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Abstract: This paper models the firm’s production process as a system of simultaneous
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transforming inputs via the conventional transformation function, whereas (consistent with
the material balance condition) undesirable outputs are by-produced via the so-called
“residual generation technology”. By separating the production of undesirable outputs
from that of desirable outputs, not only do we ensure that undesirable outputs are
not modeled as inputs and thus satisfy costly disposability, but we are also able
to differentiate between the traditional (desirable-output-oriented) technical productivity
and the undesirable-output-oriented environmental, or so-called “green”, productivity.
To measure the latter, we derive a Solow-type Divisia environmental productivity index
which, unlike conventional productivity indices, allows crediting the ceteris paribus
reduction in undesirable outputs. Our index also provides a meaningful way to decompose
environmental productivity into environmental technological and efficiency changes.
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1. Introduction

The by-production of undesirable, or so-called “bad”, outputs is an inherent attribute of many
production processes. Electric power generation is a classical example of such a process, where
the production of electricity (desirable output) is accompanied by the emission of pollutant gases
(undesirable outputs). It is therefore imperative to account for undesirable outputs when estimating
the productivity growth for such processes (e.g., see [1,2]).

The estimation of productivity (and, potentially, its components) naturally requires the estimation
of the firm’s production process, the modeling of which in the presence of undesirable outputs is
however not a clear-cut issue. A standard approach is to condition the conventional transformation
(production) function on undesirable outputs (e.g., [3–5]) which, effectively, treats these outputs as
inputs. Such a treatment of undesirable outputs has since been heavily criticized due the implied
strong disposability of undesirable outputs [6] and the violation of the “material balance condition” [7].
A popular alternative approach to tackling undesirable outputs is to specify a (single) directional output
distance function [6,8] which accommodates both the expansion in desirable outputs and a simultaneous
contraction in undesirable outputs. Feng and Serletis [9] have recently proposed a primal Divisia
productivity index based on such a directional output distance function.

Both the directional output distance function and the productivity index based on the latter allow the
identification of a “composite” measure of inefficiency and productivity (respectively) only. Specifically,
when modeling the production technology via a (single) directional distance function (e.g., [6]), the
inefficiency is defined over the entire vector of outputs, both desirable and undesirable. This produces
a single measure of inefficiency which is a weighted combination of the technical and environmental
inefficiencies, where the “weighting” is done on the basis of the prespecified directional vector. Similarly,
the directional-output-distance-function-based productivity index identifies the “composite” productivity
growth only. Thus, modeling undesirable outputs via the standard directional functions precludes
researchers from disentangling the technical inefficiency/productivity, conventionally oriented along
desirable outputs, from the environmental, or so-called “green”, inefficiency/productivity, oriented along
undesirable outputs.1 Both can be of great interest from a policy perspective.

In this paper, we follow a different path to modeling the production process with undesirable outputs
in the spirit of Fernández et al. [11,12], Forsund [13] and Murty et al. [7]. Specifically, we model the
firm’s production process as a system of separate simultaneous production technologies for desirable
and undesirable outputs. In this setup, desirable outputs are produced by transforming inputs via the
conventional transformation function satisfying all standard assumptions. Consistent with the material
balance condition, the by-production of undesirable outputs is however treated as the so-called “residual
generation technology”. The above setup explicitly recognizes that the generation of undesirable outputs
is not the intended production but rather the by-production process. By separating the generation of

1 Färe and Grosskopf [10] have recently proposed the slacks-based directional distance function which allows inefficiency
to be input- and output-specific. The estimation of such slacks-based inefficiencies however is feasible under the
deterministic treatment of the production technology only. In this paper, we focus on the econometric estimation of
stochastic production technologies that accommodate random disturbances.
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undesirable outputs from that of desirable outputs, we ensure that the former are not modeled as inputs
as well as take into account their “costly disposability” (see [7]).

The by-production system approach that we employ in this paper permits us to not only distinguish
between technical efficiency and (undesirable-output-specific) environmental efficiencies but to also
differentiate between traditional technical productivity and environmental (“green”) productivity.
Specifically, we derive a Solow [14] type primal (Divisia) environmental productivity index which,
unlike a conventional desirable-output-oriented productivity index, is defined as the contraction rate
in undesirable outputs unexplained by the contraction in desirable outputs. This allows us to credit
the ceteris paribus reduction in undesirable outputs. Our environmental productivity index also
provides a meaningful way to decompose productivity into environmental technological change and
environmental efficiency change.

We apply our system approach as well as the environmental productivity index to study the efficiency
and productivity trends among coal-fired electric power generating plants in the U.S. during the
1985–1995 period. The production of (desirable) electric power by these utilities is accompanied by
the (undesirable) emission of SO2 and NOx gases.

We estimate the model subject to theoretical regularity conditions using (numerically) efficient
Bayesian MCMC technique, where we also allow for unobserved plant-specific heterogeneity in
addition to time-varying inefficiencies. We impose monotonicity and curvature regularity restrictions
(at every data point) in order to ensure that our results are economically meaningful, as emphasized
by Barnett et al. [15] and Barnett [16]. Among many things, we find that electric utilities in our
sample tend to suffer from higher levels of environmental inefficiency in the emission of SO2 than in the
emission of NOx gases. We also document a significant divergence between the electric-power-oriented
technical productivity and the emission-oriented environmental productivity. Specifically, we find
that, while the pooled posterior mean estimate of (annual) productivity growth is negative for electric
power generation (–0.13%), it is non-negligibly positive for the SO2 and NOx emissions:2 2.25% and
3.31% per annum, respectively. The cumulative eleven-year growth is 23.26% for the SO2-oriented
environmental productivity, 37.98% for the NOx-oriented environmental producitivity and a mere 5.33%
for the electric-power-oriented technical productivity.

The rest of the paper proceeds as follows. Section 2 describes the by-production system approach to
modeling production technology in the presence of undesirable outputs as well as provides the derivation
of the environmental productivity index. Data are discussed in Section 3. We explain our econometric
strategy in Section 4. Section 5 presents the results, and Section 6 concludes.

