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Abstract: The Heckman sample selection model relies on the assumption of normal
and homoskedastic disturbances. However, before considering more general, alternative
semiparametric models that do not need the normality assumption, it seems useful to test
this assumption. Following Meijer and Wansbeek (2007), the present contribution derives
a GMM-based pseudo-score LM test on whether the third and fourth moments of the
disturbances of the outcome equation of the Heckman model conform to those implied by the
truncated normal distribution. The test is easy to calculate and in Monte Carlo simulations it
shows good performance for sample sizes of 1000 or larger.
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1. Introduction

The assumption of bivariate normal and homoskedastic disturbances is a prerequisite for the
consistency of the maximum likelihood estimator of the Heckman sample selection model. Moreover,
some studies focus on the prediction of counterfactuals based on the Heckman sample selection model
taking into account both changes in participation and outcome, which is often only feasible under the
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assumption of bivariate normality.1 Lastly, under the assumption of bivariate normality one can the
estimate the Heckman sample selection model by maximum likelihood methods that are less sensitive to
weak exclusion restrictions.

Before employing alternative semiparametric estimators that do not need the normality assumption
(see e.g., Newey, 2009 [3]), it seems useful to test the underlying normality assumption of sample
selection models. So far, the literature offers several approaches to test this hypothesis.2 Bera et. al.,
(1984) [6] develop an LM test for normality of the disturbances in the general Pearson framework, which
implies testing the moments up to order four. Lee (1984) [7] proposes Lagrangian multiplier tests within
the bivariate Edgeworth series of distributions. Van der Klaauw and Koning (1993) [8] derive LR tests
in a similar setting, while Montes-Rojas (2011) [9] proposes LM and C(α) tests that are likewise based
on bivariate Edgeworth series expansions, but robust to local misspecification in nuisance distributional
parameters. In general, these approaches tend to lead to complicated test statistics that are sometimes
difficult to implement in standard econometric software. More importantly, some of these tests for
bivariate normality seem to exhibit unsatisfactory performance in Monte Carlo simulations and are
rejected too often in small to medium samples sizes, especially if the parameter of the Mills’ ratio is high
in absolute value (see e.g., Montes-Rojas, 2011 [9], Table 1). This motivates Montes-Rojas (2011) [9]
to focus on the assumptions of the two-step estimator that requires less restrictive assumptions, namely
a normal marginal distribution of the disturbances of the selection equation and a linear conditional
expectation of the disturbances of the outcome equation. He proposes to test for marginal normality and
linearity of the conditional expectation of outcome model separately and shows that the corresponding
locally size-robust test statistics based on the two-step estimator perform well in terms size and power .

In a possibly neglected, but very valuable paper, Meijer and Wansbeek (2007) [10] embed the two-step
estimator of the Heckman sample selection model in a GMM-framework. In addition, they argue that
within this framework it is easily possible to add moment conditions for designing Wald tests in order to
check the assumption of bivariate normality and homoskedasticity of the disturbances. Their approach
does not attempt to develop a most powerful test, rather they intended to design a relatively simple test
for normality that can be used as an alternative to the existing tests. The test can be interpreted as a
conditional moment test and checks whether the third and fourth moments of the disturbances of the
outcome equation of the Heckman model conform to those implied by the truncated normal distribution.
For H0 to hold, the test in addition requires normally distributed disturbances of the selection equation
and the absence of heteroskedasticity in both the outcome and the selection equation.

Meijer and Wansbeek (2007) [10] do not explicitly derive the corresponding test statistic nor do they
provide Monte Carlo simulations on its performances in finite samples. The present contribution takes
up their approach arguing that a GMM based pseudo-score LM test is well suited to test the hypothesis
of bivariate normality and is easy to calculate. The derived LM test is similar to the widely used Jarque

1 An example is the estimation of gravity models of bilateral trade flows with missing and/or zero trade. Here, the
assumption of bivariate normality turns out important for deriving comparative static results with respect changes in
the external and internal margin of trade following Yen and Rosinski (2008) [1] and Staub (2014) [2].

2 There is also work available that proposes normality tests for the Tobit model (see Skeels and Vella, 1999 [4] and
Drukker, 2002 [5]).
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and Bera LM test (1980) [11], and in the absence of sample selection reverts to their LM test statistic.
Monte Carlo simulations show good performance of the proposed test for samples of sizes of 1000 or
larger, especially if a powerful exclusion restriction is available.

