
Econometrics 2015, 3, 240-264; doi:10.3390/econometrics03020240
OPEN ACCESS

econometrics
ISSN 2225-1146

www.mdpi.com/journal/econometrics

Article

Detecting Location Shifts during Model Selection by
Step-Indicator Saturation
Jennifer L. Castle 1, Jurgen A. Doornik 2, David F. Hendry 2,* and Felix Pretis 2

1 Magdalen College and Institute for New Economic Thinking, Oxford Martin School, Oxford
University, Eagle House, Walton Well Road, Oxford OX2 6ED, UK;
E-Mail: jennifer.castle@magd.ox.ac.uk

2 Economics Department and Institute for New Economic Thinking, Oxford Martin School, Oxford
University, Eagle House, Walton Well Road, Oxford OX2 6ED, UK;
E-Mails: jurgen.doornik@nuffield.ox.ac.uk (J.A.D.); felix.pretis@nuffield.ox.ac.uk (F.P.)

* Author to whom correspondence should be addressed; E-Mail: david.hendry@nuffield.ox.ac.uk;
Tel.: +44-1865-616-640.

Academic Editor: Kerry Patterson

Received: 16 February 2015 / Accepted: 26 March 2015 / Published: 14 April 2015
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1. Introduction

Unmodelled location shifts (changes in previous unconditional means of data) can have pernicious
effects on the constancy of models and on forecast performance. In sample, an unmodelled location
shift entails that empirical models will be misspecified, potentially affecting which variables, their
lags and non-linear functions will be selected, distorting parameter estimation and inference, as well
as inducing non-constancy: see [1]. Out of sample, an unanticipated location shift at or near the
forecast origin can lead to forecast failure: see [2]. Consequently, we consider step-indicator saturation
(SIS) to detect location shifts as part of a model selection strategy, building on the developments of
impulse-indicator saturation (IIS). Hendry et al. [3] derive the null distribution of IIS for independent,
identically distributed (IID) data, and [4] generalize that analysis to dynamic regression models (possibly
with unit roots). Hendry and Santos [5] propose an IIS-based test of super exogeneity, building on [6];
and [7–12] provide empirical applications of IIS.

Indicator saturation methods (such as IIS and SIS) are feasible because software, like Autometrics,
can handle more candidate variables N than observations T during model selection using a combination
of expanding and contracting multiple block searches, as described in [13], [14] (Chapter 19), and [15].
In this selection context, the null retention frequency of indicators is called the gauge by [16], akin to the
size of a test denoting its (false) null rejection frequency, but taking into account that indicators that are
insignificant on a pre-assigned criterion may nevertheless be retained to offset what would otherwise be a
significant misspecification test. Johansen and Nielsen [4] establish that using small nominal significance
levels α (e.g., α ≤ 0.01) for selection in IIS, despite testing T indicators, on average, αT are retained,
so the gauge is approximately α: also, see [17] for a discussion of outlier detection algorithms. The
non-null retention frequency when selecting indicators is called its potency, akin to a similar test’s power
for rejecting a false null hypothesis: see [10] for simulations of IIS under the alternative. The analytic
derivations below use the split-half one-cut approach in [3] for establishing the distribution under the
null of no shifts, checked by simulations that also compare split-half sequential selection outcomes and
a multi-path search algorithm, extended to non-null alternatives.

When the locations, durations, magnitudes and signs of multiple shifts are unknown, we show that
selection by SIS can be beneficial. There are many extant tests for multiple breaks, such as those
proposed by [18–20]. Our interest is in joint selection over candidate variables, dynamic reactions
and possible non-linearities, investigated in detail by [14], and since location shifts can approximate
non-linearities and vice versa (see, e.g., [21]), we do not explore the pre-testing route. Importantly,
SIS does not require knowledge of the locations of breaks, the maximum number of shifts, nor does
it impose a minimum break length, so it allows shifts to occur at the start and/or end of the sample.
Alternative model selection methods include the lasso and least angle regression, as described by [22,23]
respectively. lasso and least angle regression (LARS) work well for a single step shift, but once multiple
breaks occur, because of the forward selection approach they adopt, selection over multiple step functions
can fail to detect shifts, as no single step function is highly correlated with any of the multiple breaks.

The structure of this paper is as follows. Section 2 describes step-indicator saturation, then Section 3
derives its gauge in a split-half one-cut analysis. Monte Carlo experiments are reported following
each theory section, so the gauge of SIS is simulated in Subsection 3. The numerical results are
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based on simulating in Ox and Autometrics: see [24,25]. Section 4 investigates the power of a step
indicator to detect a known mean shift and relates that to well-known procedures, such as the test
of [26]. We next consider selecting indicators for unknown shifts in Section 5, first Subsection 5.1,
which develops the basic analytical tools, and is simulated in Subsection 5.2. Subsection 5.3 considers
the effects of misspecifying the timing of an indicator. The basic setting is generalized in Subsection
5.4 to unknown shifts requiring a two-step (off-on-off) indicator; two opposite-signed shifts where one
lies in each half in Subsection 5.5, with the same-signed shifts in each half in Subsection 5.6; then,
to an unknown shift spanning both splits in Subsection 5.7, with a summary of the simulation results
in Subsection 5.8. A generalization to retained regressors is noted in Section 6. Section 7 provides
comparisons with LARS, and Section 8 investigates the impact on selecting non-linearity when SIS is
applied. Section 9 concludes.

2. Step-Indicator Saturation

Consider adding a complete set of step indicators, S1 =
{
1{t≤j}, j = 1, . . . , T

}
, to a regression model,

where 1{t≤j} = 1 for observations up to j, and zero otherwise. Step indicators are the cumulation of
impulse indicators up to each next observation. As whole-sample vectors, step indicators take the form
ι′1 = (1,0,0,. . .,0), ι′2 = (1,1,0,. . .,0), . . ., ι′T = (1,1,1,. . .,1), which is the intercept dummy. As in [27],
n valid conditioning variables zt can be retained without selection for n < T/2. Under the null of no
shifts, the initial specification is:

yt = β0 + β′1zt + ut where ut ∼ IN
[
0, σ2

u

]
(1)

when IN [0, σ2
u] denotes an independent normal distribution with mean zero and variance σ2

u. Adding the
saturating set of step indicators S1 to Equation (1) creates:

yt = β0 + β′1zt +
T−1∑
j=1

δj1{t≤j} + ut (2)

It is infeasible to estimate (2), but the split-half one-cut approach to understanding IIS applies to SIS.
First consider n = 0. Add the first k = T/2 indicators to Equation (1) and record which have significant
coefficients at significance level α. As k < T and the indicators are deterministic, conventional inference
applies. Drop the first half and add the second block of T/2 to the original model (1), again recording
which are significant in that subset. Finally, combine the recorded variables (if any) from the two stages,
and select again at significance level α. Under the null, setting α = 1/T , on average, at both sub-steps,
αT/2 (namely 1/2 an indicator) will be retained by chance, so on average, αT = 1 indicator will
be retained from the combined stage, so one degree of freedom is lost on average. Hendry et al. [3]
show that other splits, such as using r splits of size T/r, or unequal splits, do not affect the gauge, or
simulation-based distributions. When n 6= 0 and n+ k > T , divide the total set of N = n+T candidate
variables into smaller sub-blocks, setting α = 1/N overall.

