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Abstract: In this paper, we develop a new model of a static game of incomplete information
with a large number of players. The model has two key distinguishing features. First,
the strategies are subject to threshold effects, and can be interpreted as dependent censored
random variables. Second, in contrast to most of the existing literature, our inferential theory
relies on a large number of players, rather than a large number of independent repetitions of
the same game. We establish existence and uniqueness of the pure strategy equilibrium, and
prove that the censored equilibrium strategies satisfy a near-epoch dependence property. We
then show that the normal maximum likelihood and least squares estimators of this censored
model are consistent and asymptotically normal. Our model can be useful in a wide variety
of settings, including investment, R&D, labor supply, and social interaction applications.
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1. Introduction

Identification and estimation of strategic interaction models have recently received a great deal of
attention in econometrics, owing to the growing interest and application of stochastic games in various
fields including industrial organization, labor, political and international economics. Most of the existing
literature has focused on discrete choice games, see [1,2] for a survey of recent results. In this literature,
the observed data are assumed to arise from an equilibrium of a game played by a finite number of
players, and therefore, to be correlated across players. Typically, the number of players is assumed to
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be fixed, and the asymptotic inferential theory relies on a large number of independent repetitions of the
same game in different markets or in a single market at different points of time. Two notable exceptions
are Menzel [3] and Xu [4], who develop the inferential theory of discrete choice games based on a large
number of players.

In this paper, we develop a new model of a static game of incomplete information with a large number
of players. The model has two key distinguishing features. First, the strategies are subject to threshold
effects, and can be interpreted as dependent censored random variables, e.g., R&D investment and labor
supply. Second, the game is played in a single market and is not repeated over time. To develop the
asymptotic theory, we instead assume that the number of players grows unboundedly, and the players
reside on an exogenously given lattice so that the vector of their choices and characteristics can be viewed
as a dependent random field, which can be handled by the limit theorems for near-epoch dependent
(NED) random fields established by Jenish and Prucha [5].

We derive this model explicitly in two game-theoretical applications: (i) R&D investment by firms
under strategic complementarities; and (ii) labor supply decision by women under peer effects. The
set-up is standard for a static game of incomplete information: each player’s payoff function depends
on her choice and choices of other players, her commonly observed characteristics, and her private
characteristic unobserved by other players; players move simultaneously based on their expectations
about the choices of other players, and in equilibrium, players have self-consistent expectations, see [6],
i.e., their subjective expectations coincide with the expectation based on the equilibrium distribution of
strategies conditional on commonly observed variables. We assume that private characteristics are i.i.d.
normal across players, and prove existence and uniqueness of the pure strategy equilibrium under some
mild conditions. We then show that the censored equilibrium strategies also satisfy the NED property
under the same conditions.

Under normality of private shocks, the equilibrium strategies boil down to a Tobit econometric
model. However, in contrast to the standard Tobit model, our censored model involves a non-zero
threshold parameter that needs to be estimated. Therefore, we use the following two-step semiparametric
procedure: we first estimate the threshold by the minimum order statistic of the uncensored subsample,
and then estimate the remaining parameters either by the maximum likelihood or least squares method.
Unlike the standard Tobit model, the maximum likelihood estimator does not strictly dominate the least
squares estimator in our model due to discontinuous dependence of the likelihood on the first-step
estimator, which may amplify finite-sample biases stemming from the first-step estimation. This
provides a rationale for considering the least squares estimation as an alternative to the maximum
likelihood procedure. We establish consistency and asymptotic distributions of these estimators.
The minimum order statistic is n-consistent and asymptotically exponentially distributed, while the
maximum likelihood and least squares estimators are

√
n-consistent and asymptotically normal. A

Monte Carlo study suggests that all these estimators perform well in finite samples.
Finally, we address the computational challenges of our game with a large number of players.

The standard estimation of games involves computing the equilibrium for each alternative parameter
value and then optimizing the objective function over parameter values, and thus presents a formidable
computational burden. To tackle it, we use the constrained optimization algorithm proposed by Su
and Judd [7], which treats the equilibrium equations as constraints and optimizes simultaneously over
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parameters and equilibrium variables, thereby avoiding calculation of the equilibrium at each iteration
on the parameter value. Su and Judd [7] show equivalence of this constrained optimization problem to
the original problem. Our simulations confirm viability and a significant computational efficiency of the
Su-Judd algorithm in our model.

To our knowledge, the proposed censored model has not been considered in the existing literature.
Most of the existing results have dealt with discrete choice games, e.g., [8]. Recently, Xu and Lee [9]
analyzed a spatially autoregressive (SAR) Tobit model, which can be viewed as a censored version the
Cliff-Ord type linear SAR model with a known spatial weight matrix. Xu and Lee [9] establish the NED
property as well as consistency and asymptotic normality of the maximum likelihood estimator using the
limit theorems of Jenish and Prucha [5]. Though not explicitly demonstrated, this SAR Tobit model can
be interpreted as an equilibrium of a static game of complete information, while our model is a game of
incomplete information with a different concept of equilibrium and, consequently, qualitatively different
implications. Moreover, the presence of latent endogenous variables and non-zero threshold in our model
pose additional statistical and computational difficulties. Thus, the two papers are complementary to
each other.

The paper is organized as follows. Section 2 describes and derives the model in two examples.
Section 3 establishes existence and uniqueness of the equilibrium, and proves the NED property of
the equilibrium strategies. Section 4 discusses identification and estimation of the model. Consistency
and asymptotic distributions of the estimators are established in Section 5. Section 6 contains a Monte
Carlo study, and Section 7 concludes. All proofs are collected in the appendices.

2. Model

In this paper, we are concerned with estimation of the following econometric model:

Yin =

{
b0 +X ′iβ0 +

∑
j∈Ni αj0Ei (Yjn) + εi, b0 +X ′iβ0 +

∑
j∈Ni αj0Ei (Yjn) + εi > γ0

0, otherwise
(1)

where Yin, i = 1, ..., n, is the choice of agent i, Ei (Yjn) = E (Yjn|Fi) is agent i’s expectation, given
its information set Fi, about the choices of its neighbors, Yjn, within the neighborhood of radius r,
Ni = Ni(r), containing a fixed number of neighbors k = |Ni| that does not depend on i; Xi is the vector
of observed characteristics of agent i; εi is agent i’s private characteristic observed only by agent i, and
(α′0, β

′
0, b0, γ0), γ0 ≥ 0, is the vector of unknown coefficients. The distribution of private shocks is known

to all players. It is assumed that εi ∼ i.i.d. N (0, σ2
0), and are independent of {Xi}. The information set

of each player consists of the entire state vector, Xn = (X ′1, ..., X
′
n)′ , and its private information εi, i.e.,

Fi =
(
Xn, εi

)
.

The choice of player i is assumed to be directly affected by its neighbors only in a fixed neighborhood
of the known radius, r > 0, with respect to some socio-economic metric. However, it will be indirectly
affected by all other players. The number of the neighbors within the r-neighborhood of each agent
is assumed to be fixed and equal to k. To avoid the incidental parameters problem, the k coefficients
(αj0)j∈Ni , measuring the effect of these k neighbors, are assumed to depend only on the relative locations
of i and j, but not on j or i. We formally specify the metric and the neighborhood structure in the
following section.
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The above assumptions seem reasonable in many empirical settings. For example, in their R&D
decision, firms would take into account R&D of its neighbors within a certain distance in the geographic
(or product characteristic) space, rather than all firms in the market. This is due to the fact that
technological spillovers, knowledge diffusion and labor mobility—determinants of R&D diffusion—are
usually confined to a limited geographical or technological area.

Aside from the unobserved heterogeneity captured by the private shocks εi,we do not allow individual
heterogeneity in the parameters. The reason is that the model assumes only one repetition of the
game and the number of agents growing to infinity to develop the asymptotic theory. Clearly, allowing
heterogenous parameters across individuals will result in inconsistency.

Model (1) is fairly general for applications. It can arise as a system of best response functions of
a static game of incomplete information among n players. Below, we derive these equations for two
strategic interaction models: (i) R&D investment by firms; and (ii) labor supply by women. In these
models, decisions of players exhibit strategic complementarities, and are subject to threshold effects.

2.1. Spillovers in R&D Investment

A large body of empirical evidence suggests presence of technology and R&D spillovers among firms,
e.g., [10]. Audretsch and Feldman [10] find that knowledge spillovers are more prevalent in the industries
that exhibit spatial clustering. Positive R&D spillovers may occur through several channels including
knowledge transfers, labor mobility and imitation. Therefore, it is reasonable to expect the magnitude
of such a spillover effect to depend on the geographical and technological distances between firms. As a
result, firms’ R&D expenditures may be spatially correlated, and the magnitude of this correlation often
decays with the distance between firms.

The literature distinguishes two major channels through which R&D can raise firms’ profits:
cost-reducing and demand-creating effects. The former allows firms to carry out process improvements
leading to efficiency gains and cost reduction, while the latter enables firms to improve the quality of
their product and thereby boost the demand. Levin and Reiss [11] analyze a model of monopolistic
competition with both demand-creating and cost-reducing R&D spillovers across n firms. Based on a
sample of US manufacturing firms, the authors find statistically significant, sizeable spillovers in the
cost-reducing R&D and insignificant, small spillovers in the demand-creating R&D in most industries.
Levin and Reiss [11] also find the elasticity of product quality to firm’s own R&D to be much higher
than that of cost to firm’s own R&D. Other theoretical models of R&D spillovers include d’Aspremont
and Jacquemin [12], and Motta [13], among others.

Yet all these papers model the R&D investment as a continuous variable thereby neglecting the strong
empirical evidence that a sizeable proportion of firms do not undertake R&D activities, see, e.g., [14].
One plausible explanation is that the demand-creating effect of R&D is subject to threshold effects:
the quality could be raised only after a certain minimum level R&D investment is attained; R&D has
no effect on the quality below this level. Thus, the R&D expenditure could be viewed as a censored
decision variable whose optimal values below a certain threshold are unobserved. This type of model in
the single-firm setup is analyzed by Gonzalez and Jaumandreu [15].

To study spatial spillovers in R&D investment, we develop a simple model of strategic interaction
with a censored decision variable that incorporates the empirical findings discussed above. We consider
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a single, monopolistically competitive industry composed of a large number, n, firms, each producing
a brand of the same product differentiated by quality. Let pi, qi, si and yi denote, respectively, the
price, demand, product quality and R&D expenditure of firm i. To derive qi, we employ a variant of
the Dixit-Stiglitz [16] model of monopolistic competition in which the CES utility of a representative
consumer is augmented with preference for quality:

u(q1, ..., qn) =

[
n∑
i=1

(qis
η
i )
ρ

]1/ρ

, 0 < ρ < 1

where η > 0 is a quality sensitivity parameter. Utility maximization yields the demand for firm
i of the form: qi (pi, si) = Kp−νi sεi , where ν = 1/ (1− ρ) > 1 is the elasticity of substitution
between the quality-adjusted goods, ε = η (ν − 1), K = Ip−1 with I being consumer’s income and
p =

∑n
i=1 (pi/s

η
i )

1−ν is a quality-adjusted price index. To obtain non-increasing marginal demand for
quality, ∂2qi/∂s

2
i ≤ 0, suppose that η ≤ 1/ (ν − 1) . If the number of firms is large, it is reasonable to

assume the effect of a single firm’s decision on the industry index p to be negligible, i.e., K is constant,
and normalize K = 1.

Following Gonzalez and Jaumandreu [15], we assume that firm’s own R&D expenditure affects only
its product quality, subject to a technological constraint:

si = s(yi) =

{
(yi + 1)δ if yi > y

(y + 1)δ if yi ≤ y

where y is the minimum investment required for quality improvements, 0 < δ < 1 is the R&D sensitivity
parameter. Throughout, we use yi+1 instead of yi to ensure that the logarithm of the censored investment
is defined for zero values, and let Yi = log (yi + 1). It is a convenient normalization, which does not
affect the results.