2. The GMM Based Pseudo-Score LM Test for Normality

In a cross-section of n units the Heckman (1979) [12] sample selection model is given as

y∗1i = z′iγ + u1i

y∗2i = x′iβ + u2i

di =

{
1 if y∗1i > 0

0 otherwise

y2i =

{
y∗2i if di = 1

unobserved if di = 0

where y∗1i and y∗2i denote latent random variables. The outcome variable, y∗2i, is observed if the latent
variable y∗1i > 0 or, equivalently, if di = 1. zi is a k1 × 1 vector containing the exogenous variables of
the selection equation and xi is the k2 × 1 vector of the exogenous variables of the outcome equation. zi
may include the variables in xi, but also additional ones so that an exclusion restriction holds. γ and β
denote the corresponding parameter vectors. Under H0 the disturbances are assumed to be distributed as
bivariate normal, i.e., ([

u1i

u2i

]
|xi, zi

)
∼ N

([
0

0

]
,

[
1 τ

τ σ2

])
It is easy to show that under these assumptions

pi ≡ E[di] = Φ(z′iγ)

λi ≡ E[u1i|u1i ≥ −z′iγ] =
φ(−z′iγ)

1−Φ(−z′iγ)
=

φ(z′iγ)

Φ(z′iγ)

where λi denotes the inverse Mills’ ratio. Under the normal assumption one can specify u2i = τu1i+ εi

so that εi ∼ iid N(0, σ2 − τ 2). εi is independent of u1i as E[εiu1i] = E[(u2i − τu1i)u1i] = τ − τ = 0.
Since E[u1i|di = 1] = λi, it holds that E[τ(u1i − λi) + εi|di = 1] = 0. Therefore, the two-step
Heckman sample selection model includes the estimated inverse Mills’ ratio in the outcome equation as
an additional regressor. For the observed outcome at di = 1 the model can be written as

y∗2i = x′iβ + τλi + τ (u1i − λi) + εi

≡ w′iα + τvi + εi (1)

where vi = u1i − λi and E[y∗2i|di = 1] = x′iβ + τλi.

Meijer and Wansbeek (2007) [10] embed the two-step Heckman sample selection estimator in a GMM
framework and demonstrate that the estimation can be based on

h1,1i(k1×1)(θ1) ≡ (di−pi)φi
pi(1−pi) zi

h1,2i(k2×1)(θ1) ≡ diwi(yi − w′iα) = diwi(τvi + εi)

h1,3i(1×1)(θ1) ≡ di
[
(yi − w′iα)2 − ϕ2,i

]
= di

[
(εi + τvi)

2 − ϕ2,i

]
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where θ1 = (γ′, β′, τ, σ)′ and ϕk,i = E
[
(τvi + εi)

k |di = 1
]
, k = 2, 3, 4. Note, there are as many

parameters as moment conditions and the model is just-identified.
The first set of moment equations is based on h1,1(θ1) = 1

n

∑n
i=1 h1,1i(θ1) and refers to the

score of the Probit model. Since these moment conditions do not include the parameters entering
h1,2i and h1,3i (i.e., β′, τ, σ) and are exactly identified, estimation can proceed in steps: In the first
step, one can solve 1

n

∑n
i=1 h1,1i(γ̂) = 0 and in the second step one solves the sample moment

condition h1,2(θ1) = 1
n

∑n
i=1

[
h1,2i(γ̂

′, β̂′, τ̂)
]

= 0 using the estimated γ̂ derived in the first stage.
This leads to the two-step Heckman estimator, which first estimates a Probit model, inserts the
estimated Mills’ ratio λ̂i as additional regressor in the outcome equation and applies OLS. Lastly, from
h1,3(θ1) = 1

n

∑
h1,3i(γ̂

′, β̂′, τ̂ , σ̂) = 0 one can obtain an estimator of σ2.

As Meijer and Wansbeek (2007) [10] remark, a rough and simple test for normality can be based on
two additional moment conditions that allow comparing the third and fourth moments of the estimated
residuals of the outcome equation, yi − w′iα̂, with their theoretical counterparts based on the truncated
normal distribution. These moment conditions use

h2,1i(1×1)(θ1, θ2) ≡ di
[
(yi − w′iα)3 − ϕ3,i − ξ

]
= di

[
(τvi + εi)

3 − ϕ3,i − ξ
]

h2,2i(1×1)(θ1, θ2) ≡ di
[
(yi − w′iα)4 − ϕ4,i − κ

]
= di

[
(τvi + εi)

4 − ϕ4,i − κ
]

Thereby, θ2 = (ξ, κ) denotes additional parameters that are zero under normality. More importantly,
under H0 the expectations ϕk,i can be derived recursively from the moments of the truncated normal
distribution as shown in the Appendix (see alsoMeijer and Wansbeek, 2007, pp. 45–46) [10]. In
general, these moments depend on the parameters θ1 and, especially, on the inverse Mills’ ratio λi and
the parameter τ .