2. The By-Production Model

Building on Fernández et al. [11,12], the undesirable-output-generating production system (T) with
J inputs X ∈ RJ

+, M desirable outputs Y ∈ RM
+ and P undesirable outputs B ∈ RP

+ can be formalized

2 Implying a ceteris paribus contraction in these emissions.
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as the intersection of the primary technology used in the production of desirable outputs (T0) and P
individual undesirable-output residual generation technologies (Tp, p = 1, . . . , P ), i.e.,3

T = T0 ∩ T1 ∩ · · · ∩ Tp · · · ∩ TP , where

T0
def
= {(X,Y) : X can produce Y}

Tp
def
= {(Bp,Y) : Y generates Bp} ∀ p = 1, . . . , P. (1)

Consider the case of J = 3 inputs, M = 1 desirable and P = 2 undesirable outputs (as in our
empirical application). Allowing for technical inefficiency in the production of a desirable output and
environmental inefficiency in the by-production of undesirable outputs, we rewrite system T in terms
of the stochastic transformation function and two separate (environmental) residual generation functions
for each undesirable output, i.e.,

F (X, θ−1Y ) = exp{v0} (2a)

Hp (Y, λpBp) = exp{vp} ∀ p = 1, 2, (2b)

where θ ≤ 1 and λp ≤ 1 are technical and environmental efficiencies, respectively; and (v0, vp) are the
white noise terms. The transformation function F (·) is assumed to satisfy all standard properties such as
continuity, positive (negative) monotonicity in Y (X), linear homogeneity in Y and concavity in X and
Y . Similarly, the residual generation function Hp(·) is continuous, positively (negatively) monotonic in
Bp (Y ), linearly homogeneous in Bp and convex in Y and Bp.

Thus, the production system (2) permits the identification of both the technical and environmental
efficiencies: θ and λp (p = 1, . . . , P ). The latter is feasible due to the separability of the primary
desirable-output generating production technology (2a) from the undesirable-output residual generating
technologies (2b), which is motivated by the by-production approach satisfying the material balance
condition. For instance, one would generally be unable to disentangle technical and environmental
efficiencies (the way the above system approach allows us to) if following a popular alternative to
the estimation of production processes in the presence of undesirable outputs based on the directional
distance function [8].

Specifically, when modeling the production technology via a (single) directional distance function
(e.g., [6]), the inefficiency is defined over the entire vector of outputs, both desirable and undesirable,
using an a priori specified directional vector. The latter precludes researchers from disentangling
the technical inefficiency conventionally oriented along desirable outputs from the environmental
inefficiency oriented along undesirable outputs. The directional distance function rather produces
a “composite” measure of inefficiency which is a weighted combination of the two, where the
“weighting” is done on the basis of the prespecified direction. Further, unlike a system in (2), the
directional distance function yields an additive, not a proportional, measure of inefficiency.

3 We differ from Fernández et al. [11,12] by formulating separate residual generation technologies for each undesirable
output. The latter allows us to gauge Bp-specific “green” productivity.



Econometrics 2015, 3 447

Technical and Environmental Productivity

The production system T that we consider in this paper permits us to not only distinguish between
technical efficiency θ (conventionally defined over the desirable output) and undesirable-output-specific
environmental efficiencies {λp; p = 1, . . . , P} but to also differentiate between traditional technical
productivity and environmental, or the so-called “green”, productivity.

Letting time t enter the transformation and residual generation functions F (·) and Hp(·) explicitly
and making use of their linear homogeneity properties, system (2) can be rewritten in the log form as

lnYt = ln f(Xt, t)− u0,t + v0,t (3a)

lnBp,t = lnhp(Yt, t) + up,t + vp,t ∀ p = 1, 2, (3b)

where, for convenience, we define f(·) def
= [F (·, 1)]−1 and hp(·)

def
= [Hp(·, 1)]−1; and u0,t

def
= − ln θt ≥ 0

and up,t
def
= − lnλp,t ≥ 0 (p = 1, 2) are technical and environmental inefficiencies, respectively.

Total differentiation of (3) with respect to t yields

d lnYt
dt

=
J∑
j=1

∂ ln f(Xt, t)

∂ lnXj,t

∂ lnXj,t

∂t
+
∂ ln f(Xt, t)

∂t
− ∂u0,t

∂t
(4a)

d lnBp,t

dt
=
∂ lnhp(Yt, t)

∂ lnYt

∂ lnYt
∂t

+
∂ lnhp(Y, t)

∂t
+
∂up,t
∂t

∀ p = 1, 2, (4b)

where we have made use of ∂v0,t/∂t = ∂vp,t/∂t = 0 since (v0, vp) are the i.i.d. white noise. After some
rearranging, from (4a) we get the following Solow [14] type (Divisia) technical productivity index:

TPG
def
=
d lnYt
dt

−
J∑
j=1

∂ ln f(Xt, t)

∂ lnXj,t

∂ lnXj,t

∂t
=
∂ ln f(Xt, t)

∂t︸ ︷︷ ︸
TTC

−∂u0,t

∂t︸ ︷︷ ︸
TEC

, (5)

along with the similarly defined environmental productivity index from (4b):

EPGp
def
= −

(
d lnBp,t

dt
− ∂ lnhp(Yt, t)

∂ lnYt

∂ lnYt
∂t

)
= −∂ lnhp(Y, t)

∂t︸ ︷︷ ︸
ETCp

−∂up,t
∂t︸ ︷︷ ︸

EECp

∀ p = 1, 2. (6)

The negative monotonicity of F (·) and Hp(·) in inputs and desirable outputs, respectively, imply that
∂ ln f(Xt, t)/∂ lnXj,t ≥ 0 and ∂ lnhp(Yt, t)/∂ lnYt ≥ 0.4

Unlike TPG which is conventionally defined as the expansion rate in a desirable output unexplained
by the growth in inputs, the environmental productivity index EPG is defined as the contraction rate
in an undesirable output unexplained by the contraction in desirable outputs.5 This allows crediting the
ceteris paribus reduction in undesirable outputs.

4 Recall that f(·) = [F (·, 1)]−1 and hp(·) = [Hp(·, 1)]−1. Hence, negative monotonicity of F (·) and Hp(·) imply positive
monotonicity of f(·) and hp(·).

5 Recall that the quantity of undesirable outputs does down as desirable outputs decrease due to the complementarity of the
two types of outputs.
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Further, Equations (5) and (6) provide a meaningful way to decompose respective productivity indices
into technical/technological change and efficiency change. The conventional technical productivity
index TPG equals the sum of the technical change TTC = ∂ ln f(Xt, t)/∂t, which measures the
temporal shift in the production frontier, and technical efficiency change TEC = −∂u0,t/∂t, which
measures the movement toward (away from) the frontier. Similarly, the Bp-oriented environmental
productivity index EPGp is decomposed into similarly interpreted environmental technological change
ETCp = −∂ lnhp(Yt, t)/∂t and environmental efficiency change EECp = −∂up,t/∂t.

