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1. Introduction

Consider the measurement error model:

Y = X + ε,

where X is the signal, while ε is the noise. Assume X is independent of ε; X has density fX , and ε has
density k, so the density of Y , denoted as fY , is the convolution of fX and k:

fY = fX ∗ k,

where the ∗ denotes convolution.
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Assume we observe the realizations Y1, . . . , Yn of Y and that the function k is fully known; one
possible estimator for fX from the noisy observations Y1, . . . , Yn is the kernel deconvolution estimator:

f̂X(x) =
1

2π

∫ +∞

−∞
e−itx

φK(th)φ̂fY (t)

φk(t)
dt, (1)

where:

φ̂fY (t) =
1

n

n∑
j=1

eitYj ,

is the empirical characteristic function of density fY , K(x) is a kernel function, φK and φk are the
Fourier transform of K and k, respectively1. The kernel deconvolution estimator was first proposed for
the measurement error model by Carroll and Hall [1] and Stefanski and Carroll [2].

Define the kernel deconvolution function as follows:

νh(x) :=
1

2π

∫ +∞

−∞

φK(t)

φk(t/h)
e−itxdt;

the kernel deconvolution estimator can be written compactly as:

f̂X(x) =
1

nh

n∑
j=1

νh

(
x− Yj
h

)
. (2)

In this paper, I show the asymptotic normality for the estimator f̂X(x) when the distribution
of ε is logarithmic chi-square. The asymptotic distribution of the kernel deconvolution estimator
has been considered in Fan [3], Fan and Liu [4], Van Es and Uh [5] and Van Es and Uh [6] for
identically independently distributed (i.i.d.) observations. Masry [7] and Kulik [8] consider various
cases for the weakly-dependent observations. However, none of the above research allows the error
distribution to be the logarithmic chi-square distribution. I consider both the identical and independently
distributed (i.i.d.) observations and strong mixing observations in this paper, which complements the
above-mentioned literature.

The results obtained in this paper can be applied to obtain the asymptotic distribution of
the deconvolution volatility density estimator. The problem of estimating volatility density has been
gaining increasing interest in econometrics in recent years; see, e.g., Van Es, Spreij, and Van Zanten
[9] and Van Es, Spreij, and Van Zanten [10] for the kernel deconvolution estimator, Comte and
Genon-Catalot [11] for the penalized projection estimator and Todorov and Tauchen [12] for the study
in the context of high-frequency data. Kernel deconvolution with logarithmic chi-square noise arises
naturally when estimating the volatility density in stochastic volatility (SV) models. Existing research
(e.g., Van Es, Spreij, and Van Zanten [9] and Van Es, Spreij, and Van Zanten [10]) focuses on the
convergence rates of the estimators, and the asymptotic distribution of the estimators is not available.

1 The characteristic function of a random variable with density f is defined as φf =
∫
R
eitxf(x)dx.
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In Section 2, I review the probabilistic properties of the logarithmic chi-square distribution; Section 3
presents the asymptotic normality of the estimator, for both i.i.d. observations and dependent
observations; Section 4 discusses the application of the results to volatility density estimation in SV
models; Section 5 concludes the paper.

2. Logarithmic Chi-Square Distribution

The logarithmic chi-square distribution is obtained by taking the logarithm of a chi-square distribution
with degrees of freedom of one. The density function of logarithmic chi-square distribution is:

k(x) =
1√
2π
e

1
2
xe−

1
2
ex .

The density function of the logarithmic chi-square distribution is asymmetric and is plotted
in Figure 1.

Figure 1. Density function of the logarithmic chi-square distribution.

The characteristic function of the logarithmic chi-square distribution is:

φk(t) =
1√
π

2itΓ

(
1

2
+ it

)
,

where Γ(.) is the gamma function.
Fan [3] studies the quadratic mean convergence rate of the kernel deconvolution estimator; it

turns out that the convergence rate of the estimator depends heavily on the type of error distribution.
In particular, it is determined by the tail behaviour of the modulus of the characteristic function of
the error distribution: the faster the modulus function goes to zero in the tail, the slower the converge
rate. The following lemma, which is from Van Es, Spreij, and Van Zanten [10], gives the tail
behaviour of |φk(t)|.