When m indicators are selected in a congruent representation at significance level α:

yt = β0 + β′1zt +
m∑
i=1

φi,α1{t≤Ti} + vt where vt ∼ IN
[
0, σ2

v

]
(3)
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and the coefficients of significant indicators are denoted φi,α. Despite some similarities between the
procedures in IIS and SIS, there are important differences necessitating a new analysis. First, while
impulse indicators are mutually orthogonal, step indicators overlap increasingly as their second index
increases. Second, for an impulse, or more generally, a location shift that is not at either end, say from T1

to T2, two indicators are required to characterize it: 1{t≤T2}−1{t<T1}. Third, the ease of detection may be
affected by whether location shifts occur with similar, or opposite, signs and magnitudes. Although we
use a split-half one-cut approach for analysis, in practice, the combination of expanding and contracting
multiple block searches as implemented in Autometrics should be applied. Bergamelli and Urga [28]
undertake extensive simulations of IIS, SIS and their extensions to trend breaks, as well as comparisons
with the sequential break tests in [29] and, using different block partitions, find similar results to those
reported below.

There are many possible specifications of step indicators, but the choice should have little impact
on the detection of location shifts, corroborated by simulation comparisons. More generally, the
shape of shift indicators can be specified in light of subject-matter considerations. For example, to
detect the impact of volcanic eruptions on tree-ring measures of temperature, [30] designed a ν-shaped
formulation that proved successful; an ogive shape could represent a slower step shift as in the logistic
smooth-transition approach of [31]; or a neural network: see, e.g., [32].1

3. Null Retention Frequency (Gauge) of Step-Indicator Selection

To investigate the gauge of SIS, we consider the simplest constant-parameter data generation
process (DGP):

yt = µ+ εt where εt ∼ IN
[
0, σ2

ε

]
(4)

As with IIS, we use the split-half one-cut approach under the null, so there are T/2 indicators for the
first half:

yt = µ+

T/2∑
j=1

δj1{t≤j} + ut (5)

the equation of which can be estimated directly, indicators being retained when their estimated
coefficients δ̂j satisfy |tδ̂j | > cα, where cα is the critical value for significance level α. Under the null,
a subset αT/2 of the indicators will be retained by chance on average. Their locations are recorded; all
of those indicators are dropped, and the second set is then investigated in a similar way, now including
indicators 1{t≤j} for j = T/2+1, . . . , T−1. Add the step indicators selected in each half to Equation (4),
and re-select, keeping only significant indicators: an F-test of their joint significance could be conducted.

Figure 1 illustrates the split-half one-cut approach to SIS for Equation (4) when µ = 10, σ2
ε = 1

and T = 100. The three rows correspond to the three stages: add the first half of the indicators, the
second half, then the selected indicators combined. The three columns report the indicators entered, the

1 We are currently investigating a range of designed break functions, including interactions with regressors to detect
parameter changes.
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indicators retained and the fitted and actual values of the selected model. Fifty indicators are added, and
two are retained in Row 1. When the second half is entered (Row 2), none is retained. Selecting over
the two retained indicators again retains them. Different and multiple splits or unequal divisions entered
into Equation (4) should not affect the retention probability under the null: a step shift should only be
retained when it is present, here by chance due to a collection of sufficient magnitude, same-signed {εt}
over a sub-sample. In practice, multiple block searches, as in Autometrics, will be needed, as the null
may be false.
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Figure 1. Illustrating split-half one-cut step-indicator saturation (SIS) under the null of no
shift in Equation (4).

When n is small, adding strongly exogenous regressors to the baseline Equation (4) as in Equation (1)
will still allow unrestricted estimation of each half, so the above analysis is unaffected.

Non-normal, but continuous symmetric distributions f(·), with at least eight finite moments, entail
using the appropriate critical value cα, where α = 1 −

∫ cα/2
−cα/2 f(u)du. If conventional critical values

are used for selection, [10] show that, e.g., IIS will retain indicators corresponding to what are judged
‘outliers’ relative to the normal when the error distribution is fat-tailed, and we anticipate that SIS will
do likewise.

Retention of Step Indicators Under the Null Hypothesis of No Shift

We investigated the properties of SIS using simulations coded in the Ox programming language and
replicated M = 1,000 times. First, the model in (4) is estimated using the split-half one-cut approach
where µ = 0, εt ∼ IN[0, σ2

ε ] and σ2
ε = 1, for a sample size T = 100 and various values of α. Table 1

records the retention frequency of irrelevant indicators (gauge) overall, as well as for the first T/2 (D1)
and second T/2 sets of indicators (D2). The overall retention frequency of irrelevant indicators is close
to α, so on average, αT irrelevant step indicators are retained under the null that no shifts occur.
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Table 1. Proportion of irrelevant retained indicators under the null of no shift.

Gauge

α Overall D1 D2

0.001 0.0018 0.0018 0.0018
0.01 0.013 0.013 0.013
0.05 0.056 0.057 0.054

4. Analytical Power of a Step-Indicator Test for a Known Mean Shift

We next investigate the power of a step indicator to detect a known mean shift from λ1 6= 0 to λ1 = 0

at time 0 < T1 < T/2 in the DGP:

yt = µ+ λ11{t≤T1} + εt where εt ∼ IN
[
0, σ2

ε

]
(6)

where λ1 6= 0, so the shift is from µ + λ1 to µ. To determine the power of a step-indicator test to detect
the shift in Equation (6), the nesting model when the shift is known is:

yt = ϕ+ δT11{t≤T1} + vt (7)

Theorem 1. Let ψ∗λ1 =
√
T ∗λ1/σε be the non-centrality of the t-test of H0:δT1 = 0 in Equation (7) for

the DGP in Equation (6) where T ∗ = T1(T − T1)/T , then:

tδ̂T1
=

√
T ∗δ̂T1
σ̂ε

≈
√
T ∗(δ̂T1 − λ1)

σε
+

√
T ∗λ1
σε

∼ N
[
ψ∗λ1 , 1

]
(8)

Proof. As
∑T

t=1 1{t≤T1} =
∑T1

t=1 1{t≤T1} = T1, estimating (7) delivers:

(
ϕ̂− µ
δ̂T1 − λ1

)
=

(
T T1

T1 T1

)−1( ∑T
t=1 εt∑T1
t=1 εt

)
=

(
ε(2)

ε(1) − ε(2)

)

where ε(1) = T−11

∑T1
t=1 εt, etc., and:

V

[(
ϕ̂− µ
δ̂T1 − λ1

)]
= σ2

ε (T − T1)
−1

(
1 −1
−1 T−11 (T − T1) + 1

)
.

