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Abstract: In some NUTS 2 (Nomenclature of Territorial Units for Statistics) regions of Europe, the
COVID-19 pandemic has triggered an increase in mortality by several dozen percent and only a
few percent in others. Based on the data on 189 regions from 19 European countries, we identified
factors responsible for these differences, both intra- and internationally. Due to the spatial nature of
the virus diffusion and to account for unobservable country-level and sub-national characteristics,
we used spatial econometric tools to estimate two types of models, explaining (i) the number of
cases per 10,000 inhabitants and (ii) the percentage increase in the number of deaths compared to
the 2016–2019 average in individual regions (mostly NUTS 2) in 2020. We used two weight matrices
simultaneously, accounting for both types of spatial autocorrelation: linked to geographical proximity
and adherence to the same country. For the feature selection, we used Bayesian Model Averaging.
The number of reported cases is negatively correlated with the share of risk groups in the population
(60+ years old, older people reporting chronic lower respiratory disease, and high blood pressure)
and the level of society’s belief that the positive health effects of restrictions outweighed the economic
losses. Furthermore, it positively correlated with GDP per capita (PPS) and the percentage of people
employed in the industry. On the contrary, the mortality (per number of infections) has been limited
through high-quality healthcare. Additionally, we noticed that the later the pandemic first hit a
region, the lower the death toll there was, even controlling for the number of infections.

Keywords: COVID-19; spatial analysis; mixed-W model; mortality; morbidity

JEL Classification: C29; I10

1. Introduction

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which causes a cluster
of respiratory tract infections called coronavirus disease 2019 (COVID-19), was first identi-
fied and characterized at the end of 2019 in China (Zhou et al. 2020). In the early months of
2020, the virus spread worldwide; thus, on March 11, the WHO assessed that COVID-19
could be characterized as a pandemic (World Health Organization 2020a). In Europe, the
first cases were reported in Bordeaux, France, on 24 January 2020, (Stoecklin et al. 2020).
Several weeks later, on March 13, WHO remarked that Europe had become an epicenter of
the pandemic with more reported cases and deaths than the rest of the world combined,
apart from China (World Health Organization 2020b). In total, between March and Decem-
ber 2020, the number of excess deaths in the EU compared with the 2016–2019 average
reached more than half a million (Eurostat 2020j).

However, the pandemic did not hit individual European regions equally. There were
considerable differences in morbidity and mortality both between countries (Bartscher et al.
2021; Coccia 2021; Fu et al. 2021) and regions in the same country as in Italy (Bourdin et al.
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2021), in Spain (Cacho et al. 2020), or in the US (Mollalo et al. 2020). The variation in the
outcomes of the pandemic might be caused by multiple factors related to the economy
(Goutte et al. 2020; Kong et al. 2021), demography (Hradsky and Komarek 2021; Sorci et al.
2020), genetic predispositions (Schillaci 2020; Yamamoto et al. 2021), living environment
(Coccia 2021; Nazir et al. 2021; Yao et al. 2020), etc. Moreover, the adopted state’s policy
concerning short-term restrictions and people’s attitudes towards them (Amdaoud et al.
2021; Xie et al. 2021) or long-term activity aimed at improving the quality of the health care
system (Yalaman et al. 2021) were other potential factors.

Multiple studies highlighted the determinant effect of age and the presence of co-
morbidities on mortality rate (Elezkurtaj et al. 2021; Imam et al. 2020; Mueller et al. 2020;
O’Driscoll et al. 2021; Poblador-Plou et al. 2020). According to Bonanad et al. (2020), among
patients aged less than 50 mortality rate was lower than 1.1% and increased exponentially
after this age. The most significant increase in mortality risk compared with the immedi-
ately younger age group was observed in patients aged 60–69 (compared to 50–59). Among
diseases associated with a higher risk of infection and death were respiratory diseases,
diabetes, and hypertension (Biswas et al. 2020; Fang et al. 2020). Moreover, some studies
suggested a correlation between the growth rate of SARS-CoV-2 infection and a genetic
profile, particularly the distribution of the Y-chromosome haplogroup R1b (Schillaci 2020).

Large crowds of people may facilitate the transmission of the virus. Brown et al. (2021)
showed that shared bedrooms and bathrooms in nursing homes were associated with more
extensive and deadlier COVID-19 outbreaks. Similar effects might be found in indoor
settings such as large and crowded work establishments. Furthermore, people living in
densely populated agglomerations with many public places might be more vulnerable
to infection. Indeed, some studies indicated that population density was correlated with
the basic reproductive number (R0) of SARS-CoV-2 (Sy et al. 2021). On the contrary,
Carozzi et al. (2022) showed that the density did not directly affect the number of cases or
fatalities but the timing of the outbreaks.

Another factor that might explain the differences in the number of infections and
fatalities between regions was the state’s policy concerning diagnostics, testing, and treat-
ments. Broad access to resources such as hospitals, medical staff, and high healthcare
expenditures might reduce fatality rates (Amdaoud et al. 2021; Coccia 2021; Oshinubi
et al. 2021). However, in the short run, it was not possible to sufficiently increase these
resources. Therefore, governments imposed restrictions aimed at decreasing the number of
infections. According to Oh et al. (2021), reductions of up to 40% in commuting mobility
was associated with a reduced number of cases, especially early in the pandemic, in the
majority of examined 36 (mainly OECD) countries. In the US, closing schools and colleges
between March and May 2020 had a similar negative effect on COVID-19 incidence and
fatality rates (Auger et al. 2020).

Some studies indicated the importance of environmental factors on COVID-19 mor-
bidity and mortality. For instance, Bourdrel et al. (2021) suggested that air pollution might
be linked to an increase in COVID-19 severity through its impact on chronic disease arising
from decreased immune response and thus facilitating replication of the virus and pene-
tration of host cells. On the contrary, Xu et al. (2021) showed that changes in air pollution
alone were insufficient to contain the spread of SARS-CoV-2, with other factors such as
warmer temperatures and moderate outdoor ultraviolet exposure having greater effects.

Enforcement of the restrictions is as important as their initial imposition. Thereupon
societies characterized by the high social trust may have a larger propensity to fulfill obli-
gations and listen to medical experts’ advice. Indeed, as shown by Amdaoud et al. (2021),
social trust was one of the key factors in reducing the fatality rate during the coronavirus
pandemic. Presumably, trust in authorities may be insufficient when a large part of the
society does not share the same values as policymakers. It may happen when most people
are more concerned about economic damage and a breach of personal freedom than the
health consequences of infection (Szysz 2022).
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The number of cases and deaths in neighboring regions were critical factors in pre-
dicting the outcome of the pandemic, and the role of this factor is growing with smaller
territorial units becoming observable to the econometrician. Multiple studies conducted
on different levels of regional aggregation considered such a form of possible dependence
by employing spatial econometric models. In the US, the analyzes were performed, for
instance, at the level of counties (Kandula and Shaman 2021; Sun et al. 2020), whereas in
Europe at the level of states (Sannigrahi et al. 2020), NUTS (Nomenclature of Territorial
Units for Statistics) regions (Amdaoud et al. 2021), or administrative units within a specific
country (Ehlert 2021). Amdaoud et al. (2021) used the SAR model to analyze socioeconomic
factors that impacted the levels of the COVID-19 death rate in different EU regions. On the
other hand, Ehlert (2021) studied the association between different socioeconomic variables
and COVID-19-related cases and deaths in German counties with SAR, SEM, and SAC
models. We decided to explore these approaches by employing the SARAR model, which
is a generalization of the SAR and SEM models, to analyze the numbers of COVID-19 cases
and deaths in European regions.

Analyzing smaller regions may be preferred due to more insightful knowledge about
differences within larger units. Moreover, a higher level of granulation allows for the
production of a larger number of observations and, thus, more robust statistical analysis
results. On the other hand, many variables are not available at a sufficiently small level
of aggregation. Using variables from different aggregation levels simultaneously can be
proposed as a compromise. In the analysis of NUTS regions, such an approach would
consist of using country averages for variables unavailable at the lower level of aggregation.
However, this mismatch may lead to spurious spatial autocorrelation of errors in the model.