Note the conceptual difference between the definition of a “technological progress” for desirable
outputs and that for undesirable outputs. Namely, for a desirable output Y the technological progress
corresponds to the case of TTC > 0, i.e., an outward shift in the production frontier over time, whereas
for an undesirable output Bp the technological progress corresponds to ETCp < 0, i.e., an inward shift
in the residual generating frontier over time. Thus, the residual generating frontier Hp(·) (p = 1, . . . , P )

is defined as the minimum quantity of undesirable output generated when producing a given quantity of
desirable outputs subject to the material balance condition.

We emphasize that the primary advantage of employing a system approach to model the production
process with undesirable outputs, which we consider in this paper, is the opportunity to disentangle
technical and environmental productivities. For instance, as in the case of inefficiency, one generally
cannot do that when using the productivity index based on the directional distance function [9].

3. Data

The data we use come from Pasurka [17] and Murty et al. [7]. A balanced panel consists of 92
coal-fired electric power generating plants operating in the U.S. over the period from 1985 to 1995. We
focus on coal-fired plants only in order to minimize heterogeneity among units. More specifically, we
focus on utilities of which at least 95% of total fuel consumption (measured in Btu) come from coal. We
also exclude utilities whose consumption of fuels other than coal, oil and natural gas exceeds 10−4% of
total fuel consumption.

The specification of outputs and inputs is as follows. The desirable output is the net electric power
generation Y , measured in kWh. The two undesirable outputs are (i) the SO2 (sulfur dioxide) gas
emissions B1 and (ii) the NOx (nitrogen oxides) gas emissions B2, both measured in short-tons. The
three inputs to the production are (i) the real stock of physical capitalX1, constructed from historical cost
of plant data and deflated to constant dollars using the Handy-Whitman Index; (ii) labor X2, measured
in the number of employees; and (iii) energy X3, i.e., the heat content of coal, oil and natural gas
consumption, measured in Btu.

The data on the cost of plants and equipment (used in the construction of the capital stock) and
the number of employees come from the U.S. Federal Energy Regulatory Commission Form 1 survey.
The data on fuel consumption, net power generation and pollutant gas emissions come from the U.S.
Department of Energy Form EIA-767 survey. For more details on the data, see Pasurka [17].
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4. Econometric Strategy

Under the assumption of the translog functional form of ln f(·) and lnhb(·), from system (3) we get
the following system consisting of the production function for a desirable output Yit:

yit = α0,i +
J∑
j=1

αjxj,it +
1

2

J∑
h=1

J∑
j=1

αhjxh,itxj,it +

T∑
t′=1

βt′Dit′ +
T∑
t′=1

J∑
j=1

βt′jDit′xj,it′ + v0,it − u0,it , i = 1, . . . , n; t = 1, . . . , T, (7)

complemented by the (environmental) residual generation technologies for undesirable outputs
(B1,it, B2,it):

b1,it = γ0,i + γ1yit +
1

2
γ11y

2
it +

T∑
t′=1

ϕt′Dit +
T∑
t′=1

ϕt′1Dityit + v1,it + u1,it (8a)

b2,it = δ0,i + δ1yit +
1

2
δ11y

2
it +

T∑
t′=1

ψt′Dit +
T∑
t′=1

ψt′1Dityit + v2,it + u2,it, (8b)

where a lower-case variable denotes the log of its upper-case counterpart, and Dit denotes the time
dummy. For greater flexibility, we also allow for unobserved firm-specific heterogeneity which we
model via “true” random effects {(α0,i, γ0,i, δ0,i); i = 1, . . . , n}. The presence of these random effects
(in addition to inefficiencies) captures additional technological heterogeneity among firms.

Since yit appears on the right-hand side of equations for undesirable outputs b1,it and b2,it, it is
imperative that all three equations in (7)–(8) be estimated as a system (of simultaneous equations) in
order to control for the endogeneity of outputs. We estimate this production system subject to symmetry
(αhj = αjh) as well as monotonicity and curvature restrictions. In this paper, we thus concur with
Barnett [15] and Barnett [16] on the importance of maintaining the latter theoretical regularity conditions
when modeling technology (especially, if allowing for inefficiency) in order to ensure that the results are
economically meaningful.

Specifically, the monotonicity conditions are:

∂yit
∂xj,it

= αj +
J∑
h=1

αhjxh,it +
T∑
t′=1

βt′jDit′ ≥ 0 ∀ j = 1, . . . , J

∂b1,it

∂yit
= γ1 + γ11yit +

T∑
t′=1

ϕt′1Dit ≥ 0

∂b2,it

∂yit
= δ1 + δ11yit +

T∑
t′=1

ψt′1Dit ≥ 0. (9)

The curvature is imposed using restrictions on the eigenvalues of the Hessian matrices in levels
(see [18]). We employ the following stochastic specification for system (7)–(8):

vit = [v0,it, v1,it, v2,it]
′ ∼ i.i.d. N (0,Σ)

uit = [u0,it, u1,it, u2,it]
′ ∼ N+(Zitτ ,Σu), (10)
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where N+ denotes the (multivariate) half-normal distribution;6 Σ and Σu are the covariance matrices;
Zit = I3 ⊗ D where Iκ is an identity matrix of dimension κ and D = [Di1, . . . , DiT ]′; and τ =

vec {τkt; k = 0, 1, 2; t = 1, . . . , T} is a set of 3T unknown parameters. The location parameters of each
inefficiency term uk,it (k = 0, 1, 2) is given by

∑T
t=1 τktDit. Thus, for greater flexibility in modeling

time effects, we allow inefficiency to be time-varying (i.e., a function of the time dummies). The error
components (vit,uit) are assumed to be orthogonal as well as independent of xj,it (j = 1, . . . , J).
Further, the random effects (α0,i, γ0,i, δ0,i) are assumed to be identically, independently distributed from
the error components (vit,uit) as well as independent of xj,it (j = 1, . . . , J):

[α0,i, γ0,i, δ0,i]
′ ∼ i.i.d. N (0,Ω) , (11)

where Ω = diag{σ2
α, σ

2
γ, σ

2
δ}.