For the DGP in Equation (6):

√
T ∗
(
δ̂T1 − λ1

)
∼ N

[
0, σ2

ε

]
(9)

Hence, neglecting the estimation uncertainty in σ̂2
ε :

tδ̂T1
=

√
T ∗δ̂T1
σ̂ε

≈
√
T ∗(δ̂T1 − λ1)

σε
+

√
T ∗λ1
σε

∼ N
[
ψ∗λ1 , 1

]
(10)

where T ∗ = T1 when there is no intercept.
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Then, ψ∗λ1 in Equation (10) is
√
T ∗ times the corresponding non-centrality for an individual impulse

indicator in [5], so tδ̂T1
will have considerable power when λ1 6= 0.

5. Potency of SIS for an Unknown Location Shift

We now develop the basic analytical tools for a shift that can be matched by a single step indicator
in Subsection 5.1 and check the outcomes by simulation in Subsection 5.2. Subsection 5.3 considers
the effects of misspecifying the timing of an indicator. The basic setting is generalized in Subsection
5.4 to an unknown shift period requiring a two-step indicator. Subsections 5.5 and 5.6 consider the
occurrence of two shifts where one lies in each half, first when opposite-signed, then when they are
equal magnitudes, signs and durations. Subsection 5.7 then considers an unknown shift spanning both
halves where multi-path search across several splits is likely to outperform split-half one-cut; see [33]
for more detailed simulation evidence and comparisons with IIS.

5.1. Unknown Shift Period Matched by a Single Step Indicator

We first show that detection of a single location shift falling entirely within a half-sample of the data
(0 < T1 < T/2) as in Equation (6) is feasible using the split-half one-cut analysis of step-indicator
saturation. In matrix notation, let ιT1 denote a T × 1 vector with elements of unity till T1 and zeroes
thereafter, so the DGP is:

y = λ1ιT1 + ε (11)

As before, add the first half of the step indicators, assuming T is even, so the model becomes:

yt =

T/2∑
j=1

γj1{t≤j} + vt (12)

We assume an intercept of zero in Equation (12) to highlight the main aspects of the algebra, written in
matrix form as:

y = D1γ(1) + v (13)

where γ(1) = (γ1 . . . γT/2)
′ and D1 = (ι1 . . . ιT/2).

Theorem 2. The distribution of the least-squares estimator of γ(1) in Equation (13) is:

(
γ̂(1) − λ1r

)
ãpp

N
[
0, σ2

ε (D
′
1D1)

−1
]

(14)

where r is a T/2× 1 vector with unity in the T1-th position, and zeroes elsewhere.

Proof. From Equation (11):

γ̂(1) = (D′1D1)
−1

D′1y = λ1 (D
′
1D1)

−1
D′1ιT1 + (D′1D1)

−1
D′1ε (15)

where (D′1D1) is:
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
ι′1
ι′2
...

ι′T/2−1
ι′T/2

 (ι1ι2 . . . ιT/2−1ιT/2) =



1 1 1 . . . 1 1

1 2 2 . . . 2 2

1 2 3 . . . 3 3
...

...
... . . . . . . ...

1 2 3 . . . T/2− 1 T/2− 1

1 2 3 . . . T/2− 1 T/2


(16)

The inverse of (D′1D1) is the ‘double difference’ matrix:

(D′1D1)
−1

=



2 −1 0 . . . 0 0

−1 2 −1 . . . 0 0

0 −1 2 . . . 0 0
... . . . . . . . . . . . . ...
0 0 0 . . . 2 −1
0 0 0 . . . −1 1


(17)

Therefore:

(D′1D1)
−1

D′1 =



1 −1 0 . . . 0 0

0 1 −1 . . . 0 0

0 0 1 . . . 0 0
...

...
... . . . . . . ...

0 0 0 . . . 1 −1
0 0 0 . . . 0 1


which is the forward-difference matrix. Consequently, letting∇εt = εt − εt+1, from Equation (15):

γ̂(1) = λ1 (D
′
1D1)

−1
D′1ιT1 + (D′1D1)

−1
D′1ε = λ1r+∇ε(1)

where r is a T/2× 1 vector with unity in the T1-th position and zeroes elsewhere, so:

(
γ̂(1) − λ1r

)
= ∇ε(1) (18)

where the (T/2×1) vector∇ε(1) = (∇ε1,∇ε2, . . . ,∇εT/2, εT/2)′. All the elements of γ̂(1) up to the T1-th
should be near zero and only the T1-th reflects λ1, corresponding to the location shift, with the others
being distributed around zero as∇ε(1). Thus:

γ̂T1 = λ1 +∇εT1 (19)

Furthermore:
E
[
∇ε(1)∇ε′1

]
= σ2

ε (D
′
1D1)

−1

Therefore:

(
γ̂(1) − λ1r

)
ãpp

N
[
0, σ2

ε (D
′
1D1)

−1
]

(20)
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Effectively, (18) shows that only the value of λ1 at the shift is being picked up, so the incremental
information is equivalent to an impulse indicator for T1. Further, letting ε∗(1) = (ε′(1) : 0

′
T/2)

′, so:

ŷ = D1γ̂(1) = λ1D1r+D1∇ε(1) = λ1ιT1 + ε∗(1) (21)

as D1r = ιT1 and D1∇ε(1) = ε∗(1), then for ε∗(2) = (0′T/2 : ε
′
(2))
′:

y − ŷ = λ1ιT1 − λ1ιT1 + ε− ε∗(1) = ε∗(2) (22)

Thus, the estimated error variance, adjusted for degrees of freedom, based on the second half:

σ̂2
ε =

2

T

T∑
t=T/2+1

(yt − ŷt)2

will be an unbiased estimator of σ2
ε .