To detect violations of the normality assumption, one can test H0 : ξ = 0 and κ = 0 vs. H0 : ξ 6= 0

and/or κ 6= 0. Although this hypothesis checks the third and fourth moments of the disturbances of
the two-step outcome Equation (1), it can only be true if ϕ3,i and ϕ4,i are the correct expected values.
Therefore, the test additionally requires the moment conditions E[h1,1i] = 0 and E[h1,2i = 0] to hold so
that the parameters of both the selection equation and the outcome equation are consistently estimated.
The present hypothesis is somewhat more restrictive than that tested, e.g., in Montes-Rojas (2011) [9],
who emphasizes that the Heckman two-step estimator is robust to distributional misspecification if (i)
the marginal distribution of u1i is normal and (ii) E[u2i|u1i] = τu1i, i.e., the conditional expectation
is linear.3

In addition, H0 also requires the absence of heteroskedasticity ( see Meijer and Wansbeek, 2007,
p. 46 ) [10]. To give an example, assume that u2i = τu1i + εi and u2i are bivariate normal, but the
variances of εi differ across i and are given as σ2

i −τ 2 (see also the DGP6 in the Monte Carlo set-up below
and the excess kurtosis of DGP6 in Table 1 below). Then, it follows that ϕk,i =

∑k
j=0

(
k
j

)
E[εk−ji ]τ jψj,i,

where ψk,i ≡ E[(vki |di = 1] =
∑k

j=0(−1)j
(
k
j

)
µj,iλ

k−j
i and µj,i = E[uk1i|u1i > −z′iγ] (see the

3 Specifically, Montes-Rojas (2011)[9] mentions the case where u1i ∼ N(0, 1), u2i = τu1i+ εi and u1i and εi being
independent, but εi does not follow a normal distribution. ϕ3,i and ϕ4,i the moments are E[εki ] are left unrestricted and
estimated from the residuals of the second-stage outcome equation.
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Appendix). In this case, we have E[ε2
i ] = σ2

i − τ 2 and E[ε4
i ] = 3 (σ2

i − τ 2)
2, while the corresponding

uneven moments are zero. Hence, under heteroskedasticity ϕ4,i differs from that obtained under H0

which assumes E[ε2
i ] = σ2 − τ 2 and E[ε4

i ] = 3(σ2 − τ 2)2 and the population moment condition
E[h2,2i(θ1, θ2)] = 0 is violated. Hence, a test based on these moments should also be able to detect
heteroskedasticity, although not in the most efficient way.

Applying a pseudo-score LM test (Newey and West, 1987 [13]; Hall, 2005 [14]), in this
GMM-framework leads to a χ2(2)-test statistic that can be calculated easily. In order to derive the
LM test statistic, define h(θ) = 1

n

∑n
i=1 hi(θ) and Ψ(θ) = 1

n

∑n
i=1 hi(θ)hi(θ)

′, where hi(θ) ≡
(h′1,1i, h

′
1,2i, h1,3i, h2,1i, h2,2i)

′. It is assumed that Ψ0 = plimn→∞Ψ(θ0) exists, is positive definite and
invertible. Under standard assumptions, it holds that

n1/2h(θ0)
d→ N(0,Ψ0)

n1/2(θ̂ − θ0)
d→ N(0, A0)

where the subscript 0 indicates that H0 is assumed. Thereby, A0 = G−1
0 Ψ0

(
G−1

0

)′ and G0 is the

probability limit of Ḡ(θ0) = 1
n

∑n
i=1

∂h(θ)
∂θ

∣∣∣
θ=θ0

. Note, Ḡ(θ0) is invertible as the model is just-identified.

UnderH0 the moment conditions E[h2,i(θ1, θ2), ξ, κ], h2,i(θ1, θ2) ≡ (h2,1i, h2,2i)
′ referring to the third

and fourth moments of the outcome equation are zero at ξ = 0 and κ = 0 and the separability result in
Ahn and Schmidt (1995, Section 4) [15] can be applied. Denoting the restricted estimates under H0 by a
tilde, using the invertibility of Ḡ(θ̃) and the partitioned inverse of Ψn(θ̃) = E[Ψ

(
θ̃
)

], the pseudo-score
LM test statistic can be derived as (see the Appendix for details):

LM(θ̃) = nh
′
2(θ̃)

(
Ψn,22(θ̃)−Ψn,21(θ̃)Ψn,11(θ̃)−1Ψn,12(θ̃)

)−1

h2(θ̃)

Thereby, h2(θ) = 1
n

∑n
i=1 h2,i(θ) and we use h

′
1(θ̃) = 1

n

∑n
i=1 h1,i(θ̃) = 0, where h1,i(θ) =

(h′1,1i, h
′
1,2i, h1,3i)

′, as well as the partitioned inverse (see the Appendix)

Ψn,11(θ) =
1

n

 Z ′V Z 0 0

∗ W ′
1Σ1W1

∑
di=1 wiϕ3,i

∗ ∗
∑

di=1

(
ϕ4,i − ϕ2

2,i

)