Lemma 1. (Lemma 5.1 of Van Es, Spreij, and Van Zanten [10]) For |t| → ∞, we have:

|φk| =
√

2e−
1
2
π|t|
(

1 +O

(
1

|t|

))
, (3)
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and:

Reφk(t) = |φk|
(

cos
[
t log

(√
1 + 4t2 − t

)]
+O

(
1

|t|

))
, (4)

Imφk(t) = |φk|
(

sin
[
t log

(√
1 + 4t2 − t

)]
+O

(
1

|t|

))
. (5)

From (3), it is known that the modulus of φk(t) decays exponentially fast as |t| → ∞. It thus belongs
to the super-smooth density according to the classification in Fan [13]. According to Fan [13], the optimal
convergence rate of the estimator is (log n)−2, when h = (log n)−1. Figure 2 plots the modulus function
|φk| and its approximation

√
2e−

1
2
π|t|; we notice that the two functions almost coincide at both tails.

Figure 2. Modulus function of the characteristic function of logarithmic chi-square
distribution and its approximation: the higher peak curve is the approximating function√

2e−
1
2
π|t|.

From (4) and (5), it is known that in both tails, neither the real part nor imaginary part of the
characteristic function can dominate the other; this violates the assumptions in the previous works by,
e.g., Fan [3] and Masry [7], on studying the asymptotic normality; for super-smooth error distributions,
these papers assume either the real part or the imaginary part to be dominant.

3. Asymptotic Normality

In this paper, I consider one particular kernel function, namely the sinc kernel function:

(C1) The sinc kernel function is defined as:

K(x) =
sin(x)

πx
,

with Fourier transform2:
φK(t) = I{|t| 6 1}.

2 In this paper, I follow the convention to define the Fourier transform of a function f to be φf =
∫ +∞
−∞ eitxf(x)dx.



Econometrics 2015, 3 565

The sinc kernel function is favoured in theoretical literature because of the simplicity of its Fourier
transform and is thus used here.3

3.1. i.i.d. Observations

In this section, I prove the asymptotic normality of the estimator when the observations are i.i.d.

Theorem 1. When the observations are i.i.d. and ε is distributed as logarithmic chi-square, if
Assumption (C1) holds, when exp (1/h) /n→ 0 as n→∞ and h→ 0, it holds that,

f̂X(x)−Kh ∗ fX(x)√
1

2π2n
exp (π/h) fY (x)

→d N(0, 1),

where Kh(x) := (1/h)K(x/h).

Proof. Denote:

Zj =
1

h
νh

(
x− Yj
h

)
,

then:

f̂(x) =
1

n

n∑
j=1

Zj.

First:

Ef̂(x) = EZ1

= E

[
1

2π

∫ +∞

−∞
e−itx

φK(th)φ̂fY (t)

φk(t)
dt

]

=
1

2π

∫ +∞

−∞
e−itx

φK(th)E
[
φ̂fY (t)

]
φk(t)

dt

=
1

2π

∫ +∞

−∞
e−itx

φK(th)φfY (t)

φk(t)
dt

=
1

2π

∫ +∞

−∞
e−itxφK(th)φfX (t)dt

= Kh ∗ fX(x),

3 Usually, for practical implementations, the following kernels:

K1(x) =
48 cosx

πx4

(
1− 15

x2

)
− 144 sinx

πx5

(
2− 5

x2

)
,

with Fourier transform:
φK1

(t) = I{|t| 6 1}
(
1− t2

)3
,

are used because they have better numerical properties; see Delaigle and Gijbels [14] for the discussions.
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Second, I evaluate VarZ1,

