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Abstract: As a basis for information recovery in open dynamic microeconomic systems, 

we emphasize the connection between adaptive intelligent behavior, causal entropy 

maximization and self-organized equilibrium seeking behavior. This entropy-based causal 

adaptive behavior framework permits the use of information-theoretic methods as a solution 

basis for the resulting pure and stochastic inverse economic-econometric problems.  

We cast the information recovery problem in the form of a binary network and suggest 

information-theoretic methods to recover estimates of the unknown binary behavioral 

parameters without explicitly sampling the configuration-arrangement of the sample space. 
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1. Introduction 

A central problem in economics is to predict or make inferences concerning behavioral choices.  

We refer to the process of modeling, estimation, and inference as information recovery. In economics, 

information recovery is often based on observed and quasi-experimental behavioral data. The resulting 

mix of microeconomic models and data usually requires the solution of a pure or stochastic ill-posed 

inverse problem. Given the constraints of the traditional theoretical micro behavioral model and data 

mix, the objective of this paper is to provide a basis for recovering the expected value of the unknown 

behavioral parameters without explicitly sampling the sample space. As a status-optimizing  

criterion measure, we emphasize the connection between adaptive intelligent behavior, causal entropy 
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maximization, and self-organized equilibrium seeking behavior in an open dynamic economic system. 

Information-theoretic methods are suggested as a solution to the inverse information recovery problem. 

As an example of this type of information recovery problem, we consider a binary dynamic network 

problem and use an adaptive intelligent behavior causal entropy maximization (AIB-CEM) basis for 

recovering the unknown binary behavioral parameters. 

In contrast to a standard deterministic equilibrium solution of the competitive microeconomic 

model, in this paper, we recognize that economic data comes from dynamic adaptive behavior systems 

that are non-deterministic in nature, involve information and uncertainty, and are driven toward a certain 

optimal stationary state associated with a functional and hierarchical structure [1–3]. The resulting 

dynamic economic system involves interdependent micro components and gives rise to an 

instantaneous feedback adaptive behavior world that is seldom, if ever, in equilibrium. As we seek new 

ways to think about the causal adaptive behavior of large, complex, and dynamic micro economic 

systems, in the sections ahead we use entropy as the systems status measure. This permits us to recast 

economic-behavioral systems in terms of path microstates where entropy reflects the number of ways a 

macro state can evolve along a path of possible microstates and the more diverse the number of 

microstates, the larger the causal path entropy. A uniform-unstructured distribution of the microstates 

corresponds to a macro state with maximum entropy and minimum information. 

From an economic information recovery standpoint, we follow Wissner-Gross and Freer [4] and 

recognize the connection between adaptive intelligent behavior, causal entropy maximization (AIB-CEM) 

and self-organized equilibrium seeking behavior in an open dynamic economic system. In this context, 

economic systems are equilibrium-stationary state seeking, but may not be in equilibrium. Although 

there is only one stationary state consistent with an economic system in equilibrium, there are a large 

number of ways an economic path-dependent competitive interacting processes-system may be out of 

equilibrium. Thus in the behavioral area, causal entropy maximization is a link that leads us to believe 

that an economic-behavioral system with a large number of agents, interacting locally and in finite 

time, is in fact optimizing itself. In this setting, information, a commodity, economic value, optimal 

resource allocation, and causal path entropy represent essentially the same thing and data outcomes are 

behavior-related in the same sense that prices do not behave, people behave. In a similar vein, in the 

computer science area, maximum causal inference has been used with dynamically-sequential 

information revealed from interacting processes (see [5,6]). 

The connection between causal adaptive behavior and entropy maximization, based on a causal 

generalization of entropic forces, is consistent with the idea that economic social systems do not evolve 

in a deterministic or a random way, but tend to adapt behavior in line with an optimizing principle. This 

is a natural process in an effective working system. One reason for seeking an entropy-based adaptive 

behavior causal framework is that it permits the interpretation of adaptive economic behavior in terms 

of entropic functions and, thereby, the use of information-theoretic methods. This consistency of the 

economic and econometric models, the data, and the information recovery-estimation and inference 

processes, has potential for turning economics from a descriptive science to a predictive or at least a 

comprehensive and behavior related quantitative one. 