Ψn,22(θ) =
1

n

∑
i=1

[
pi
(
ϕ6,i − ϕ2

3,i

)
pi (ϕ7,i − ϕ3,iϕ4,i)

pi (ϕ7,i − ϕ3,iϕ4,i) pi
(
ϕ8,i − ϕ2

4,i

) ]

Ψn,12(θ) =
1

n

n∑
i=1

 0 0

piwiϕ4,i piwiϕ5,i

pi (ϕ5,i − ϕ2,iϕ3,i) pi (ϕ6,i − ϕ4,iϕ2,i)


where V = diag

(
φ21

p1(1−p1)
, .., φ2n

pn(1−pn)

)
, pi = P (di = 1), Zn×k1 = (z1, ..., zn)′, Wn×k2 = (w1, ..., wn)′,

and Σ = diag(ϕ2,1, ..., ϕ2,n). Σ1 is obtained from Σ by deleting all rows and columns referring to
di = 0, and similarly W1. Ψn(θ) can be consistently estimated by plugging in θ̃. In addition, Meijer and
Wansbeek (2007) [10] show that one can substitute di for pi so that only information on the observed
units is necessary. Note however, the summation runs over all observations (zero and ones in di).

Under standard assumptions it follows that under H0 we have LM(θ̃)
d→ χ2(2) (see Newey and

West, 1987, pp. 781–782 [13] and Theorems 5.6 and 5.7 in Hall, 2005 [14]) . In the absence of sample
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selection (τ = 0) it holds that ϕ3,i = ϕ5,i = 0, while ϕ2,i = σ2 and ϕ4,i = 3σ4 and the LM test statistic
reverts to that of Jarque and Bera (1980) [11].

3. Monte Carlo Simulation

Monte Carlo simulations may shed light on the performance of the proposed LM test in finite samples.
It is based on a design that has been used previously by van der Klaauw and Koning (1993) [8] and
Montes-Rojas (2011) [9], but includes a few modifications. The simulated model is specified as

y∗1i = −1z1i + 1x2i − 1 + u1i

y∗2i = 0.5x1i − 0.5x2i + 1 + u2i

where for ρ ∈ {−0.8,−0.4, 0.4, 0.8} and σ2 ∈ {0.25, 1}. The explanatory variables x1i, x2i, and z1i

are generated as iid N(0, 3), N(0, 3) and U(−3, 3), respectively. With respect to the disturbances, u1i,
and u2i the following data generating processes are considered. Note DGP1-DGP3 imply V ar[u1i] = 1

and V ar[u2i] = 0.25. In contrast, van der Klaauw and Koning (1993) [8] and Montes-Rojas (2011) [9]
consider the case with V ar[u2i] = 5 and thus receive less precise estimates of the slope parameters of
the outcome equation.

1. DGP1:

(u1i, u2i) ∼ iid N

(
0,

[
1 0.5ρ

0.5ρ 0.25

])
2. DGP2:
ε1i ∼ t(10), ε2i ∼ t(10), ε1i and ε2i being independent.
u1i = ε1i

(
10
8

)−1/2

u2i = σ(1 + ρ2)1/2
(

10
8

)−1/2
ε2i + ρσu1i

The degrees of freedom are set to 10 to guarantee that the moments up to order 4 exists.

3. DGP3:
ε1i ∼ χ2(20), ε2i ∼ χ2(30)

u1i = (ε1i − 20) /
√

40− 20

u2i = σ(1 + ρ2)1/2 (ε2i − 30) /
√

60 + ρσu1i

4. DGP4:
ε1i ∼ N(0, 1), ε2i ∼ χ2(30) and are independent.
u1i = ε1i

u2i = σ(1 + ρ2)1/2 (ε2i − 30) /
√

60 + ρσu1i

5. DGP5:
ε1i ∼ χ2(20), ε3i ∼ N(0, 1) and are independent.
u1i = (ε1i − 20) /

√
40− 1

u2i = σ(1 + ρ2)1/2ε2i + ρσu1i

6. DGP6:
ε1i ∼ N(0, 1), ε2i ∼ N(0, 0.25), ε1i and ε2i being independent.
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ci = 1 + e
x1i√

3

(
e−

1
2 − 1

)
(e1 − 1)

− 1
2

u1i = ε1i

u2i = σ(1 + ρ2)1/2√ciε2i + 2ρu1i

7. DGP7:
ε1i ∼ N(0, 1), ε2i ∼ N(0, 1), ε1i and ε2i being independent.
ci = 1 + e

x2i√
3

(
e−

1
2 − 1

)
(e1 − 1)