However, for IID errors:
V [γ̂T1 ] = 2σ2

ε (23)

Consequently, estimating (12) leads to the test statistic:

tγ̂T1 =
γ̂T1√
2σ̂ε
≈ (γ̂T1 − λ1)√

2σε
+

λ1√
2σε
∼ N

[
ψλ1√
2
, 1

]
(24)

where ψλ1/
√
2 is the non-centrality. In IIS, one-cut selection was feasible given the orthogonality of the

impulse indicators. The high collinearity between the step indicators entails that there is little information
accrual at the level of Equation (24), so sequential selection eliminating the least significant indicators,
or multi-path search, is essential for SIS. At 1%, cα ≈ 2.7, so normalizing on σε = 1, requires λ1 > 3.8

for even a 50% chance of being significant before simplification. It is unlikely that the smallest tγ̂j occurs
at T1, and when the least significant indicators are deleted from the model, V[γ̂T1 ] will fall rapidly from
Equation (23). For irrelevant step indicators:

tγ̂j 6=T1 ≈
γ̂j 6=T1√
2σε
∼ N [0, 1] (25)

Therefore, on average, 100α/2% of the irrelevant step indicators will be adventitiously significant during
selection, as found under the null. If all irrelevant step indicators were eliminated correctly, just ιT1
would remain, and the non-centrality would become ψ1 =

√
T ∗λ1/σε, which is

√
2T ∗ larger than the

non-centrality before selection. We assume sequential simplification or multi-path search will be used,
so it will approximate that outcome, as the simulations below confirm.

Having completed the selection of indicators from the first half, these are eliminated, and the second
half of the step indicators, D2 = (ιT/2+1 . . . ιT ) are added, noting that ιT is the intercept. Now, the
model becomes:

yt =
T∑

j=T/2+1

γj1{t≤j} + vt (26)

written as:

y = D2γ(2) + v (27)

where γ(2) = (γT/2+1 . . . γT )
′ and D2 = (ιT/2+1 . . . ιT ).
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Theorem 3. The distribution of the least-squares estimator of γ(2) in Equation (27) is:

γ̂(2) = λ1T1

(
IT/2 +

T

2
jc′
)−1

j+ (D′2D2)
−1

D′2ε (28)

where c is a T/2 × 1 vector of ones, and j′ is a T/2 × 1 vector of zeroes other than unity in its first
position, so only the first element of γ̂(2) depends on λ1.

Proof. From (11), estimation yields:

γ̂(2) = (D′2D2)
−1

D′2y = λ1 (D
′
2D2)

−1
D′2ιT1 + (D′2D2)

−1
D′2ε (29)

where (D′2D2) is: 

T/2 + 1 T/2 + 1 T/2 + 1 . . . T/2 + 1 T/2 + 1

T/2 + 1 T/2 + 2 T/2 + 2 . . . T/2 + 2 T/2 + 2

T/2 + 1 T/2 + 2 T/2 + 3 . . . T/2 + 3 T/2 + 3
...

...
... . . . . . . ...

T/2 + 1 T/2 + 2 T/2 + 3 . . . T − 1 T − 1

T/2 + 1 T/2 + 2 T/2 + 3 . . . T − 1 T


(30)

which is:

(D′2D2) = (D′1D1) +
1

2
Tcc′

Therefore:

(D′2D2)
−1

=

(
IT/2 +

T

2
jc′
)−1

(D′1D1)
−1

as:

(D′2D2)
−1

= (D′1D1)
−1 − (D′1D1)

−1
(
T

2
cc′
)(

IT/2 + (D′1D1)
−1
(
T

2
cc′
))−1

(D′1D1)
−1

= (D′1D1)
−1 −

(
T

2
jc′
)(

IT/2 +
T

2
jc′
)−1

(D′1D1)
−1

=

(
IT/2 +

T

2
jc′
)−1

(D′1D1)
−1

since:

(D′1D1)
−1
(
T

2
cc′
)

=
T

2



1 1 1 . . . 1 1

0 0 0 . . . 0 0

0 0 0 . . . 0 0
... . . . . . . . . . . . . ...
0 0 0 . . . 0 0

0 0 0 . . . 0 0


=
T

2
jc′ where j =



1

0

0
...
0

0


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Next:

D′2ιT1 =


ι′T/2+1

ι′T/2+2
...

ι′T−1
ι′T

 ιT1 = T1


1

1
...
1

1

 = T1c

so that:

γ̂(2) = λ1T1

(
IT/2 +

T

2
jc′
)−1

(D′1D1)
−1

c+ (D′2D2)
−1

D′2ε (31)

and as:

(D′1D1)
−1

c =



2 −1 0 . . . 0 0

−1 2 −1 . . . 0 0

0 −1 2 . . . 0 0
... . . . . . . . . . . . . ...
0 0 0 . . . 2 −1
0 0 0 . . . −1 1





1

1

1
...
1

1


=



1

0

0
...
0

0


= j

then:

γ̂(2) = λ1T1

(
IT/2 +

T

2
jc′
)−1

j+ (D′2D2)
−1

D′2ε (32)

Thus, the indicator nearest to the shift is most likely to be retained when the relevant indicator is
not ‘carried forward’, as simulations confirm. If the shift is in the second half, the last indicator in the
first-half will be kept.

Finally, combine the selected step indicators in a model and reselect. When all irrelevant indicators
are removed and the relevant one retained:

yt = γT11{t≤T1} + vt (33)

The distribution resulting in the case of a perfect selection must coincide with Equation (9); any
irrelevant indicators retained by chance would reduce the degrees of freedom and increase variances
from collinearity.

Figure 2 illustrates SIS for a location shift over the last 25 observations in the DGP:

yt = µ+ λ11{t≥76} + εt = 10− 10× 1{t≥76} + εt (34)

where εt ∼ IN [0, 1]. Initially, the last step indicator captures the mean shift drop (Row 1) matching the
above analysis, then the location shift is found in Row 2, so the now redundant indicator is eliminated
in Row 3. Thus, the outcome here coincides with the optimal test for a known location shift, namely a
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t-test in Equation (34) at t = 76 onwards, without requiring knowledge: (1) that it was a location shift;
(2) of the shift timing; (3) that it was the only shift; and (4) that the same magnitude of shift continued
thereafter.
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Figure 2. Illustrating split-half one-cut SIS for the shift in Equation (34).