One of the possible solutions to the problem is the so-called multiparameter, or mixed-
W approach, based on using multiple spatial adjacency matrices (Hays et al. 2009). We
propose the following specification:

y = Xβ + ρW1y + ε

ε = λ1W1ε + λ2W2ε + u
. (1)

In this setup, W1 is a typical neighboring matrix, for example, based on proximity, and
accounts for the spatial spread of COVID-19. W2, in turn, is a matrix indicating adherence
to the same country and represents the possibly omitted country-specific factors that, in a
single-country study such as Ehlert (2021), could have been ignored. It also controls for
artificial spatial autocorrelation resulting from applying country-level regressors to sub-
national regions. The mixed-W approach was, for instance, used by Lasoń and Torój (2019)
in the 2015 Polish parliamentary election study where W2 indicated adherence of two
poviats to the same constituency, which accounts for the unobservable personal qualities of
the candidates that the voters in that particular constituency are facing.

In our study, we use a similar idea (details of the model specification were described
in the next section). The data covered 189 (mainly NUTS 2) regions from 19 EU countries.
Some explanatory variables were aggregated at the regional level and others at the country
level (see Table 1 for details). Then, we use a mixed-W model to accommodate the spatial
correlation effects stemming from the use of country-level characteristics. One can think of
this empirical strategy as an alternative to a spatial multi-level model.

All in all, the study aimed to identify socio-economic and demographic factors respon-
sible for acute differences in the increased number of deaths between the European regions,
in a multi-country setup, with spatial regression models that take two types of spatial effects
into account: (i) naturally arising from spatial interactions and (ii) technically arising due
to inclusion of country-level characteristics that substantially extend the set of region-level
characteristics. We estimated two types of spatial regression models explaining both the
number of reported COVID-19 cases per 10,000 inhabitants and the percentage increase
in deaths compared to the 2016–2019 average. As the study was based on cross-sectional
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data, we focused only on 2020 to eliminate the effect of different dynamics of vaccination
between countries.

This paper is organized as follows: firstly, we discussed the dataset with particular
emphasis on the level of aggregation of individual explanatory variables. Secondly, we
described methods used for feature selection and estimating models. Finally, we presented
and discussed the obtained results.

Table 1. List of the explanatory variables included in the analysis with data source and the level of
aggregation.

Variable Definition Level of
Aggregation Year Source

Population aged 60 percentage of population aged 60 or over NUTS 2 (except
NUTS 1 in DE) 2020 * Eurostat (2020g)

Health expenditure total health care expenditure per inhabitant in
PPS [$] country 2019 Eurostat (2020c)

Doctors number of medical doctors per hundred
thousand inhabitants

NUTS 2 (except
NUTS 1 in DE) 2014–2019 Eurostat (2020d)

GDP GDP per inhabitant in PPS as a percentage of
the EU27 average

NUTS 2 (except
NUTS 1 in DE) 2019 Eurostat (2020h)

Density annual average number of persons per square
kilometer

NUTS 2 (except
NUTS 1 in DE) 2019 Eurostat (2020f)

Day
number of days between the beginning of
2020 and the day when number of COVID-19
cases per 10,000 inhabitants exceeded 1

NUTS 2 (except
NUTS 1 in DE) 2020

COVID-19
European regional
tracker (Naqvi 2021)

Pollution average exposure to air pollution by fine
particulate matter (PM2.5) [µg/m3 per year]

NUTS 2 (except
NUTS 1 in DE) 2017 Eurostat (2020b)

NACE B-E percentage of people employed in NACE B,
C, D, E sectors

NUTS 2 (except
NUTS 1 in DE) 2020 * Eurostat (2020a)

Mean stringency

average value of the COVID-19 stringency
index between 28 days before the day when
the number of cases per 10,000 exceeded 1
and the end of the year

country 2020 Our World in Data
(2020)

R1b percentage of population with R1b
haplogroup country 2017 Eupedia (2020)

Diabetes percentage of people aged 65 or over
reporting diabetes country 2014 Eurostat (2020e)

Chronic lower
respiratory disease

percentage of people aged 65 or over
reporting chronic lower respiratory disease country 2014 Eurostat (2020e)

High blood pressure percentage of people aged 65 or over
reporting high blood pressure country 2014 Eurostat (2020e)

Economic damage

percentage of population strongly claiming
that regarding the consequences of the
restriction measures the health benefits are
greater than the economic damage

country 2020
Kantar for the
European
Parliament (2020)

Trust in health
authorities

percentage of population trusting most health
authorities to inform them about the
coronavirus pandemic

country 2020
Kantar for the
European
Parliament (2020)

Trust in government
percentage of population trusting most
government to inform them about the
coronavirus pandemic

country 2020
Kantar for the
European
Parliament (2020)

* The data is on 1 January 2020.
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2. Materials and Methods
2.1. Dataset

The analysis covers 16 NUTS 1 German regions and 173 NUTS 2 regions from 18 dif-
ferent EU countries (see color-coded countries in Figures 1 and 2). We could not use
lower-level units for Germany because NUTS 2 data concerning the number of deaths
was unavailable. Moreover, we excluded the following regions due to missing data for
some essential explanatory variables: the Canary Islands (ES70), Melilla (ES64), the Azores
(PT20), Madeira (PT30), and Aland (FI20). We estimated two types of models explaining the
relative number of cases and the percentage of deaths increase. We emphasize that the latter
may include both deaths from COVID-19 and deaths related to the pandemic, which re-
sulted, for instance, from limited access to health care. Using a broader category eliminated
the impact of differences in the methodology of classifying deaths between countries.
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Figure 1. Number of reported COVID-19 cases per 10,000 inhabitants in 2020 in selected EU regions.
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Figure 2. Percentage increase in the number of deaths in selected EU regions in 2020 compared with
the average number of deaths between 2016 and 2019.

The endogenous variables were defined as follows:

• Relative number of cases—the cumulative number of infections per 10,000 people as
of 31 December 2020 (except for Portuguese regions for which the measurements were
cumulated until December 28 due to missing data);

• Deaths increase—percentage increase in the number of deaths in 2020 compared to
the 2016–2019 average. To make sure that the results are robust with respect to the
adopted working definition of excess mortality (see Kepp et al. (2022) for a related
discussion), we also look at a deviation of the number of deaths from the 2016–2019,
region-specific trend. This has virtually no impact on the results (details available
upon request).

The former was also one of the explanatory variables for the latter. It was based on the data
from the COVID-19 European regional tracker, a repository containing a daily number of
cases and deaths related to COVID-19 in different European regions (Naqvi 2021). Depend-
ing on the country, the data was initially provided at NUTS 3 and NUTS 2 levels. However,
we aggregated them to the NUTS 2 level (and NUTS 1 for Germany) using population-
weighted averages. The result of the procedure with measurements for individual regions
was presented in Figure 1. All the studied regions are marked with colors depending on
the relative number of reported coronavirus cases in 2020. The other endogenous variable
was based on the weekly death statistics provided by Eurostat (Eurostat 2020i). Figure 2
shows its distribution across regions.
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All the explanatory variables were aggregated at one of two levels: NUTS 2 (NUTS
1 in the case of Germany) or a country level. Their summary is shown in Table 1. Each
predictor was based on 2020 or the most recent available year before 2020.

Diabetes, Chronic lower respiratory disease, and High blood pressure indicate the
share of the population reported selected diseases. It is worth noting that each variable
is based on the survey data. On the one hand, we can expect these variables to correlate
with the actual share of people with chronic diseases that increase the probability of
severe coronavirus infection and death. On the other hand, people from these groups
could fear most of COVID-19’s consequences and be more prone to keep social distance
(Heid et al. 2021), which could result in fewer infections. Similar arguments apply to the
Population aged 60 variable, which shows the percentage of people aged 60 or over.

Health expenditure and Doctors show the possibility of successful treatment of COVID
patients. Thereupon, both of them should be negatively correlated with the deaths increase.
However, the larger number of medics and greater expenditure on health care could also
lead to better diagnostics and an effective reduction in cases.

The Doctors variable was the only one created based on different years and the
only one that required missing data imputation. The procedure details were included in
Appendix A.1.