− 1
2

u1i = ε1i
√
ci

u2i = σ(1 + ρ2)1/2ε2i + σρu1i

DGP1 serves as a reference to assess the size of the pseudo-score LM test. The second DGP
deviates from the bivariate normal in terms of a higher kurtosis, while DGP3 exhibits both higher
skewness and kurtosis than the normal. DGP4 allows for deviation from normality in the outcome
equation, while keeping the normality assumption in the selection equation. DGP5 reverses this pattern.
The disturbances of the outcome equation are normal and those of the selection equation are not. DGP6
and DGP7 introduce heteroskedasticity in either the outcome or the selection equation, respectively.
In case of the latter two, the variances of ui1 and ui2 is normalized to an average of 1 and 0.25,
respectively. Note, the explanatory variables are held fixed in repeated samples.

Overall, for these DGPs four experiments are considered. In the baseline Experiment 1 (first row
of the figures of graphs) 37% of the data remain unobserved and in the absence of sample selection
the implied R2 amounts to 1 − 0.25

1.75
= 0.86 using V ar(u2i) = 0.25 and V ar(y∗2i) = 1.75. Experiment 2

(second row of the figures of graphs) analyzed the performance of the Heckman two-step estimator under
a weaker exclusion restriction, assuming z1i ∼ iid U(−1, 1) so that V ar(z1i) = 1/3: Experiment 3
(third row of the figures of graphs) sets the constant of the outcome equation to zero so that 49% instead
of 37% units are unobserved. Lastly, Experiments 4 (fourth row of the figures of graphs) considers a
weaker fit in the outcome equation setting V ar(u2i) = 1 so that in the absence of sample selection we
have R2 = 0.43.

Table 1 summarizes the average variance, skewness and kurtosis of the generated disturbances u1i

and u2i under Experiment 1. In DGP2-DGP7, depending on ρ, the average kurtosis of u2i varies between
3.00 and 5.68, while the kurtosis of u1i lies between 3.07 and 3.58 in DGP5. In the other ones the
kurtosis of u1i is held constant taking values 2.99 (DGPs 1,4 and 6), 3.97 (DGP2), 3.58 (DGP3) and
5.71 (DGP7), respectively. The skewness coefficient of the generated disturbances is zero for all DGPs
except for DGP3 with corresponding values of 0.63 (u1i) and −0.21 to 0.43 (u2i) and DGP5 where the
skewness of u1i varies between 0.14 and 0.63.
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Table 1. Variance, Skewness and Kurtosis of the simulated disturbances.

.

DGP ρ
u1 u2

Variance Skewness Kurtosis Variance Skewness Kurtosis

1 all 1.00 0.00 2.99 0.25 0.00 2.99
2 −0.8 1.00 0.00 3.97 0.25 0.00 3.52
2 −0.4 1.00 0.00 3.97 0.25 0.00 3.70
2 0.0 1.00 0.00 3.97 0.25 0.00 3.96
2 0.4 1.00 0.00 3.97 0.25 0.00 3.70
2 0.8 1.00 0.00 3.97 0.25 0.00 3.52
3 −0.8 1.00 0.63 3.58 0.25 −0.21 3.29
3 −0.4 1.00 0.63 3.58 0.25 0.35 3.28
3 0.0 1.00 0.63 3.58 0.25 0.51 3.38
3 0.4 1.00 0.63 3.58 0.25 0.43 3.28
3 0.8 1.00 0.63 3.58 0.25 0.43 3.29
4 −0.8 1.00 0.00 2.99 0.25 0.11 3.05
4 −0.4 1.00 0.00 2.99 0.25 0.39 3.27
4 0.0 1.00 0.00 2.99 0.25 0.51 3.38
4 0.4 1.00 0.00 2.99 0.25 0.39 3.27
4 0.8 1.00 0.00 2.99 0.25 0.11 3.04
5 −0.8 1.00 0.63 3.58 0.25 0.00 2.99
5 −0.4 1.00 0.63 3.58 0.25 0.00 2.99
5 0.0 1.00 0.63 3.58 0.25 0.00 2.99
5 0.4 1.00 0.63 3.58 0.25 0.00 2.99
5 0.8 1.00 0.63 3.58 0.25 0.00 2.99
6 −0.8 1.00 0.00 2.99 0.25 0.00 3.34
6 −0.4 1.00 0.00 2.99 0.25 0.00 4.89
6 0.0 1.00 0.00 2.99 0.25 0.00 5.68
6 0.4 1.00 0.00 2.99 0.25 0.00 4.89
6 0.8 1.00 0.00 2.99 0.25 0.00 3.35
7 −0.8 0.99 0.00 5.71 0.25 0.00 4.11
7 −0.4 0.99 0.00 5.71 0.25 0.00 3.06
7 0.0 0.99 0.00 5.71 0.25 0.00 2.99
7 0.4 0.99 0.00 5.71 0.25 0.00 3.06
7 0.8 0.99 0.00 5.71 0.25 0.00 4.11