4.1. Priors

For the parameters in system (7)–(8), which we collectively denote by ϑ, we assume
a non-informative prior that imposes the regularity restrictions so that p(ϑ) ∝ I(ϑ ∈ R), where
R denotes the set of acceptable parameters. For scale parameters

(
σ2
α, σ

2
γ, σ

2
δ

)
, we assume p(σk) ∝

σ−(N ′+1) exp {−Q′/(2σ2
k)} ∀ k ∈ {α, γ, δ}, where N ′ = 1 and Q′ = 10−4. For τ , we assume a proper

but relatively non-informative prior of the form τ ∼ N (0, cI3T ) with c = 104. For Σ and Σu, we
assume proper but relatively non-informative priors in the Wishart family. The results are not sensitive
to c, N ′ or Q′ unless c becomes approximately less than 0.1, in which case it approaches the domain of
a dogmatic prior.

One may inquire if it would be possible to select objective priors such as in the case of Jeffreys’
prior. One way to proceed with objective priors would be along the lines of Berger and Mortera [20]
and Mulder et al. [21]. For instance, the use of a constrained posterior prior along the lines of Berger and
Mortera [20] is an option. The Jeffreys’ prior cannot be obtained analytically but can be computed using
numerical or analytic derivatives. This computation is certainly heavy. Furthermore, the Jeffreys’ prior
is not used as much in the present literature, and the emphasis is rather placed on the so-called intrinsic
Bayes factor (see [22]). We leave the issue for future research, but we do not expect much change since
our results were not sensitive to important aspects of the prior.

4.2. Posterior Distribution

For convenience, we let σ2 def
=
(
σ2
α, σ

2
γ, σ

2
δ

)
andαi

def
= (α0,i, γ0,i, δ0,i). The kernel posterior distribution

of all parameters denoted by θ ∈ Rd (a superset of ϑ), if conditioned on the latent inefficiencies and
random effects, is given by

p (θ|Ξ,α,u) ∝ |Σ|−nT/2 exp

{
−1

2

n∑
i=1

T∑
t=1

(rit − uit)Σ
−1(rit − uit)

}
×

6 For a similar stochastic formulation, e.g., see Koop and Steel [19].
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exp

{
−1

2

n∑
i=1

T∑
t=1

(uit − Zitτ )Σ−1
u (uit − Zitτ )

}
×

n∏
i=1

T∏
t=1

Φ−1
3 (Cu(Zitτ ))× p(ϑ, τ ,Σ,Σu,σ), (12)

where α = {αi; i = 1, . . . , n} and u = {uit; i = 1, . . . , n; t = 1, . . . , T ). Also:

rit =

−yit + α0,i + Ξ0,itϑ0

b1,it − γ0,i −Ξ1,itϑ1

b2,it − δ0,i −Ξ1,itϑ2

 , (13)

where Ξ0,it and Ξ1,it denote regressors in (7) and (8), respectively (some of which are endogenous);
{ϑk; k = 0, 1, 2} denotes vectors of parameters in the three equations of the system and ϑ =

[ϑ′0,ϑ
′
1,ϑ

′
2]
′; and Ξ = {Ξ0,it,Ξ1,it, yit, b1,it, b2,it; i = 1, . . . , n; t = 1, . . . , T} denotes the entire

available data. Further, Σ−1
u = C′uCu (via the Cholesky decomposition) and Φk(w) denotes the k-variate

normal probability integral evaluated at some vector w ∈ Rk.
The first term in the third line of (12) owes to the constraint uit ≥ 0. Specifically, our stochastic

assumptions about uit imply the density

p(uit|Zit, τ ,Σu) = (2π)−3/2|Σu|−1/2Φ−1
3 (Cu(Zitτ ))×

exp

{
−1

2
(uit − Zitτ )Σ−1

u (uit − Zitτ )

}
, (14)

which requires the evaluation of a tri-variate normal integral that can be performed using standard
numerical algorithms. Before proceeding with MCMC methods for inference, note that the posterior
is given by

p (θ|Ξ) ∝
∫
Rn

∫
RnT
+

p (θ|Ξ,α,u) dudα. (15)

While the multivariate integration can be performed in the closed form with respect to inefficiencies
u, the induced nonlinearity however precludes analytical integration with respect to random effects α.
We are not aware of any efficient MCMC scheme that draws these random effects as a block from the
posterior, especially when n is relatively large.

The posterior conditional distribution of latent inefficiencies is

uit|· ∼ N+

(
V(Σ−1rit + Σ−1

u Zitτ ),V
)
, (16)

where V = (Σ−1 + Σ−1
u )
−1. Draws from the above conditional distribution can be easily obtained. The

same is true for the posterior conditional distribution of the random effects if we write rit from (13) as
rit ≡ αi−Rit, where Rit is defined in an obvious way. We can then draw the random effects as a block
for observation i as follows

αi|· ∼ N (αi,Vα) , (17)

where
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αi =
(
TΣ + Ω−1

)−1 × TΣ−1Ri , Ri = T−1

T∑
t=1

Rit

Vα =
(
TΣ + Ω−1

)−1
. (18)

If it were not for the regularity constraints and the non-standard form of the posterior conditional
distribution of τ (due do the term involving the multivariate normal integral), we could easily derive the
posterior conditional distribution of parameters of interest ϑ.

Collecting data for all observations over i = 1, . . . , n and t = 1, . . . , T , we rewrite our model in
an obvious matrix notation: 

y + u0 = Ξ0ϑ0 + v0

b1 − u1 = Ξ1ϑ1 + v1

b2 − u2 = Ξ1ϑ2 + v2

u0 = Zτ 0 + ζ0

u1 = Zτ 1 + ζ1

u2 = Zτ 2 + ζ2


, (19)

where we assume
ζ = [ζ ′0, ζ

′
1, ζ
′
2]
′ ∼ N (0,Σu). (20)

We rewrite the system of equations (19) compactly as

Y = X$ + E, (21)

where Y is an nT × (2 × 3) vector of “data” appearing on the left-hand side of equalities in (19),
X = diag{Ξ0,Ξ1,Ξ2,Z,Z,Z}, E = [v′0,v

′
1,v

′
2, ζ
′
0, ζ
′
1, ζ
′
2]′ and $ = [ϑ′, τ ′]′ is a conformable vector

of parameters.
System (21) takes the form of a multivariate regression model with

cov{E} = V = Φ⊗ InT , where Φ =

[
Σ 0

0 Σu

]
. (22)

The GLS estimator of Θ is given by

$̂ =
(
X′V−1X

)−1 X′V−1Y, (23)

with the corresponding covariance matrix:

cov{$̂} =
(
X′V−1X

)−1
. (24)

We note that the above approximation however ignores that ϑ included in $ needs to satisfy ϑ ∈ R

(the regularity conditions).
Let us define a multivariate normal distribution centered at $̂ of which the covariance is h× cov{$̂}

for some constant h > 0. We denote this distribution by fN ,κ ($; $̂, h× cov{$̂}), where κ is the
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dimensionality of $, i.e., the number of parameters in the extended system (19). We use the GLS
quantities to form a proposal density for generating candidate parameter draws as we describe below.

