that '8, =0, B, = I, a0’ =
0and &, &', = I, The full rank specification encompasses the reduced rank case given by A = 0.
In this framework the probability p(A = 0|Y) can be interpreted as a measure quantifying
the likelihood of reduced rank. The specification in (26) is obtained using the singular value
decomposition IT = USV’ of IT, where the n x n matrices U and V are orthogonal such that U'U = I,
and V'V = I, and the n x n matrix S is diagonal and has the singular values of IT on its diagonal in a
decreasing order.

To derive the elements of equation (26) in terms of parameters Il we partition IT according to the
specifics of the chosen normalization. Under the linear normalization, we partition the matrices U, S

and V as follows
Uy Uy S 0 , vl v
u= ,S= ,and V=11 21
(Uzl Uy, 0 S Vi, Vp
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The matrices in decomposition (26) in terms of the blocks of U, S and V are given by

a = U1 Sy <V1/1 V2/1> Loy = (Vo Vi)V 2V (sz Vz’z) ’

_ u _
B =Unly!, B = <UZ> Uy, (Upalhy)'?,

A = (UppUpy) "V U Sy V) (Vaa Vi) 12,

Under the orthogonal normalization, the matrices are partitioned as

B (s 0 , (v
u_(u1 uz),s_<0 52> andV-(Vz, )

and the following relations hold:

x=85V],a, =V

,B: ul/ ,BJ_ = UZI
A= 5.

Under the orthogonal normalization A is directly equal to S, whereas under the linear
normalization it is just a rotation of S;. In both cases restriction A = 0 is equivalent with restricting
the n — r smallest singular values of IT to 0.

The prior on («, B) is equal to the conditional prior of the parameters («, 8, A) given that A = 0,
which is proportional to the joint prior for («, B, A) evaluated at A = 0:

pla, B) o< p(a, B, A)|r=0 o< p(I1(a, B, A))[r=0|J(IL, (&, B, 1)) [ 7=0, (17)

where | —o stands for evaluated in A = 0, where J(I1,(a,B,A)) denotes the Jacobian of the
transformation from IT to (a, B, A). Kleibergen and Paap [6] derive the closed form expression for
the determinant of the Jacobian |J(IL, («,B,A))| for the general case of n variables and reduced
rank r under the linear normalization. In Appendix B the Jacobian is derived under the orthogonal
normalization of B.

Basttirk et al. [10] prove that under certain conditions the encompassing prior is equivalent to
Jeffreys’ prior in the cointegration model with normally distributed innovations, irrespective of the
normalization applied. We emphasize this equivalence, since the use of the information matrix or
Jeffreys’ prior is more well-known than the encompassing approach. Since the information matrix
prior may yield certain desirable properties of the posterior, we conclude that an encompassing
approach may also serve this purpose.

In a similar fashion, the posterior of («, B) is equal to the conditional posterior of the parameters
(a, B, 1) given that A = 0, which is proportional to the joint posterior for («, B, A) evaluated at A = 0:

pla,BlY) = plaBlA=0Y)
o« pla, B, AY)[a=0 = p(IL(a, B, AlY))[a=0|J(IL, (&, B, A))[1=0, (18)

where the detailed expression for p(IT(«, 8, A)|Y) is given by Kleibergen and Paap [6], and where
p(a, B, AlY) = p(T(a, B, M)|Y) [r1=pat g ra, [T(TT, (&, B, A))]. (19)

For Bayesian estimation of the cointegration model we need an algorithm to sample from
the posterior density in (18). However this posterior densities does not belong to any known
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class of distributions, see Kleibergen and Paap [6], and as such can not be sampled directly.
The idea of the Metropolis-Hastings (M-H) algorithm is to generate draws from the target density
by constructing a Markov chain of which the distribution converges to the target distribution, using
draws from a candidate density and an acceptance-rejection scheme. Kleibergen and Paap [6]
present the M-H algorithm to sample from (18) for the cointegration model with normally distributed
disturbances under the linear normalization. In this algorithm (19) is used to form a candidate density.
The general outline of this sampling algorithm is presented in Appendix A. Appendix B presents
the approach to evaluate the acceptance-rejection weights under the orthogonal normalization. The
posteriors of the coefficients under the linear normalization have Cauchy type tails, so that there exist
no posterior means for the coefficients. Therefore, we estimate the coefficients using the posterior
median (which we do under both normalizations to keep the comparison between the normalizations
as fair as possible).

Given that the time series considered have a non-normal shape, we also consider the model
under a multivariate Student’s t distribution for the innovations &;. Then the M-H algorithms are
straightforwardly extended, see Geweke [11].

Since we make use of the independence-chain Metropolis-Hastings algorithm, the simulation
of candidate draws and the evaluation of the importance weights (to be used in the probability of
accepting the candidate draw) can be easily performed in a parallel fashion. This would enormously
increase the speed of our computations. Only the final step of the method, the actual acceptance or
rejection of candidate draws, can not be performed in a parallel fashion. But this step takes relatively
very little computing time. As an alternative, one can make use of importance sampling, where the
whole method can be performed in a parallel fashion.

3.2. Bayes Factors

We evaluate the Bayes factor of rank 1 versus rank 2 and the Bayes factor of rank 0 versus rank 2.
The Bayes factor of rank 1 versus rank 0 is obviously given by the ratio of these Bayes factors.
For the evaluation of these Bayes factors we extend the method of Kleibergen and Paap [6] who
evaluate the Bayes factor as the Savage-Dickey density ratio, see Dickey [12] and Verdinelli and
Wasserman [13] to the case of orthogonal normalization. The Bayes factor for the restricted model
with A = 0 (where IT has rank 0 or 1) versus the unrestricted model with unrestricted A (where IT has
rank 2) equals the ratio of the marginal posterior density of A, and the marginal prior density of A,
both evaluated in A = 0. However, in the case of our diffuse prior specification this Bayes factor for
rank reduction is not defined, as the marginal prior density of A is improper.