Following Davidson and MacKinnon (1998) [16] the size and power is analyzed in terms of
size-discrepancy and power-size curves. The former is based on the empirical cumulative distribution
function of the p-values, pr, defined as F (q) = 1

R

∑R
r=1 I(pr ≤ q), where R is the number of Monte

Carlo replications. The size-discrepancy curves are defined as plots of F (q) − q against q under the
assumption that H0 holds and DGP1 is the correct one. In addition, one can use a Kolmogorov and
Smirnov test to see whether F (q) − q differs significantly from 0 (see Davidson and MacKinnon 1998,
p. 11) [16]. The size-power curves plot power against size, i.e., FH1(q) against FH0(q). In both plots
q ∈ [0, 0.15] and step size is 0.001. An important feature of this procedure is that it avoids size
adjustments of the power curves if the tests reject too often under H0.

Figure 1 exhibits the size-discrepancy plots for Experiments 1–4 and sample sizes n = 500,
1000, 2000. The plots show that the pseudo-score LM test is properly sized for ρ = −0.4 and ρ = 0.4
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in all experiments, while it slightly over-rejects at ρ = −0.8 and ρ = 0.8, especially at a small sample
size (n = 500). For example, at a nominal test size of 0.05 and a sample size of 1000 the size of LM
test is too high by 0.012 percentage points at |ρ| = 0.8. For ρ = −0.4 and ρ = 0.4 the size-discrepancy
is within the Kolmogorov and Smirnov 5% confidence of bound p ± 0.0096 for p-values smaller than
0.1. A similar result has also been mentioned in Montes-Rojas (2011) [9] in case of robust LM and
C(α) tests. A weaker exclusion restriction, setting V ar(z1i) = 1/3 in Experiment 2, increases the
size-discrepancy at high absolute values of ρ (Experiment 2, row 2 of Figure 1), but hardly affects the
size of the test at |ρ| = 0.4. The size-discrepancy remains in the confidence bounds at medium values
of ρ. Increasing the share of unobserved values to 0.49 (Experiment 3, row 3 of Figure 1) hardly affects
the size-discrepancy. Lastly, Experiment 4 (last row of Figure 1) shows that a weaker fit (V ar(u2,i) = 1)
does not result in a larger size distortion as compared to the baseline in the first row of Figure 1. As one
would expect, a larger number of observations generally enhances the performance of the LM test (see
the last column in Figure 1). However, the large sample approximation improves relatively slowly with
sample size under a weak exclusion restriction at high absolute values of ρ (confer the second row of
graphs in Figure 1).

Figures 2–4 present the power-size plots of the pseudo-score LM test for the DGPs 2–3, 4–5 and 6–7,
respectively. In general and in line with the literature, for all DGPs referring to the alternative hypothesis
we observe lower power of the pseudo-score LM test at high absolute values of ρ, but especially so
at ρ = −0.8. If the distribution of the disturbances of the outcome equation exhibits both skewness
and excess kurtosis (DGP3) the simulated power of the pseudo-score LM test is higher than that of a
symmetric distribution with fatter tails than the normal distribution except for (ρ = −0.8). Furthermore,
for DGP3 the power is generally lower at ρ = −0.8 as compared to large positive values (ρ = 0.8),
which reflects differences in the skewness of the distribution of u2i with respect to ρ (confer Table 1).

Figure 3 illustrates the power of the pseudo-score LM test under non-normality in either the outcome
(DGP4) or the selection equation (DGP5) but not in both. Under DGP4 the pseudo-score LM test exhibits
high power at intermediate absolute values of ρ, while at high absolute values of ρ the power tends to be
lower as the weight of u1i (that is assumed to be normal) is higher in the disturbances of the outcome
equation. In case of DGP5 we see the reversed pattern. Deviations from normality are only detected in
case of high absolute values of ρ. Actually, under DGP5 the test has no power at all at ρ = 0, since in
this case there is no effect of the truncation of ui1 and disturbances of the outcome equation are normal.
This results can be found in all four considered Experiments.