VarZ1 = Var

(
1

h
νh

(
x− Y1
h

))
=

1

h2

(
Eνh

(
x− Y1
h

)2

−
(
Eνh

(
x− Y1
h

))2
)

=
1

h2

(∫
νh

(
x− y
h

)2

fY (y)dy − (Kh ∗ fX(x))2
)

=
1

h2

(
h

∫
νh (y)2 dyfY (x)− (Kh ∗ fX(x))2

)
=

1

2π2
exp

(π
h

)
fY (x) (1 + o(1)) , (6)

where the last equality is obtained because Kh ∗ fX(x) → fX(x) as h → 0, and
∫
|νh(x)|2 dx =

h
2π2

exp
(
π
h

)
(1 + o(1)). The latter result is shown as follows,∫

|νh(x)|2 dx =
1

2π

∫
|φνh(u)|2 du

=
1

2π

∫ ∣∣∣∣ φK(u)

φk (u/h)

∣∣∣∣2 du

=
h

π

∫ 1/h

0

∣∣∣∣ 1

φk (u)

∣∣∣∣2 du

=
h

π

(∫ M

0

∣∣∣∣ 1

φk (u)

∣∣∣∣2 du+

∫ 1/h

M

∣∣∣∣ 1

φk (u)

∣∣∣∣2 du

)
,

where M is a very big number. The first term in the brackets is a constant depending on M ; the order of
the second term can be evaluated as follows,∫ 1/h

M

∣∣∣∣ 1

φk (u)

∣∣∣∣2 du =
1

2π

(
exp

(π
h

)
− exp (πM)

)
=

1

2π
exp

(π
h

)
(1 + o(1)),

where I use the fact that when M is big, |φk(u)| can be replaced by its asymptotic approximation.
The second term clearly dominates the first term, which is a constant, such that:∫

|νh(x)|2 dx =
h

2π2
exp

(π
h

)
(1 + o(1)). (7)

Here, I use the argument of Butucea [15] to split the integral and show that the tail part of the
integral dominates.

A sufficient condition for asymptotic normality is the Lyapunov condition, which reduces to:
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E|Z1 − EZ1|2+δ

nδ/2[Var(Z1)]1+δ/2
→ 0, (8)

for i.i.d. data.
For an upper bound for the numerator,

E|Z1 − EZ1|2+δ 6 E|Z1|2+δ + |EZ1|2+δ

6 2E|Z1|2+δ

=
2

h2+δ

∫ +∞

−∞

∣∣∣∣νh(x− yh
)∣∣∣∣2+δ fY (y)dy

6
C

h2+δ

∫ +∞

−∞

∣∣∣∣νh(x− yh
)∣∣∣∣2+δ dy (9)

Now, notice the result from Van Es, Spreij, and Van Zanten [10] and Masry [16] that, for p > 24,

‖νh‖p 6 ‖νh‖1−2/p∞ ‖νh‖2/p2 .

An upper bound for ‖νh‖∞ is easy to get, as5:

‖νh‖∞ = sup
x

∣∣∣∣ 1

2π

∫
φK(t)

φk(t/h)
e−itxdt

∣∣∣∣
6

1

2π

∫ ∣∣∣∣ φK(t)

φk(t/h)

∣∣∣∣ dt
6

√
2

π2
h exp

( π
2h

)
,

while ‖νh‖22 is known from (7), such that:∫
|νh(z)|p dz 6 ‖νh‖p−2∞ ‖νh‖22

6 C × hp−2 exp

(
π(p− 2)

2h

)
× h exp

(π
h

)
= C × hp−1 exp

(πp
2h

)
,

for p > 2. Therefore, take p = 2 + δ and use the result in (9); it then holds that:

E|Z1 − EZ1|2+δ 6 C × exp

(
π(2 + δ)

2h

)
, (10)

this, together with (6), implies that Lyapunov’s condition (8) holds, which completes the proof.

4 This is easy to see by noticing
∫
|νh(x)|p dx 6

∫
|νh(x)|2 |supx νh(x)|

p−2
dx for p > 2.