Furthermore, in light of the above empirical findings, we assume that other firms’ R&D have only a
cost-reducing effect on firm i, and this effect is limited to the fixed r-neighborhood, Ni (r), of firm i:

ci = ci (Xi, Y−i, ei) = exp

(
X ′iβ + α

∑
j∈Ni

Yj + ei

)
where ci and Xi are, respectively, the marginal cost and vector of observed cost-determinants of firm i,
Yi = log (yi + 1) is the log of firm i’s investment, Y−i = (Y1, .., Yi−1, Yi+1, ..., Yn) is the vector of the log
R&D choices of all firms except i, and ei is firm i’s idiosyncratic cost component. The coefficient α ≤ 0

measures the strength of this spillover effect.
Suppose that all firms observe Xn = (X1, ..., Xn)′, but ei is observed only by firm i. Given this

uncertainty about the choices of other firms, following Durlauf [17], see also [6], we assume that each
firm i decides on its R&D investment based on its beliefs about the choices of the other firms, Ei (Y−i) =

E
(
Y−i|Xn, ei

)
, which are formed as the conditional expectation given all the information available to

firm i.
Based on these beliefs, firms choose simultaneously price, pi, and R&D investment, yi, to maximize

their profits subject to a technological constraint, i.e., solve

max
pi≥0,yi≥0

Π(pi, yi, Xi, Ei (Y−i) , ei) = [pi − ci (Xi, Ei (Y−i) , ei)] qi (pi, si (yi))− C(yi) (2)
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s.t. qi (pi, si) = p−νi sεi , si =

{
(yi + 1)δ if yi > y

(y + 1)δ if yi ≤ y
and C(yi) =

{
yi + 1 if yi > y

yi if yi ≤ y
(3)

where C(yi) is the cost of investment. The nonstochastic threshold y ≥ 0 is assumed to be observed and
constant across all firms.

Lemma 1. The solution to optimization problem (2) and (3) is given by (1) with αj0 = −τα, j = 1, .., k,

β0 = −τβ, εi = −τei, τ = (ν − 1) /(1 − εδ), b0 = log

([
εδν−ν (1− ν)(1−ν)

]1/(1−εδ)
)

and γ0 =

log
(

(1− εδ)−1/(εδ) (y + 1)
)
> 0.

If α < 0, i.e., R&D of the neighbors has a cost-reducing effect on firm i, then both the probability
and intensity of firm i’s R&D increases with the expected R&D of its neighbors. In other words, there
are strategic complementarities or positive externalities in the R&D decision of firms. Furthermore, the
probability of R&D is also increasing in (i) the elasticity of demand with respect to quality, higher ε; (ii)
the elasticity of quality with respect to R&D, higher δ; and (iii) the market power, lower ν. The latter
is consistent with the Schumpeterian argument that economies of scales make R&D more attractive to
large firms than to small firms.

2.2. Peer Effects in Female Labor Supply

Our next example involves social interactions in the female labor supply. Suppose the utility of female
i is defined over her consumption, ci, and leisure, li, as follows:

U(ci, yi, hi) =
cδi
δ

+ hili

where 0 < δ < 1 is the parameter characterizing the relative preference for consumption over leisure.
Let yi be the labor supply of female i, and let the weight on the leisure, hi, capture the peer effects
that depend on the labor supply decisions of female i’s peers in her social neighborhood, referred to as
friends, as follows:

hi = hi (Xi, Y−i, ei) = exp(X ′iβ + α
∑
j∈Ni

Yj + ei)

where Xi is the vector of observed characteristics of woman i, Yj = log (yj + 1) is the log labor supply
of woman i’s friends, and ei is her private characteristic unobserved by other women. As in the previous
example, we use yi + 1 instead of yi to ensure that log of the censored labor supply is defined for zero
values. In presence of positive peer effects, α < 0, which implies mutual reinforcement in the choices
within the social group.

As before, all women observe Xn = (X1, ..., Xn)′, but ei is observed only by i. Woman i makes her
decision based on her beliefs about the choices of her peer group, Ei (Y−i) = E

(
Y−i|Xn, ei

)
, which are

formed as the conditional expectation given all the information available to woman i. Based on these
beliefs, women simultaneously maximize their utility subject to threshold effects:

max
ci≥0,yi≥0

U(ci, Xi, Ei (Y−i) , ei) =
cδi
δ

+ hi (Xi, E (Y−i) , ei) li (4)
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s.t. ci =

{
w (yi + 1) if w (yi + 1) > c

c if w (yi + 1) ≤ c
, li =

{
T − yi − 1 if w (yi + 1) > c

T − yi if w (yi + 1) ≤ c
(5)

wherew is the wage, T is the time endowment, c is the reservation labor income, which can be interpreted
as welfare or other government transfers. The nonstochastic threshold c ≥ 1 is assumed to be observed
and constant across women.

Lemma 2. The solution to optimization problem (4) and (5) is given by (1) with αj0 = −α/ (1− δ), j =

1, .., k, β0 = −β/ (1− δ), εi = −ei/ (1− δ), b0 = log
(
wδ/(1−δ)

)
and γ0 = log

(
(1− δ)−1/δ c

)
> 0.

If α < 0, i.e., there are positive peer effects, then both the probability and magnitude of woman i’s
labor supply increases with the expected labor supply of her peers.

3. Equilibrium: Characterization and Weak Dependence

We assume that in equilibrium, players have self-consistent expectations, i.e., their subjective
expectations or beliefs coincide with the expectation based on the equilibrium distribution of strategies
conditional on Xn. That is,

Ei (Yj) = E
(
Yj|Xn, εi

)
= E

(
Yj|Xn

)
:= Ỹjn (6)

where the expectation E
[
·|Xn

]
is taken with respect to the equilibrium conditional distribution of

strategies. The last equality follows from independence of {εi}, and independence of {εi} and {Xi}.
Suppose that the εi are i.i.d. N (0, σ2

0). Taking conditional expectation of Equation (1) with respect
to the equilibrium distribution of strategies, conditional on Xn, yields:

Ỹin = Φ

(∑
j∈Ni αj0Ỹjn +X ′iβ0 + b0 − γ0

σ0

)(∑
j∈Ni

αj0Ỹjn +X ′iβ0 + b0

)

+σ0φ

(∑
j∈Ni αj0Ỹjn +X ′iβ0 + b0 − γ0

σ0

)
(7)

where Φ and φ are, respectively, the c.d.f. and p.d.f. of the standard normal distribution.
Provided that they are well-defined, strategies {Yin, i = 1, .., n} are independent across i conditional

on Xn and have censored normal distributions with the means
{
Ỹin, i = 1, .., n

}
, the common variance

σ0 and the common nonstochastic threshold γ0. In equilibrium,
{
Ỹin, i = 1, .., n

}
satisfy system (7). If

this system has a unique solution, the corresponding equilibrium strategies, {Yin, i = 1, .., n} , will be
also unique with probability 1, since a censored normal variable is uniquely characterized by its mean,
variance and threshold. This leads to the following characterization of equilibrium.

Definition 1. An equilibrium is a set of policy functions {Yin, i = 1, .., n} whose conditional mean
functions

{
Ỹin = E

(
Yin|Xn

)}n
i=1

satisfy system (7).

A similar characterization of equilibrium in discrete games of incomplete information is used in [8].
An appealing feature of Equation (1) is that it reduces to the popular Tobit model, which is part of any

regression package. However, the difficulty is that {Yin} depends on the latent regressors,
{
Ỹin

}
. Thus,
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one would need first to obtain consistent estimates of the latent regressors, and then use any consistent
estimation procedures for the Tobit model.

Since consistency of any estimation method hinges upon uniqueness of equilibrium, we first prove
existence and uniqueness of the pure strategy equilibrium. To this end, we maintain the following
assumption.

Assumption 1. The shocks εi ∼ i.i.d. N (0, σ2
0) and λ = k [φ (0) γ0/σ0 + 1]α < 1, where γ0 ≥ 0,

α = max1≤j≤k |αj0|, φ (·) is the p.d.f. of the standard normal distribution.

This assumption restricts the strength of interactions, captured by the coefficients α: interactions
must not be too strong for a stable equilibrium to exist. Intuitively, if the interactions are long-ranged
and too strong, then the effect of remote neighbors is substantial and may lead to instability and multiple
equilibria. Since it involves only the estimated coefficients and the number of neighbors, k, is typically
known, the assumption is testable.

Assumption 1 is similar to Assumptions B and C in [4], which restrict the strength of interactions to
obtain a unique equilibrium in a discrete choice game of social interactions.

Based on this assumption, we can now show existence and uniqueness of equilibrium.

Theorem 1. Under Assumption 1, there exists a unique equilibrium of model (1).

In general, without restrictions on the parameters, multiple equilibria could occur. If one does not
want to impose restrictions directly, one can use the Mathematical Program with Equilibrium Constraints
(MPEC) routine to deal with multiple equilibria implicitly by choosing the equilibrium that maximizes
the empirical likelihood.

In equilibrium, the policy variables will be correlated across players. To characterize their

dependence, we assume that the process
{
Win =

(
Yin, Ỹin, X

′
i, εi

)′}
is indexed by a vector of locations

t(i) = (t1, ..., td) ∈ Zd on the lattice Zd, and hence can be viewed as a random field on Zd. In other
words,

{
Win = Wt(i)n, t(i) ∈ Λn, n ≥ 1

}
is a triangular array of vector-valued random fields defined on

a probability space (Ω,F, P ) and observed on sample regions Λn ⊂ Zd. In the following, to simplify
notation, we suppress the index t and write Win = Wt(i)n. Furthermore, we denote by ‖·‖ the Euclidian
norm in Rd and by ‖·‖p = [E ‖·‖p]1/p – the Lp-norm.

Assumption 2. The data-generating process
{
Win = Wt(i)n, t(i) ∈ Λn, n ≥ 1

}
is a triangular array of

random fields indexed by t(i) = (t1, ..., td) ∈ Zd, where the Λn ⊂ Zd are the sample regions such that
|Λn| → ∞ as n → ∞. The distance between players i and j is measured by the Euclidian metric:
dist(i, j) = ‖t(i)− t(j)‖ .

This assumption implies that the players’ locations are exogenous, i.e., they are known and determined
outside the model. Extensions to endogenous locations would require explicit modeling of the location
choice, and would therefore considerably complicate the model. This extension is an interesting direction
for future research.

Given Assumption 2, it turns out that the equilibrium policy variables satisfy a weak dependence
condition known as near-epoch dependence (NED), see [5], under the same condition that ensures
uniqueness of equilibrium. For ease of reference, we state definition of NED random variables.
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Definition 2. The triangular array of random fields {Wtn, t ∈ Λn, n ≥ 1} , ‖Wtn‖2 <∞, is L2-NED on
{Vtn, t ∈ Λn, n ≥ 1} iff supn,t∈Λn ‖Wtn − E(Wtn|Ftn(m))‖2 ≤ ψ(m) for some sequence ψ(m)→ 0 as
m→∞, where Ftn(m) = σ(Vsn; s ∈ Λn : ‖t− s‖ ≤ m).

Theorem 2. Suppose Assumptions 1 and 2 hold and ‖X‖6 = supi ‖Xi‖6 < ∞, then (i)
{
Ỹin

}
is

L2-NED on {Xi} with the NED numbers ψ(m) = 2 ‖Y ‖2 λ
[m/r], where p = [m/r] is the integer of part

ofm/r, (ii) {Yin} is L2-NED on {(X ′i, εi)} with the NED numbers cψ1/12(m) for constant c that does not
depend on m, (iii) {1 (Yin > γ0)} and {1 (Yin = 0)} are L2-NED on {(X ′i, εi)} with the NED numbers
(2 + kα)ψ1/3(m).

The value of the constant c is given in the proof, but it is not important for what follows.