Density and NACE B-E (the definition is provided in Table 1) demonstrate the proba-
bility of social contact in the region. A higher density is typical for urban areas with many
public places that increase the likelihood of accidental encounters with infected people. On
the other hand, professions classified into B, C, D, and E sectors that concern industry with-
out construction are usually characterized by large and frequently crowded establishments.
Therefore, we could expect both variables to impact the number of infections positively.

Economic damage, Trust in health authorities, and Trust in government can be rec-
ognized as behavioral variables. Societies with more people claiming that health benefits
from restrictions outweighed the economic damage might be more prone to impose and
comply with stricter restrictions. Similarly, people who trust medical experts may be more
inclined to follow their advice and obey the pandemic restrictions. Therefore, we expected
these variables to correlate negatively, at least with the number of reported cases. Details
on the construction of these variables were included in Appendix A.1.

Day shows how late the pandemic hit the region. A shorter time from the first cases
should implicate fewer infections at the end of the year. However, on the other hand,
governments of countries hit by the pandemic later had more time to stock on all the
necessary resources used in treatment, more effectively healing the infected and reducing
the fatality rate.

Moreover, we included R1b, which is a share of the population with the r1b hap-
logroup, mean stringency based on the average value of the stringency index, and the
average exposure to air pollution.

For instance, a larger share of the older population or a larger number of doctors per
inhabitant is usually observed in more prosperous regions. Therefore, we included GDP
per person as a control variable. Fortunately, as shown in Appendix A.3, it did not cause
the multicollinearity problem.

The relations between all the explanatory variables and the dependent ones are shown
on scatterplots in Appendix A.2.

2.2. Feature Selection

Some variables directly impacted the number of deaths related to COVID-19, and some
through a larger number of infections. We used Bayesian Model Averaging implemented in
R’s BMS package (Zeugner and Feldkircher 2015) to select subsets of variables that might
significantly explain each endogenous variable. This method is based on calculating the
parameters of multiple candidate models and combining their estimates according to the
posterior inclusion probability, which shows how relevant each variable is. The procedure
results were shown in Tables 2 and 3.
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Table 2. Bayesian Model Averaging for the number of infections per 10,000 people.

PIP Post Mean Post SD Cond.Pos.Sign

Economic damage 1.000 −9.591 1.338 0.000
NACE B-E 1.000 7.020 1.398 1.000
High blood pressure 1.000 −8.884 2.225 0.000
Chronic lower respiratory 1.000 −22.409 4.811 0.000
Population aged 60 0.997 −11.782 2.965 0.000
Day 0.995 −1.314 0.362 0.000
GDP 0.987 1.211 0.361 1.000
R1b 0.819 1.555 0.975 1.000
Trust in health authorities 0.777 −2.265 1.525 0.000
Diabetes 0.475 3.856 4.966 1.000
Mean stringency 0.391 1.304 2.049 1.000
Trust in government 0.364 −1.213 2.098 0.018
Density 0.273 −0.005 0.010 0.002
Doctors 0.169 0.012 0.046 0.987
Health expenditure 0.159 −0.001 0.007 0.327
Pollution 0.153 −0.098 1.002 0.432

Table 3. Bayesian Model Averaging for the death toll increase.

PIP Post Mean Post SD Cond.Pos.Sign

Cases 1.000 0.027 0.003 1.000
Pollution 0.844 0.253 0.145 1.000
Diabetes 0.774 0.317 0.209 1.000
Mean stringency 0.769 0.209 0.137 0.999
Day 0.587 −0.020 0.020 0.000
Doctors 0.579 −0.005 0.005 0.000
Health expenditure 0.495 −0.001 0.001 0.000
Trust in government 0.383 −0.094 0.145 0.000
Trust in health authorities 0.295 0.039 0.073 0.968
Chronic lower respiratory 0.261 0.118 0.252 0.909
Population aged 60 0.191 −0.041 0.103 0.002
Economic damage 0.121 0.010 0.034 0.994
R1b 0.119 0.004 0.017 0.861
Density 0.112 0.0001 0.0003 0.968
GDP 0.101 0.002 0.007 0.909
NACE B-E 0.067 0.0001 0.017 0.475

In both cases, we decided to estimate models on variables with a posterior inclusion
probability greater than 0.4. However, for comparison in the results section, we also
presented models estimated on the whole set of predictors.

It is worth noticing that the probability of a positive sign for all the selected variables
was greater than 0.99 or smaller than 0.01. It suggests that their signs should remain
unaffected by changing the specifications of the models.

2.3. Spatial Autocorrelation and Spatial Regression Model

The independence of observations, one of the critical assumptions in linear regression,
may not hold in the analysis of infections and deaths related to COVID-19 (Kandula and
Shaman 2021). Therefore, we had to test for spatial autocorrelation and regard it when
estimating models. As possible patterns for such autocorrelation, we tried three matrices:
Wborders, Wdistance, and Wcountry. Wborders is a row-standardized matrix based on a queen
congruity (two regions are neighbors if and only if their borders share at least one point).
Wdistance is based on the inverse of distances between centers of regions and is also row-
standardized. Finally, Wcountry shows the adherence of two regions to the same country. Its
(i, j) element is defined as follows:
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Wi,j =

{
1

k(i)−1 if i and j adhere to the same country and i 6= j

0 otherwise
, (2)

where k(i) is the number of regions that belong to a given country. As can be seen, Wcountry
is also row-standardized by definition. As indicated in the introductory section, using
this matrix has two goals. Firstly, it allows for accounting for unobservable effects at the
country level. Secondly, it controls for the artificial autocorrelation resulting from imputing
country-level averages instead of region-specific values.

The choice of Wborders and Wdistance as possible patterns for spatial autocorrelation
reflects our assumption that the interactions between regions decrease with increasing
distance. It is in line with the results of Torój (2022), who showed that most of the traffic in
Poland takes place within NUTS 3 regions, not in between them.

To account for the spatial autocorrelation in the model, we used an idea indicated in
the introduction. For each type of model, we considered the following specification:

y = Xβ + ρbordersWbordersy + ε

ε = λbordersWbordersε + λcountryWcountryε + u,
(3)

where y is the endogenous variable (relative number of cases or deaths increase), X is a set
of predictors, and ε is an error term that consists of two spatially autocorrelated parts and
an independent part u. We referred to this full model as mixed-W SARAR.

We can test several restrictions on this model. For example, if λcountry = 0, we obtain
a typical SARAR specification. If ρborders = 0, we obtain a mixed-W SEM model. If both
ρborders = 0 and λcountry = 0, we obtain a classic SEM model.

Instead of using Wborders, we also tried Wdistance, but this choice has led to spatial
autocorrelation remaining in the model residuals (see Appendix A.5). Moreover, we
investigated another approach based on introducing spatial lags of independent variables
to the model (SLX specification). Still, it fit the data much worse than the SARAR model and
also did not allow us to account for spatial autocorrelation. It is described in Appendix A.7.

In the study, we used a general-to-specific approach with respect to spatial components,
i.e., we started with the full specification shown above and removed spatial components
until all of the remaining ones were significant. It should be noted that the set of predictors
selected with BMA did not change at any further step. Additionally, we tested for the
autocorrelation of models’ residuals with Moran’s I test (Moran 1950) implemented in
R’s spdep package (Bivand et al. 2021; Bivand and Wong 2018) with respect to the three
matrices mentioned so far.

The parameters of the models were estimated with the maximum likelihood estimator
with an assumption of independent and Gaussian errors u and a constant variance. In
particular, we transformed Equation (3) to the following form:

M · (L · y− X · β) = u, (4)

where
M = IN − λborders ·Wborders − λcountry ·Wcountry,

L = IN − ρborders ·Wborders,

N is the total number of regions, and IN is a diagonal matrix of size N. Finally, we derived
the following log-likelihood function formula:

`
(
ρborders, λborders, λcountry, β, σ

)
= log(det(M)) + log(det(L))− N

2
log
(

2πσ2
)
− uT u

2σ2 , (5)

where
u = M · (L · y− X · β).
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The function was maximized with the BFGS algorithm. We used the asymptotic normality
property of the maximum likelihood estimator with variance based on Fisher information
to obtain the distribution of parameter estimates. Based on that, we tested the significance
of each predictor with the Z-test (see the R scripts for details).