In the sections ahead, with information recovery in mind, we recognize that measuring evidence and 

making inferences for this type of behavior-flow problem, requires the solution of a pure or stochastic 

inverse problem. As a basis for solving this type of problem we use the adaptive intelligent behavior 
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causal entropy maximization (AIB-CEM) connection and suggest an information-theoretic family of 

entropic functions, as a basis for linking the data and the unknown and unobservable behavioral 

parameters. As an example, we suggest an information-theoretic framework as a basis for recovering 

the unknown optimum pathway probabilities of a general binary network based on aggregate behavioral 

flow data. 

2. The Information Recovery Base 

In the behavioral sciences, there has been a growing interest in developing economic-econometric 

information-theoretic formulations that will aid in drawing conclusions and making inferences about 

causal relationships/influences in complex dynamic systems. The recovery of causal information is of 

course a basic objective and central to all branches of science. In this context, our ability to measure 

evidence and make inferences is directly linked to the economic-econometric model, the available 

sample of data and the appropriate information recovery method. 

In attempts to recover causal information, it is important to recognize the fragile nature of 

behavioral economic-econometric models. Although behavioral models add the component structure, 

incorrect constraints may close the system and lead to the identification of incorrect system stationary 

states and the distribution of the underlying statistical noise. In the behavioral sciences, the data 

usually consists of indirect-noisy effects observations that come from an uncontrolled observational 

sampling process that often contain a variety of systematic errors. This type of data makes it 

impossible to distinguish between mutual influence and causal influence, and thus does not contain 

location or directional information. Even introducing a lag in the mutual observations fails to 

distinguish information that is actually exchanged from shared information and does not support time 

causality. Confounders of various sorts are usually present and abundant. These concerns taken 

together or individually may dominate the statistical variability of the item of interest and obscure the 

information that one hopes to measure. These types of specification and data problems lead to biases 

and incorrect inferences and, in reality, do not present a reliable basis for developing dynamic 

microeconomic theory and making causal inferences of a supposed treatment in observational and 

quasi experimental settings (see for example [7–9]). 

Given imperfect reductionist and often toy economic-econometric models and indirect noisy effects 

data, a final question concerns the choice of a stochastic basis for causal information recovery, 

measuring evidence and making defensible inferences. At this juncture, it is important to realize that 

the indirect noisy observations used as a basis for identifying the underlying adaptive behavior of 

dynamic microeconomic systems and to measure causal influence, usually requires the solution of  

a pure or stochastic inverse problem. The data are in the effects domain, and our interest lies in the 

causal domain. The number of measurements-data points, are often smaller than the number of 

unknown parameters to be estimated, and, thus, the stochastic inverse problem is in addition ill-posed. 

Without a large number of assumptions, tuning parameters, pseudo likelihoods, kernel distributions, 

and regularization methods, the resulting stochastic ill-posed underdetermined inverse problem cannot 

be solved by traditional information recovery methods discussed by Hastie et al. [10] and applied by 

Smith et al. [11]. Since stochastic inverse problems in behavioral economic-econometrics appear to be 
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the rule rather than the exception, in the next section, we discuss information-theoretic methods 

designed for this type of information recovery problem. 

3. Information Recovery Framework 

In Section 2, we noted the connection between adaptive intelligent behavior and causal entropy 

maximization. This connection suggests a basis for establishing a causal influence-econometric  

model link to the data. With this behavioral-entropy connection, a natural solution is to make use of 

information-theoretic estimation and inference methods that are designed to deal with the nature of 

economic-econometric models and data, and the resulting pure and stochastic inverse problems. In 

developing a basis for the use of information-theoretic (IT) methods, we focus on a stochastic ill-posed 

inverse problem of which the pure-without noise inverse problem is just a special case. In this context, 

the Cressie and Read [12] Read and Cressie [13] (CR) family of entropic functions, provide a basis for 

linking the data and the unknown and unobservable behavioral model parameters. These functions 

permit the researcher to exploit the statistical machinery of information theory to gain insights about 

the causal behavior of a dynamic process from a system that may not be in equilibrium. Thus, in 

developing an information-theoretic econometric approach to estimation and inference, the CR 

parameter family represents a way to link the entropic behavior informational functions with the 

underlying sample of data. Information-entropic functions of this type have an intuitive interpretation 

that reflects uncertainty as it relates to a model of the adaptive behavior of micro economic processes. 