4. Identification and Estimation

We now discuss identification and estimation of our model. Let Zin =
((
Ỹjn, j ∈ Ni

)
, 1, X ′i

)′
, and

let δ = ((αj, j ∈ Ni) , b, β′)′ denote the corresponding vector of the coefficients. Given the specification,
it is natural to identify and estimate all unknown parameters based on the likelihood function. The log
likelihood function of the model is

logL(θ, γ) =
n∑
i=1

log f
(
Yi|Xn; θ, γ

)
with (8)

log f
(
Yi|Xn; θ, γ

)
= 1 (Yi = 0) log Φ

(
γ − Z ′inδ

σ

)
+ 1 (Yi > γ) log

[
σ−1φ

(
Yi − Z ′inδ

σ

)]
where θ = (δ′, σ)′. Likelihood function (8) involves an unknown threshold parameter, γ, which is
in contrast to the standard Tobit model, where the threshold is assumed to be known and equal to
zero. The maximum likelihood (ML) estimator of γ is the minimum order statistics of the uncensored
subsample. More specifically, partition the dependent variable and regressor matrix into two parts:

Y =
(
Y ′(0), Y

′
(1)

)′
and Z =

(
Z ′(0), Z

′
(1)

)′
, where the subscript (0) indicates that observations come

from the censored subsample, and the subscript (1) – from the uncensored subsample, and let

γ̂ = min {Yi : Yi > 0, i = 1, ..., n} (9)

As shown in Proposition 1 below, γ̂ is a consistent estimator of γ. The ML estimators of the other
parameters θ can then be obtained by the standard differentiation techniques.

Assumption 3. Suppose (i) supi,n ‖Win‖6 < ∞; and (ii) {Xi} is a stationary α-mixing process with
coefficient satisfying α(k, l,m) ≤ (k + l)ς α̂(m), ς ≥ 0, α̂(m) s.t.

∑∞
m=1 m

(dς/3−1)α̂1/6 (m) <∞.1

Proposition 1. Under Assumptions 1–3, limn→∞ P (n (γ̂ − γ0) < z) = 1− exp (−az) for z > 0, where

a = E

[
Φ

(
Z ′inδ − γ

σ

)]
E

 φ
((
Z ′in,(1)δ − γ

)
/σ
)

σΦ
((
Z ′in,(1)δ − γ

)
/σ
)


and Zin,(1) is the regressor vector from the uncensored subsample.

1 For the definition of mixing coefficients, see [18].
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Thus, γ̂ is n-consistent and asymptotically exponentially distributed. For i.i.d. sample, this result has
been established by Carson and Sun [19]. So, Proposition 1 extends [19] to a spatially dependent case.
The superconsistency of γ̂ is a well-known consequence of the dependence of the support of Yi on γ.

Proposition 1 implies that γ0 is identified. The remaining parameters, θ0 = (δ′0, σ0)′ can now be
identified from the likelihood function. Alternatively, one can identify θ0 from the conditional mean
function and estimate it by the least squares procedure:

ϕ(Zin, θ, γ) = E
(
Yi|Xn

)
= Φ

(
Z ′inδ − γ

σ

)
Z ′inδ + σφ

(
Z ′inδ − γ

σ

)
(10)

In contrast to the standard Tobit model with zero-threshold, the ML estimator does not strictly dominate
the least squares (LS) estimator in our model due to the presence of the first-step estimator. The thing is
that the LS objective function is continuous in γ, while the likelihood function is not. The latter implies
that small finite-sample biases in γ̂ may cause sizeable finite-sample biases in the ML estimates of θ.
This prediction is confirmed by the simulation results of Section 6, which suggest larger finite-sample
biases in the ML than in the LS estimator. This is the main rationale for considering the LS procedure as
an alternative to the ML procedure in our model.

Thus, estimation of model (1) could be carried out in two steps. First, estimate the threshold parameter
γ by the minimum order statistic of the uncensored subsample γ̂, and substitute it for the true γ0 in (8) and
(10). Then, estimate the remaining parameters θ in (8) and (10) by the ML or LS procedures, respectively.
Note that the least squares estimator of γ in (1) will be imprecise due to near multicollinearity of the
intercept and threshold. Therefore, we use the first-step estimator γ̂ in both procedures.

We now present sufficient conditions for identification of θ.

Assumption 4. Suppose (i) at least one of components of Xi has the full support, R; and (ii) E (ZinZ
′
in)

is positive definite.

Theorem 3. Under Assumptions 1–4, Q (θ, γ0) = E [m (Win, θ, γ0)] is uniquely maximized at θ0 for

A. m (Win, θ, γ0) = log f
(
Yi|Xn; θ, γ0

)
, where log f

(
Yi|Xn; θ, γ

)
is as defined in (8), and

B. m (Win, θ, γ0) = − (Yi − ϕ(Zin, θ, γ0))2, where ϕ(Zin, θ, γ) is as defined in (10).

Practically, the second-step estimation of θ could be implemented through the following nested
fixed-point (NFXP) algorithm: (i) in an inner loop, for a given θ, find the unique solution of the
equilibrium equations (7) by the fixed-point algorithm; and (ii) in an outer loop, search over θ ∈ Θ

that maximizes the objective function. Let Ỹ (θ, γ) =
(
Ỹ1, ..., Ỹn

)
be the solution of the equilibrium

equations (7). Then, the resulting estimator can be represented as

θ̂ = arg max
θ∈Θ

{
Qn

(
θ, Ỹ (θ, γ̂) , γ̂

)
=

1

n

n∑
i=1

m (Win, θ, γ̂)

}
(11)

where m (·, ·, ·) is either the log likelihood function defined in (8) or minus the squared deviation of
Yi from the conditional mean defined in (10). This formulation makes explicit the dependence of the
equilibrium variables on the estimated parameters. Given superconsistency of the first-step estimator,
the resulting second-step maximum likelihood or least squares estimators of θ will be root-n consistent,
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asymptotically normal and independent of γ̂, as shown in Theorem 4 below. However, the NFXP
algorithm will be computationally costly for large cross-sectional datasets, e.g., n ≥ 200.

To overcome this problem, we instead use the constrained optimization algorithm proposed by Su and
Judd [7]. The idea is to solve the following constrained optimization problem:

max
(θ,Ỹ )

Qn

(
θ, Ỹ , γ̂

)
subject to h(Ỹ , θ, γ̂) = 0 (12)

where h(Ỹ , θ, γ) = 0 is the vector representation of the equilibrium system (7). Note that Ỹ in this
formulation does not depend on θ, and is chosen simultaneously with θ to maximize the objective
function subject to the equilibrium constraints. This obviates the need to solve the multi-dimensional
fixed point problem for Ỹ at each iteration on θ.

Su and Judd [7] prove equivalence of problems (11) and (12) provided that the model is identified.
They also demonstrate the computational advantage of this constrained optimization algorithm over the
NFXP algorithm in the context of a single-agent dynamic discrete choice model. In particular, they show
that the proposed algorithm leads, on average, to a ten-fold reduction of the computational time relative
to the NFXP algorithm.

Since our model is identified by Theorem 3, the maximizer θ̂ of problem (11) equals the maximizer
θ of problem (12) by Proposition 1 of Su and Judd [7], and one can thus replace the computationally
intensive problem (11) by the simpler problem (12). We investigate performance of the constrained
optimization algorithm for our model in the Monte Carlo study of Section 6.

5. Consistency and Asymptotic Normality

We next show consistency and asymptotic normality of the maximum likelihood and least squares
estimators. To this end, we need the following assumption.

Assumption 5. Suppose

(i) Θ = ∆× Σ and Γ are compact, Σ = [σ1;σ2], σ1 > 0, θ0 ∈ int(Θ), γ0 ∈ int(Γ).

(ii) supi,nE
[
supΘ log2 Φ ((γ0 − Z ′inδ) /σ)

]
<∞, supi,nE

[
supΘ (Yin − Z ′inδ)

2] <∞,

supi,nE
∥∥∥supΘ

∂m(Win,θ,γ0)
∂θ

∥∥∥ <∞.

Part (i) Assumption 5 is the standard condition on the parameter space and the true parameter value;
Part (ii) is used to verify uniform convergence of various sample functions. Generally, the above
assumptions are slightly stronger than those in the fully parametric Tobit model with zero-threshold,
since our Tobit estimator of θ relies on a nonparametric first-step estimator of γ.

Theorem 4. Under Assumptions 1–5, the maximum likelihood and least squares estimators are both
consistent and asymptotically normal, i.e.,

√
n
(
θ̂n − θ0

)
d→ N(0,Ω), where Ω = H−1

0 S0H
−1
0 with

H0 = E
[

∂2

∂θ∂θ′
m(Win, θ0, γ0)

]
and S0 = V ar

[
∂
∂θ
m(Win, θ0, γ0)

]
.
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Thus, both the maximum likelihood and least squares estimators of θ are
√
n-consistent and

asymptotically normal. To conduct inference, it remains to obtain a consistent estimate of the covariance
matrix S0. For this purpose, one can employ the following spatial HAC estimator:

Ŝ
(
θ̂, γ̂
)

=
1

n

∑
i∈Λn

∑
j∈Λn:|i−j|≤hn

K((i− j)/hn)
∂

∂θ
m(Win, θ̂, γ̂)

∂

∂θ′
m(Wjn, θ̂, γ̂)

where K((i − j)/hn) = K((i1 − j1)/hn, ..., (id − jd)/hn) is a d-dimensional symmetric kernel,
and hn is a bandwidth parameter. Jenish [20] proves consistency of this estimator for more general
nonparametric estimators of γ. In our model, consistency is achieved by bandwidth parameters satisfying
hn = O(n1/(3d)).

6. Numerical Results

In this section, we examine the finite sample properties of the maximum likelihood (ML) and least
squares (LS) estimators of our censored model, as well the performance of the Su-Judd [7] algorithm.

Throughout, data {Wi1,i2} reside on the two-dimensional lattice Z2, where (i1, i2) ∈ Z2 denotes, for
simplicity, the vector of coordinates. The data are simulated on a rectangular grid of (m1 + 300) ×
(m2 + 300) locations. To control for boundary effects, we discard the 300 outer boundary points along
each of the axes and use the sample of size n = m1m2 for estimation.

Our experiment consists of two stages: (i) simulation; and (ii) estimation. In the first stage, we first
simulate two i.i.d. N(0, 1) processes {εi1,i2} and {ηi1,i2}, which are independent of each other. Next,
using the fixed-point algorithm, we generate the process {Xi1,i2} according to:

Xi1,i2 = 0.2 (Xi1−1,i2 +Xi1,i2−1 +Xi1+1,i2 +Xi1,i2+1) + ηi1,i2

and then the process
{
Ỹi1,i2

}
according to:

Ỹi1,i2 = Φ

α
(
Ỹi1−1,i2 + Ỹi1,i2−1 + Ỹi1+1,i2 + Ỹi1,i2+1

)
+Xi1,i2β + b− γ

σ

 · (13)

·
[
α
(
Ỹi1−1,i2 + Ỹi1,i2−1 + Ỹi1+1,i2 + Ỹi1,i2+1

)
+Xi1,i2β + b

]
−

−σφ

α
(
Ỹi1−1,i2 + Ỹi1,i2−1 + Ỹi1+1,i2 + Ỹi1,i2+1

)
+Xi1,i2β + b− γ

σ


with α = 0.2, β = 1, b = 1.25, γ = 2 and σ = 1. Last, we form the process {Yi1,i2} according to:

Yi1,i2 = Y ∗i1,i21
(
Y ∗i1,i2 > γ

)
, where

Y ∗i1,i2 = b+Xi1,i2β + α
(
Ỹi1−1,i2 + Ỹi1,i2−1 + Ỹi1+1,i2 + Ỹi1,i2+1

)
+ εi1,i2

In the second stage, we first construct the minimum order statistic estimator of γ – γ̂ – and
then use the Su-Judd [7] constrained optimization algorithm to estimate the remaining parameters
θ = (α, β′, b, σ)′ . As discussed in Section 4, we estimate the n-dimensional vector of endogenous
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variables Ỹ =
{
Ỹi1,i2

}
jointly with θ, instead of computing it at each iteration on θ, i.e., we solve the

constrained optimization problem:

max
(θ,Ỹ )

Qn

(
θ, Ỹ , γ̂

)
subject to h(Ỹ , θ, γ̂) = 0

where h(Ỹ , θ, γ) = 0 is the vector representation of the equilibrium system (13).
The estimation results based on 1000 Monte-Carlo repetitions are presented in Tables 1–5. Table 1

reports the estimates of the autoregressive parameter α = 0.2.

Table 1. Estimation of auto-regressive parameter: α = 0.2.