Figure 4 presents the size-power plot of DGP6 and DGP7 and refers to heteroskedasticity. DGP6
allows for heteroskedasticity in the outcome equation and DGP7 in the selection equation. The
power-size curves indicate that the pseudo-score LM test is also able to detect this type of deviation
from the model assumptions as heteroskedasticity translates into pronounced excess kurtosis of the
disturbances of the outcome equation. For DGP6 this is the case at medium to low values of |ρ|. DGP7
introduces heteroskedasticity in Probit selection model. In this case, the LM test exhibits power at high
absolute vales of ρ, but has virtual no power at ρ = −0.4 and 0.4. The reason is that the nominal kurtosis
of u2i is hardly affected (amounting to 3.06, see Table 1) and the bias of the Mills’ ratio and the estimated
coefficients of the outcome equation, especially that of the Mills’ ratio turn out small in comparison.
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Figure 1. Size-discrepancy plot.
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Figure 2. Size power plot, DGP1-DGP3, n = 1000.
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Figure 3. Size power plot, DGP1, DGP4 and DGP 5, n = 1000.
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Figure 4. Size power plot, DGP1, DGP6 and DGP7, n = 1000.
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Comparing the first and second row of graphs in Figures 2–4 indicates that there is not much power
lost with the weaker exclusion restriction. A higher share of unobserved units tends to slightly reduce the
power of the LM test as one would expect (see the graphs in row 3 vs. 1 in Figures 2–4). Comparing the
first and the last row in Figures 2–4 indicates that a weaker fit (i.e., V ar(u2i) is increased from 0.25 to 1)
does not result in a significant loss of power. Lastly, as expected a larger sample size improves the power
of the pseudo-score LM test across the board.4

4. Conclusions

Using Meijer and Wansbeek’s (2007) [10] GMM-approach for two-step estimators of the Heckman
sample selection model, this paper introduces a pseudo-score LM test to check the assumption of
normality and homoskedasticity of the disturbances, a prerequisite for the consistency of this estimator.
The GMM-based pseudo-score LM test is easy to calculate and similar to the widely used Jarque and
Bera (1980) [11] LM test. Indeed, in the absence of sample selection it reverts to their LM test statistic.
In particular, the test checks whether the third and fourth moments of the disturbances of the outcome
equation of the Heckman model conform to those implied by the truncated normal distribution. UnderH0

normal disturbances of the selection equation and the absence of heteroskedasticity in both the outcome
and the selection equation are additionally required.

Monte Carlo simulations show good performance of the pseudo-score LM test for samples of size
1000 or larger and a powerful exclusion restriction. However, in line with other tests of the normality
assumption of the Heckman sample selection model proposed in the literature the pseudo-score LM test
tends to be oversized, although only slightly, if the correlation of the disturbances of the selection and
the outcome equation is high in absolute value or if the exclusion restrictions are weak. Hence, this test
can be recommended for sample sizes of 1000 or larger.
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Appendix

Deriving E
[
(τvi + εi)

k |d = 1
]

:

Let Z ∼ N(0, 1) and consider µk(ai) = E[Zk|Z > ai], k = 1, 2.... The derivation the moments of
Zk|Z > ai uses the following recursive formula (Meijer and Wansbeek, 2007, p. 45) [10]:

µ0(ai) = 1

µ1(ai) = λi

µk(ai) = (k − 1)µk−2(ai) + ak−1
i λi, k ≥ 2

4 The corresponding figures for a larger sample size of n = 2000 are available upon request from the author.
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Setting ai = −z′iγ and abbreviating µk(ai) = µk,i, one obtains

ψk,i ≡ E[vki |di = 1] =
k∑
j=0

(−1)j
(
k

j

)
µj,iλ

k−j
i

and based on these results one can calculate the moments of (τvi + εi)
k as

ϕk,i ≡ E
[
(τvi + εi)

k |d = 1
]

= E

[
k∑
j=0

(
k

j

)
εk−ji (τvi)

j |d = 1

]

=
k∑
j=0

(
k

j

)
µε,k−jτ

jψj,i

where µε,k−j ≡ E[εki ].

Pseudo-score LM test:

Denoting the GMM-estimates under H0 by θ̃, the pseudo-score LM test can be written as (see Hayashi,
2000, p.491–493 [17], Newey and West, 1987, p. 780 [13] and Hall, 2005, p. 162 [14]) : 5

LM = nh
′
(θ̃)Ψn(θ̃)−1Ḡ′(θ̃)(Ḡ′(θ̃)Ψn(θ̃)−1Ḡ(θ̃))−1Ḡ(θ̃)Ψn(θ̃)−1h

′
(θ̃)

where Ψn(θ̃) = E[Ψ(θ̃)] is a consistent estimator of Ψ0 under H0. Using the fact that Ḡ(θ̃) is invertible
yields the LM test statistic as

LM = nh
′
(θ̃)Ψn(θ̃)−1h(θ̃)

which can be further simplified using the partitioned inverse

LM = nh2(θ̃)′
(

Ψn,22(θ̃)−Ψn,21(θ̃)Ψ−1
n,11(θ̃)Ψn,12(θ̃)

)−1

h2(θ̃)

since h1(θ̃) = 0.