5.2. Simulating an Unknown Shift Period Matched by a Single Indicator

We now simulate the properties of SIS for a single location shift during the first half of the sample,
using the DGP in Equation (11), where the timing of the location shift is set to T1 = 35: varying shift
lengths are investigated in Table 2. The shift magnitude λ1 is set equal to 2σε and 4σε, with selection at
α = 0.01.

For the split-half one-cut approach outlined in Subsection 5.1, the open histograms and their densities
in Figure 3b show that, while the density of γ̂T1 is centred around the true value of λ1, in the case of IID
errors, the variance of the estimator is twice that of the error (d), in line with Equation (23) below. The
associated t-statistic density overlaps zero (c).

The retention frequencies of the step indicator 1{t≤T1} for varying lengths of shift and two levels of
λ1 without and with sequential selection of indicators are provided in Table 2. Given the relatively low
retention frequency in the simple split-half one-cut approach, sequential selection of step indicators is
essential. Iterative elimination of the least significant indicators leads to a rapid fall in the variance of
the estimator V[γ̃T1 ] (Figure 3b, d), an increase in the retention frequency of the correct step indicators in
(c) and a reduction in the number of incorrectly retained indicators. As the shaded histograms and their
densities in Figure 3 and the lower section of Table 2 both show sequential selection or multi-path search
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as in Autometrics, this dramatically improves the outcomes of SIS in the single-shift experiment. For a
step shift of 4σε, sequential selection increases the retention frequency on average to 0.93 from 0.59 with
split-half one-cut.

Table 2. Retention frequency of ιT1 for varying shift lengths l and magnitudes, λ1, at
α = 0.01.

Algorithm λ1 l = 1 l = 5 l = 10 l = 20 l = 35

Known shift:
2σε 0.56 (2.77) 0.98 (4.72) 0.99 (6.27) 1.00 (8.17) 1.00 (9.65)
4σε 0.99 (5.59) 1.00 (9.50) 1.00 (12.57) 1.00 (16.36) 1.00 (19.31)

Split-half one-cut
2σε 0.15 (1.43) 0.12 (1.42) 0.13 (1.47) 0.14 (1.44) 0.16 (1.47)
4σε 0.61 (2.88) 0.61 (2.88) 0.63 (2.92) 0.59 (2.88) 0.60 (2.92)

Split-half sequential:
2σε 0.17 (3.01) 0.50 (3.68) 0.57 (4.63) 0.56 (5.86) 0.56 (6.92)
4σε 0.89 (4.10) 0.93 (6.81) 0.93 (8.96) 0.92 (11.62) 0.93 (13.70)

Multi-path
2σε 0.41 (3.89) 0.57 (5.24) 0.57 (6.33) 0.58 (7.78) 0.55 (8.65)
4σε 0.95 (5.89) 0.93 (9.45) 0.95 (11.73) 0.93 (14.79) 0.92 (16.57)

Average t-values for retained indicators shown in parentheses.
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Figure 3. Comparing SIS on a single shift without (open) and with (shaded)
sequential selection. (a) shows the time series yt with a location shift; (b) and (c) the
simulated estimator and test-statistic densities for split-half and sequential selection; and
(d) their simulated variances.

Varying the shift length at the start of the sample appears to have little impact on the retention
frequencies of the shift indicator, except in the case of a single impulse. Using split-half sequential
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selection, a shift of 2σε is retained on average around 50% of the time, with an increase to around 90%
for a shift of 4σε (at T = 100, c0.01 = 2.625).

These simulations are consistent with the analysis in Subsection 5.1: the t-statistics for split-half one
cut γ̂T1 in SIS are close to half those from IIS at the equivalent λ1, but, with sequential simplification
or multi-path search, converge to those for a known indicator. There is only a slight drop in retention
frequency of the correct step at 4σε despite searching over T indicators, though a rather larger drop at
2σε. Although the t-values of retained indicators increase with the shift length l, the retention probability
remains relatively constant in all cases for l > 1, possibly because we only record the retention of ιT1 ,
although a neighbouring indicator may have been found instead. Since the predictive failure test of [26]
is based on IIS, as shown by [34], SIS should dominate the Chow test, yet not require knowledge of the
shift point. IIS can already dominate [18], as shown in [10], so SIS multi-path should be a useful method
for detecting and modelling location shifts.

5.3. Misspecified Indicator Timing

A step indicator selected in the marginal process may not exactly match the period characterizing
a location shift because: (1) it ends after (or starts before); (2) it is a subset (so it starts after and ends
before); and (3) it starts after and ends after (or starts before and ends before). Setting (1) is representative
of the likely costs of misspecification, so we consider it in the special case just involving a shift and no
other parameters. Let 1{t≤T0} denote the indicator where T0 > T1, so that the marginal DGP is:

yt = γ2 + λ1{t≤T1} + vt where vt ∼ Nn2

[
0, ω2

v

]
but now approximated by the incorrect model:

yt = µ+ θ1{t≤T0} + ut

with τ = T1/T0 < 1. Autometrics selects congruent representations, so its step-indicator saturation
algorithm will be directed away from non-overlapping indicators, like 1{t≤T0}, when shifts are large or
T0 − T1 is long. Moreover, the costs of not matching dates precisely decline rapidly for small shifts.
Similar analyses apply to Cases (2) and (3), with additional costs when parts of a shift are also
not captured.

The choice of the period selected by SIS for a step indicator is because it has the largest
t-statistic, so serious mismatches that leave large residuals are unlikely. To illustrate this, consider
yt = 10− 2× 1{t≤21} + εt where σε = 1.0, estimated for a known indicator as:

ŷt = 10.2
(0.19)

− 1.97
(0.29)

1{t≤21}

σ̂ε = 1.012 Far(2, 45) = 0.16 Fhet(1, 47) = 1.39 χ2
nd(2) = 1.29

The four panels in Figure 4 show the match to the data in one replication when the indicator is:
(a) correct; (b) too long by one, (so T0 = T1 + 1); (c) too long by five; and (d) selected by SIS,
which picked 1{t≤23}, but had the most significant outcome. The t-values are close to the theoretical
non-centralities, φ as recorded in the figure. Moreover, although the SIS selection ‘misses’ by two
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periods, that is precisely because that is when the shift is shown most clearly, and the residuals for
t = 21, 22 are not unusually large.
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Figure 4. Fitted and actual values for four step-indicator specifications to a location shift at
t = 21. (a): known shift with t value and non-centrality φr; (b): shift approximated by a step
one period late and (c): shift approximated by a step 5 periods late, both with non-centralities
φs; and (d): SIS selection.