Maximum Likelihood
Sample Size Mean Bias (%) SD RMSE 25th Pct 50th Pct 75th Pct

N = 200 0.1978 −1.1212 0.0056 0.0060 0.1946 0.1979 0.2013

N = 400 0.1989 −0.5674 0.0030 0.0032 0.1970 0.1991 0.2008

N = 600 0.1991 −0.4255 0.0022 0.0024 0.1977 0.1992 0.2007

N = 800 0.1994 −0.3052 0.0018 0.0019 0.1983 0.1994 0.2006

N = 1000 0.1995 −0.2691 0.0015 0.0016 0.1984 0.1995 0.2005

Least Squares
N = 200 0.1989 −0.5452 0.0059 0.0060 0.1953 0.1990 0.2027

N = 400 0.1995 −0.2578 0.0033 0.0034 0.1974 0.1996 0.2018

N = 600 0.1996 −0.1981 0.0023 0.0024 0.1982 0.1997 0.2013

N = 800 0.1998 −0.1162 0.0019 0.0019 0.1985 0.1999 0.2011

N = 1000 0.1998 −0.0787 0.0017 0.0017 0.1986 0.1998 0.2011

Both the ML and LS estimators of α behave well for all sample sizes. The finite-sample bias declines
rapidly from about 1.1% (n = 200) to 0.3% (for n = 1000) in the case of the ML estimator, and from
0.55% (n = 200) to 0.08% (n = 1000) in the case of the LS estimator. These results suggest that a
five-fold increase in the sample size leads to a more than three-fold reduction in the ML bias, and a more
than six-fold decrease in the LS bias, which is consistent with our asymptotic theory. The standard errors
also fall off rapidly with the sample size. A similar pattern is observed for the estimates of the slope β,
shown in Table 2.

Table 3 contains the minimum order statistic estimates of γ. The finite-sample bias diminishes from
4.5% (n = 200) to 0.8% (for n = 1000), which means that a five-fold increase in the sample size is
associated with more than a five-fold reduction in the bias. This is in line with the theoretical prediction
of n-consistency of the minimum order statistics.
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Table 2. Estimation of slope: β = 1.0.

Maximum Likelihood
Sample Size Mean Bias (%) SD RMSE 25th Pct 50th Pct 75th Pct

N = 200 1.0053 0.5286 0.0666 0.0668 0.9612 1.0072 1.0507

N = 400 1.0037 0.3665 0.0419 0.0420 0.9756 1.0022 1.0295

N = 600 1.0032 0.3248 0.0324 0.0326 0.9789 1.0038 1.0251

N = 800 1.0022 0.2228 0.0254 0.0255 0.9844 1.0014 1.0197

N = 1000 1.0019 0.1886 0.0232 0.0233 0.9870 1.0019 1.0169

Least Squares
N = 200 1.0050 0.5027 0.0712 0.0714 0.9538 1.0038 1.0522

N = 400 1.0018 0.1758 0.0448 0.0449 0.9717 0.9988 1.0320

N = 600 1.0015 0.1534 0.0340 0.0340 0.9775 1.0009 1.0241

N = 800 1.0009 0.0909 0.0271 0.0271 0.9820 0.9999 1.0180

N = 1000 1.0002 0.0241 0.0250 0.0250 0.9840 1.0007 1.0161

Table 3. Estimation of threshold: γ = 2.0.

Min. Order Statistics
Sample Size Mean Bias (%) SD RMSE 25th Pct 50th Pct 75th Pct

N = 200 2.0899 4.4969 0.1128 0.1443 2.0219 2.0528 2.1111

N = 400 2.0438 2.1888 0.0462 0.0637 2.0123 2.0288 2.0610

N = 600 2.0294 1.4715 0.0310 0.0427 2.0082 2.0198 2.0408

N = 800 2.0189 0.9471 0.0193 0.0270 2.0050 2.0130 2.0260

N = 1000 2.0161 0.8047 0.0166 0.0231 2.0045 2.0109 2.0219

Next, Tables 4 and 5 present the estimates of the intercept b and the standard deviation σ, respectively.
The maximum likelihood estimates of b and σ exhibit larger biases than those of α and β. However,

they decrease as the sample size increases: from 5.5% (n = 200) to 1.4% (n = 1000) in the case of b,
and from 15.9% (n = 200) to 6.9% (n = 1000) in the case of σ. Thus, the biases still halve when the
sample size increases four-fold, consistent with the asymptotic theory. Large small-sample biases could
be explained by weak identification or near multicollinearity introduced by the inverse Mills ratio, which
is approximately linear over a wide range of its argument.
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Table 4. Estimation of intercept: b0 = 1.25.

Maximum Likelihood
Sample Size Mean Bias (%) SD RMSE 25th Pct 50th Pct 75th Pct

N = 200 1.3185 5.4812 0.1352 0.1516 1.2353 1.3156 1.3950

N = 400 1.2862 2.8955 0.0749 0.0832 1.2372 1.2804 1.3321

N = 600 1.2778 2.2216 0.0539 0.0607 1.2415 1.2744 1.3130

N = 800 1.2702 1.6191 0.0438 0.0482 1.2403 1.2698 1.2990

N = 1000 1.2679 1.4353 0.0374 0.0415 1.2428 1.2668 1.2924

Least Squares
N = 200 1.2834 2.6748 0.1449 0.1487 1.1917 1.2808 1.3699

N = 400 1.2671 1.3653 0.0843 0.0860 1.2121 1.2630 1.3197

N = 600 1.2635 1.0803 0.0582 0.0598 1.2236 1.2625 1.3011

N = 800 1.2582 0.6562 0.0483 0.0489 1.2252 1.2572 1.2896

N = 1000 1.2560 0.4775 0.0427 0.0431 1.2253 1.2557 1.2852

Table 5. Estimation of standard deviation: σ = 1.0.

Maximum Likelihood
Sample Size Mean Bias (%) SD RMSE 25th Pct 50th Pct 75th Pct

N = 200 0.8405 −15.9486 0.0575 0.1695 0.8010 0.8397 0.8798

N = 400 0.8966 −10.3429 0.0397 0.1108 0.8700 0.8972 0.9243

N = 600 0.9179 −8.2084 0.0316 0.0879 0.8962 0.9185 0.9392

N = 800 0.9262 −7.3842 0.0273 0.0787 0.9075 0.9267 0.9448

N = 1000 0.9303 −6.9696 0.0246 0.0739 0.9134 0.9305 0.9468

Least Squares
N = 200 0.9860 −1.3956 0.4799 0.4801 0.7597 0.9956 1.2585

N = 400 0.9598 −4.0236 0.2901 0.2929 0.8227 0.9858 1.1342

N = 600 0.9784 −2.1637 0.2000 0.2012 0.8833 0.9881 1.1034

N = 800 0.9828 −1.7215 0.1594 0.1604 0.8930 0.9963 1.0809

N = 1000 0.9303 −0.8312 0.1241 0.1243 0.9114 0.9941 1.0732

Interestingly, the LS estimates of all parameters, including b and σ, have smaller finite-sample
biases than the respective ML estimates. The reason is that the LS objective function is continuous
in the first-step nonparametric estimator of γ, while the likelihood function is not, and small first-step
biases in γ may get disproportionately amplified and translate into sizeable second-step biases in θ.
Consequently, the biases in the ML estimates of b and σ due to weak identification are further exacerbated
by discontinuity of the likelihood function. Nevertheless, as expected, the LS estimator has larger
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standard errors than the ML estimator across all parameters. Thus, in contrast to the standard Tobit
model with zero-threshold, the ML estimator does not strictly dominate the LS estimator in our model.

Finally, Table 6 reports the computational time and the number of converged iterations for the
Su-Judd [7] algorithm. The algorithm performs well for all sample sizes: converges in almost 99%
of iterations and the time costs are less than two hours even in large sample sizes such as n = 1000. For
comparison, the NFXP algorithm will take about 130–150 hours to estimate the model for same sample
sizes. Thus,the Su-Judd [7] algorithm offers a considerable time savings over standard nested fixed-point
algorithms.

Table 6. Algorithm Performance

Maximum Likelihood

Sample Size N = 200 N = 400 N = 600 N = 800 N = 1000

Number of converged iterations 1000 999 991 992 961

Run Time 2 min 6 min 27 min 61 min 119 min

Least Squares
Sample Size N = 200 N = 400 N = 600 N = 800 N = 1000

Number of converged iterations 942 996 997 999 998

Run Time 2 min 5 min 24 min 57 min 112 min

Overall, the simulations results are consistent with our asymptotic theory: the finite-sample biases
and standard errors of the ML and LS estimators decay rapidly with the sample size. Moreover, the
Su-Judd [7] constrained optimization algorithm seems to be a viable and effective numerical procedure
for estimating games with large number of players, including our model.

7. Conclusions

In this paper, we study identification and estimation of a static game of incomplete information with
censored strategies. Specifically, we show existence and uniqueness of an equilibrium as well as its weak
dependence property under a condition that restricts the strength of interactions among the players. We
then show identification of the parameters and estimate them by maximum likelihood and least squares
procedures. The resulting estimators are shown to be consistent and asymptotically normal. We also
demonstrate application of our results to modeling spillovers in firms’ R&D investment and peer effects
in female labor supply.

One direction for future research is to relax the normality assumption on the errors and obtain
identification under more general error distributions whose conditional mean functions satisfy
contraction mapping conditions, similar to the one used in the paper. Another extension could be to allow
for random threshold effects in the outcome variable, using some parametric family of distributions.
One can also allow for truncated strategies by slight modifications in the likelihood function and
Assumption 1. Finally, instead of the regular lattice, one can consider players located at the nodes
of some graph, which describes the network structure, as in the social interactions literature.
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Appendix

A. Proofs for Section 2

Throughout appendices, C denotes a generic constant that does not depend on n and may vary from
line to line. Also, |A| = trace1/2(A′A) denotes the norm of a nonrandom matrix A.

Proof of Lemma 1: The first-order conditions with respect to price are the same for both yi > y and
yi ≤ y. They imply the following optimal price: ∂Π

∂pi
= p−νi sεi − ν [pi − ci] p−ν−1

i sεi = 0⇒ p∗i = ν
ν−1

ci.

First, if yi > y, then the first-order conditions with respect to investment imply the following
optimal investment: ∂Π

∂yi
= εδ [pi − ci] p−νi (yi + 1)εδ−1 − 1 = 0 ⇒ y∗i + 1 = Bc−τi , where

B =
(
εδν−ν (ν − 1)(ν−1)

)1/(1−εδ)
and τ = (ν − 1) /(1 − εδ) > 0 since, by assumption, 0 <

εδ < 1 and ν > 1. The value of the profit at the optimal values of price and investment is Π1 =

(1− εδ) (p∗i )
1−ν (y∗i + 1)εδ /ν.

Next, if yi ≤ y, then Π = [pi − ci] p−νi (y + 1)εδ−yi and, hence, it is optimal to set y∗i = 0. The value
of the profit in the second case is Π2 = Π (p∗i , 0) = (p∗i )

1−ν (y + 1)εδ /ν. Thus, firm i engages in R&D
iff Π1 > Π2 ⇔ (y∗i + 1) > (1− εδ)−1/(εδ) (y + 1) , and hence the optimal investment is given by:

Yi =

{
b0 −X ′i (τβ)− (τα)

∑
j∈Ni Ei (Yj)− τei, if b0 −X ′i (τβ)− (τα)

∑
j∈Ni Ei (Yj)− τei > γ0

0, otherwise

where b0 = logB and γ0 = log
(

(1− εδ)−1/(εδ) (y + 1)
)
> 0 since 0 < εδ < 1 and y > 0.

Proof of Lemma 2: First, if w (yi + 1) > c, then U = wδ(yi+1)δ

δ
+ hi (T − yi − 1) and the first-order

conditions imply the following labor supply: ∂U
∂yi

= wδ (yi + 1)δ−1−hi = 0⇒ y∗i +1 = wδ/(1−δ)h
1/(δ−1)
i .

The optimal utility is U1 =
wδ(y∗i +1)

δ

δ
+ hiT − wδ (y∗i + 1)δ.