5 Here, again, the splitting integral argument as in proving (7) is used; I omit the details for the ease of exposition.
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3.2. Strong Mixing Observations

In this section, I consider the model:
Y = X + ε, (11)

where X’s realizations of X1, · · · , Xn are strictly stationary and strong mixing, while the noise
realizations ε1, · · · , εn are i.i.d. logarithmic chi-square variables, independent of X , such that the
observations Y1, · · · , Yn are also strictly stationary and strong mixing.

There are various concepts of dependence; here, I consider the case of α mixing, also called strong
mixing, which is the weakest among all of the dependence concepts.

Definition 1. Let {Xt}, t = · · · ,−1, 0, 1, · · · be an infinite sequence of strictly stationary random
variables and F ji be the σ-algebra generated by {Xt, i 6 t 6 j}; then, the α-mixing coefficient is
defined as:

α(k) = sup
A∈F0

−∞,B∈F
+∞
k

|P (A)P (B)− P (AB)| .

The sequence {Xt}, t = · · · ,−1, 0, 1, · · · , is called α-mixing if α(k)→ 0 as k →∞.

For the dependent case, a bounded assumption on the joint density of observations is also needed.

(C2) The probability density function of any joint distribution (Yi, Yj), 1 6 i < j 6 n, exists and is
bounded by a constant.

Now, I give the asymptotic normality theorem. Notice that the mixing assumption here is a litter
weaker than that in Masry [7].

Theorem 2. In model (11), let X1, X2, · · · , Xn be strictly stationary, α-mixing with:

∞∑
k=1

α(k)1−2/δ <∞, (12)

for some δ > 2; the noises ε1, · · · , εn are i.i.d. logarithmic chi-square variables, independent of X;
if (C1) and (C2) hold, when exp (1/h) /n→ 0 as n→∞ and h→ 0, then:

f̂X(x)−Kh ∗ fX(x)√
1

2π2n
exp (π/h) fY (x)

→d N(0, 1).

Proof. First, by strict stationarity and using the ergodic theorem for strong mixing sequences, similarly
as in the proof of Theorem 1,

Ef̂(x) = Kh ∗ fX(x).

Next, the variance of the estimator is evaluated; first:

Var
(
f̂(x)

)
=

1

n
Var (Z1) +

2

n2

n−1∑
j=1

(n− j) Cov (Z1, Zj+1) .
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Knowing from Theorem 1 that the first term is:

1

n
Var(Z1) =

1

2π2n
exp

(π
h

)
fY (x)(1 + o(1)). (13)

For the covariance term, first notice:

|Cov(Z1, Zj+1)| 6 |E (Z1Zj+1)|+ (Kh ∗ fX(x))2

6 |E (Z1Zj+1)|+O(1), (14)

as h→ 0. Now, because:

|E(Z1Zj+1)| =
1

h2

∣∣∣∣E (νh(x− Y1h

)
νh

(
x− Yj+1

h

))∣∣∣∣
=

1

h2

∣∣∣∣E ∫ ∫ φK(t)φK(t′)

φk(t/h)φk(t′/h)
e−it

x−Y1
h e−it

′ x−Yj+1
h dtdt′

∣∣∣∣
=

1

h2

∣∣∣∣∫ ∫ φK(t)φK(t′)

φk(t/h)φk(t′/h)
E
(
E
(
e−it

x−X1−ε1
h e−it

′ x−Xj+1−εj+1
h

∣∣∣X)) dtdt′
∣∣∣∣

=
1

h2

∣∣∣∣∫ ∫ φK(t)φK(t′)