3. Results
3.1. Relative Number of Cases

In 2020, the number of reported COVID-19 cases in the analyzed regions varied from
28.5 cases per 10,000 inhabitants in Algarve, Portugal (PT15), to 823.1 in Liège, Belgium
(BE33). Figure 1 shows that the infections were not distributed randomly but rather cluster-
wise. Moreover, the differences occurred at the level of countries (e.g., compare Czechia
with Finland) and regions in the same country (e.g., compare Mazovia Province with the
rest of Poland or central and northern Spain with the rest of the country).

Table 4 summarizes the obtained estimates of coefficients and results of Moran’s I test.
In column 1, we presented OLS estimates (non-spatial). In columns 2 and 3, the final results
of the general-to-specific approach that include the component related to adherence to the
same country. Finally, in columns 4 and 5, for comparison, we presented the same models
as the previous two but without a component related to adherence to the same country.

In the non-spatial model, Moran’s I values are highly significant for each of the
neighboring matrices (p < 10−10 in all cases), which indicates that accounting for spatial
autocorrelation was necessary. The final models are mixed-W SARAR and mixed-W SEM.
Differentiating between them depends on the chosen significance level. In the mixed-W
SARAR, both λborders and λcountry are significant at the level of 1% (p equal 0.00229 and
0.00952, respectively), while ρborders is significant at the level of 10% (p = 0.0594). In case of
the mixed-W SEM, λborders is significant at the level of 1% (p < 0.00001) and λcountry at the
level of 5% (p = 0.0103).

Moran’s I values for SARAR and SEM models with one spatial adjacency matrix
indicate that they do not capture the autocorrelation stemming from the adherence to
the same country (p < 0.001 in both cases). Therefore, it clearly shows that the mixed-W
approach is more appropriate for analyzing the number of cases. It is also worth noting
that even though the results of Moran’s I test for the non-spatial model indicated a spatial
pattern of residuals autocorrelation represented by the matrix based on distance, including
the matrix based on shared borders was sufficient to account for this pattern. However,
it did not work the other way around, which suggests that the actual unobserved spatial
pattern is closer to the one represented by Wborders. Nevertheless, as indicated previously,
in Appendix A.7, we showed the models with Wdistance.

The share of the population aged 60 or over and the share of the elderly suffering from
high blood pressure and chronic lower respiratory disease indicate how large part of the
population was most at risk of severe COVID-19. Each of these variables was negatively
correlated with the number of cases that might be caused by multiple factors. Firstly,
older people are usually less mobile than the young, so they are less prone to be infected.
Secondly, older people, especially those with comorbidities, could be more afraid of the
outcomes of infection, and therefore, they could try to keep a social distance. Finally, some
restrictions imposed by governments aimed at protecting the most prone to the severe
course of the disease might be at least partially effective. Interestingly, the percentage of
diabetics was not significant in any of the models with spatial components. These results
align with the explanatory data analysis shown in Appendix A.2.

From behavioral variables, only Economic Damage is significant and, as anticipated,
negatively correlated with the number of cases in each specification. It was created based
on the questionnaire, and different ways of aggregating the responses were possible (see
Appendix A.1). However, the significance of this variable was insensitive to the use of
other aggregation methods (see Appendix A.4).

Finally, Table 5 presents standardized regression coefficients, computed as SD(xk)
SD(y · βk

(SD—standard deviation, xk—k-th explanatory variable, y—explained variable), inter-
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pretable as coefficients in Table 4 obtained after variable standardization. It allows for
comparing the effects of one standard deviation increase on the dependent variable across
regressors. One can conclude that, in quantitative terms, the Economic damage, followed
by High blood pressure and R1b, contributed to the cross-regional variation in Cases to
the greatest extent, whereas the contributions of Diabetes and Trust in health authorities
remained most limited.

Table 4. Estimation results for the number of reported COVID-19 cases per 10,000 inhabitants.

OLS Mixed-W SARAR Mixed-W SEM SARAR SEM

Economic damage −9.546 *** −9.588 *** −11.264 *** −9.406 *** −10.751 ***
(1.329) (2.523) (2.412) (1.897) (1.813)

NACE B-E 6.879 *** 3.688 *** 3.873 *** 4.408 *** 4.571 ***
(1.312) (1.216) (1.276) (1.242) (1.277)

High blood pressure −9.727 *** −7.652 *** −7.598 *** −7.997 *** −8.210 ***
(1.810) (2.758) (2.917) (2.153) (2.314)

Chronic lower respiratory −22.837 *** −20.777 *** −22.460 *** −21.541 *** −23.365 ***
(3.947) (6.361) (6.612) (4.878) (5.079)

Population aged 60 −11.045 *** −11.445 *** −10.922 *** −11.700 *** −11.207 ***
(2.773) (2.406) (2.397) (2.465) (2.443)

Day −1.310 *** −0.643 ** −0.658 ** −0.777 *** −0.809 ***
(0.310) (0.263) (0.265) (0.253) (0.252)

GDP 1.127 *** 0.733 *** 0.779 *** 0.761 *** 0.807 ***
(0.301) (0.255) (0.255) (0.261) (0.259)

R1b 1.666 ** 2.828 ** 3.906 *** 2.457 ** 3.125 ***
(0.662) (1.351) (1.436) (0.971) (1.022)

Trust in health authorities −2.869 *** −1.225 −0.757 −1.575 −1.507
(0.864) (1.548) (1.870) (1.138) (1.328)

Diabetes 6.896 * 3.512 1.650 2.866 1.728
(4.013) (6.501) (7.055) (5.143) (5.637)

Constant 1334.513 *** 1153.576 *** 1196.219 *** 1227.974 *** 1298.141 ***
(130.864) (197.620) (217.446) (161.916) (165.530)

ρborders 0.181 * 0.149
(0.096) (0.092)

λborders 0.403 *** 0.571 *** 0.534 *** 0.652 ***
(0.132) (0.078) (0.110) (0.070)

λcountry 0.271 *** 0.216 **
(0.105) (0.084)

Moran’s I test
Wdistance 6.725 *** 0.483 0.274 0.837 0.688
Wborders 7.315 *** 0.376 0.266 −0.135 −0.191
Wcountry 6.386 *** 0.727 0.843 3.235 *** 3.121 ***

Notes: *** Significant at the 1 percent level. ** Significant at the 5 percent level. * Significant at the 10 percent level.

Table 5. Standardized regression coefficients for Cases.

Economic
Damage NACE B-E High Blood

Pressure
Chronic Lower
Respiratory

Population
Aged 60 Day GDP R1b Trust in Health

Authorities Diabetes

mixed-W
SARAR −0.404 0.166 −0.422 −0.323 −0.228 −0.128 0.145 0.328 −0.082 0.068

mixed-W SEM −0.474 0.174 −0.419 −0.349 −0.218 −0.131 0.155 0.454 −0.050 0.032

Notes: Standardized regression coefficients, computed as SD(xk)
SD(y) · βk . (SD—standard deviation, xk—k-th explana-

tory variable, y—explained variable), βk as in Table 4.
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3.2. Deaths Increase

Similarly to the number of cases, the percentage of deaths increase varied significantly
across European countries and regions in the same country (see Figure 2). The smallest
increase, which amounted to only around 1%, was recorded in Nordjylland, Denmark
(DK05), while the largest was in Madrid, Spain (ES30), and equaled about 45%.

In Table 6, we presented the estimation results with three models. Column 2 summa-
rizes the results of the general-to-specific approach. Contrary to the number of reported
cases, a classic SEM model without another adjacency matrix was sufficient to capture each
type of spatial autocorrelation. Nevertheless, in column 3, we presented the correspond-
ing model with two neighboring matrices. Additionally, in column 1, we included the
OLS estimates.

Table 6. Estimation results for the increase in the number of deaths.