Next, if w (yi + 1) ≤ c, then U = wδcδ

δ
+ hi (T − yi) and, hence, it is optimal to set y∗i = 0. The

optimal utility in the second case is U2 = wδcδ

δ
+ hiT . Thus, firm i engages in R&D iff U1 > U2 ⇔

(y∗i + 1) > (1− δ)−1/δ c, and hence the optimal investment is given by:

Yi =

{
b0 −X ′i

β
1−δ −

α
1−δ
∑

j∈Ni Ei (Yj)−
ei

1−δ , if b0 −X ′i
β

1−δ −
α

1−δ
∑

j∈Ni Ei (Yj)−
ei

1−δ > γ0

0, otherwise

where b0 = log
(
wδ/(1−δ)

)
and γ0 = log

(
(1− δ)−1/δ c

)
> 0 since c ≥ 1 and 0 < δ < 1.
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B. Proofs for Section 3

Proof of Theorem 1: In the following, we suppress dependence of variables on n and write Ỹi = Ỹin.
To prove the theorem, it suffices to show that the mapping G = (G1, ..., Gn) : Rn → Rn is a

contraction mapping w.r.t.
{
Ỹi

}n
i=1

, with the components given by:

Gi = G

((
Ỹj

)
j∈Ni

, Xi

)
= Φ

(∑
j∈Ni αj0Ỹj +X ′iβ0 + b0 − γ0

σ0

)(∑
j∈Ni

αj0Ỹj +X ′iβ0 + b0

)

+σ0φ

(∑
j∈Ni αj0Ỹj +X ′iβ0 + b0 − γ0

σ0

)
(B1)

The result would then follow by the Banach Fixed Point Theorem.
To simplify notation, let z =

(∑
j∈Ni αj0Ỹj +X ′iβ0 + b0 − γ0

)
σ−1

0 . Differentiating Gi w.r.t.

Ỹj gives

∂Gi

∂Ỹj
=
αj0
σ0

φ (z) (σ0z + γ0) + αj0Φ (z)− αj0zφ (z) =
αj0γ0

σ0

φ (z) + αj0Φ (z)

where we used φ′ (z) = −zφ (z). It then follows that sup
∣∣∣∂Gi
∂Ỹj

∣∣∣ ≤ |αj0| [φ (0) γ0σ
−1
0 + 1

]
. Hence, by

the Mean Value Theorem, for any Xi and any Y , Y ′ ∈ Rn:

|G(Y ′, Xi)−G(Y,Xi)| <
∑
j∈Ni

sup

∣∣∣∣∣ ∂G∂Ỹj
∣∣∣∣∣ · ∣∣Yj − Y ′j ∣∣ ≤ λ0

∑
j∈Ni

∣∣Yj − Y ′j ∣∣ , λ0 < 1 (B2)

by Assumption 1, where λ0 = α
[
φ (0) γ0σ

−1
0 + 1

]
and α = max1≤j≤k |αj0|.

Consequently, the vector mapping G satisfies the following Lipschitz condition:

‖G(Y )−G(Y ′)‖ ≤
n∑
i=1

|G(Y ′, Xi)−G(Y,Xi)| ≤ λ
n∑
i=1

|Yi − Y ′i |

with the Lipschitz coefficient λ = kλ0 < 1, by Assumption 1.

Proof of Theorem 2: The proof is similar to that of Proposition 1 of Jenish [18]. Let
Ni(m) = {j, j 6= i, 1 ≤ j ≤ n : ‖t (i)− t (j)‖ ≤ m} be the m-neighborhood of agent i that excludes i,
andN o

i (m) = Ni(m)∪{i} be the neighborhood of agent i that includes i, where t (i) ∈ Zd is i’s location.
Let Ỹin = Fi (X1, ..., Xn), i = 1, ..., n, be the unique solution of the system Ỹin =

G(
(
Ỹjn

)
j∈Ni(r)

, Xi), i = 1, ..., n, defined in (B1). To simplify, we suppress dependence of variables on

n, and write Ỹi = Ỹin.
Fix i, and define η(m)

i = (Xj)j∈N oi (m) and ζ
(m)
i = (Xj)j∈Λn\N oi (m) for any m ∈ N, so that we

can partition X = {X1, ..., Xn} =
(
η

(m)
i ; ζ

(m)
i

)
. Suppose that the underlying probability space is

rich enough that there exists a random variable U uniformly distributed on [0, 1] that is independent
of {Xj}. Then, by Lemma A1 in Jenish [18], there exists a function h(U, η

(m)
i ) such that the process

X(m) =
{
X

(m)
j

}n
j=1

=
(
η

(m)
i ;h(U, η

(m)
i )

)
has the same distribution as X .
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We now construct an approximation to Ỹi. Define

Ỹ
(m)
j = Fj

(
X

(m)
1 , ..., X(m)

n

)
= Fj

(
η

(m)
i ;h(U, η

(m)
i )

)
(B3)

Since X(m) has the same distribution as X , we have Ỹ (m)
j = G(

((
Ỹ

(m)
l

)
l∈Nj(r)

, X
(m)
j

)
. If j ∈ Ni(m),

then X(m)
j = Xj and by the Lipschitz condition (B2), we have∥∥∥Ỹj − Ỹ (m)

j

∥∥∥
2
≤ λ0

∑
l∈Nj(r)

∥∥∥Ỹl − Ỹ (m)
l

∥∥∥
2

(B4)

Consider two cases: m ≥ r and m < r. If m ≥ r, recursive use of (B4) gives∥∥∥Ỹi − Ỹ (m)
i

∥∥∥
2
≤ λ0

∑
j1∈Ni(r)

∥∥∥Ỹj1 − Ỹ (m)
j1

∥∥∥
2
≤ λ2

0

∑
j1∈Ni(r)

∑
j2∈Nj1 (r)

∥∥∥Ỹj2 − Ỹ (m)
j2

∥∥∥
2

≤ ... ≤ λp0
∑

j1∈Ni(r)

...
∑

jp∈Njp−1
(r)

∥∥∥Ỹjp − Ỹ (m)
jp

∥∥∥
2
≤ 2 ‖Y ‖2 λ

p

where λ = λ0k < 1. If m < r, then p = [m/r] < 1 and again we will have the same bound on the error:∥∥∥Ỹi − Ỹ (m)
i

∥∥∥
2
≤ λ0

∑
j1∈Ni(r)

∥∥∥Ỹj1 − Ỹ (m)
j1

∥∥∥
2
≤ 2 ‖Y ‖2 λ ≤ 2 ‖Y ‖2 λ

p

Since iwas arbitrary, using the same arguments, we can approximate the entire process
{
Ỹi

}
by
{
Ỹ

(m)
i

}
,

which has a similar functional form but a more tractable dependence structure. The approximation error
is given by supn,i∈Λn

∥∥∥Ỹi − Ỹ (m)
i

∥∥∥
2
≤ 2 ‖Y ‖2 λ

p.

We now verify the NED condition supn,i∈Λn

∥∥∥Ỹi − E(Ỹi|FXin(m))
∥∥∥

2
→ 0 as m → ∞, where

FXin(m) = σ(Xj, j ∈ N o
i (m)). If 2m >diameter(Λn), then

∥∥∥Ỹi − E(Ỹi|FXin(m))
∥∥∥

2
= 0.

If 2m ≤diameter(Λn), approximate Ỹi by Ỹ
(m)
i as defined in (B3). Note that by construction,

E[Ỹi|FXin(m)] = E[Ỹ
(m)
i |FXin(m)] =

∫ 1

0
Fi

(
η

(m)
i ;h(u, η

(m)
i )

)
du. Then, by the Jensen inequality and

independence of U and {Xi}, we have∥∥∥Ỹi − E(Ỹi|FXin(m)))
∥∥∥

2
=

∥∥∥∥Fi (η(m)
i ; ζ

(m)
i

)
−
∫ 1

0

Fi

(
η

(m)
i ;h(u, η

(m)
i )

)
du

∥∥∥∥
2

≤
{
E

∫ 1

0

∣∣∣Fi (η(m)
i ; ζ

(m)
i

)
− Fi

(
η

(m)
i ;h(u, η

(m)
i )

)∣∣∣2 du}1/2

=
∥∥∥Fi (η(m)

i ; ζ
(m)
i

)
− Fi

(
η

(m)
i ;h(U, η

(m)
i )

)∥∥∥
2

=
∥∥∥Ỹi − Ỹ (m)

i

∥∥∥
2
≤ ψ(m) = 2 ‖Y ‖2 λ

[m/r] → 0 as m→∞

We now show that {Yi} is L2-NED on {(Xi, εi)}. Let Fin(m) = σ((Xj, εj) , j ∈ N o
i (m)) and define

Zi as

Zi = g

((
Ỹj

)
j∈Ni(r)

)
=

{
b0 +X ′iβ0 +

∑
j∈Ni(r) αj0Ỹj + εi, b0 +X ′iβ0 +

∑
j∈Ni(r) αj0Ỹj + εi > γ0

γ0, otherwise
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Then, Yi = Zi1 {Zi > γ0}. The proof will proceed in three steps: (i) verify the NED property of Zi; (ii)
show the NED property of 1 (Yi > 0) = 1 {Zi > γ0}; and (iii) apply Proposition 3 of Jenish and Prucha
[5] to the product of the two processes to show its NED property.

It can be easily verified that g (y1, ..., yk) satisfies a Lipschitz inequality:
|g (y1, ..., yk)− g (y′1, ..., y

′
k)| ≤ α

∑k
j=1

∣∣yj − y′j∣∣, where α = max1≤j≤k |αj0|. By the least mean
squared property of the conditional mean,

‖Zi − E (Zi|Fin(m))‖2 ≤
∥∥∥g (Ỹ−i)− g (E (Ỹ−i|Fin(m)

))∥∥∥
2

≤ α
∑

j∈Ni(r)

∥∥∥Ỹj − E [Ỹj|FXin(m)
]∥∥∥

2
≤ kαψ(m)→ 0 as m→∞

since E
[
Ỹj|Fin(m)

]
= E

[
Ỹj|FXin(m)

]
by independence of {εi} and

{
Xi, Ỹj

}
.

Next, let ϕ(z) = 1 {z > γ0}, a > 0 be some positive scalar to be chosen later. Define the function:

ϕm(z) =


1, z > γ0 + ψa(m)

ψ−a(m) (z − γ0) , γ0 ≤ z ≤ γ0 + ψa(m)

0, z < γ0

This piecewise linear function converges pointwise to 1 {z > γ0} as m → ∞; but in contrast
to 1 {z > γ0} , it is Lipschitz-continuous with the Lipschitz coefficient ψ−a(m), i.e., for all z1, z2

|ϕm(z1)− ϕm(z2)| ≤ ψ−a(m) |z1 − z2|. Moreover, observe that supz |ϕ(z)− ϕm(z)| ≤ 1,
and consequently,

‖ϕ(z)− ϕm(z)‖2 ≤
[∫

1 {γ0 ≤ z ≤ γ0 + ψa(m)} dF (z)

]1/2

= [F (γ0 + ψa(m))− F (γ0)]1/2 ≤ [f(z̃)ψa(m)]1/2 ≤ Cψa/2(m)

where f(·) is the p.d.f. of z and z̃ ∈ (γ0, γ0 + ψa(m)). Using the above inequalities gives

‖ϕ(Zi)− E (ϕ(Zi)|Fin(m))‖2
≤ ‖ϕ(Zi)− ϕm(Zi)‖2 + ‖ϕm(Zi)− E (ϕm(Zi)|Fin(m))‖2 + ‖E (ϕ(Zi)|Fin(m))− E (ϕm(Zi)|Fin(m))‖2
≤ 2 ‖ϕ(Zi)− ϕm(Zi)‖2 + ‖ϕm(Zi)− E (ϕm(Zi)|Fin(m))‖2 ≤ 2ψa/2(m) + kαψ1−a(m).

Now, minimize the order of magnitude of the variable in the last line by setting a = 2/3. Thus,
1 {Zi > γ0} = 1 (Yi > 0) is L2-NED on {(Xi, εi)} with the NED numbers (2 + kα)ψ1/3(m).