φk(t/h)φk(t′/h)
φk(t/h)φk(t

′/h)E
(
e−it

x−X1
h e−it

′ x−Xj+1
h

)
dtdt′

∣∣∣∣
=

1

h2

∣∣∣∣∫ ∫ φK(t)φK(t′)E
(
e−it

x−X1
h e−it

′ x−Xj+1
h

)
dtdt′

∣∣∣∣
6

1

h2

∣∣∣∣∫ ∫ |φK(t)φK(t′)|E
(∣∣∣e−itx−X1

h e−it
′ x−Xj+1

h

∣∣∣) dtdt′
∣∣∣∣

6
1

h2

∣∣∣∣∫ ∫ |φK(t)φK(t′)| dtdt′
∣∣∣∣

6
C

h2
,

where C is a constant; continuing on (14), I get:

|Cov(Z1, Zj+1)| 6 C
1

h2
(1 + o(1)) . (15)

On the other hand, using the assumption on the α-mixing coefficients and the covariance inequality
for strong mixing sequence in Proposition 2.5 in Fan and Yao [17], for δ > 2,

Cov (Z1, Zj+1) 6 8α(j)1−2/δ
(
E |Z1|δ

)1/δ (
E |Zj+1|δ

)1/δ
= 8α(j)1−2/δ

(
E |Z1|δ

)2/δ
6 C ′α(j)1−2/δ exp

(π
h

)
. (16)
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Therefore, using (15) and (16),∣∣∣∣∣
n−1∑
j=1

Cov (Z1, Zj+1)

∣∣∣∣∣
6

∣∣∣∣∣
mn∑
j=1

Cov (Z1, Zj+1)

∣∣∣∣∣+

∣∣∣∣∣
n−1∑
j=mn

Cov (Z1, Zj+1)

∣∣∣∣∣
6 C

1

h2
mn + C exp

(π
h

) n−1∑
j=mn

α(j)1−2/δ,

if one chooses mn = 1
h|log h| , then mn →∞ and mnh→ 0, then obviously the first term is o

(
exp

(
π
h

))
;

the second term is also o
(
exp

(
π
h

))
by noticing the mixing assumption in (12). Then, it is shown that:∣∣∣∣∣

n−1∑
j=1

Cov (Z1, Zj+1)

∣∣∣∣∣ = o
(

exp
(π
h

))
. (17)

From (13) and (17), it then follows that:

Var
(
f̂(x)

)
=

1

2π2n
exp

(π
h

)
fY (x) (1 + o(1)) .

Now, I prove the central limit theorem, for which I use the classical large block-small block argument
of proving the central limit theorem for the dependent sequence. First, I make some normalizations,
define σ0 =

(
1

2π2
exp

(
π
h

)
fY (x)

)1/2, and:

Z ′j =
Zj −Kh ∗ fX(x)

σ0

,

then Z ′j has mean zero and unit variance and:

1

n

n∑
j=1

Z ′j =
f̂(x)−Kh ∗ fX(x)

σ0

;

and it will be shown that:
√
n

(
1

n

n∑
j=1

Z ′j

)
→d N(0, 1),

which is the result that needed to be shown.
First, the set {1, · · · , n} is partitioned into 2kn + 1 subsets with large blocks of size ln and small

blocks of size sn, such that kn = bn/(ln + sn)c, so the last remaining block has size n − kn(ln + sn).
The sizes are such that ln →∞, sn →∞, ln/sn →∞. Then, we can write:

n∑
j=1

Z ′j =
kn∑
j=1

ξj +
kn∑
j=1

ηj + ζ,
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where:

ξj =

(j−1)(ln+sn)+ln∑
j′=(j−1)(ln+sn)+1

Z ′j′

ηj =

j(ln+sn)∑
j′=(j−1)(ln+sn)+ln+1

Z ′j′

ζ =
n∑

kn(ln+sn)+1

Z ′j.

which are the sum of large blocks, small blocks and the last block, respectively. Then, as a standard
procedure for the small block-big block argument, I show the following:

1

n
E

(
kn∑
j=1

ηj

)2

= o(1), (18)

1

n
Eζ2 = o(1), (19)∣∣∣∣∣E exp

(
it

kn∑
j=1

ξj/
√
n

)
−

kn∏
j=1

E exp
(
itξj/

√
n
)∣∣∣∣∣ → 0, (20)

1

n

kn∑
j=1

Eξ2j → 1, (21)

1

n

kn∑
j=1

E
[
ξ2jI

(
|ξj| > εn1/2

)]
→ 0, (22)

for ∀ε > 0. (18) and (19) say that the small blocks and the last block are of smaller order. (20) says that
the large blocks are as if independent in the sense of the characteristic function. Then, (21) and (22) are
the Lindeberg-Feller condition for the asymptotic normality for

∑kn
j=1 ξj under independence.