That the slow increase in potency shown in Table 2 is primarily due to slight mistiming rather than
not detecting the shift is shown in Table 3. Potency increases monotonically down all columns, and
even for λ = 2σε and relatively short breaks, is 0.9 or higher by T1 ± 3. However, unlike the F1

T−1-test
non-centrality of Tr (1− r)λ2/σ2 from analytic power calculations for a known break point exactly
matched by the correct step function in a static regression, where r is the break-length fraction, potency
does not increase much with Tr (1− r). The results for λ = 4σε are similar, but are not reported, as
potency is near unity for all break lengths using T1 ± 1.

Overall, SIS has relatively high potency for detecting a single location shift, albeit within a few
periods on either side of its ending.

Table 3. Potency of 1{t≤T1} for varying break lengths T1 and accuracy of timing using
Autometrics.

λ = 2σε T1 = 4 T1 = 5 T1 = 10 T1 = 15 T1 = 20

T1 0.58 0.55 0.59 0.59 0.59
T1 ± 1 0.76 0.77 0.79 0.83 0.81
T1 ± 2 0.84 0.87 0.86 0.90 0.89
T1 ± 3 0.89 0.91 0.92 0.93 0.92
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5.4. Unknown Shift Requiring a Two-Step Indicator in One-Half Sample

An unknown location shift may require a two-step indicator, as in the following DGP:

yt = λ
(
1{t≤T2} − 1{t≤T1}

)
+ εt where εt ∼ IN

[
0, σ2

ε

]
(35)

where λ 6= 0, and T1 < T2 < T/2, so as in Subsection 5.1, the shift is entirely within one-half of the
sample. The model for the first-half split is:

y = D1γ(1) + v (36)

where γ(1) = (γ1 . . . γT/2)
′ and D1 = (ι1 . . . ιT/2). For Equation (36) estimated on data from Equation

(35):

γ̃(1) = (D′1D1)
−1

D′1y

= λ (D′1D1)
−1

D′1 (ιT2 − ιT1) + (D′1D1)
−1

D′1ε

= λs+∇ε(1) (37)

where s is a T/2×1 selection vector with unity in the T2-th position,−1 in the T1-th position and zeroes
elsewhere. Thus, a similar analysis to Subsection 5.1 holds for two relevant indicators, with r replaced
by s, so selecting indicators in the latter half of the sample should remain as before.

To simulate an unknown shift period requiring a two-step indicator in the first-half, we set T1 = 25

and T2 = 35, and only consider sequentially selected indicators here, retaining the selected indicators
from D1 and D2 at α = 0.01. Table 4 shows the simulation results for sequential selection from the
split-half for two shifts, so retention frequencies are close to the case of a single shift.

Table 4. Split-half sequential selection: gauge and retention frequencies for a shift with
two indicators.

Gauge Retention frequency

λ1 D1 D2 T1 step T2 step
2σε 0.020 0.011 0.52 0.55
4σε 0.004 0.017 0.91 0.94

5.5. Unknown Opposite-Signed Shifts in Each Split Half

If shifts in each half of the sample have opposite signs, or perhaps very different magnitudes, then
both can be detected even in a split-half sequential selection approach. Consider the DGP:

yt = λ1
(
1{t≤T2} − 1{t≤T1}

)
+ λ2

(
1{t≤T4} − 1{t≤T3}

)
+ εt (38)

where εt ∼ IN [0, σ2
ε ] as before, and T1 < T2 ≤ T/2, whereas T/2 ≤ T3 < T4 with λ1λ2 < 0. To remove

the mean effect of the other location shift, since:
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1

T

T∑
t=1

(
λ2
(
1{t≤T4} − 1{t≤T3}

))
= λ2

(T4 − T3)
T

= φ2,

the intercept must be retained without selection.
The formula in (37) still applies, with appropriate adjustments for estimating the intercepts, but even

if the first shift is correctly modelled, the equation in (22) for the residuals becomes:

y − ŷ = λ2 (ιT4 − ιT3)− φ2ι+ ε∗2 = v̂2 (39)

which has a larger estimated error variance than in the previous cases, because:

2

T
E [v̂′2v̂2] =

2

T
E [(ε∗2)

′ε∗2] +
2

T
(λ2 (ιT4 − ιT3)− φ2ι)

′ (λ2 (ιT4 − ιT3)− φ2ι)

= σ2
ε + λ22

2 (T4 − T3)
T

− 2λ2φ2
2 (T4 − T3)

T
+ 2φ2

2

= σ2
ε + 2λ22

(T4 − T3)
T

(
1− (T4 − T3)

T

)
(40)

To compensate for the equivalent effect of Equation (40), when searching for a second shift, step
indicators found in the first half should be be included in the second-half selection.

To simulate unknown opposite-signed shifts in each half, λ1 and λ2 are chosen, such that λ1 = −λ2,
where the shift timing is given by T1 = 25 to T2 = 35 and T3 = 75 to T4 = 85. Table 5 shows that even
with shifts falling in the middle of each half, SIS can be successful in identifying the shift points.

Table 5. Split-half sequential selection: opposite-signed shifts in each half, α = 0.01.

Gauge Retention frequency
λ1,2 D1 D2 T1 step T2 step T3 step T4 step

2σε 0.021 0.045 0.52 0.55 0.57 0.56
4σε 0.004 0.030 0.91 0.94 0.93 0.93

5.6. Unknown Equal Shifts in Each Split Half

Shifts with relatively equal magnitudes, durations and the same signs in each half, so they are roughly
evenly distributed between the two halves, could well appear as just a larger error variance, rendering
the simplest split-half one-cut approach ineffective. Nevertheless, when T is sufficiently large, both
shifts can be detected using a modified split-half approach. First, saturate the second half by impulse
indicators, then the first half can be tackled by a split-half approach, so quarters are examined, without
any additional cost under the null. That procedure is then reversed for the first half. This is a variant of
super saturation, where IIS is also undertaken with SIS as in [15], but here limiting IIS to the alternate
half and not using the information it reveals about outliers and shifts.

Under the alternative, by eliminating the shift in the second half, the first half comes under the above
analysis for a single shift, which is then detectable provided it is not evenly split between the quarters.
In practice, Autometrics uses multiple block searches, and this has proven effective for IIS in detecting
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multiple shifts. Blocks would need to span most of the length of a location shift to detect it using SIS,
but that may be less essential for super saturation.

Unknown shifts of equal magnitude are assessed by setting λ1 = λ2, with T1 = 25 to T2 = 35 and
T3 = 75 to T4 = 85, so there are two same-sign step shifts of equal magnitude and length in each half.
We consider both the split-half sequential selection approach and multi-path selection using Autometrics
(where a single gauge value is reported for D1 and D2). Table 6 provides summary results showing little
difference in retention frequencies.