Next, we describe how to realize draws from the conditional posterior distributions of σ, Σ and
Σu. Except for Σu, σ and Σ can be drawn from standard statistical distributions. Specifically, for the
elements of σ we have:

Q′ +Qα

σ2
α

|θ−α,Ξ ∼ χ2
n+N ′

Q′ +Qγ

σ2
γ

|θ−γ,Ξ ∼ χ2
n+N ′

Q′ +Qδ

σ2
δ

|θ−δ,Ξ ∼ χ2
n+N ′ , (25)

where Qα =
∑n

i=1 α
2
0,i, Qγ =

∑n
i=1 γ

2
0,i and Qδ =

∑n
i=1 δ

2
0,i. Here, θ−k denotes all elements of

the entire parameter vector θ including all latent variables except the indicated subscripted parameter
k ∈ {α, γ, δ}.

Our priors are conditionally conjugate, i.e.,

p (Σ) ∝ |Σ−1|N+nT−(3+1)/2 exp

{
−1

2
AΣ−1

}
p (Σu) ∝ |Σ−1

u |N−(3+1)/2 exp

{
−1

2
AuΣ

−1
u

}
, (26)

whereN is a scalar prior parameter and A,Au are prior matrices. In our empirical work we takeN = 10

andA = Au = 10−3 × I3.
The posterior conditional of Σ is

p
(
Σ−1|θ−Σ,Ξ

)
∝ |Σ−1|N+nT−(3+1)/2 exp

{
−1

2
tr{A + A}Σ−1

}
, (27)

where A = (Yk − Xkϑk) (Yk′ − Xk′ϑk′)
′ for k, k′ = 0, 1, 2.

The conditional posterior of Σu is

p
(
Σ−1
u |θ−Σu ,Ξ

)
∝ |Σ−1

u |N+nT−(3+1)/2 exp

{
−1

2
tr{Au + Au}Σ−1

u

}
×

n∏
i=1

T∏
t=1

Φ−1
3 (Cu(Zitτ )) , (28)

where Au = (um −Dτm) (um −Dτm)′ for k, k′ = 0, 1, 2.
Clearly, Σ−1 belongs to the Wishart family. The same would have been true for Σu if it were not for

the second line of (28) which involves the Cholesky factor of this matrix. Therefore, we use the Wishart
distribution to draw a candidate matrix and we retain the candidate with probability

min

1,

∏n
i=1

∏T
t=1 Φ−1

3

(
C

(c)
u (Zitτ )

)
∏n

i=1

∏T
t=1 Φ−1

3

(
C

(s)
u (Zitτ )

)
 , (29)

where C
(c)
u denotes the candidate draw and C

(s)
u is the existing sth draw (s = 1, ..., S).



Econometrics 2015, 3 454

4.3. Imposition of Restrictions

Imposing restrictions is not trivial in our application. Since the restrictions depend on the data, we
adopt the following strategy. We draw from the proposal density described in the previous subsection
subject to the constraints ϑ ∈ R using a special form of rejection to improve the efficiency of “naive
rejection” which would keep drawing parameters until all constraints are satisfied. Specifically, we first
use acceptance at a limited number of points to facilitate acceptance and then we keep drawing from the
proposal distribution until all regularity constraints hold at all data points.

We first impose the restrictions at the means of variables (normalized to zero) and then at points ±r
around the mean. We choose r = {0.5, 1, 2, 3}, and the restrictions hold without much trouble in the
positive direction. In the negative direction, the restrictions are first tested for r = −0.1,−0.2, ...,−2

and then tested at the remaining points. This yields considerable improvement in the efficiency (i.e.,
timing) of acceptance rates from a density which we describe next.

Based on a current draw $(s) such that ϑ(s) ∈ R, a new candidate $(c) ∼ N ($̂, h × cov{$̂}) ×
I(ϑ(c) ∈ R) is generated until it satisfies the regularity restrictions. The candidate is accepted and we
set$(s+1) = $(c) with the Metropolis-Hastings probability

min

{
1,

p($(c)|α,u,Ξ)/fN ,κ

(
$(c); $̂, h× cov{$̂}

)
p($(s)|α,u,Ξ)/fN ,κ ($(s); $̂, h× cov{$̂})

}
, (30)

otherwise we repeat the current draw, that is $(s+1) = $(s); s = 1, . . . , S. We adjust the scaling
constant h so that the acceptance rate of the Metropolis-Hastings algorithm is between 20% and 30%.
The Metropolis-Hastings algorithm also takes care of nonlinearity of the posterior in τ .

We generate the covariance matrix Σ and scale parameters σ from their respective posterior
conditional distributions which are all in standard form (inverted Wishart and inverted Gamma). The
latter however is not the case for Σu (i.e., this matrix cannot be drawn using an inverted Wishart). We
therefore take an extra Metropolis-Hastings step to accommodate the presence of the Cholesky factor of
Σu (i.e., Cu) in the posterior inside the multivariate normal integral. Acceptance rates using a simple
Metropolis-Hastings step were quite high (over 90%), and simple scaling has brought it down to the
range of 20%–25%.

Our MCMC uses S ′ preliminary or transient passes until we obtain convergence using Geweke’s [23]
relative numerical efficiency (RNE) diagnostic. Once convergence is achieved, we take another 100,000
passes. We do not use thinning. Instead, we report posterior standard deviations based on Newey-West
HAC covariance matrices using 10 lags. For details, see Table 1.
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Table 1. Computational Experience with the Data.

(1) (2)

median RNE 0.113 0.615
median NSE 0.0010 0.0012
draws to convergence 150,000 70,000
median ACF at lag 50 0.977 0.312

NOTES: (1) denotes MCMC using full MCMC, drawing random effects and inefficiencies through regular Gibbs
sampling. In (2), MCMC is applied by marginalizing the random effects to draw inefficiencies. RNE—relative
numerical efficiency; NSE—numerical standard error; ACF—autocorrelation function.