In identifying estimation and inference measures that may be used as a basis for characterizing the 

data sampling process for indirect-noisy observed data outcomes, we begin with the CR multi parametric 

convex family of entropic functional-power divergence measures:  

 (3.1)

In Equation (3.1), γ is a parameter that indexes members of the CR family,  represent the 

subject probabilities and the , are interpreted as reference probabilities. Being probabilities,  

the usual probability distribution characteristics of  , and  are 

assumed to hold. In Equation (3.1), as γ varies, the resulting CR family of estimators that minimize 

power divergence, exhibit qualitatively different sampling behavior that includes Shannon’s entropy, 

the Kullback-Leibler measure, and, in a binary context, the logistic distribution-divergence. 

The CR family of power divergence is defined through a class of additive convex functions that 

encompass a broad family of test statistics, and represents, within a moments-based estimation context, 

a broad family of likelihood functional relationships. In addition, the CR measure exhibits proper 

convexity in p, for all values of γ and q, and embodies the required probability system characteristics, 

such as additivity and invariance with respect to a monotonic transformation of the divergence 

measures. In the context of extremum metrics, the general CR family of power divergence statistics 

represents a flexible family of pseudo-distance measures from which to derive empirical probabilities 

and encompasses a wide array of empirical goodness-of-fit and information recovery criteria.  
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As  varies, the resulting estimators that minimize power divergence exhibit qualitatively different 

sampling behavior. 

3.1. Traditional Economic-Econometric Behavioral-Choice Models 

As a first example, consider a stochastic economic-econometric model of behavioral equations  

that involve endogenous and exogenous variables. Data consistent with the economic-econometric 

model may be reflected in terms of empirical sample moments-constraints such as 

, where Y, X and Z are respectively a n × 1, n × k, n × m 

vector/matrix of explanatory variables and instruments, with parameter vector  the objective of 

information recovery. A solution to the stochastic inverse problem, in the context of Equation (3.1)  
and based on the optimized value of , is one basis for representing a range of data sampling 

processes and likelihood-entropy functions. As  varies, the resulting rules that minimize power 

divergence exhibit qualitatively different sampling behavior. Using empirical sample moments,  

a solution to the stochastic inverse problem, for any given choice of the  parameter, may be 
formulated as the following extremum-type information recovery basis for   

 (3.2)

Unless out of sample information is available, q is usually taken as a uniform-non-informative 

distribution. For a discussion of these Minimum Power Divergence (MPD) information recovery 

methods see [14–16]. 

In connection with the MPD information-theoretic methods, it is important to mention the analysis 

of binary response data-models (BRMs), that include discrete choice econometric models (see for 

example [17]). With these models, the objective is to predict probabilities that are unobserved and 

unobservable, from indirect noisy observations. Traditionally the estimation and inference methods, 

used in empirical analyses of binary response models, converts this fundamentally ill-posed stochastic 

inverse problem into a well-posed one that can be analyzed via conventional parametric statistical 

methods. This is accomplished by imposing a parametric functional form on the underlying data 

generating distribution. Seeking to minimize the use of unknown information concerning model 

components, we characterize the  vector of Bernoulli random variables, Y, by the universally 

applicable stochastic representation  

, where  and  (3.3)

The specification in Equation (3.3) implies only that the expectation of the random vector Y is some 
mean vector of Bernoulli probabilities , and that the outcomes of Y are decomposed into means  

and noise terms. Given sampled binary outcomes from Equation (3.3), if the Bernoulli probabilities in 

Equation (3.3) are allowed to depend on the values of explanatory variables x, we may use  
empirical moment representations of the orthogonality conditions,  to connect the data 

space to the unknown-unobservable probabilities. It is straightforward to extend the univariate 

distribution formulations to their multivariate counterparts. For example, one such extension when  
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γ = 0, subsumes the multivariate logistic distribution as a special case and results in a multinomial 

specification of the minimum power divergence estimation problem in Lagrange form as  

 (3.4)

Solving first order conditions with respect to the  leads to the standard multivariate logistic 

distribution, when the reference distributions are uniform. 