Therefore, we follow Chao and Phillips [14] who use as prior height (277)
their posterior information criterium (PIC). We assume equal prior probabilities % for the rank 0, 1
or 2, so that the Bayes factor is equal to the posterior odds, the ratio of posterior model probabilities.
For pairs of stock prices we will mostly observe that the estimated posterior model probability is

—(@nr=r?)/2 44 construct

highest for rank 0, the case of two random walk processes without cointegration. Only for a small
fraction of pairs, we will observed that the estimated posterior model probability is highest for rank 1,
the case of two cointegrated random walk processes.

4. Empirical Application

The CSA and ISA strategies are applied to components of the Dow Jones Composite Average
index. We work with daily closing prices recorded over the period of one year, from 1 January 2009
until 31 December 2009. We consider the 65 stocks with the highest liquidity. First, we identify
cointegrated pairs based on the estimated posterior probability of cointegration (i.e., IT having rank 1)
computed for the first half year of the data. That is, among the ©5% = 2080 pairs we select
the 10 pairs with the highest Bayes factor of rank 1 versus rank 0 (where these Bayes factors are
larger than 1) for both the linear and orthogonal normalization. The 10 pairs are identical for both

normalizations; these pairs are given by Table 1. Second, those pairs are used in the CSA and ISA
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trading strategies during the last 6 months of 2009. We use a rolling window, where the parameter
estimates are updated at the end of each trading day, after which the positions are updated and kept
constant until the end of the next trading day. We will analyze the profits from these trading strategies,

where we take into account the common level of transaction costs of 0.1% (¢ = 0.001).

Table 1. Ten pairs of stocks with highest Bayes factor of model with IT having rank 1 (cointegration)

versus model with IT having rank 0 (two random walks) under both the linear normalization and

the orthogonal normalization (among stocks in the Dow Jones Composite Average index, using daily

closing prices recorded over the period of 1 January 2009 until 30 June 2009).

AA - 0SsG ALCOA Inc. Overseas Shipholding Group, Inc.
CNP - OSG CenterPoint Energy, Inc. Overseas Shipholding Group, Inc.
DUK - IBM Duke Energy Corp. International Business Machines Corp.
DUK - OSG Duke Energy Corp. Overseas Shipholding Group, Inc.

MO - UPS Altria Group, Inc. United Parcel Service, Inc.

NI - NSC NiSource, Inc. - Norfolk Southern Corp.

NI - 0SsG NiSource, Inc. - Overseas Shipholding Group, Inc.

NI - R NiSource, Inc. - Ryder System, Inc.

NI - UNP NiSource, Inc. - Union Pacific Corp.

NI - UTX NiSource, Inc. - United Technologies Corp.

Next to the “standard” CSA approach described before, we will also perform a more cautious,
more conservative CSA strategy that takes into account parameter uncertainty. Here we only take a
position if we are more certain about the sign of the current spread (and hence the sign of the expected
change of the spread, which is the opposite sign). We only take a position if the (50 4 & /2)% percentile
and the (50 — {/2)% percentile of the posterior distribution of the current spread have the same sign,
where we consider the cases of ¢ = 20%, 30%, 40%, 50% or 60%. The case of ¢ = 60% is the most
cautious strategy, where the sign of the posterior 20% and 80% percentiles of the spread must be the
same. Note that for { = 0% this strategy reduced to the original CSA strategy.

In order to evaluate the CSA and ISA strategies in the cointegration models under the linear
and orthogonal normalization and under a normal and Student’s ¢ distribution for the innovations,
we compute two measures. First of all, the strategy can not be evaluated in terms of the percentage
return on initial capital investment, as we are not only buying stocks but we are also shorting stocks.
Suppose that we perform our strategies for T consecutive trading days (where in our case T is the
number of trading days in the last 6 months of 2009). Then the average daily capital engagement is
given by:

1= . .
ADCEcsakam) = 7 ) |CSA(stk x%)] (IBelyen + 1Braly2) . (20)
=0
1 T-1 ) )
ADCEjsa = 7 ) [ISA(st)] (1Bealyes + |Br2lye2) . (21)
=0

where f;1 and f; , are the posterior medians of 8 and B, computed at the end of the t-th day in the
trading period. That is, ;—o1 and B;—o> are computed at the end of the last trading day before the
trading period. Our first performance measure is a profitability measure that is given by the total
return of the strategy divided by the average daily capital engagement:

Cumulative Return of CSA(k, x%) at time T
ADCEcs A (k%) ’

PT’Ofl‘tﬂbill‘tyCSA(k’x%) (22)

Cumulative Return of ISA at time T
ADCEsa '

Profitability;sa = (23)
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Our second performance measure concerns the risk of the strategies. In order to estimate risk
we use paths of cumulative return. When the cumulative return at time t + 1 is often lower than
the cumulative return at time ¢, then a strategy can be considered risky. On the other hand, if the
cumulative return is growing or remains steady over most periods the strategy can be considered as
having low risk. In the latter case the signals generated by the trading rule are accurate and yield
(mostly) profit. We define our measure as:

. #{Cum. return at time t + 1 < Cum. return at time ¢}
Risk = . . (24)
#{Cum. return at time f + 1 # Cum