For (18) and (19), using the moment inequality for the α-mixing sequence in Proposition 2.7 (i) in
Fan and Yao [17], it can be shown that:

E

(
kn∑
j=1

ηj

)2

= O (knsn) ,

Eζ2 = O(n− kn(ln + sn)),

notice that the conditions for Proposition 2.7 (i) are satisfied, because by (10), E
∣∣Z ′j∣∣δ < ∞ for δ > 2;

and the mixing assumption (12) implies that α(j)1−2/a = j−b for b > 1, which is α(j) = j−ab/(a−2) =

j−
1
2
× 1

1/(2b)−1/(ab) ; take δ = ab and q = 2b, so the mixing condition is also satisfied.
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For (20), using the covariance inequality in Proposition 2.6 in Fan and Yao [17], we have:∣∣∣∣∣E exp

(
it

kn∑
j=1

ξj/
√
n

)
−

kn∏
j=1

E exp
(
itξj/

√
n
)∣∣∣∣∣

6 16(kn − 1)α(sn);

this is o(1) by choosing for example ln = (nhγ1)1/2, sn = (nhγ2)1/2 for 1 < γ1 < γ2.
Then, kn = O(n1/2h−γ1/2), such that for some q > 1,

knα(sn) = n1/2h−γ1/2
1

(nhγ2)q/2

= n
(1−q)

2 h−
(γ2q+γ1)

2 ;

obviously, the above expression is o(1) by the assumption that exp (1/h) /n→ 0, so (20) is proven.
For Feller’s condition (21), first use the same strategy as calculating the variance of the estimator; it

holds that:
Eξ2j = ln (1 + o(1)) ,

for any j, because ξj is also an infinite sum of the observations. Therefore,

1

n

kn∑
j=1

Eξ2j =
1

n
knln (1 + o(1))→ 1.

Finally, for Lindeberg’s condition (22), first observe that:

E
[
ξ2jI

(
|ξj| > εn1/2

)]
6

(
Eξ4j

)1/2
P
(
|ξj| > εn1/2

)
6

(
Eξ4j

)1/2 Eξ2j

(ε
√
n)

2 ,

where I first use Holder’s inequality and then Markov’s inequality. Using again the moment inequality
for the strong mixing sequence in Proposition 2.7 in Fan and Yao [17],

(
Eξ4j

)1/2 Eξ2j

(ε
√
n)

2 6
(
l2n
)1/2 × ln

(ε
√
n)

2

=
l2n
ε2n

,

so:

1

n

kn∑
j=1

E
[
ξ2jI

(
|ξj| > εn1/2

)]
= O

(
kn
n
× l2n
ε2n

)
=

1

ε2
O

(
ln
n

)
= o(1).
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Using the Lindeberg-Feller condition and employing the standard argument for the proof of central
limit theorems, it can be shown that:

kn∏
j=1

E exp
(
itξj/

√
n
)
→ exp

(
−t

2

2

)
;

this together with (18)–(20) entail the stated result.