4.4. Improving Performance of MCMC

We can explicitly integrate u out of (12) to obtain a kernel posterior of the following form:

p (θ|Ξ,α) ∝
∫
RnT
+

p (θ|Ξ,α,u) du. (31)

Further, we can also derive the closed-form conditional posterior of random effects p(α|Ξ,θ−α).
We can achieve a significant improvement of MCMC performance by recognizing that the random

effectsα can be explicitly integrated out of the posterior, when the parameters ϑ are drawn. Specifically,
similar to (19), we consider the following system

yit + u0,it = α0,i + Ξ0,itϑ0 + v0,it

b1,it − u1,it = γ0,i + Ξ1,itϑ1 + v1,it

b2,it − u2,it = δ0,i + Ξ1,itϑ2 + v2,it, (32)

which we can rewrite in compact notation as

Yit = αi + Xitϑ+ vit, (33)

where Xit = diag{Ξ0,it,Ξ1,it,Ξ2,it}. Collecting all (time) observations for a given firm i together,
we obtain:

Yi = Xiϑ+ Vi, (34)

where Yi, Xi and Vi are defined in an obvious way. Clearly:

Vi ∼ N (0, Ω⊗ JT + Σ⊗IT ) ∀ i = 1, . . . , n, (35)

where JT is a T × T matrix of which all elements are equal to one.
Therefore, we can redefine the GLS quantities that are used to obtain a good proposal distribution for

ϑ using the following as the covariance matrix V, i.e.,

V = (Ω⊗ JT + Σ⊗ IT )⊗ In. (36)

Using the modified proposal density, we effectively marginalize out the random firm-specific effects
from the posterior and thus can draw latent inefficiencies uit marginally on these effects hoping to reduce
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overall autocorrelation in MCMC due to the correlation between αi and uit.7 This requires a trivial
modification in the way we draw latent inefficiencies.

Since model (32) may be written as

−yit = −α0,i −Ξ0,itϑ0 − v0,it + u0,it

b1,it = γ0,i + Ξ1,itϑ1 + v1,it + u1,it

b2,it = δ0,i + Ξ1,itϑ2 + v2,it + u2,it, (37)

after collecting all (time) observations for a given firm i, in obvious notation, we have

Ψi = Xiϑ+ Vi + Ui, (38)

where Xi and Vi are naturally redefined to account for a change of sign in the first equation of (37) in
order to accommodate a uniform sign in front of inefficiencies Ui. Also recall that Vi and its stochastic
properties have been defined before. Now we can draw 3T × 1 inefficiencies Ui as a block, after we
couple system (38) with the following specification:

Ui = (IT ⊗ Zi) τ + ζi (39)

subject to Ui ≥ 0 and ζi ∼ N (0, Σu ⊗ IT ); i = 1, . . . , n.
Since

cov{Ui, ζi} =

[
Ω⊗ JT + Σ⊗ IT 0

0 Σu ⊗ IT

]
def
=

[
H 0

0 M

]
, (40)

we can draw latent inefficiencies, marginally on random effects, using the following multivariate
truncated normal distributions, i.e.,

Ui ∼ N+

(
Ũi, W

)
, (41)

the first two moments of which are

Ũi =
(
H−1 + M−1

)−1 {H−1 (Ψi − Xiϑ) + M−1 (IT ⊗ Zi) τ
}

W =
(
H−1 + M−1

)−1
. (42)

We have found that drawing blocks of latent inefficiencies marginally on random effects αi (and
conditionally on various covariance matrices and (ϑ, τ )) results in vast improvements in terms of
computational efficiency. Table 1 summarizes our computational experience with the data.

4.5. Random Effects

Based on our discussion above, we note that given the way the variance parameters σ2 enter the
covariance matrix Ω, in principle, there is no problem in treating the random effects αi as jointly
normally distributed, i.e., αi ∼ N (0,Ω), independently over i = 1, ..., n as well as independent from
all other random variables and regressors in the model. All our derivations, including the conditional

7 For alternative ways to reduce this correlation in multiple random-effect models, see Tsionas and Kumbhakar [24].
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posterior distribution of αi, hold true. The only difference is that, in a more general setting (when
random effects are allowed to be correlated across equations) one has to draw Ω from its conditional
posterior distribution as a general positive definite matrix, whereas, when the random effects are a priori
independent, the problem boils down to drawing variances σ2 only.

A general case of correlated random effects has an empirical implication of firm-specific effects in the
production function being correlated with those in residual generation functions for undesirable outputs.
The latter possibility is testable and is of interest on its own. Should Ω be found not to be diagonal, one
should naturally focus on the sign of the correlation between the random effects.

Given a proper prior p (Ω) on the different elements of Ω and the marginal posterior p (Ω|Ξ),
the Verdinelli and Wasserman [25] approach to computing the Bayes factor in favor of diagonality is
given by

BFdiag =
p (Ω = diagonal|Ξ)

p (Ω = diagonal)
, (43)

which, in the general case, involves testing k (k − 1) /2 zero restrictions, where k is the dimension of Ω

(in our case, k = 3). By “Ω = diagonal”, we mean the zero restrictions Ωij = 0, i > j, i, j = 1, ..., 3,
where Ω ≡ [Ωij].

While the denominator of BFdiag is easy to compute, the numerator is computed in a standard
fashion as

p (Ω = diagonal|Ξ) = S−1

S∑
s=1

p
(
Ω = diagonal,θ

(s)
−Ω|Ξ

)
(44)

where θ(s)
−Ω is the sth (of S) MCMC draw of all parameters θ except those in Ω. Note that θ(s)

−Ω does
include the diagonal elements of Ω in this computation.