OLS SEM Mixed-W SEM

Cases 0.026 *** 0.026 *** 0.026 ***
(0.002) (0.003) (0.003)

Pollution 0.240 *** 0.137 0.135
(0.080) (0.094) (0.096)

Diabetes 0.335 *** 0.273 0.271
(0.121) (0.189) (0.187)

Mean stringency 0.275 *** 0.229 ** 0.228 **
(0.060) (0.094) (0.093)

Day −0.039 *** −0.032 *** −0.032 ***
(0.012) (0.011) (0.011)

Doctors −0.007 ** −0.005 ** −0.005 **
(0.003) (0.003) (0.003)

Health expenditure −0.001 ** −0.001 ** −0.001 **
(0.0005) (0.001) (0.001)

Constant −12.079 ** −6.690 −6.428
(5.622) (8.788) (8.917)

λborders 0.571 *** 0.579 ***
(0.078) (0.095)

λcountry −0.016
(0.124)

Moran’s I test
Wdistance 4.045 *** 0.384 0.389
Wborders 5.717 *** 0.863 0.839
Wcountry 3.789 *** 0.910 1.011
Notes: *** Significant at the 1 percent level. ** Significant at the 5 percent level.

Moran’s I statistics for the simple linear model without spatial components indicate
spatial autocorrelation related to each of the three analyzed matrices (p < 0.0001 for every
matrix). However, including Wborders is sufficient for capturing the whole autocorrelation
of residuals (p > 0.18 for each of the three matrices in Moran’s I test for the SEM model).

The coefficient estimate for the number of cases shows that each reported infection per
10,000 inhabitants was associated with an average increase in deaths in 2020 by 0.026 per-
centage points (with a 95% confidence interval equal [0.021, 0.031]).

Interestingly, the number of people with diabetes and average exposure to air pol-
lution were significant in the non-spatial model but not in spatial ones. The lack of a
correlation between air pollution and the number of COVID-19 fatalities is contrary to
some ecological studies (Comunian et al. 2020; Prinz and Richter 2022). When air pollution
is dropped from the analysis, no other variable emerges as additionally relevant, not least
the population density.

Mean stringency is significant and positively correlated with deaths increase in all
shown models. Probably, it is because the countries affected by the pandemic the most
imposed stricter restrictions than the others. The impact of individual restrictions on
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the number of cases and fatalities is hard to assess in a cross-sectional analysis like this.
Although we tried the instrumental variable approach, described in detail in Appendix A.6,
we recommend using panel analysis based on country-level data. Therefore, a far-fetched
conclusion should not be drawn based on this positive correlation.

As can be concluded from the standardized regression coefficients in Table 7, the
dominant contributor to explaining the cross-regional variation in the death count was
the number of Cases, whereas the lowest contributions came from the number of Doctors,
Pollution intensity, as well as diabetes incidence rate.

Table 7. Standardized regression coefficients for Deaths.

Cases Pollution Diabetes Mean Stringency Day Doctors Health Expenditure

SEM 0.593 0.107 0.123 0.187 −0.146 −0.093 −0.215

Notes: Standardized regression coefficients, computed as SD(xk)
SD(y) · βk . (SD—standard deviation, xk—k-th explana-

tory variable, y—explained variable), βk as in Table 6.

All the models for the deaths increase included Cases as one of the explanatory vari-
ables. Although this approach allows disaggregating the effect of COVID-19 on mortality
into two separate channels, it does not allow for assessing the net effect of factors impacting
both the number of cases and deaths per case. Therefore, we estimated different models for
deaths increase without including Cases. The results are shown in Appendix A.8.

3.3. Models Based on the Whole Set of Predictors

A high correlation with other predictors could cause the significance of some variables
in the models presented so far. To confirm that it did not happen, we estimated models with
similar specifications to the previous ones but on the whole set of predictors. However, the
number of regressors is quite large compared to the number of observations. Therefore, all
the estimates presented in this subsection should be treated as complements of the previous
two and not be interpreted separately.

We presented the estimation results in Table 8. To analyze infection incidence, we
estimated mixed-W SEM and mixed-W SARAR as well as SEM for deaths increase. In the
case of the number of reported cases, except R1b, all the significant variables in spatial
models with preselected predictors are still significant at 10%. Furthermore, none of the
variables rejected by BMA is significant in these settings.

An alternative way of explaining the impact of High blood pressure, Chronic lower
respiratory disease, and Diabetes variables on the dependent ones could be based on the
fact that the detectability of these diseases may depend on the healthcare system, i.e.,
when its quality is worse, the ‘official’ statistic underestimates the share of the chronically
ill (better healthcare—more official cases of these three diseases). At the same time, it
is straightforward to regard a better healthcare system dealing more efficiently with the
outcomes of the COVID-19 pandemic (better healthcare—fewer deaths). Bottom line,
when the three diseases in question act predominantly as a proxy for healthcare quality, a
negative correlation with COVID-19 mortality arises. Nevertheless, this kind of risk should
be predominantly related to the models explaining the number of deaths, and to a lesser
extent—the number of cases.

On the other hand, in the case of the deaths increase model, only Cases, Day, Health
expenditure, and Doctors are significant variables in both models based on the whole and
the restricted sets of predictors.

The coefficients corresponding to the share of people working in the industry without
construction were significantly greater than zero in each of the specifications concerning
the number of cases (both with preselected and the whole sets of predictors). It could be
caused by a greater chance of infection in crowded work establishments, or it was only a
statistical effect stemming from mass testing campaigns in some workplaces such as mines
in Silesia (Krzysztofik et al. 2020). However, if it was only a statistical effect, the larger share
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of people employed in B-E sectors should inflate the number of deaths controlled by the
number of cases, but this variable is insignificant in the model for the increase in deaths.

Table 8. Estimation results for the models based on the whole set of predictors.

Cases Deaths

Mixed-W SEM Mixed-W SARAR SEM

Economic damage −11.109 *** (2.523) −9.488 *** (2.457) −0.002 (0.090)
NACE B-E 4.059 *** (1.360) 4.234 *** (1.291) 0.019 (0.060)
High blood pressure −7.082 ** (3.112) −8.052 *** (2.699) −0.082 (0.107)
Chronic lower respiratory −26.171 *** (8.727) −25.076 *** (8.327) 0.582 * (0.311)
Population aged 60 −11.293 *** (2.570) −11.979 *** (2.573) −0.121 (0.125)
Day −0.674 ** (0.274) −0.717 *** (0.272) −0.020 * (0.011)
GDP 0.668 ** (0.306) 0.552 * (0.308) 0.009 (0.014)
R1b 3.922 ** (1.880) 1.864 (1.495) 0.051 (0.052)
Trust in health authorities −2.991 (2.747) −2.579 (2.107) 0.221 ** (0.088)
Diabetes −1.789 (8.662) 3.583 (6.561) 0.506 * (0.261)
Cases 0.023 *** (0.003)
Pollution −1.225 (2.311) −1.286 (2.283) 0.231 ** (0.104)
Mean stringency 1.907 (4.160) 3.917 (3.677) −0.021 (0.151)
Doctors 0.023 (0.074) 0.068 (0.077) −0.009 *** (0.003)
Health expenditure −0.004 (0.032) 0.009 (0.025) −0.002 ** (0.001)
Trust in government 4.561 (4.691) 2.244 (3.815) −0.344 ** (0.142)
Density 0.004 (0.009) 0.004 (0.009) 0.0004 (0.0004)
Constant 1161.691 *** (308.130) 985.806 *** (277.497) 4.445 (11.455)

ρborders 0.227 ** (0.104)
λborders 0.597 *** (0.081) 0.374 ** (0.147) 0.599 *** (0.082)
λcountry 0.202 ** (0.086) 0.256 ** (0.113)

Moran’s I test
Wdistance 0.326 0.718 −0.232
Wborders 0.043 0.332 0.776
Wcountry 0.677 0.625 −0.274
Notes: *** Significant at the 1 percent level. ** Significant at the 5 percent level. * Significant at the 10 percent level.

The number of days before the first cases negatively impacted the number of reported
infections and the increase in the number of deaths in all models presented in the study.
As far as the former, the correlation could be caused by the more extended period when
people could infect. In the latter’s case, this effect is controlled by the number of cases.
Therefore, the negative impact of days on the deaths increase was probably caused by the
fact that countries hit by COVID-19 later had more time to stock all the necessary resources
used in the treatment and prepare a better pandemic strategy.

BMA selected neither health expenditure nor the number of doctors for the model
explaining the number of cases, and none of these variables were significant in the models
based on the whole set of predictors, which shows that their impact on the effective
detection and prevention of infections was negligible. Nevertheless, both significantly
reduced fatality rates for a given number of cases.

