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SUPPLEMENTARY MATERIAL

This is the supplementary material to the paper Local Gaussian cross-spectrum analysis,
which extends the univariate theory developed in Jordanger and Tjøstheim (2022) (hereafter
referred to as JT22) to the multivariate case.

Section S1 contains an extended version of the asymptotic theory for f̂ m
k`:v(ω) (which

was only briefly sketched in Section 2.5). The underlying asymptotic theory for the estimates
of the local Gaussian parameters are given in Section S2. Note that the multivariate local
Gaussian spectral theory is quite similar to the theory developed for the univariate case,
and the discussion in Section S2 thus frequently refers to the theory developed in the
Supplementary Material of JT22 and it primarily focuses on the adjustments needed to
cope with the present multivariate case.

The sensitivity of the tuning parameters (and the effect of varying the point v) are
discussed in Section S3, whereas Section S4 briefly comments upon the task of selecting
these parameters. Note that this discussion in essence is the same as the one given for
the univariate case, see JT22 [Appendices D and E], but it has been included here for the
convenience of the reader. The scripts needed for the reproduction of these multivariate
examples are included in the R-package localgaussSpec, and an investigator can use these
scripts as templates for similar investigations.

Section S5 is devoted to sampling and resampling strategies. The first part of Section S5
applies the univariate local Gaussian sanity testing of parametric models from JT22 to the
DAX- and CAC-margins of the EuStockMarkets example, and after this new plots are
presented that can be used for the sanity testing of the cross-interaction of the multivariate
parametric models fitted to the EuStockMarkets data. The second part of Section S5
explains the motivation for the Circular index-based block bootstrap for tuples resampling
strategy that was developed in JT22, and this part also contains a sensitivity analysis of the
block length L, which reveals that this tuning parameter plays a minor role for the time
series that are long enough for a local Gaussian spectral investigation to be of interest.

All the examples/investigations in this paper can be reproduced by the scripts con-
tained in the R-package localgaussSpec, and the interested reader will find some practical
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information related to that in Section S6. Some further discussions of the examples in
Section 3 have also been collected in Section S6 in order to improve the flow of the main
part. The interested reader will here find the details related to the bivariate Gaussian test-
example, a short explanation of how animations of complex-valued plots can be used to
investigate the estimated local Gaussian cross-spectra, and some additional details related
to the construction of the local trigonometric examples used for the sanity-testing of the
estimation algorithm. Some details are also included at the end related to limitations of the
local Gaussian approach for points v that lies in the extreme tails of the observations.

S1. The asymptotic theory for f̂ m
k`:v(ω)

This part will cover in detail the asymptotic theory for f̂ m
k`:v(ω). Section S1.1 gives

an extended version of the discussion in Section 2.5 from the main part, and the basic
discussion and definitions will be repeated here (in order for this part to be self contained).

The three asymptotic results in Theorems 1 to 3 will for the convenience of the reader
also be included here, see Section S1.1.2, whereas the proofs are gathered in Section S1.3.
Some technical details needed for the proof of Theorem 1 are covered in Section S2.

S1.1. Asymptotic theory for f̂ m
k`:v(ω) — all definitions and assumptions

The key idea is that the asymptotic theory for the local Gaussian cross-spectrum
f̂ m
k`:v(ω) follows from a few minor adjustments of the asymptotic theory that was developed

in JT22 [Section 2.4] for the local Gaussian auto-spectra. The assumptions and results will
be stated for the original observations instead of the pseudo-normalised observations, since
this makes the analysis easier and since the final convergence rates are unaffected by this
distinction, see the discussion after Definition 3 (in the main part) for further details.

S1.1.1. Some definitions and an assumption for Yt =
(

Y1,t, . . . , Yd,t

)
As for the univariate case in JT22, the assumptions to be imposed on the k and `

components of the multivariate times series {Yt}t∈Z need to be phrased relative to the
bivariate pairs that can be created as different combinations of elements from the univariate
marginals

{
Yk,t

}
t∈Z

and
{

Y`,t

}
t∈Z

. Note that the folding property from Item 4 of Algorithm 1

(in the main part) implies that it is sufficient to formulate the assumption based on non-
negative values of the lag h. The definition below, repeats Definition 4.

Definition S1. For a strictly stationary multivariate time series {Yt}t∈Z, with Yt =
(

Y1,t, . . . , Yd,t

)
,

and for a selected pair of indices k and `, define the following bivariate pairs from the univariate
marginals

{
Yk,t

}
t∈Z

and
{

Y`,t

}
t∈Z

.