Table 6. Split-half sequential selection and multi-path: unknown equal shifts in each half,
α = 0.01.

Algorithm Gauge Retention Frequency

λ1 D1 D2 T1 step T2 step T3 step T4 step
Sequential: 2σε 0.021 0.044 0.52 0.55 0.59 0.60

4σε 0.005 0.030 0.91 0.94 0.94 0.94

Multi-path:
λ1 D1 & D2 T1 step T2 step T3 step T4 step
2σε 0.038 0.53 0.48 0.55 0.55
4σε 0.018 0.87 0.91 0.94 0.92

5.7. Unknown Shift Period Spanning Both Splits

The analysis in Subsection 5.6 may be effective in capturing a location shift spanning the initial
halves, as then the shift will almost always lie entirely within a quarter of the sample. This follows, since
within the first half of T/2 where the shift lies towards the end by necessity of spanning into the second
half, if it were longer than T/4, SIS would find the shorter as if it were the shift and similarly for the
second half.

To simulate a shift period spanning both splits, the shift timing is set such that the end of the first shift
occurs just as the second shift starts, i.e., T2 = T/2 and T3 = T/2 + 1 with T1 = 35 and T4 = 65,
leading to a single step shift of a length of 30 periods spanning both halves. Table 7 presents the results
when using split-half sequential selection, as well as multi-path. Both correctly show the absence of
shifts at T2 and T3 (as the shift spans the two halves), and as before, there is little difference between
these, exhibiting retention frequencies at T1 and T4 of around 0.9 for a step shift of 4σε.

Table 7. Split-half sequential sequential and multi-path: shift spanning both splits, α = 0.01.

Algorithm Gauge Retention frequency

λ1 D1 D2 T1 Step T2 Step T3 Step T4 Step
Sequential: 2σε 0.011 0.039 0.58 0.001 0.0 0.56

4σε 0.002 0.02 0.94 0.0 0.0 0.93
λ1 D1 & D2 T1 Step T2 Step T3 Step T4 Step

Multi-path: 2σε 0.029 0.57 0.01 0.01 0.55
4σε 0.019 0.94 0.02 0.02 0.96
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5.8. Summary of the Simulation Results

The Monte Carlo experiments provide evidence for the feasibility of detecting location shifts using
SIS. In the case of static DGPs with specific location shifts, the step indicators exhibit high retention
frequencies: around 50% in the case of a shift equal to two standard deviations and around 90% for
shifts of four standard deviations. These results hold across single shifts, multiple shifts of the same or
opposite signs and shifts spanning both halves. Sequential selection of step shifts is crucial to ensure
high potency when using split half, which, in turn, requires any selected indicators to be carried forward
into the second set of indicators. Multi-path search using Autometrics without the condition of carrying
relevant indicators forward yields similar results to split-half sequential simplification. Overall, the
results match the theoretical analyses of gauge and potency for a single shift, noting that gauge is higher
for SIS than IIS as 2 steps are needed to characterize a single outlier.

6. Generalization to Retained Regressors

Following the theoretical findings in [4] for IIS, we use simulations to assess SIS with n < T/2

general regressors by including the T ×n matrix Z as independent variables. For a single-step shift with
unknown timing requiring two indicators, the DGP is then given by:

yt = β′1zt + λ
(
1{t≤T2} − 1{t≤T1}

)
+ εt where εt ∼ IN

[
0, σ2

ε

]
(41)

For the present simulation, we set σ2
ε = 1 and n = 10. For each of the i = 1, . . . , n IID regressors, the

associated non-centralities are set to E[ti] = ψi = 4. The individual zi are orthogonal in expectation and
not selected over (see [27]), so they are present in every selection iteration of the step indicators. The
shift timing is set as before to T1 = 25 and T2 = 35.

Table 8 displays the simulation outcomes and properties of the step indicators. With the inclusion of
10 relevant independent variables, the densities of the two shift estimators are centred around the true
value of λ1 = 4σε. The potency of SIS seems unaffected by the presence of additional fixed regressors,
with retention frequencies close to those in experiments without regressors.

Table 8. SIS with regressors.

Gauge Retention frequency

λ1 T1 step T2 step
2σε 0.035 0.50 0.62
4σε 0.024 0.91 0.94

7. Comparisons with Least Angle Regression

Simulation results for LARS (see [23]) use the same DGPs as for SIS in Subsection 3, based on
M = 1000 replications at T = 100. Findings under the null of no shifts are reported in Table 9, where
Table 1 recorded the gauge of SIS.
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Table 9. Null retention frequency of least angle regression (LARS) under the null of
no shifts.

LARS Step 1 2 3 4 5 Cross-Validated

Gauge 0.029 0.047 0.061 0.073 0.084 0.017

Under the null, the gauge is difficult to control for different steps in the LARS algorithm and quickly
exceeds the gauge of SIS, as seen in Table 9. However, cross-validation under the null yields a gauge
close to SIS at 1%.

Under the alternative, the gauge can vary drastically. Table 10 applies the cross-validated LARS step
for single shifts with varying lengths, whereas Tables 11 and 12 consider multiple shifts. For a single
shift, the potency for exact detection in Table 10 is high, as expected for a single-step forward search
procedure. Like SIS, there is little apparent potency increase with the length of shift, but that probably
reflects mistiming rather than missing the shift, as occurred for SIS in Table 3. The gauge for a single
shift between 2% and 6% is higher than under the null.

Overall, while LARS exhibits high potency, this is the result of a high gauge that is difficult to control,
varying from 1.7% under the null, to 16.7% facing multiple shifts. This makes it difficult to use LARS
in practice, as the number of shifts is not generally known a-priori.

Table 10. Potency and gauge of cross-validated LARS for single shifts of lengths l and
magnitudes λ1.

λ1 l = 1 l = 5 l = 10 l = 20 l = 35

Potency 2σε 0.298 0.800 0.844 0.853 0.854
Potency 4σε 0.780 0.990 0.990 0.996 1.00
Gauge 2σε 0.018 0.050 0.054 0.056 0.058
Gauge 4σε 0.020 0.052 0.055 0.058 0.059

Table 11. Potency and gauge of cross-validated LARS for same-sign, equal-magnitude shifts
over T1 = 25 to T2 = 35 and T3 = 75 to T4 = 85.