Variance of moments:

Under fairly general conditions (see Amemiya, 1985, Section 3.4) [18], limn→∞E
[
Ψ(θ)

]
=

plimn→∞Ψ(θ) and in the formulas for the asymptotic covariance matrix, one can replace Ψ(θ) by its
expectation. Note Ψn(θ0) = E

[
Ψ(θ0)

]
can be estimated consistently in the usual way by Ψn(θ̃). To

obtain the estimate Ψn(θ̃), we partition Ψn(θ) in accordance to h(θ) = (h1(θ)′, h
′
2(θ))′ as

Ψn(θ) =

[
Ψn,11(θ) Ψn,12(θ)

Ψn,12(θ)′ Ψn,22(θ)

]

5 Newey and West (1987) [13] propose to use the unrestricted estimator Ψ(θ̂), a route that is not followed here.
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Using

h1,i(θ)h1,i(θ)
′ = (di − pi) φizi

pi(1−pi)

diwi(τvi + εi)

di
[
(τvi + εi)

2 − ϕ2,i

]
 [ (di−pi)φizi

pi(1−pi) diw
′
i(τvi + εi) di

[
(τvi + εi)

2 − ϕ2,i

] ]
=

 (di − pi)2
(

φi
pi(1−pi)

)2

ziz
′
i

di(di−pi)φi
pi(1−pi) ziw

′
i(τvi + εi)

(di−pi)φi
pi(1−pi) di

[
(τvi + εi)

2 − ϕ2,i

]
zi

∗ diwiw
′
i(τvi + εi)

2 di
[
(τvi + εi)

3 − ϕ2,i(τvi + εi)
]
wi

∗ ∗ di
[
(τvi + εi)

2 − ϕ2,i

]2


one obtains for the off-diagonal elements:

1

n

n∑
i=1

E[(di − pi) φi
pi(1−pi)di(τvi + εi)ziw

′
i] = 0

1

n

n∑
i=1

E[ (di−pi)φi
pi(1−pi) di

[
(τvi + εi)

2 − ϕ2,i

]
zi = 0

1

n

n∑
i=1

E
[
di
[
(εi + τvi)

3 − ϕ2,i(τvi + εi)
]
wi
]

=
1

n

n∑
i=1

piϕ3,iwi

Some of the explanatory variables summarized in wi may not be observed at di = 0. However, one can
use the reasoning in Meijer and Wansbeek (2007) [10] and establish

plimn→∞
1
n
(W ′

1W1)− lim
n→∞

1
n
W ′ΠW = plimn→∞

1
n

n∑
i=1

diwiw
′
i − lim

n→∞
1
n

n∑
i=1

piwiw
′
i = 0

plimn→∞
1
n

n∑
i=1

(di − pi)ϕk,iwi = 0, k = 1, ..., 8

plimn→∞
1
n

n∑
i=1

(di − pi)ϕk,iϕl,i = 0, k, l = 1, ..., 4.

Here, Π = diag(p1, .., pn) and W1 is derived from W by skipping all rows with di = 0. Hence, one
can use

Ψn,11(θ) =
1

n

 Z ′V Z 0 0

∗ W ′
1Σ1W1

∑
di=1wiϕ3,i

∗ ∗
∑

di=1

(
ϕ4,i − ϕ2

2,i

)


where V = diag
(

φ21
p1(1−p1)

, .., φ2n
pn(1−pn)

)
, Wn×k2 = (w1, ..., wn)′, and Σ = diag(ϕ2,1, ..., ϕ2,n). Σ1 is

obtained from Σ by deleting all rows and columns referring to di = 0, and similarly W1. Similar
arguments yield at ξ = κ = 0

Ψn,22(θ) =
1

n

N∑
i=1

[
pi
(
ϕ6,i − ϕ2

3,i

)
pi (ϕ7,i − ϕ3,iϕ4,i)

pi (ϕ7,i − ϕ3,iϕ4,i) pi
(
ϕ8,i − ϕ2

4,i

) ]
and

Ψn,12(θ) =
1

n

n∑
i=1

 0 0

piwiϕ4,i piwiϕ5,i

pi (ϕ5,i − ϕ2,iϕ3,i) pi (ϕ6,i − ϕ4,iϕ2,i)


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Again, we can insert di fir pi. Applying the formula for the partitioned inverse yields the simplification
of the pseudo-score LM test statistic:

LM = nh
′
(θ̃)Ψn(θ̃)−1h

′
(θ̃)

= n
[
0, h2(θ̃)′

] [ Ψn,11(θ̃) Ψn,12(θ̃)

Ψn,21(θ̃) Ψn,22(θ̃)

]−1 [
0

h2(θ̃)

]
= nh2(θ̃)′

(
Ψn,22(θ̃)−Ψn,21(θ̃)Ψn,11(θ̃)−1Ψn,12(θ̃)

)−1

h2(θ̃)

which is asymptotically distributed as χ2(2) under H0.
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