Yk`:h:t :=
[
Yk,t+h, Y`,t

]′
, h ≥ 0, (S1a)

Ỳ k:h:t :=
[
Y`,t+h, Yk,t

]′
, h ≥ 1, (S1b)

and let gk`:h
(
yk`:h

)
and g`k:h

(
y`k:h

)
denote the respective probability density functions.

The key idea for the construction of fk`:v(ω) is that a point v =
(
v1, v2

)
should be

selected at which for all h the density functions gk`:h
(
yk`:h

)
of Yk`:h:t will be approximated

by ψ
(
yk`:h; θk`:v:h

)
, where ψ is the bivariate Gaussian density function from Equation (4) in

the main part. The ψ-function is repeated below for the convenience of the reader,

ψ(w; θ) :=
1

2π · σ1σ2

√
1− ρ2

exp
{
− σ2

2 (w1−µ1)
2−2σ1σ2ρ(w1−µ1)(w2−µ2)+σ2

1 (w2−µ2)
2

σ2
1 σ2

2 (1−ρ2)

}
.
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The target of interest is to find a parameter-vector θv =
[
µ1v, µ2v, σ1v, σ2v, ρv

]′ that gives
the best match to a density function g(w) in a neighbourhood of v, and then extract the
correlation component ρv from the parameter-vector θv. The added indices in this section
is necessary in order to keep track of the density functions related to Yk,t+h and Y`,t.

Note that the estimations to be performed for this local investigation requires a band-
width vector b =

(
b1, b2

)
and a kernel function K(w), which is used to define Kk`:h:b

(
yk`:h − v

)
:=

1
b1b2

K
( yk,h−v1

b1
,

y`,0−v2
b2

)
, which in turn is used in

qk`:v:h:b :=
∫
R2

Kk`:h:b(yk`:h − v)[ψ(yk`:h; θk`:v:h)− log ψ(yk`:h; θk`:v:h)gk`:h(yk`:h)]dyk`:h, (S2)

a minimiser of which should satisfy the vector equation∫
R2

Kk`:h:b(yk`:h − v)uk`:h(yk`:h; θk`:v:h)[gk`:h(yk`:h)− ψ(yk`:h; θk`:v:h)]dyk`:h = 0, (S3)

where uk`:h
(
yk`:h; θk`:v:h

)
:= ∇k`:h log ψ

(
yk`:h; θk`:v:h

)
is the score function of ψ

(
yk`:h; θk`:v:h

)
(with ∇k`:h := ∂/∂θk`:v:h). Under the assumption that there is a bandwidth bk`:h:0 such that
there exists a minimiser θk`:v:h:b of Equation (S2) which satisfies Equation (S3) for any b
with 0 < b < bk`:h:0, this θk`:v:h:b will be referred to as the population value for the given
bandwidth b.

This approach was introduced in a more general context in Hjort and Jones (1996),
where it was used to define a local approach to density estimation, and the new idea
in Tjøstheim and Hufthammer (2013) was to focus upon the estimated local Gaussian
parameters θ̂k`:v:h (instead of the estimated densities). The asymptotic properties of the
estimated parameters was investigated in Tjøstheim and Hufthammer (2013) by the help of
the Klimko-Nelson approach1 and a suitably defined local penalty function Qk`:v:h:n

(
θk`:v:h

)
(see Equation (S31) in Section S2.1).

The assumptions to be imposed on Yt is related to the estimation of Equation (S31),
and thus requires a few additional definitions.

Definition S2. For ψ
(
yk`:h; θ

)
the local Gaussian density used when approximating gk`:h

(
yk`:h

)
at the point v =

(
v1, v2

)
, and for θk`:v:h:b the population value that minimises the penalty func-

tion qk`:v:h:b from Equation (S2), define for all h ∈ N and all q ∈ {1, . . . , 5}

uk`:h:q:b(w) :=
∂

∂θq
log(ψ(yk`:h; θ))

∣∣∣∣∣
(yk`:h ; θ)=(w; θk`:v:h:b)

, (S4)

where ∂/∂θq is the qth partial derivative (with respect to θ).

The following requirements on the kernel function are identical to those given in
JT22 [Definition B.9].