It remains to show how draws from the conditional posterior distribution may be realized. Our prior
is conditionally conjugate and has the following form:

p
(
Ω−1

)
∝
∣∣Ω−1

∣∣No−(3+1)/2
exp

{
−1

2
tr{AoΩ

−1}
}
. (45)

The conditional posterior distribution is given by

p
(
Ω−1|θ−Ω,Ξ

)
∝
∣∣Ω−1

∣∣No+nT−(3+1)/2
exp

{
−1

2
tr{Ao + AΩ}Ω−1

}
, (46)

where AΩ =
∑n

i=1 RiR
′
i and Ri

def
= αi − rit as before. We define the baseline prior using N o = 10 and

Ao = c× I3 with c = 10−3. Clearly, Ω belongs to the Wishart family.
The Bayes factor BFdiag using the baseline prior is 2.402 × 10−3 with the corresponding range

of (1.015 × 10−5; 0.0893), which suggests that the diagonality of Ω can be definitely rejected.
In order to compute the range of BFdiag, we generate 1000 alternative priors and implement the
approximated MCMC using the sampling-iterative-resampling (SIR) algorithm which re-weights the
original MCMC sample without recomputing MCMC samples for a new prior. For each one of the
SIR re-weighted samples, we implement the Verdinelli and Wasserman [25] approach, and the range is
taken as the 95% confidence interval of the computed approximate Bayes factors in favor of diagonality.
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The 1000 alternative priors are generated by uniformly varying N o in the interval [1; 100] and c in the
interval [10−7; 10] without restricting them to integer values.

Table 2 reports the posterior means and standard deviations of the correlation coefficients
between random effects αi derived from Ω. We find that unobserved firm-specific effects are all
positively correlated.

Table 2. Correlation between Random Effects.

γ0,i δ0,i

α0,i 0.831 (0.0011) 0.630 (0.0130)
γ0,i 0.601 (0.0102)

NOTES: The random effects (α0,i, γ0,i, δ0,i) are for (y, b1, b2), respectively. Standard deviations are in
parenthesis and are computed using a Newey-West HAC correction with 10 lags.

5. Results

Before proceeding to the discussion of technical and environmental inefficiencies as well
as productivity and its components, we first focus on elasticities of the production process by electric
utilities in our data sample. Table 3 reports the summary of posterior estimates of these elasticities,
including input elasticities of the primary production function (i.e., electric power generation) as well
as elasticities of SO2 and NOx emissions (undesirable outputs) with respect to the net generated electric
power (desirable output).8 In particular, the reported input elasticity estimates imply a posterior mean
estimate of the returns to scale, defined as the sum of input elasticities, of 0.90, which suggests that, on
average, electric utilities operated at decreasing returns to scale during our sample period.

The estimates of ∂bp,it/∂yit (p = 1, 2) are of particular interest since they capture the cost of
expanding the production of electric power in terms of the associated increase in the generation of the
SO2 and NOx emissions. It is intuitive to interpret these estimates as “shadow prices” (in the elasticity
form) of the power generation. The posterior mean estimates of the two shadow prices are 1.09 and
1.13. The latter implies that, on average, an increase in the net power generation by 1% requires
a simultaneous increase in the SO2 and NOx emissions by at least 1.09% and 1.13%, respectively. Note
that emissions may increase by even more if the firm is not on the residual generating frontier, i.e.,
environmentally inefficient.

We next proceed to the discussion of technical and environmental inefficiencies exhibited by the
utilities in our sample. Figure 1 plots kernel densities of the posterior estimates of the three types of
inefficiency. In order to construct the figure, we use a Gaussian kernel with the cross-validated bandwidth
parameters. We find apparent differences between the distributions of technical and environmental
inefficiencies. Specifically, while technical inefficiency is relatively symmetrically distributed around its

8 We also reestimate our model with no theoretical regularity constraints imposed. Consistent with one’s expectations,
the unconstrained metrics generally have larger credible intervals. However, since the unconstrained estimates violate
regularity conditions dictated by economic theory and thus have no meaningful economic interpretation, we do not report
them here.
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mean of 0.09, the distribution of the NOx-oriented environmental inefficiency is noticeably skewed to the
right and the distribution of the SO2-oriented environmental inefficiency exhibits apparent bi-modality.
There may be many reasons for such a stark difference between the levels of technical and environmental
inefficiencies across utilities. One plausible explanation is that technical inefficiency may also be
capturing declines in the desirable output due to unforeseen fluctuations in the demand for electric power.
Since inputs often cannot be immediately adjusted/reallocated and electric power is not easily storable,
electric plants may be forced to under-utilize their facilities and labor, which our model would detect and
classify as technical underperformance (inefficiency) relative to the frontier. However, such a demand
uncertainty would not apply to the by-production of undesirable SO2 and NOx gases given the exact
physical relationship between the power generation and the associated emission of pollutant gases. The
latter is also capable of at least partly explaining why environmental inefficiency (in the emission of both
SO2 and NOx gases) appears to be relatively more stable over time unlike the electric-power-oriented
technical inefficiency, which we discuss in more detail later in the paper.

Table 3. Summary of Posterior Estimates.

Mean Median St.Dev. 95% Credible Interval

Elasticity
Capital Elasticity 0.2985 0.2984 0.0505 (0.1992; 0.3959)
Labor Elasticity 0.4032 0.4043 0.0482 (0.3076; 0.4935)
Energy Elasticity 0.2002 0.1998 0.0103 (0.1801; 0.2205)
RTS 0.9018 0.9032 0.0726 (0.7608; 1.0370)
SO2 Shadow Price 1.0873 1.0664 0.1437 (0.8524; 1.4334)
NOx Shadow Price 1.1275 1.1163 0.1161 (0.9366; 1.3988)

Inefficiency
Tech. Ineff. 0.0905 0.0915 0.0257 (0.0361; 0.1390)
SO2 Env. Ineff. 0.0870 0.0875 0.0351 (0.0254; 0.1504)
NOx Env. Ineff. 0.0458 0.0438 0.0156 (0.0186; 0.0798)

Efficiency Change
TEC 0.0029 0.0022 0.0308 (–0.0575; 0.0647)
SO2 EEC –0.0000 –0.0004 0.0099 (–0.0133; 0.0207)
NOx EEC 0.0000 –0.0004 0.0038 (–0.0050; 0.0107)

Technological Change
TTC –0.0042 –0.0027 0.0104 (–0.0272; 0.0117)
SO2 ETC 0.0225 0.0224 0.0110 (0.0024; 0.0446)
NOx ETC 0.0331 0.0332 0.0052 (0.0229; 0.0431)

Productivity Growth
TPG –0.0013 0.0009 0.0323 (–0.0663; 0.0626)
SO2 EPG 0.0225 0.0220 0.0149 (–0.0021; 0.0495)
NOx EPG 0.0331 0.0330 0.0064 (0.0211; 0.0453)
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Figure 1. Kernel Densities of Technical and Environmental Inefficiency Estimates.