Next, observe that 1 (Yi = 0) = 1 − 1 (Yi > 0). Hence, by Proposition 2 of Jenish and Prucha [5],
{1 (Yi = 0)} is L2-NED on {(Xi, εi)} with the same NED numbers. Finally, noting that

|z1 {z > γ0} − z′1 {z′ > γ0}| ≤ (|z|+ ϕ(z′)) (|z − z′|+ |ϕ(z)− ϕ(z′)|)

and using Proposition 3 of Jenish and Prucha [5] withB(z, z′) = |z|+ϕ(z′) and r = 3, we have that {Yi}
is L2-NED on {(Xi, εi)} with the NED numbers cψ1/12(m), where c = 2 ‖Y ‖3/2

6 ‖Y ‖
1/4
2 (2 + kα)1/4 .
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C. Proofs for Section 4

Proof of Proposition 1:
The proof of this proposition follows Carson and Sun [19]. The latter paper is not readily applicable

to our model since it relies on LLN for independent processes. Let n0 and n1 denote, respectively, the
sizes of the censored and uncensored subsamples, and let Yi,(0) and Yi,(1) denote observations from the
censored and uncensored subsample, respectively. Conditional on the state variablesXn, the uncensored
subsample

{
Yi,(1)

}
is independent and follows a truncated normal distribution. Consequently,

P
(
min

{
Y(1)

}
> γ + z/n|Xn, n1

)
= P

(
Y1,(1) > γ + z/n, ..., Yn1,(1) > γ + z/n|Xn, n1

)
=

n1∏
i=1

1−
Φ
[(
γ + z/n− Z ′in,(1)δ

)
/σ
]
− Φ

[(
γ − Z ′in,(1)δ

)
/σ
]

1− Φ
[(
γ − Z ′in,(1)δ

)
/σ
]


=

n1∏
i=1

1− z

nσ

φ
[(
γ − Z ′in,(1)δ

)
/σ
]

+ op (1)

1− Φ
[(
γ − Z ′in,(1)δ

)
/σ
]
 (C1)

where op (1) holds uniformly over i since φ (·) is uniformly continuous on R. Now, let

µin =
1

σ

φ
[(
γ − Z ′in,(1)δ

)
/σ
]

1− Φ
[(
γ − Z ′in,(1)δ

)
/σ
] and µ = E (µin)

Next, we establish some inequalities for the r.v. µin. By Lemma D1, Zin is L2-NED on {Xi} with
geometrically decaying coefficients. Then, by Proposition 3 of Jenish and Prucha [5], {µin} is also
L2-NED on {Xi}, which is mixing satisfying Assumption 3. Consequently, {µin} satisfies the LLN of

Jenish and Prucha [5], i.e., 1
n1

n1∑
i=1

µin = µ+op (1). By the Mill’s Ratio inequality, |φ (z) / (1− Φ (z))| ≤

K |z| for some K < ∞, and hence, supi,nE
(
|µin|6

)
≤ M < ∞, since supi,nE

(
|Zin|6

)
< ∞ by

assumption. Next, let Mk = max1≤i≤k µin, for k ≤ n and define sets A1(c) = {M1 > c} , Ak(c) =

{Mk−1 ≤ c, µkn > c} for k = 2, ..., n. Clearly, {Mn > c} ⊆ ∪nk=1Ak(c) and Ak(c) ⊆ {µkn > c} . Then,
by the Markov inequality,

P

(
max
1≤i≤n

µin > n1/6C

)
≤

n∑
k=1

P
(
Ak(n

1/6C)
)
≤

n∑
k=1

P
(
µkn > n1/6C

)
≤MC−6

which implies max1≤i≤n µin = Op

(
n1/6

)
. Now, using (C1) and the last inequality gives

1

n1

logP
(
min

{
Y(1)

}
> γ + z/n|Xn, n1

)
=

1

n1

n1∑
i=1

log

(
1− z

n
µin + op

(
1

n

))

= − 1

n1

n1∑
i=1

[
z

n
µin + op

(
1

n

)
+O

(
µ2
in

n2

)]
=

[
− 1

n1

n1∑
i=1

z

n
µin

]
+ op

(
1

n

)
+O

(
max1≤i≤n µ

2
in

n2

)

=

[
− z
n

1

n1

n1∑
i=1

µin

]
+ op

(
1

n

)
+Op

(
n−5/3

)
= − z

n
[µ+ op (1)] + op

(
1

n

)
= −zµ

n
(1 + op (1))
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Thus, P
(
min

{
Y(1)

}
> γ + z/n|n1

)
= exp

[
−n1

n
zµ (1 + op (1))

]
. Moreover, by Theorem 2, 1 (Yi > γ)

is L2-NED on
{

(X ′i, εi)
′}, and hence, satisfies the LLN of Jenish and Prucha [5]:

n1

n
=

1

n

n∑
i=1

1 (Yi > γ)
p→ E [1− Φ ((γ − Z ′inδ) /σ)] := κ

Consequently, P
(
min

{
Y(1)

}
> γ + z/n|n1

)
→ exp (−az) , where a = κµ. As the right-hand side of

the last expression does not depend on n1, it is also the limit of the unconditional probability. Thus,

lim
n→∞

P (n (γ̂ − γ) ≤ z) = 1− exp (−az) for z > 0

Proof of Theorem 3:
By Proposition 1, γ0 is identified, so it remains to prove identification of θ by showing that the

population objective function Q (θ, γ0) = E [m (Win, θ, γ0)] is uniquely maximized at θ0.

A. Identification in ML
To prove identification in the ML case, it suffices to verify the Kullback-Leibler information

inequality, i.e., for all θ ∈ Θ s.t. θ 6= θ0

log f
(
Yi|Xn; θ, γ0

)
6= log fi

(
Yi|Xn; θ0, γ0

)
with positive probability. (C2)

Observe that log f
(
Yi|Xn; θ, γ0

)
−log fi

(
Yi|Xn; θ0, γ0

)
=1 (Yi=0)

[
log Φ

(
γ0−Z′inδ

σ

)
−log Φ

(
γ0−Z′inδ0

σ0

)]
−

−1
2
1 (Yi > γ0) [log σ2 − log σ2

0]− 1 (Yi > γ0)

[
(Yi−Z′inδ)

2

2σ2 − (Yi−Z′inδ0)
2

2σ2
0

]
.

Clearly, log f
(
Yi|Xn; θ, γ0

)
6= log f

(
Yi|Xn; θ0, γ0

)
with positive probability if σ2 6= σ2

0 . Suppose the
opposite were true, i.e., log f

(
Yi|Xn; θ, γ0

)
= log f

(
Yi|Xn; θ0, γ0

)
w.p.1. Then, we would have log σ2

σ2
0
−

(Yi−Z′inδ0)
2

σ2
0

+
(Yi−Z′inδ)

2

σ2 = 0 for Yi > γ0,which implies that the r.v. (Yi − Z ′inδ0)2 and (Yi − Z ′inδ)
2 would

have a point mass, which is impossible since at least one of the regressors in Xi has a full support by
Assumption 4. So, σ2

0 is identified, and we can focus on the case: σ2 = σ2
0 but δ 6= δ0.

If δ 6= δ0, then E (Z ′inδ − Z ′inδ0)2 = E [Z ′in (δ − δ0)]2 = (δ − δ0)′E (ZinZ
′
in) (δ − δ0) > 0, since

E (ZinZ
′
in) is positive definite by Assumption 4. Hence, Z ′inδ 6= Z ′inδ0 with positive probability.

Consequently, Yi − Z ′inδ 6= Yi − Z ′inδ0 with positive probability. Since Z ′inδ 6= Z ′inδ0 with positive
probability, and Φ (·) and log are strictly increasing functions, we also have log Φ

(
γ0−Z′inδ

σ0

)
6=

log Φ
(
γ0−Z′inδ0

σ0

)
with positive probability, which proves (C2).

B. Identification in LS
To prove identification in the LS case, it suffices to verify that for all θ ∈ Θ s.t. θ 6= θ0

ϕ (Zin, θ, γ0) 6= ϕ (Zin, θ0, γ0) with positive probability. (C3)

Recall ϕ(Zin, θ, γ0) = Φ
(
Z′inδ−γ0

σ

)
Z ′inδ + σφ

(
Z′inδ−γ0

σ

)
. Re-parametrize: υ = δ/σ and σ = σ. This

mapping is one-to-one, and hence its suffices to prove identification of the parameters υ0 = δ0/σ0 and σ0.
By similar arguments as in part A, if υ 6= υ0, then Z ′inυ 6= Z ′inυ0 with positive probability. Denote

u = Z ′inυ and u0 = Z ′inυ0, and consider the function ϕ̃(u, σ) = σ [uΦ (u− γ0/σ) + φ (u− γ0/σ)] .
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It is strictly increasing in σ. To see this, let γ̃ = γ0/σ and note that ∂ϕ̃(u,σ)
∂σ

= uΦ (u− γ̃) +

(1 + γ̃2)φ (u− γ̃) > 0, because if u < 0, then −u ≤ (γ̃ − u) < φ(γ̃−u)
1−Φ(γ̃−u)

= φ(u−γ̃)
Φ(u−γ̃)

by the Mill’s
Ratio inequality since γ̃ = γ0/σ ≥ 0. Moreover, ϕ̃(u, σ) is also strictly increasing in u:

∂ϕ̃(u, σ)

∂u
= σ [Φ (u− γ̃) + uφ (u− γ̃)− (u− γ̃)φ (u− γ̃)] = σ [Φ (u− γ̃) + γ̃φ (u− γ̃)] > 0,

which proves identification of υ0 and σ0, and thus completes the proof of the theorem.

D. Proofs for Section 5

The following lemma collects formulas and some properties of the score and Hessian functions for the
ML and LS estimators, which are used throughout the proofs. Let min = m(Win, θ, γ), s(Win, θ, γ) =
∂min
∂θ

=
(
∂min
∂δ′

; ∂min
∂σ2

)′
denote the score function, and let the Hessian matrix be denoted by:

H(Win, θ, γ) =
∂2min

∂θ∂θ′
=

[
∂2min
∂δ∂δ′

∂2min
∂δ∂σ2

∂2min
∂σ2∂δ′

∂2min
∂(σ2)2

]

Lemma D1. Let φin = φ
(
γ−Z′inδ

σ

)
, Φin = Φ

(
γ−Z′inδ

σ

)
and ϕin = ϕ(Zin, θ, γ).

A. For the ML estimator, the components of the score and Hessian are given by:

∂min

∂δ
= −1 (Yi = 0)

φin
σΦin

Zin + 1 (Yi > γ)
1

σ2

(
Yi − Z ′inδ

)
Zin (D1)

∂min

∂σ2
= −1 (Yi = 0)

φin
2σ3Φin

(
γ − Z ′inδ

)
− 1

2σ2
1 (Yi > γ) +

1

2σ4
1 (Yi > γ)

(
Yi − Z ′inδ

)2
∂2min

∂δ∂δ′
= −1 (Yi = 0)

φin
σΦ2

in

[
1

σ
φin −

1

σ2

(
γ − Z ′inδ

)
Φin

]
ZinZ

′
in − 1 (Yi > γ)

1

σ2
ZinZ

′
in

∂2min

∂σ2∂δ′
= −1 (Yi = 0)

φin
2σ3Φ2

in

[
1

σ

(
γ − Z ′inδ

)
φin − Φin +

1

σ2

(
γ − Z ′inδ

)2
Φin

]
Zin

− 1

σ4
1 (Yi > γ)

(
Yi − Z ′inδ

)
Zin

∂2min

∂ (σ2)2 = 1 (Yi = 0)
σ−5φin
4Φ2

in

[
(Z ′inδ − γ)3

σ2
Φin − 3

(
γ − Z ′inδ

)
Φin −

(Z ′inδ − γ)2

σ
φin

]
+

1

2σ4
1 (Yi > γ)− 1

σ6
1 (Yi > γ)

(
Yi − Z ′inδ

)2
B. For the LS estimator, the components of the score and Hessian are given by:

∂min

∂δ
= 2 (Yi − ϕin)

[
Φin +

γ

σ
φin

]
Zin, (D2)

∂min

∂σ2
= (Yi − ϕin)φin

[
γ (γ − Z ′

inδγ)

σ3
+

1

σ

]
∂2min

∂δ∂δ′
= −2

[
Φin +

γ

σ
φin

]2
ZinZ

′
in + 2 (Yi − ϕin)

φin
σ

[
1− (Z ′

inδ − γ) γ

σ2

]
ZinZ

′
in

∂2min

∂σ2∂δ′
= −φin

[(
Φin +

γ

σ
φin

) γ (γ − Z ′
inδγ) + σ2

σ3
− (Yi − ϕin)

γ (γ − Z ′
inδγ)

2
+ σ2 (γ − Z ′

inδ)− γσ
σ4

]
Zin

∂2min

∂ (σ2)
2 = −φ2in

[
γ2 − Z ′

inδ

σ3
+

1

σ

]2
+

1

2
(Yi − ϕin)φin

[
− (Z ′

inδ − γ)
3
γ

σ7
+

(Z ′
inδ − γ) (Z ′

inδ + 2γ)

σ5
− 1

σ3

]
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C. Under Assumptions 1–3(i), {m(Win, θ, γ)} and {H (Win, θ0, γ0)} are L1-NED on
{

(X ′i, εi)
′} with

coefficients decaying at geometric rates, and the score {s(Win, θ0, γ0)} is L2-NED on
{

(X ′i, εi)
′}

with coefficients decaying at geometric rates.