The coefficients for GDP per capita were significantly greater than zero in all models
for the number of cases and insignificant in all models for deaths increase. This conclusion
may be treated as an extension of the results obtained by Amdaoud et al. (2021) that showed
that the level of GDP per capita was associated with the increased death rates but did not
distinguish the effect between the impact on the infection rate and the case fatality rate.

4. Discussion

The study identifies and distinguishes factors that explain inter- and intra-national
variation in COVID-19 mortality through two different mechanisms: increased infections
and fatalities per case. Identifying them allows for the prediction of the outcome of the
pandemic and the imposing of appropriate countermeasures by decision-makers. Countries
and regions with better quality healthcare, measured by the number of practitioners and
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health expenditures, could keep death rates low with a relatively high number of cases.
On the other hand, entities with less developed healthcare systems could only try to
decrease the number of infections. However, when imposing restrictions to reduce the
number of cases, the decision-makers have to account for specific characteristics of societies
that concern the population structure, employment structure, wealth, or attitudes toward
these limitations.

It must be emphasized that the public health implications of this study do not gen-
eralize easily to other periods or geographic areas. From 2021 onward, the landscape has
changed considerably with the increasing availability of vaccines, virus mutations (mostly
towards endemization), and increasing organizational preparedness of the healthcare sys-
tems. Probably, a comparable setting in which these results apply would be an emergence
of a new respiratory pathogen (or a milestone mutation of an existing one) with at least
similar properties in terms of transmission and severity. Peters (2022) summarizes the
evidence that such a scenario is non-negligible.

Our estimation results confirm that accounting for spatial autocorrelation is necessary
for analyzing the outcomes of the pandemic, which is in line with Amdaoud et al. (2021).
What is methodologically new in our study is the use of two spatial adjacency matrices
simultaneously. An additional component indicating adherence to the same country is
introduced mainly to enable the inclusion of variables from the higher level of aggregation.
However, even with all attributes at the same level of aggregation employing this matrix
may be helpful due to the possible existence of some unobserved and country-specific
factors that impact the outcome of the pandemic.

The analysis in the study can be extended in several ways. Firstly, new variants of the
SARS-CoV-2 may respond differently to factors that were important in the first waves of
the pandemic. Therefore, further studies can include different periods. However, in this
approach analyzing panel data may be more appropriate because the pace of allocation
of vaccines, which is a critical factor in predicting the outcome of the pandemic from the
beginning of 2021, cannot be easily aggregated with the cross-sectional data.

Secondly, as shown in the study, employing panel econometrics may also be help-
ful because different countries imposed various restrictions at different moments, and
aggregating them into simple, cross-sectional indices seems insufficient.

Finally, all the neighboring matrices analyzed in the study are based on the geograph-
ical proximity of regions or adherence to the same country. However, as suggested by
Kandula and Shaman (2021), using matrices that reflect the flows of people between regions
can also be considered. Such matrices, however, are difficult to obtain in practice (see
Torój (2022), Table 7 for a scarce example for NUTS-3 regions in Poland), at least not the
entire Europe as in this study. One might also expect them to resemble the distance-based
matrix, explored here in Appendix A.5.
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Appendix A. Additional Materials

Appendix A.1. Construction of Selected Variables and Missing Data Imputation

The measurements for the Doctors variable were based on the following years: 2019
(Germany, France, Czech Republic, Spain, Belgium, Austria, Netherlands, Portugal, Greece,
Italy, Romania, Hungary, Latvia, and Slovakia), 2018 (Denmark, Estonia, Poland without
the PL91 and the PL92 regions, and Sweden) and 2014 (Finland). Since the PL91 and the
PL92 regions were first introduced in the 2018 version of NUTS coding, there were no
available measurements for them in the dataset. Therefore, we assumed that for both
regions, it equaled 281.13, which is the most recent value (from 2016) for the PL12 region
from the 2015 NUTS coding (before 2018, the PL91 and the PL92 were parts of the PL12).

In 2020, Kantar conducted surveys on public opinion in the EU in times of coronavirus
crisis. The first edition took place in April and covered 21 countries, and the second
and third editions in July and October and covered 27 countries. They aimed to identify
differences between nations in their attitudes towards actions taken by governments and
the European Union concerning the pandemic. From multiple questions, we selected a
few that were used for creating behavioral variables. Due to the larger number of covered
countries, we based the analysis on the second and the third editions.

One of the questions was as follows: “Where do you position yourself between these
two statements regarding the consequences of the restriction measures in your country?”.
Respondents were supposed to choose the response from the 6-point Likert Scale, where
1 corresponded to “The health benefits are greater than the economic damage” and 6 to
“The economic damage is greater than the health benefits”. We summed the share of people
from the third edition of the survey that chose 1 or 2, and in that way, we created the
economic damage variable. Other approaches to aggregation were possible, but they did
not change the final results (see Appendix A.4).

Another question was as follows “From the following list, who do you trust most to
inform you about the coronavirus pandemic?”. The respondents could choose up to three
responses from: “Scientists”, “The country’s health authorities”, “World Health Organi-
zation”, “The country’s government”, “My doctor”, “My family members and friends”,
“Journalists from traditional media such as newspapers, radio, TV”, “Non-governmental
organizations (NGOs) working on health and social issues”, “EU institutions such as the
European Commission or the European Parliament”, “Local and regional authorities”, “My
pharmacist”, “Citizens for example on online social networks”, or “Other”. We checked the
shares of people in the second edition that chose “The country’s health authorities” and
“The country’s government”. Based on that, we created trust in health authorities and trust
in government variables. This question was not asked in the third edition of the study.

Appendix A.2. Scatterplots

To check if the significance of parameter estimates in the final models is not caused by
the correlation with other variables, in Figures A1–A3 we showed scatterplots with each of
the explanatory variables and the dependent ones. Additionally, we added regression lines
determined by the OLS.

It is especially worth noticing that the relation between the Population aged 60 and
the number of cases is strongly negative, whereas the association between both variables
concerning the reported health condition (Chronic lower respiratory disease and High
blood pressure) and Cases is moderately negative. These results are in line with the
conclusions from the final models for the reported number of cases in which all of these
variables negatively correlated with the dependent variable.
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Figure A1. Number of reported COVID-19 cases per 10,000 inhabitants in 2020 in analyzed EU
regions against different explanatory variables.
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Figure A2. Percentage increase in the number of deaths in analyzed EU regions in 2020 compared
with the average number of deaths between 2016 and 2019 against different explanatory variables.
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Figure A3. Percentage increase in the number of deaths in analyzed EU regions in 2020 compared
with the average number of deaths between 2016 and 2019 against the reported number of infections.

Appendix A.3. Variance Inflation Factor

We calculated the variance inflation factor (VIF) for both sets of OLS estimates: ex-
plaining the relative number of cases and the deaths increase. In the former, the values of
VIF for Economic damage, NACE B-E, Chronic lower respiratory disease, Population aged
60, Day, GDP, and Trust in health authorities were smaller than 2. For High blood pressure,
it equaled 4.68, for R1b 2.79, and for Diabetes 2.87. In the latter, the values of VIF for Cases,
Pollution, Diabetes, Mean stringency, Day, and Doctors were smaller than 2, while in the
case of Health expenditure, it equaled 2.2. For each variable, the value of VIF was smaller
than 5. Therefore, we concluded that the multicollinearity problem did not affect the results
importantly.

Appendix A.4. Alternative Versions of Constructing Economic Damage Variable

We estimated the final models for the number of cases based on other economic
damage variable aggregation methods. The summary was included in Table A1. In
columns 1 and 2, we presented mixed-W SARAR and mixed-W SEM based on the variable
created from the second edition of the survey (instead of the third one as in the baseline
approach). In columns 3 and 4, we presented models based on the third edition but with
the share of 1-3 options instead of 1-2. Regardless of the aggregation method, the variable
coefficient is significantly smaller than zero (with p < 0.001 in each case).
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Table A1. Estimation results for number of cases with different aggregation approaches to economic
damage variable.