Further, we find that electric utilities tend to suffer from higher levels of inefficiency in the emission
of SO2 than in the emission of NOx gases. These differences may be reflective of varying degree of
strictness of environmental regulations (or the degree of their enforceability) for different pollutants
across states. For instance, loose regulations for the SO2 emissions could potentially explain why the
SO2-oriented environmental inefficiency is considerably higher on average and is more dispersedly
distributed than the NOx-oriented inefficiency. Lastly, we document little correlation between the
two environmental inefficiencies as well as between the environmental inefficiencies and the technical
inefficiency. Table 4 reports such Spearman rank correlation coefficients for the posterior inefficiency
estimates. For instance, there appears to be virtually no relationship between the electric-power-oriented
technical inefficiency and the SO2-oriented environmental inefficiency exhibited by utilities.

Table 4. Rank Correlation Coefficients.

Inefficiency Efficiency Change

Tech. Ineff 1.000 TEC 1.000
SO2 Env. Ineff 0.080 1.000 SO2 EEC –0.059 1.000
NOx Env. Ineff 0.112 0.227 1.000 NOx EEC 0.080 0.139 1.000

Technological Change Productivity Growth

TTC 1.000 TPG 1.000
SO2 ETC –0.001 1.000 SO2 EPG –0.024 1.000
NOx ETC –0.020 0.045 1.000 NOx EPG –0.049 0.065 1.000

We next proceed to the posterior estimates of the productivity growth components—technological
change and efficiency change—as defined in (5) and (6). From Table 3, we see that the levels of both
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environmental efficiencies appear to be stable over time: posterior mean estimates of the SO2 EEC and
the NOx EEC are virtually zero. The left panel of Figure 2, which depicts box-and-whiskers plots of
the distributions of technical and environmental efficiency change estimates for each year in our sample,
confirms the relative stability of environmental efficiency levels (see the left panel of the figure). The
electric-power-oriented (i.e., desirable-output-oriented) technical efficiency is however less stable over
the course of the years. The mean estimates of TEC are predominantly positive across utilities in 1986,
1988 and 1995, whereas a significant decrease in efficiency is documented for 1987 and 1994. However,
the mean posterior estimate of TEC pooled over the entire sample is a mere 0.29% (also see Table 3).

We document several regularities in the estimates of the technological change. First, the technical
change TTC is primarily negative and is close to zero in the production of electric power (a desirable
output). The posterior mean estimate of annual TTC is –0.42%. This finding is in sharp contrast with
what we observe for the environmental technological change ETC. The posterior mean estimates of
ETC for the SO2 and NOx emissions (undesirable outputs) are staggering 2.25% and 3.31% per annum,
respectively. Second, we find that technological change is fairly stable across the years in all dimensions,
be it the intended production of electric power or undesirable by-production of emission gases. The right
panel of Figure 2 confirms this observation: the distributions of TTC and the two ETC do not change
much over the course of the years.

The discussed differences in the temporal dynamics between technical and environmental efficiency
change and technological change result in dramatic differences in the measures of productivity across
desirable and undesirable outputs. We find that, while the pooled posterior mean estimate of (annual)
productivity growth is negative for electric power generation (–0.13%), it is substantially positive for the
SO2 and NOx emissions: annual 2.25% and 3.31%, respectively. In other words, keeping input quantities
constant, the net electric power generation, on average, fell by 0.13% per year during our sample period.
Utilities however did a significantly better job in terms of cutting the emission of SO2 and NOx gases for
any fixed quantity of the net electric power generated: on average, emissions fell by respective 2.25%
and 3.31% per year ceteris paribus. This disconnect between technical and environmental productivities
of electric plants in our sample is also confirmed by virtually zero rank correlation coefficients between
TPG and EPG for the SO2 and NOx emissions (see Table 4).

Figure 3 vividly illustrates the differences between technical and environmental productivities. It
plots the productivity indices that are normalized to 100 in the year 1985 and are constructed using the
(respective)-output-weighted average annual productivity growth rates (over all utilities in the sample).
The figure shows that the industry enjoyed stable positive rates of EPG during the 1985–1995 period,
whereas TPG was more sporadic and included periods of both positive and negative growth. The
cumulative eleven-year growth is 23.26% for the SO2-oriented EPG, 37.98% for the NOx-oriented
EPG and a mere 5.33% for the electric-power-oriented TPG.
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Figure 2. Technical and Environmental Efficiency Change and Technological Change.
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Figure 3. Technical and Environmental PG Indices.

6. Conclusions

The prevalent approaches to modeling the firm’s production process in the presence of undesirable
outputs either treat these outputs as inputs, which questionably implies their strong disposability
as well as violates the “material balance condition”, or employ the directional distance function
that, despite a sound theoretical foundation, allows the identification of a “composite” measure
of inefficiency only. Similarly, the directional-output-distance-function-based productivity index
identifies only the composite productivity which is a weighted combination of the technical
and environmental productivities. This precludes researchers from disentangling the technical
inefficiency/productivity, conventionally defined over desirable outputs, from the environmental
(“green”) inefficiency/productivity, defined over undesirable outputs.

In this paper, we follow a different path to modeling the production process with undesirable outputs
in the spirit of Fernández et al. [11,12], Forsund [13] and Murty et al. [7]. Specifically, we model
the productive operations of the firm as a system of simultaneous production technologies for desirable
and undesirable outputs. In this setup, desirable outputs are produced by transforming inputs via the
conventional transformation function satisfying all standard assumptions. Consistent with the material
balance condition, the by-production of undesirable outputs is however treated as the so-called “residual
generation technology”. The above setup explicitly recognizes that the generation of undesirable outputs
is not the intended production but rather the by-production process. By separating the generation of
undesirable outputs from that of desirable outputs, we ensure that the former are not modeled as inputs
as well as take into account their “costly disposability”.
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The by-production system approach that we employ in this paper permits us to not only distinguish
between technical efficiency and (undesirable-output-specific) environmental efficiencies but to also
differentiate between traditional technical productivity and environmental productivity. Specifically, we
derive a Solow [14] type primal (Divisia) environmental productivity index which, unlike a conventional
desirable-output-oriented productivity index, is defined as the contraction rate in undesirable outputs
unexplained by the contraction in desirable outputs. This allows us to credit the ceteris paribus reduction
in undesirable outputs. Our environmental productivity index also provides a meaningful way to
decompose productivity into environmental technological change and environmental efficiency change.
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