The rates of the NED coefficients are required only for verification of the assumptions of the CLT
and LLN for NED processes of Jenish and Prucha [5], which rely on polynomial decay rates. Clearly,
the NED coefficients declining at any geometric rate will automatically satisfy these theorems, and their
exact orders of magnitude are unimportant for the proofs our results.

Proof of Lemma D1: Parts A and B follow by straightforward differentiation. To show
part C, observe that by Theorem 2 and Proposition 3 of Jenish and Prucha [5], {1 (Yin > γ0)} ,
{1 (Yin = 0)},

{
Φ
(
γ−Z′inδ

σ

)}
,
{
φ
(
γ−Z′inδ

σ

)}
and

{
(Yi − Z ′inδ)

2} are L2-NED on
{

(X ′i, εi)
′} with the

NED coefficients decaying at geometric rates. Then, by Theorem 17.9 of Davidson [21], all products
and sums of L2-NED terms are L1-NED variables with the NED coefficients decaying at the slowest
rate of the multiples or summands. Thus, {min} is L1-NED on

{
(X ′i, εi)

′} for both the ML and LS
estimators. B analogous arguments, the HessiansH (Win, θ0, γ0) are L1-NED on

{
(X ′i, εi)

′} for both the
ML and LS estimators. Finally, the score of the ML estimator is L2-NED on

{
(X ′i, εi)

′} with geometric
decay rates by Example 17.17 of Davidson [21] as the sum of products of 1 (Yi = 0) or 1 (Yi > γ),
which are bounded and L2-NED, and some smooth functions, each of which is L2-NED on

{
(X ′i, εi)

′}
with geometric decay rates. By analogous arguments, the score of the LS estimator is also L2-NED on{

(X ′i, εi)
′} with geometric decay rates.

Proof of Theorem 4: We first show consistency. Let Q (θ, γ) = E [m (Win, θ, γ)]. To prove
consistency of θ̂n, it suffices to verify assumptions of Lemma A-1 of Andrews [22], namely: (a)
supθ∈Θ |Qn (θ, γ̂)−Q (θ, γ0)| p→ 0, and (b) for every neighborhood Θ0 of θ, supθ∈Θ/Θ0

Q (θ, γ0) <

Q (θ0, γ0). Condition (b) is satisfied both for the ML and LS estimators by the identification theorem,
Theorem 3. So, it only remains to verify condition (a).

A. We first verify condition (a) for the ML estimator. Note that

sup
θ∈Θ
|Qn (θ, γ̂)−Q (θ, γ0)| ≤ sup

θ∈Θ
|Qn (θ, γ0)−Q (θ, γ0)|+ sup

θ∈Θ
|Qn (θ, γ̂)−Qn (θ, γ0)| (D3)

We now show that both terms on the r.h.s. of this inequality go to zero in probability. Consider the first
term. By Lemma D1, {m (Win, θ, γ0)} is L1-NED on (X ′i, εi)

′ with the NED coefficients decaying at a
geometric rate, and (X ′i, εi)

′ is α-mixing satisfying Assumption 3(ii). Moreover, E |m (Win, θ, γ)| <
∞. Then, by Theorem 1 of Jenish and Prucha [5], {m (Win, θ, γ0)} satisfies a pointwise LLN on
Θ. Next, since Θ is compact, and m (Win, θ, γ0) is continuously differentiable in θ, m (Win, θ, γ0)

satisfies a Lipschitz condition in θ with a coefficient satisfying: supi,n supΘE
∣∣∣∂m(Win,θ,γ0)

∂θ

∣∣∣ < ∞, by
Assumption 5. Thus, {m (Win, θ, γ0)} is L1-stochastically equicontinuous on Θ, and hence, by the
ULLN of Jenish and Prucha [23], the first term on the r.h.s. of (D3) converges to zero.
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Next, write out the second term in (D3) as

Qn (θ, γ̂)−Qn (θ, γ0) =
1

n

n∑
i=1

1 (Yi = 0)

[
log Φ

(
γ̂ − Z ′inδ

σ

)
− log Φ

(
γ0 − Z ′inδ

σ

)]
+

1

n

n∑
i=1

log

[
σ−1φ

(
Yi − Z ′inδ

σ

)]
[1 (Yi > γ̂)− 1 (Yi > γ0)]

By construction, γ̂ = min {Yi : Yi > 0} ≥ γ0, and hence,

1 (Yi > γ̂)− 1 (Yi > γ0) =

{
0, if Yi 6= Y(1) = γ̂

−1 (Yi > γ0) , if Yi = min {Yi : Yi > 0} = γ̂
(D4)

Note that the minimal value in the uncensored subsample, {Yi > 0}, is attained only by a single
observation in the subsample. This is because the variables {Yi} are i.i.d. continuously distributed
on (γ0,+∞) so that the probability of the event Yi = Yj , i 6= j, is zero. Then,

Qn (θ, γ̂)−Qn (θ, γ0) =
1

n

n∑
i=1

1 (Yi = 0)

[
log Φ

(
γ̂ − Z ′inδ

σ

)
− log Φ

(
γ0 − Z ′inδ

σ

)]

− 1

n
1 (γ̂ > γ0) log

[
σ−1φ

(
γ̂ − Z ′in,(1)δ

σ

)]

Since log Φ (z) is continuously differentiable on R, we have by the Mean Value Theorem:

log Φ

(
γ̂ − Z ′inδ

σ

)
− log Φ

(
γ0 − Z ′inδ

σ

)
=

φ
(
γ̃−Z′inδ

σ

)
σΦ
(
γ̃−Z′inδ

σ

) (γ̂ − γ0)

where γ̃ is between γ̂ and γ0, and γ̃
p→ γ0. Then,

sup
θ∈Θ
|Qn (θ, γ̂)−Qn (θ, γ0)| ≤ |γ̂ − γ0|

1

n


n∑
i=1

sup
θ∈Θ

∣∣∣∣∣∣
φ
(
γ̃−Z′inδ

σ

)
σΦ
(
γ̃−Z′inδ

σ

)
∣∣∣∣∣∣


+
1

n
1 (γ̂ > γ0) sup

θ∈Θ

∣∣∣∣∣log

[
σ−1φ

(
γ̂ − Z ′in,(1)δ

σ

)]∣∣∣∣∣ p→ 0

since γ̂
p→ γ0, supx∈R

φ(x)
Φ(x)

≤ C, σ ∈ [σ1, σ2], σ1 > 0, E
[
supδ (Yin − Z ′inδ)

2] < ∞, by
Assumption 5, and by Proposition 1: E (1 (γ̂ > γ0)) = P (γ̂ > γ0) = P (n (γ̂ − γ0) > 0) → 1. Thus,
supθ∈Θ |Qn (θ, γ̂)−Q (θ, γ0)| p→ 0, and hence, the ML estimator θ̂n

p→ θ0.

B. We now verify condition (a) for the LS estimator. Using similar arguments as in part A,
{m (Win, θ, γ0)} is L1-NED and L1-stochastically equicontinuous on Θ, and hence, by the ULLN of
Jenish and Prucha [23], the first term on the r.h.s. of (D3) converges to zero.
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As for the second term, observe that by the Mean Value Theorem:

Qn (θ, γ̂)−Qn (θ, γ0) =
1

n

n∑
i=1

[m (Win, θ, γ̂)−m (Win, θ, γ0)]

=
1

n

n∑
i=1

[ϕ(Win, θ, γ0)− ϕ(Win, θ, γ̂)] [2Yi + ϕ(θ, γ0) + ϕ(θ, γ̂)]

= (γ̂ − γ0)
1

n

n∑
i=1

{
γ0

σ
φ

(
Z ′inδ − γ̃

σ

)
[2Yi + ϕ(θ, γ0) + ϕ(θ, γ̂)]

}
p→ 0

since γ̂
p→ γ0 and the r.v. in braces is Op (1) , where ϕ(Win, θ, γ) = Φ

(
Z′inδ−γ

σ

)
Z ′inδ + σφ

(
Z′inδ−γ

σ

)
and ∂ϕ

∂γ
= γφ ((Z ′inδ − γ) /σ) /σ. This completes the proof of consistency

Proof of asymptotic normality: Taking the mean value expansion of the first-order conditions around
θ0 gives:

0 =
∂Qn

(
θ̂, γ̂
)

∂θ
=

1

n

n∑
i=1

s (Win, θ0, γ̂) +

[
1

n

n∑
i=1

H
(
Win, θ̃, γ̂

)](
θ̂n − θ0

)
where θ̃ lies between θ̂ and θ0, and θ̂n

p→ θ0. For both ML and LS estimators, we verify below that

1

n

n∑
i=1

H
(
Win, θ̃, γ̂

)
p→ H0 = E [H (Win, θ0, γ0)] (D5)

where H0 is nonsingular by assumption. Then,

√
n
(
θ̂n − θ0

)
= −H−1

0

1√
n

n∑
i=1

[s (Win, θ0, γ̂)− Es (Win, θ0, γ̂)]−H−1
0

1√
n

n∑
i=1

Es (Win, θ0, γ̂)+op(1)

Define: νn(γ) = n−1/2
∑n

i=1 [s (Win, θ0, γ)− Es (Win, θ0, γ)] , and re-write

√
n
(
θ̂n − θ0

)
= −H−1

0 νn(γ0)−H−1
0 [νn(γ̂)− νn(γ0)]−H−1

0

1√
n

n∑
i=1

Es (Win, θ0, γ̂) + op(1)

By Lemma D1, {s (Win, θ0, γ0)} is L2-NED on
{

(X ′i, εi)
′} with the NED coefficients decaying at a

geometric rate both in the case of the ML and LS estimators. In turn,
{

(X ′i, εi)
′} is mixing with α-mixing

coefficients satisfying Assumption 3. Then, by the CLT of Jenish and Prucha [5], νn(γ0)
d→ N(0, S0),

where S0 = V ar [s(Win, θ0, γ0)]. So to prove the theorem, it remains to verify (D5) and show that

νn(γ̂)− νn(γ0)
p→ 0, (D6)

n−1/2

n∑
i=1

Es (Win, θ0, γ̂)
p→ 0 (D7)

A. ML estimator
We first verify (D7). Note that by the population log likelihood equality

Es (Win, θ0, γ0) = E

[
∂

∂θ
log f (Win, θ0, γ0)

]
= 0 (D8)
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Next partition Es (Win, θ0, γ) =
[
E ∂
∂δ′
m(Win, θ0, γ);E ∂

∂σ2m(Win, θ0, γ)
]′ and use formulas (D1) to

find the conditional expectations for γ ≥ γ0:

hδ(Win, θ0, γ) ≡ E

[
∂

∂δ
m(Win, θ0, γ)|Xn

]

= −Φ

(
γ0 − Z ′inδ0

σ0

) φ
(
γ−Z′inδ0

σ0

)
σ0Φ

(
γ−Z′inδ0

σ0

)Zin +
Zin
σ2

0

E
[
εi1 (εi > γ − Z ′inδ0) |Xn

]

= −Φ

(
γ0 − Z ′inδ0

σ0

) φ
(
γ−Z′inδ0

σ0

)
σ0Φ

(
γ−Z′inδ0

σ0

)Zin +
φ
(
Z′inδ0−γ

σ0

)
Φ
(
Z′inδ0−γ

σ0

)Zin
σ0

hσ(Win, θ0, γ) ≡ E

[
∂

∂σ2
m(Win, θ0, γ)|Xn

]
= −E

[
1 (Yi = 0) |Xn

] φ
(
γ−Z′inδ0

σ0

)
2σ3

0Φ
(
γ−Z′inδ0

σ0

) (γ − Z ′inδ0)

− 1

2σ2
0

E
[
1 (Yi > γ) |Xn

]
+

1

2σ4
0

E
[
1 (Yi > γ) (Yi − Z ′inδ0)

2 |Xn

]
= −Φ

(
γ0 − Z ′inδ0

σ0

) φ
(
γ−Z′inδ0

σ0

)
2σ3

0Φ
(
γ−Z′inδ0

σ0

) (γ − Z ′inδ0)−

− 1

2σ2
0

Φ

(
Z ′inδ0 − γ

σ0

)
+

1

2σ2
0

Zin

1 + (γ − Z ′inδ0)
φ
(
Z′inδ0−γ

σ0

)
Φ
(
Z′inδ0−γ

σ0

)


since by Amemiya [24],E
[
ε2
i1 (εi > γ − Z ′inδ0) |Xn

]
= σ2

0

[
1− (Z ′inδ0 − γ)φ

(
Z′inδ0−γ

σ0

)
/Φ
(
Z′inδ0−γ

σ0

)]
.