2nd Edition (1-2) 3rd Edition (1-3)

Mixed-W SARAR Mixed-W SEM Mixed-W SARAR Mixed-W SEM

Economic damage −6.797 *** −7.947 *** −7.567 *** −8.719 ***
(1.961) (1.930) (1.880) (1.809)

NACE B-E 3.583 *** 3.933 *** 3.658 *** 3.874 ***
(1.207) (1.265) (1.212) (1.267)

High blood pressure −7.357 ** −7.958 *** −8.431 *** −8.296 ***
(2.876) (3.059) (2.762) (2.923)

Chronic lower respiratory −22.070 *** −24.598 *** −19.483 *** −20.710 ***
(6.734) (6.943) (6.179) (6.539)

Population aged 60 −11.976 *** −11.531 *** −11.469 *** −10.972 ***
(2.413) (2.435) (2.402) (2.396)

Day −0.595 ** −0.630 ** −0.643 ** −0.663 **
(0.264) (0.263) (0.262) (0.264)

GDP 0.701 *** 0.753 *** 0.732 *** 0.787 ***
(0.256) (0.258) (0.255) (0.254)

R1b 2.629 ** 3.510 ** 2.588 ** 3.613 ***
(1.275) (1.387) (1.298) (1.398)

Trust in health authorities −1.420 −0.942 −1.484 −1.041
(1.563) (1.933) (1.512) (1.843)

Diabetes 4.849 3.638 3.866 2.140
(6.514) (7.303) (6.395) (6.974)

Constant 1127.565 *** 1208.533 *** 1298.653 *** 1346.529 ***
(207.619) (225.968) (208.594) (227.147)

ρborders 0.212 ** 0.183 *
(0.093) (0.095)

λborders 0.348 *** 0.545 *** 0.402 *** 0.571 ***
(0.131) (0.080) (0.130) (0.078)

λcountry 0.321 *** 0.247 *** 0.264 ** 0.210 **
(0.103) (0.081) (0.105) (0.085)

Moran’s I test
Wdistance 0.369 0.309 0.373 0.139
Wborders 0.547 0.480 0.372 0.297
Wcountry 0.701 0.904 0.733 0.905

Notes: *** Significant at the 1 percent level. ** Significant at the 5 percent level. * Significant at the 10 percent level.

Appendix A.5. Models with Neighboring Matrices Based on Distance

In Table A2, we showed mixed-W SARAR models for the number of cases, and deaths
increase with Wdistance instead of Wborders. In the case of the former, ρdistance and λdistance are
significant at 1%. However, the spatial autocorrelation based on Wdistance and Wborders is not
captured. In the latter, ρdistance and λdistance are insignificant, and the spatial autocorrelation
is also not captured. Therefore, we argue that using Wborders is more appropriate for
analyzing both dependent variables.
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Table A2. Estimation results for the models with Wdistance instead of Wborders.

Cases Deaths

Economic damage −9.789 *** (2.120)
NACE B-E 4.293 *** (1.222)
High blood pressure −10.060 *** (2.631)
Chronic lower respiratory −23.653 *** (5.875)
Population aged 60 −10.854 *** (2.451)
Day −0.859 *** (0.292) −0.026 * (0.013)
GDP 0.802 *** (0.269)
R1b 2.240 ** (1.089)
Trust in health authorities −1.502 (1.276)
Diabetes 7.610 (5.913) 0.317 * (0.172)
Cases 0.027 *** (0.003)
Pollution 0.266 *** (0.092)
Mean stringency 0.262 *** (0.087)
Doctors −0.006 ** (0.003)
Health expenditure −0.001 (0.001)
Constant 989.046 *** (227.834) −19.745 ** (7.965)

ρdistance 0.733 *** (0.210) 0.436 (0.347)
λdistance 0.556 *** (0.164) 0.436 (0.306)
λcountry 0.374 *** (0.110) 0.293 * (0.151)

Moran’s I test
Wdistance 3.475 *** 2.220 **
Wborders 5.158 *** 4.171 ***
Wcountry 0.719 0.677
Notes: *** Significant at the 1 percent level. ** Significant at the 5 percent level. * Significant at the 10 percent level.

Appendix A.6. Instrumental Variable for Mean Stringency

Due to the fact the COVID-19 restrictions policy in many countries is based on the
previous, current, and predicted number of infections and deaths, the Mean stringency vari-
able might be endogenous, which could impact the estimates of parameters in the models.
Therefore we introduced the instrumental variable that is based on the following model:

ŷt,i = β1 · yt−7,−i + cT · β2, (A1)

where ŷt,i is the stringency of restrictions in the country i in day t, yt−7,−i, is the average
stringency of restrictions 7 days earlier in all analyzed countries except i, and cT is a vector
of 19 binary variables whose elements indicate different countries. This approach relies on
the assumption proposed by Fakir and Bharati (2021) that restrictions in other countries
impact the reported number of infections and deaths increase only via adjusting restrictions
in our country.

We estimated this model with the OLS estimator (obtained R2 is equal to around 0.96)
and predicted the number of restrictions for each country and each day from the beginning
of the pandemic till the end of the year. Then, we calculated the average predicted mean
stringency, which is the instrumental variable for the Mean stringency variable. The
following steps were equivalent to the ones shown in the main body of the text but with
the instrumental variable instead of the initial one. The summary of BMS is shown in
Tables A3 and A4.
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Table A3. Bayesian Model Averaging for the number of infections per 10,000 people with instrumen-
tal variable.

PIP Post Mean Post SD Cond.Pos.Sign

Economic damage 1.000 −9.580 1.338 0.000
NACE B-E 1.000 7.022 1.399 1.000
High blood pressure 1.000 −8.826 2.208 0.000
Chronic lower respiratory disease 1.000 −22.264 4.785 0.000
Population aged 60 0.997 −11.731 2.960 0.000
Day 0.995 −1.304 0.360 0.000
GDP 0.986 1.207 0.362 1.000
R1b 0.834 1.598 0.962 1.000
Trust in health authorities 0.768 −2.232 1.536 0.000
Diabetes 0.464 3.717 4.901 1.000
Trust in government 0.375 −1.276 2.123 0.011
Mean stringency (IV) 0.361 1.174 1.979 1.000
Density 0.269 −0.004 0.010 0.002
Doctors 0.170 0.012 0.046 0.988
Health expenditure 0.158 −0.001 0.007 0.294
Pollution 0.148 −0.072 0.965 0.467

Table A4. Bayesian Model Averaging for the death toll increase with instrumental variable.

PIP Post Mean Post SD Cond.Pos.Sign

Cases 1.000 0.027 0.003 1.000
Mean stringency (IV) 0.864 0.257 0.130 1.000
Pollution 0.826 0.235 0.140 1.000
Diabetes 0.820 0.345 0.202 1.000
Doctors 0.620 −0.005 0.005 0.000
Day 0.568 −0.019 0.020 0.000
Health expenditure 0.447 −0.001 0.001 0.000
Trust in government 0.306 −0.067 0.124 0.000
Trust in health authorities 0.234 0.028 0.062 0.957
Population aged 60 0.227 −0.053 0.117 0.001
Chronic lower respiratory disease 0.183 0.068 0.206 0.825
Economic damage 0.113 0.009 0.032 0.992
Density 0.111 0.000 0.000 0.968
R1b 0.099 0.003 0.015 0.799
GDP 0.099 0.002 0.007 0.914
NACE B-E 0.067 0.000 0.017 0.459

Replacing Mean stringency with its instrument did not affect the results importantly.
In the case of the model explaining the number of reported cases, Mean stringency (IV) was
below the threshold of 0.4 and should not be included in the final models. On the other
hand, in the model for deaths increase, it was above the threshold and did not change the
subset of chosen variables. Therefore, we estimated an analogous SEM model to the one
from Table 6 and showed it in Table A5.

Finally, the instrumental variable did not change the signs or the significance of the
parameters in the models. The lack of the positive impact of imposing restrictions in the
results could be caused by the fact the stringency index combines multiple factors that
impact the transmission of the virus differently. Moreover, apart from the level of stringency,
the timing of imposing restrictions is essential. Therefore, we can conclude that assessing
the impact of restrictions on the number of cases and deaths should be based on the panel
data with the country-level aggregation rather than the cross-sectional data on the regional
level. However, it is not the topic of this analysis.
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Table A5. Estimation results for the increase in the number of deaths (with the instrumental variable).