3.2. Convex Entropic Divergences 

In choosing a member of the CR family of likelihood-divergence functions, one might follow 

Gorban and Karlin [18] and consider a bounded parametric family of convex information divergences 

which satisfy additivity and trace conditions. Convex combinations of γ = 0 and γ = −1 span an 

important part of the probability space and produce a remarkable family of distributions. This 

parametric family of divergence measures is essentially the linear convex combination of the cases 

where γ = 0 and γ = −1. This family is tractable analytically and provides a basis for joining 

(combining) statistically independent subsystems. When the base measure of the reference distribution 

q is taken to be a uniform non-informative probability density function, we arrive at a one-parameter 

family of additive convex dynamic functions. From the standpoint of extremum-minimization with 

respect to p, the generalized divergence family, under uniform q, reduces to  

 (3.5)

In the limit, as α→0, the minimum I divergence of the probability mass function p, with respect to q, 

is recovered. As α→1, the maximum empirical likelihood (MEL) solution is recovered. This 

generalized family of divergence measures permits a broadening of the canonical distribution functions 

and provides a framework for developing a quadratic loss-minimizing estimation rule. 

4. Binary Network Problem 

Given an information recovery framework, in order to go beyond traditional overly simplified 

modeling and mathematical anomalies, consider a new network based paradigm that is developing 

under the name of Network Science (for example, see [19,20], and the references contained therein). It 

is based on observed adaptive behavior data sets that are indirect, incomplete and noisy. This 

representation of markets arises quite naturally from microeconomic theory. In fact, in many ways, 

markets and binary linked networks are equivalent (see [21]). There are several things that make this 

approach attractive for information recovery in economics and the other social sciences. In the 

economic-behavioral sciences, everything seems to depend on everything else and this fits right in to the 

interconnectedness of the nonlinear dynamic network paradigm. There is also a close link between 

evolving network structures and the equilibrium or disequilibrium of economic-behavioral systems and 

entropy maximization. Finally, in terms of a methodology, network problems are consistent with the 

information-theoretic approach to information recovery. 
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In general, the representation of a market as a network presents the consideration of a market in 

terms of a micro canonical ensemble. Thus, if B is a binary network, then its links only take on binary 

values and may be represented by a matrix A with binary values. This leads to a binary network with N 

vertices that is specified by an N × N matrix A, with entries Aij = 1, if the vertices i and j are connected, 

and Aij = 0 otherwise. Analytically, we seek an expression for the probabilities that are connected in 

the random-statistical ensemble of pathways. Our objective is to recover expected values across the 

ensemble that can be computed analytically, without explicitly sampling the configuration space. 

Given information about the network routing protocol in the form of a matrix A, with entries Aij,  

the unknown Pij, pathway probabilities often must be estimated from aggregate data that may be noisy 

in nature. In addition the number of unknown pathway parameters of the protocol matrix A, are much 

larger than the number of measured aggregate origin-destination data points. Thus the components of 

matrix A cannot be observed directly. As a result, indirect and possibly noisy observable data must be 

used to recover information on these unobserved and unobservable model components. This means 

that, although the observed data are considered to be directly influenced by the values of model 

components, the observations are not themselves the direct values of these components and only 

indirectly reflect the influence of the components. The relationship characterizing the effect of 

unobservable components on the observed data must be somehow inverted to recover information 

concerning the unobservable model components from the indirect observations. Thus, the analyst must 

use indirect noisy observations to recover information on the unobserved vector of parameters and 

unobserved and unobservable random components. This means that this type of ill-posed pure or stochastic 

inverse regularization problem cannot be solved by traditional information recovery-econometric 

methods, without making use of regularization schemes such as noted in Section 2. As a solution basis, 

entropy pathway maximization problems of this type may be formulated as a problem of maximizing 

the entropy over the pathways, subject to constraints. The result provides an exact expression for the 

occurrence of the unknown probabilities over the ensemble of pathways and yields the preferred 

probability distribution (see [22]). 