λ1 gauge T1 potency T2 potency T3 potency T4 potency

2σε 0.167 0.829 0.839 0.871 0.818
4σε 0.166 0.997 1.00 1.00 0.992
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Table 12. Potency and gauge of cross-validated LARS for equal magnitude, opposite-signed
shifts over T1 = 25 to T2 = 35 and T3 = 75 to T4 = 85.

λ1 gauge T1 potency T2 potency T3 potency T4 potency

2σε 0.164 0.836 0.837 0.857 0.867
4σε 0.160 0.997 1.00 0.998 0.997

8. Non-Linearity and SIS

When the DGP, or models thereof, include non-linear transformations of variables, the issue arises
as to whether also applying SIS will affect the selection of the correct formulation. We consider three
possibilities when selecting non-linearity:

(1) the DGP includes non-linear variables, but no shifts, and SIS is applied;
(2) there is a shift in the dependent variable, but no non-linearity and SIS is not applied; and
(3) Setting (2), but SIS is applied.

First, consider a simple static DGP without shifts, but containing non-linear variables, as given in
Equation (42):

yt = µ+ β1xt + β2x
2
t + β3x

3
t + εt where εt ∼ IN[0, 1] (42)

and for convenience, xt ∼ IN[0, 1], when the non-centralities associated with the three explanatory
variables are ψi = 3 for i = 1, 2, 3. The model is also given by Equation (42), where all variables are
first retained without SIS, then subject to selection jointly with SIS.

In Table 13, we report the effect on the null rejection frequencies of t-tests for the correctly included
non-linear variables when not selected over, as well as the retention frequency when the relevant variables
are selected over jointly with SIS. Simulations are reported for a sample of T = 100 using M = 1,000
replications, with variables being selected at α = 0.01. Inclusion of a saturating set of step indicators
in the candidates has little effect on the null retention frequencies of indicators and non-null retention
frequencies of relevant non-linear variables when there is no shift. When xkt , k = 1, 2, 3 are always
retained, the null rejection frequencies at 1% are close to the theory level of ≈ 0.66, though somewhat
higher when SIS is used due to slight under-estimation of the error variance. When the xkt are jointly
selected with SIS, the retention drops marginally relative to the no-SIS case.

Table 13. The effect of using SIS in Equation (42) on the rejection frequencies when the xkt
are always retained and retention frequencies when they are selected over (both at 1%).

Variable Null rejection at 1% (xs retained) Retention at 1% (x’s selected over)

without SIS with SIS without SIS with SIS
x, ψ = 3 0.65 0.68 0.68 0.63
x2, ψ = 3 0.64 0.67 0.68 0.56
x3, ψ = 3 0.65 0.68 0.67 0.62
SIS gauge - 0.02 - 0.03
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Second, we study the effect of SIS when there is a shift in the dependent variable yt, such
that a non-linear transformation of the explanatory variables may spuriously appear significant by
approximating this break. The example considered here is for the DGP given in Equation (43):

yt = µ+ λ1{t≥35} + εt (43)

The estimated model is identical to that given in Equation (42), except that now the xt variable
is generated such that a non-linear transformation spuriously approximates the structural break in
Equation (43). For illustration, xt is generated with the functional form xt = |γ (1 + κe−rt)

−1
+ vt|(1/3),

where γ = 10, κ = 70, r = 0.1 and vt ∼ IN[0, 1]. The results are recorded in Table 14, both when xkt are
always retained and when selected over jointly with SIS.

Table 14. The impact of SIS in Equation (42) on the null rejection frequencies of xkt , which
are always retained, and the retention frequencies when they are selected over, with and
without SIS in the presence of a step-shift λ1 at T1 = 35 (all at 1%).

Variable Null rejection at 1% (xs retained) Retention at 1% (xs selected over)

λ1 = 2σε λ1 = 4σε λ1 = 2σε λ1 = 4σε

no SIS with SIS no SIS with SIS no SIS with SIS no SIS with SIS
x, ψ = 0 0.22 0.06 0.73 0.03 0.41 0.02 0.83 0.02
x2, ψ = 0 0.29 0.06 0.87 0.03 0.66 0.02 0.96 0.02
x3, ψ = 0 0.26 0.06 0.80 0.02 0.30 0.02 0.83 0.01
T1 step - 0.51 - 0.93 - 0.62 - 0.94

SIS gauge - 0.02 - 0.02 - 0.02 - 0.02

When there is a shift in the dependent variable that renders non-linear variables significant, SIS is
able to pick up the shift that is otherwise attributed to non-linearity in the model. By detecting the shift,
the null rejection (and retention) frequencies of the irrelevant non-linear variables is moved much closer
to the nominal level, and for a 4σε shift, using SIS reduces the null rejection frequency for the irrelevant
xkt from around 0.8 to 0.02–0.03 when testing at 1%. This result is robust to whether the xkt are always
retained or are selected over. The potency of detecting the shift using SIS is also not affected by the
presence of non-linear covariates and is close to that found in previous sections, namely ≈ 0.5 for a 2σε

shift and ≈ 0.9 for 4σε.
Thus, SIS can act as an insurance mechanism in non-linear models. If there are non-linearities present

in the DGP, employing SIS has little effect on the null rejection and retention frequencies, and the gauge
is close to the nominal significance level. If there are unknown shifts in the dependent variable that
may otherwise be attributed to non-linearities, SIS exhibits high potency in identifying the shift and
restores the null rejection and retention frequencies of the irrelevant non-linear variables close to the
nominal value.
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9. Conclusion

Detecting location shifts by step-indicator saturation has the correct null retention frequency in
constant conditional models for a nominal selection size of α. The approximate alternative retention
frequency function was derived analytically for simple models and helps explain the simulation
outcomes. Although only one and two shifts were considered in detail, the general nature of the approach
makes it applicable when there are multiple shifts. There have already been a number of applications of
SIS to empirical problems, including commodity price shifts in [35], location shifts in U.K. real wage
determination in [21] and detecting crises in [15], as well as variants to measure the impacts of volcanic
eruptions on temperature in [30]. Non-linearities that are relevant are not ‘lost’ by using SIS, whereas
irrelevant, but spuriously significant ones can be eliminated by SIS.

While all of the derivations and Monte Carlo experiments here have been for simple static equations
and specific location shifts, the principles seem general and should apply to dynamic equations
(although with approximate null-retention frequencies) and to conditional systems. Generalizations to
non-stationary settings would need to extend the analysis in [4]. Other important new analyses for SIS
are checking for location shifts at the forecast origin, which would otherwise be pernicious for forecast
accuracy, and to testing super exogeneity, where the IIS-based test in [5] has relatively low power for
long shifts.
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