SEM

Cases 0.026 ***
(0.003)

Pollution 0.138
(0.094)

Diabetes 0.281
(0.188)

Mean stringency (IV) 0.247 **
(0.096)

Day −0.031 ***
(0.011)

Doctors −0.006 **
(0.003)

Health expenditure −0.001 **
(0.001)

Constant −8.025
(8.916)

λborders 0.568 ***
(0.078)

Moran’s I test
Wdistance 0.381
Wborders 0.863
Wcountry 0.863
Notes: *** Significant at the 1 percent level. ** Significant at the 5 percent level.

Appendix A.7. SLX Specification

To further check the appropriateness of choosing mixed-W SARAR as the primary
model in the analysis, we compared it with the mixed-W SLX specification, whose parame-
ters were estimated with the OLS estimator. Therefore we added spatial lags to the linear
model for each explanatory variable. The predictors aggregated at the regional level lagged
with respect to both matrices, whereas the variables at the country level were lagged with
respect to the matrix based on the queen congruity. In this case, we decided not to include
the other matrix because the spatial lags for these variables would be equivalent to the
corresponding unlagged variables (except for isolated regions, for which it would always
equal 0).

The summary of both SLX models for the number of cases and the deaths increase
is shown in Tables A6 and A7. As can be seen from the results of Moran’s I test, none
of the models could account for the spatial autocorrelation with respect to any of the
analyzed matrices. What is more, the values of the Akaike information criterion (AIC) are
seemingly higher for SLX models (for the number of cases, it equals 2299.09, while it was
2240 for mixed-W SARAR and 2243.36 for mixed-W SEM, for the deaths, increase it equals
1127.67 while it was 1080.11 for SEM) which indicates that they fit much worse to the data.
Finally, most of the parameter estimates are not significant, and many of the ones that are
do not allow for any meaningful interpretation (like the fact that the level of pollution
impacts the deaths increase in neighboring regions, but not on its own). Therefore, we
can conclude that the mixed-W SARAR specification shown in the main body of the paper
describes the analyzed problem much better than the SLX model.
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Table A6. Estimation results for the number of reported COVID-19 cases per 10,000 inhabitants with
SLX specification.

SLX

Economic damage −10.839 *** (2.887)
NACE B-E 3.438 ** (1.735)
High blood pressure −10.929 *** (3.104)
Chronic lower respiratory disease −26.811 *** (8.112)
Population aged 60 −11.871 *** (2.982)
Day −0.769 * (0.400)
GDP 0.363 (0.343)
R1b 5.952 *** (1.743)
Trust in health authorities 3.756 (2.535)
Diabetes −4.820 (9.351)
lag.borders NACE B-E 3.179 (3.415)
lag.borders Population aged 60 3.391 (5.495)
lag.borders Day −1.036 (0.713)
lag.borders GDP 2.054 *** (0.722)
lag.countries NACE B-E 10.936 ** (4.345)
lag.countries Population aged 60 −1.555 (6.481)
lag.countries Day 0.499 (0.907)
lag.countries GDP −1.535 ** (0.733)
lag.borders Economic damage 1.437 (3.526)
lag.borders High blood pressure −2.973 (4.027)
lag.borders Chronic lower respiratory disease 3.356 (9.433)
lag.borders R1b −4.384 ** (1.764)
lag.borders Trust in health authorities −5.491 ** (2.464)
lag.borders Diabetes 13.868 (11.073)
Constant 1281.337 *** (159.646)

Moran’s I test
Wdistance 4.494 ***
Wborders 6.732 ***
Wcountry 3.268 ***
Notes: *** Significant at the 1 percent level. ** Significant at the 5 percent level. * Significant at the 10 percent level.

Table A7. Estimation results for the increase in the number of deaths with SLX specification.

SLX

Cases 0.029 *** (0.004)
Pollution 0.146 (0.129)
Diabetes 0.290 (0.296)
Mean stringency 0.340 *** (0.116)
Day −0.031 * (0.017)
Doctors −0.007 ** (0.003)
Health expenditure −0.002 ** (0.001)
lag.borders Cases 0.003 (0.005)
lag.borders Pollution 0.435 ** (0.194)
lag.borders Day −0.016 (0.029)
lag.borders Doctors −0.011 (0.007)
lag.countries Cases −0.010 ** (0.004)
lag.countries Pollution −0.280 (0.210)
lag.countries Day −0.016 (0.029)
lag.countries Doctors 0.009 (0.007)
lag.borders Diabetes 0.036 (0.307)
lag.borders Mean stringency −0.092 (0.111)
lag.borders Health expenditure 0.001 (0.001)
Constant −7.344 (6.791)

Moran’s I test
Wdistance 2.764 ***
Wborders 4.806 ***
Wcountry 3.572 ***
Notes: *** Significant at the 1 percent level. ** Significant at the 5 percent level. * Significant at the 10 percent level.
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Appendix A.8. Net Effects of Severity and Incidence

The analyzed variables could impact COVID-19 mortality directly or via increased
incidence rate. Moreover, the direction of these effects could be opposite, e.g., some
variables could reduce the number of cases but increase the per-case mortality. Therefore,
it is interesting to see what the net effect of each of the factors is. To do so, we estimated
the model explaining the deaths increase but contrary to the previous settings, omitted the
Cases variable.

As previously performed, we used the BMA to detect features with posterior inclu-
sion probability above 0.4 and used them to estimate the models. Table A8 shows the
results of the feature selection, and Table A9 the estimates of the models. The variables
R1b, NACE B-E, and Doctors are insignificant in the spatial models, while the Trust in
government negatively correlates with the deaths increase (contrary to the version of the
model including Cases, the variable was selected by BMA). Interestingly, the Pollution
variable is significant in all the presented settings. Additionally, it is worth noticing that in
the mixed-W SARAR model, λcountry is insignificantly different from zero. However, when
excluding Wcountry from the model, Moran’s I test suggests that the model has remaining
autocorrelation stemming from adherence to the same country.

Table A8. Bayesian Model Averaging for the death toll increase with the Cases variable excluded.

PIP Post Mean Post SD Cond.Pos.Sign

Day 0.998 −0.077 0.019 0.000
Pollution 0.951 0.360 0.137 1.000
Population aged 60 0.934 −0.463 0.199 0.000
Trust in government 0.914 −0.291 0.132 0.000
R1b 0.532 0.045 0.050 1.000
NACE B-E 0.479 0.074 0.090 1.000
Doctors 0.425 −0.004 0.006 0.000
Economic damage 0.383 −0.054 0.081 0.000
Mean stringency 0.361 0.089 0.147 0.995
GDP 0.330 0.013 0.023 1.000
Health expenditure 0.315 −0.0005 0.001 0.004
Diabetes 0.270 0.080 0.160 1.000
Trust in health authorities 0.174 0.013 0.048 0.833
Chronic lower respiratory 0.150 −0.048 0.185 0.165
Density 0.093 −0.00002 0.0002 0.161

Table A9. Estimation results for the increase in the number of deaths with the Cases excluded.

OLS Mixed-W SARAR SARAR

Day −0.074 *** −0.037 *** −0.039 ***
(0.015) (0.013) (0.013)

Pollution 0.453 *** 0.210 ** 0.212 **
(0.093) (0.106) (0.105)

Population aged 60 −0.521 *** −0.547 *** −0.544 ***
(0.126) (0.119) (0.118)

Trust in government −0.303 *** −0.206 ** −0.212 **
(0.070) (0.091) (0.084)

R1b 0.068 *** 0.055 0.051
(0.026) (0.037) (0.035)

NACE B-E 0.141 ** 0.098 0.096
(0.063) (0.064) (0.064)

Doctors −0.005 −0.003 −0.003
(0.004) (0.003) (0.003)

Constant 31.068 *** 26.885 *** 27.401 ***
(4.732) (5.348) (5.168)
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Table A9. Cont.

OLS Mixed-W SARAR SARAR

ρborders 0.278 *** 0.270 ***
(0.105) (0.105)

λborders 0.462 *** 0.496 ***
(0.131) (0.117)

λcountry 0.076
(0.122)

Moran’s I test
Wdistance 3.762 *** 0.218 0.252
Wborders 6.701 *** 0.610 0.312
Wcountry 3.835 *** 0.917 1.467 *
Notes: *** Significant at the 1 percent level. ** Significant at the 5 percent level. * Significant at the 10 percent level.
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