A Network Behavior Recovery 

To indicate the applicability of the information-theoretic approach in the binary network area,  

an example may be useful. In an economic-behavioral network, the efficiency of information flow is 

predicated on discovering or designing protocols that efficiently scale free patterns. In many ways this 

is like a transportation network where the emphasis is on design and efficiency in routing the traffic 

flows (for example, see [23] and the references therein). To carry this information flow analogy a bit 

farther, consider the problem of determining least-time point-to-point traffic flows between sub 

networks, when only aggregate origin-destination volumes are known. Given information about the 

network protocol in the form of a matrix Aij composed of binary elements, traffic flows may be 

estimated from the noisy aggregate traffic data. If the amount of unknown origin to destination routes 

is much larger than the amount of origin-destination data, then we have an ill-posed linear inverse 

problem of the type first introduced in Section 2. If we write the inverse problem as  
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 (4.1)

where, yi and Aij are known,  is unknown and  we may make use of the CR family of 

entropic divergence measures Equation (3.1) and write the problem as the following constrained 

conditionally optimization problem:  

,ܘሺܫ ,ܙ ௜ߣሻ|෍ߛ

௡

௜ୀଵ

ቌ෍൫ܣ௜௝݌௝ െ ௜൯ݕ

ே

௝ୀଵ

ቍ ,෍݌௝ ൌ 1

௡

௝ୀଵ

, ௝݌ ൒ 0 (4.2)

This is just the solution to a standard problem when a function must be inferred from insufficient 

sample-data information. Thus network inference and monitoring problems have a strong resemblance 

to an inverse problem in which key aspects of a system are not directly observable. Details of the 

application of information-theoretic entropic methods to this type of network information flow 

problem are discussed in Cho and Judge (2015, 2007) [24,25] and Ziebart, Bagnell, and Dey [5,6]. 

Finally, it is worth emphasizing that in actual networks, the flows from one node to another will 

themselves affect node-to-node capacities that may impact deterministic or statistical predictions [26]. 

Finally, it is interesting that network theory presents a model for producing scale free patterns that are 

manifestations in the physics world of least-time-free energy consumption. In other words if economic 

systems did not consume energy in the least time, these patterns would not be present. 

5. Conclusions 

In this paper we have: 

(i) Exhibited a connection between adaptive economic behavior and causal entropy 

maximization in self organizing equilibrium seeking dynamic economic systems, 

(ii) Used a broad family of entropic functionals to provide an information-theoretic 

solution for ill-posed pure and stochastic inverse problems, 

(iii) Used a binary network to illustrate the applicability of information-theoretic methods, 

(iv) Demonstrated that networks are a useful way to model micro systems models and can 

be adapted to serve various purposes, and 

(v) Demonstrated the general applicability of the adaptive-optimizing behavior information 

theoretic concept in the context of ill-posed inverse economic settings. Given the 

importance of recovering dynamic economic behavioral information, a natural 

question arises as to the continued use of traditional regularization methods as a 

solution basis for traditional pure and stochastic inverse type problems. 

Finally, we noted the statistical implications of using imperfect economic-econometric models and 

data in Section 2, and, for solution purposes, we argued for the need to solve a pure or stochastic 

inverse problem. As a start toward mitigating these problems, in Section 3, we suggested an adaptive 

intelligent behavior causal entropy maximization connection and a corresponding information-theoretic 

recovery framework. In contrast, many traditional observational, experimental, and game-theoretic 

data based economic and econometric models and methods are disconnected from the underlying 
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nature of the dynamic behavioral process. Consequently, a natural question arises as to the frequent use 

of ad hoc traditional status measures/criterions as a solution basis. The connection between adaptive 

dynamic economic behavior and causal entropy maximization appears to offer one way to move 

economics in the direction of a behavior-related predictive quantitative science. 
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