By the Law of Iterated Expectations, Es (Win, θ0, γ) =
(
E [hδ(Win, θ0, γ)]′ , E [hσ(Win, θ0, γ)]

)′
.

Next, observe that hδ(Win, θ0, γ) and hσ(Win, θ0, γ) are continuous in γ uniformly on Γ, since Γ is
compact. Moreover, hδ(Win, θ0, γ) and hσ(Win, θ0, γ) both satisfy domination conditions in γ in the
ε-neighborhood of γ0. Then, since γ̂ ≥ γ0 and γ̂ ↓ γ0 in probability,

p lim
n→∞

E [hδ(Win, θ0, γ̂)] = E
[
p lim
n→∞

hδ(Win, θ0, γ̂)
]

= E [hδ(Win, θ0, γ0)] = 0

p lim
n→∞

E [hσ(Win, θ0, γ̂)] = E
[
p lim
n→∞

hσ(Win, θ0, γ̂)
]

= E [hσ(Win, θ0, γ0)] = 0

by (D8), which verifies (D7). We next verify (D6). Write

νn(γ̂)− νn(γ0) = n−1/2

n∑
i=1

[s (Win, θ0, γ̂)− s (Win, θ0, γ0)]− n−1/2

n∑
i=1

Es (Win, θ0, γ̂)
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since Es (Win, θ0, γ0) = 0. It was already shown that n−1/2
∑n

i=1Es (Win, θ0, γ̂)
p→ 0. It remains to

show that n−1/2
∑n

i=1 [s (Win, θ0, γ̂)− s (Win, θ0, γ0)]
p→ 0. Partition s (Win, θ0, γ̂) − s (Win, θ0, γ0) =(

s1i (γ̂, γ0)′ , s2i (γ̂, γ0)
)′, where

s1i (γ̂, γ0) = σ−1
0 1 (Yi = 0)Zin

φ
(
γ0−Z′inδ0

σ0

)
Φ
(
γ0−Z′inδ0

σ0

) − φ
(
γ̂−Z′inδ0

σ0

)
Φ
(
γ̂−Z′inδ0

σ0

)


+
1

σ2
0

(Yi − Z ′inδ0)Zin [1 (Yi > γ̂)− 1 (Yi > γ0)] ;

s2i (γ̂, γ0) = − 1

2σ3
0

1 (Yi = 0)

φ
(
γ̂−Z′inδ0

σ0

)
Φ
(
γ̂−Z′inδ0

σ0

) (γ̂ − Z ′inδ0)−
φ
(
γ0−Z′inδ0

σ0

)
Φ
(
γ0−Z′inδ0

σ0

) (γ0 − Z ′inδ0)


− 1

2σ2
0

[1 (Yi > γ̂)− 1 (Yi > γ0)] +
1

2σ4
0

(Yi − Z ′inδ0)
2

[1 (Yi > γ̂)− 1 (Yi > γ0)]

Using (D4) and similar arguments as in the proof of consistency, we have

n−1/2

n∑
i=1

s1i (γ̂, γ0) = n−1/2

n∑
i=1

σ−1
0 1 (Yi = 0)Zin

φ
(
γ0−Z′inδ0

σ0

)
Φ
(
γ0−Z′inδ0

σ0

) − φ
(
γ̂−Z′inδ0

σ0

)
Φ
(
γ̂−Z′inδ0

σ0

)


−n−1/2 1

σ2
0

(
γ̂ − Z ′in,(1)δ0

)
Zin,(1)1 (γ̂ > γ0) := A1n + A2n,

n−1/2

n∑
i=1

s2i (γ̂, γ0) = − 1

2σ3
0

n−1/2

n∑
i=1

1 (Yi=0)

φ
(
γ̂−Z′inδ0

σ0

)
Φ
(
γ̂−Z′inδ0

σ0

) (γ̂ − Z ′inδ0)−
φ
(
γ0−Z′inδ0

σ0

)
Φ
(
γ0−Z′inδ0

σ0

) (γ0−Z ′inδ0)


+

1

2σ2
0

n−1/21 (γ̂ > γ0)− 1

2σ4
0

n−1/2
(
γ̂ − Z ′in,(1)δ0

)2
1 (γ̂ > γ0)

Since the function g(z) = φ (z) / Φ (z) is continuously differentiable on R, we have by the Mean Value
Theorem: g

(
γ̂−Z′inδ0

σ0

)
− g

(
γ0−Z′inδ0

σ0

)
= σ−1

0 g′
(
γ̃−Z′inδ0

σ0

)
(γ̂ − γ0), where γ̃ is between γ̂ and γ0, and

γ̃
p→ γ0. Hence, the first term in n−1/2

∑n
i=1 s1i (γ̂, γ0) satisfies

A1n = n−1/2 [n (γ̂ − γ0)]n−1

n∑
i=1

1 (Yi = 0)Zing
′
(
γ̃ − Z ′inδ0

σ0

)
= n−1/2Op(1)Op(1) = op(1)

since n (γ̂ − γ0) = Op(1) by Proposition 1. The second term satisfies

E |A2n| ≤ n−1/2
[
E
∣∣(γ̂ − Z ′in,(1)δ0

)
Zin,(1)

∣∣2]1/2

P 1/2 (n (γ̂ − γ0) > 0)→ 0

since P (n (γ̂ − γ0) > 0) → 1 by Proposition 1. Hence, n−1/2
∑n

i=1 s1i (γ̂, γ0) = op(1). Similarly,
n−1/2

∑n
i=1 s2i (γ̂, γ0) = op(1). Thus, n−1/2

∑n
i=1 [s (Win, θ0, γ̂)− s (Win, θ0, γ0)] = op(1), proving

(D6).
Finally, we verify (D5). Write∣∣∣∣∣ 1n

n∑
i=1

Hin

(
θ̃, γ̂
)
−H0

∣∣∣∣∣ ≤
∣∣∣∣∣ 1n

n∑
i=1

[
Hin

(
θ̃, γ̂
)
−Hin (θ0, γ0)

]∣∣∣∣∣+

∣∣∣∣∣ 1n
n∑
i=1

Hin (θ0, γ0)−H0

∣∣∣∣∣
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We need to show that each of the terms on the r.h.s. of the last inequality is op(1). The second term is
op(1) by the LLN of Jenish and Prucha [5] since H (Win, θ0, γ0) is L1-NED on (X ′i, εi)

′.
Now consider the first term. Using formulas (D1), we have

∂2min

(
θ̃, γ̂
)

∂δ∂δ′
− ∂2min (θ0, γ0)

∂δ∂δ′
= −1 (Yi = 0)

[
g1in

(
θ̃, γ̂
)
− g1in (θ0, γ0)

]
ZinZ

′
in

− [1 (Yi > γ̂)− 1 (Yi > γ0)]
1

σ2
ZinZ

′
in

where g1in (θ, γ) =
φ

(
γ−Z′inδ

σ

)
σΦ2

(
γ−Z′

in
δ

σ

) [ 1
σ
φ
(
γ−Z′inδ

σ

)
− 1

σ2 Φ
(
γ−Z′inδ

σ

)
(γ − Z ′inδ)

]
is continuously

differentiable in (θ′, γ), and hence by the Mean Value Theorem

g1in

(
θ̃, γ̂
)
− g1in (θ0, γ0) =

∂g1in (θ∗, γ∗)

∂θ′

(
θ̃ − θ0

)
+
∂g1in (θ∗, γ∗)

∂γ
(γ̂ − γ0)

where (θ∗, γ∗) lie between
(
θ̃′, γ̂

)′
and (θ′0, γ0)′. Then, using (D4) and similar arguments as in the proof

of consistency, we have∣∣∣∣∣∣ 1n
n∑
i=1

∂2min

(
θ̃, γ̂
)

∂δ∂δ′
− ∂2min (θ0, γ0)

∂δ∂δ′

∣∣∣∣∣∣ ≤
∣∣∣θ̃ − θ0

∣∣∣ 1

n

n∑
i=1

∣∣∣∣∂g1in (θ∗, γ∗)

∂θ′

∣∣∣∣ |ZinZ ′in|
+ |γ̂ − γ0|

1

n

n∑
i=1

∣∣∣∣∂g1in (θ∗, γ∗)

∂γ

∣∣∣∣ |ZinZ ′in|+ 1

n
1 (γ̂ > γ0)σ−2

∣∣Zin,(1)Z
′
in,(1)

∣∣ p→ 0

since
∣∣∣θ̃ − θ0

∣∣∣ p→ 0, |γ̂ − γ0|
p→ 0, andE [1 (γ̂ > γ0)] = P (n (γ̂ − γ0) > 0)→ 1. By similar arguments,∣∣∣∣∣∣ 1n

n∑
i=1

∂2min

(
θ̃, γ̂
)

∂ (σ2)2 − ∂2min(θ0, γ0)

∂ (σ2)2

∣∣∣∣∣∣ p→ 0 and

∣∣∣∣∣∣ 1n
n∑
i=1

∂2min

(
θ̃, γ̂
)

∂σ2∂δ′
− ∂2min (θ0, γ0)

∂σ2∂δ′

∣∣∣∣∣∣ p→ 0

which verifies (D5), and hence, asymptotic normality of the MLE.
B. LS estimator

The proof of (D5) for the LSE is analogous to that in the case of the MLE. Next, by (D2), the score
sin (θ0, γ) is continuously differentiable in γ, and hence, by the Mean Value Theorem,

n−1/2

n∑
i=1

[sin (θ0, γ̂)− sin (θ0, γ0)] ≤ n−1/2n |γ̂ − γ0|
1

n

n∑
i=1

∣∣∣∣∂sin (θ0, γ̃)

∂γ

∣∣∣∣ p→ 0

where γ̃ is between γ̂ and γ, since n (γ̂ − γ0) = Op(1) and n−1
∑n

i=1 |∂sin (θ0, γ̃) /∂γ| = Op(1). Now,
observe that νn(γ̂)− νn(γ0) = n−1/2

∑n
i=1 [sin (θ0, γ̂)− sin (θ0, γ0)]− n−1/2

∑n
i=1Esin (θ0, γ̂) . By the

population moment condition, Esin (θ0, γ0) = E
[
∂
∂θ
m (Win, θ0, γ0)

]
= 0, and hence∣∣∣∣∣n−1/2

n∑
i=1

Esin (θ0, γ̂)− Esin (θ0, γ0)

∣∣∣∣∣ ≤ n−1/2n |γ̂ − γ0|
1

n

n∑
i=1

E

∣∣∣∣∂sin (θ0, γ̃)

∂γ

∣∣∣∣ p→ 0

which verifies both (D7) and (D6). The proof of the theorem is thus complete.
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