4. Application to Density Estimation in the Stochastic Volatility Model

In this section, I consider applying the results of Theorem 2 to obtain the asymptotic distribution
of the kernel deconvolution volatility density estimator in SV models. A generic SV model has
the following form,

yti = σtiεti , i = 1, · · · , n, (23)

where εti , i = 1, · · · , n are i.i.d. N(0, 1); {σti} is a latent stochastic process called the volatility
process; {yti} is the observed financial returns. The SV model is a popular model used in
financial econometrics to describe the evolution of financial returns. Model (23) incorporates popular
discrete-time SV models (e.g., Taylor [18]) and the discretized continuous-time SV models, which
assume the volatility process to be stationary as special cases (see, e.g., Shephard [19] for a review).
Van Es, Spreij, and Van Zanten [9] and Van Es, Spreij, and Van Zanten [10] considered estimating the
volatility density using the kernel deconvolution estimator in this model.

Remark 1. By using the term “stochastic volatility”, here, I consider the so-called “genuine
stochastic volatility” models, where the volatility process has a separate stochastic driving factor (see,
e.g., Shephard and Andersen [20] and Andersen, Bollerslev, Diebold, and Labys [21] for detailed
discussions). It thus does not include the ARCH/GARCH class models, where one has explicitly specified
one-step-ahead predictive densities. Van Es, Spreij, and Van Zanten [10] considered estimating volatility
density in the context of the ARCH/GARCH class of models and had given the rate of convergence
for their estimator.

To apply the general theory derived in Section 3, it is further assumed that the volatility process {σti}
is strictly stationary, and it is independent of εti for i = 1, · · · , n. The independence assumption rules
out the leverage effect in stochastic volatility models and, thus, is suitable to apply to, say, exchange rate
data, where the leverage effect is rarely observed. Extending the model to allow for the leverage effect
is an important, yet challenging task, which is thus left for future research.

The SV model can be written as a measurement error model (11) by taking squares and logarithms on
both sides of equation (23),

log y2ti = logσ2ti + log ε2ti , i = 1, . . . ., n, (24)

such that the variable log y2i is the convolution of log ηi with a completely known distribution logarithmic
chi-square. Following the notations in the previous sections, write the density functions of log y2ti , logσ2

ti

and log ε2ti to be fy, fσ and k, respectively.
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If we want to recover the density fσ of logσ2
ti

from the observations {log y2ti}, this is a problem
of deconvolution with logarithmic chi-square error, and the kernel deconvolution estimator can be used.
Van Es, Spreij, and Van Zanten [9] and Van Es, Spreij, and Van Zanten [10] first noticed this connection.
Define Zj := log y2j ; they use the following estimator to recover fσ(x),

f̂y(x) =
1

2π

1

n

n∑
j=1

∫ +∞

−∞

φK(th)

φk(t)
e−it(x−Zj)dt,

where φK is the Fourier transform of a kernel function K and φk(t) is the characteristic function of the
logχ2

1 variable. Van Es, Spreij, and Van Zanten [9] and Van Es, Spreij, and Van Zanten [10] derive the
convergence rate of the estimator, but a central limit theorem is missing.

If we assume the observed return sequence {Zj}, j = 1, · · · , n is generated by the SV model (23)
with a strict stationary, the α-mixing volatility process satisfies (12) and i.i.d. errors; a simple application
of Theorem 2 will lead to the following corollary.

Corollary 1. In the stochastic volatility model (23), when the volatility process {σj}, j = 1, · · · , n
is α-mixing with (12) satisfied, εti’s are i.i.d. N(0, 1), independent of the volatility process; when
exp (1/h) /n→ 0 as n→∞ and h→ 0, it holds that:

f̂σ(x)−Kh ∗ fσ(x)√
1

2π2n
exp (π/h) fy(x)

→d N(0, 1).

Since the density fu(x) can be estimated with the observed return sequence {log y2ti} consistently
using the classical kernel density estimator for any x (see e.g., Fan and Yao [17]), the above result can
be used to construct pointwise confidence intervals for the kernel deconvolution density estimator.

5. Conclusions

In this paper, I have proven the asymptotic normality for the kernel deconvolution estimator with
logarithmic chi-square noise. I consider both the case of identical and independently distributed
observations and strong mixing observations. The results are applied to prove the asymptotic normality
of the kernel deconvolution estimator for volatility density in stochastic volatility models.
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