1 The Klimko-Nelson approach (see Klimko and Nelson (1978)) shows how the asymptotic properties of an
estimate of the parameters of a penalty function Q can be expressed relative to the asymptotic properties of (entities
related to) the penalty function itself. The interested reader can consult JT22 [Appendix B.1] for a more detailed
presentation of the Klimko-Nelson approach when a local penalty-function is used.
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Definition S3. From a bivariate, non-negative, and bounded kernel function K(w), that satisfies∫
R2

K(w1, w2)dw1dw2 = 1, (S5a)

K1:k(w2) :=
∫
R1

K(w1, w2)w
k
1 dw1 is bounded for k ∈ {0, 1, 2}, (S5b)

K2: (̀w1) :=
∫
R1

K(w1, w2)w
`
2 dw2 is bounded for ` ∈ {0, 1, 2}, (S5c)∫

R2
K(w1, w2)

∣∣∣wk
1w`

2

∣∣∣dw1dw2 < ∞, k, ` ≥ 0 and k + ` ≤ 2 · dνe, (S5d)

where ν > 2 is from Assumption S1(2) (and d·e is the ceiling function), define

Kh:b(yk`:h − v) :=
1

b1b2
K
(

yh − v1
b1

,
y0 − v2

b2

)
. (S6)

Definition S4. Based on Yk`:h:t, uk`:h:q:b(w) and Kh:b

(
yk`:h − v

)
, define the new bivariate random

variables Xn|v
k`:h:q:t as follows,

Xn|v
k`:h:q:t :=

√
b1b2Kh:b(Yk`:h:t − v)uk`:h:q:b(Yk`:h:t). (S7)

Note that a product of the random variables Xn|v
k`:h:q:t and Xn|v

k`:i:r:s will be a function
of Yk,t+h, Y`,t, Yk,s+i and Y`,s, which depending on the configuration of the indices h, i, s, t
will be either a bivariate, trivariate or tetravariate function. The expectation of the product
Xn|v

k`:h:q:t · X
n|v
k`:i:r:s will thus (depending on these indices) either require a bivariate, trivariate

or tetravariate density function.

Assumption S1. The multivariate process {Yt}t∈Z will be assumed to satisfy the following prop-
erties, with v =

(
v1, v2

)
(in Item 4 below) the point at which f̂ m

k`:v(ω), the estimate of fk`:v(ω), is
to be computed.

1. {Yt}t∈Z is strictly stationary.
2. {Yt}t∈Z is strongly mixing, with mixing coefficient α(j) satisfying

∞

∑
j=1

ja[α(j)]1−2/ν < ∞ for some ν > 2 and a > 1− 2/ν. (S8)

3. E
[
||Yt||2

]
< ∞, where || · || is the Euclidean norm.

The bivariate density functions gk`:h
(
yk`:h

)
and g`k:h

(
y`k:h

)
, corresponding to the lag h pairs

introduced in Equation (S1), must satisfy the following requirements for a given point v =
(
v1, v2

)
.

4. gk`:h
(
yk`:h

)
is differentiable at v, such that Taylor’s theorem can be used to write gk`:h

(
yk`:h

)
as

gk`:h(yk`:h) = gh(v) + gh(v)
′[yk`:h − v] +Rh(yk`:h)

′[yk`:h − v], (S9)

where gh(v) =
[

∂
∂yh

gk`:h(yk`:h)
∣∣∣
yk`:h= v

, ∂
∂y0

gk`:h(yk`:h)
∣∣∣
yk`:h= v

]′
and lim

yk`:h−→ v
Rh(yk`:h) = 0,

with the same requirement for g`k:h
(
y`k:h

)
at the diagonally reflected point v̆ =

(
v2, v1

)
.

5. There exists a bandwidth bk`:h:0 such that there for every 0 < b < bk`:h:0 is a unique minimiser
θk`:v:h:b of the penalty function qk`:v:h:b from Equation (S2).
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6. The collection of bandwidths
{

bk`:h:0
}

h∈Z has a positive infimum, i.e., there exists a bk`:0
such that2

0 < bk`:0 := inf
h∈Z

bk`:h:0, (S10)

which implies that this bk`:0 can be used simultaneously for all the lags.

7. For Xn|v
k`:h:q:t from Definition S4, the related bivariate, trivariate and tetravariate density func-

tions must be such that the expectations E
[

Xn|v
k`:h:q:t

]
, E
[∣∣∣Xn|v

k`:h:q:t

∣∣∣ν] and E
[

Xn|v
k`:h:q:t · X

n|v
k`:i:r:s

]
all are finite.

The present Assumption S1 is in essence identical to JT22 [Assumption 2.1] with some
extra indices, so the remarks from JT22 is of intereset here too. In particular, the α-mixing
requirement in Item 2 implies that Yk,t+h and Y`,t will be asymptotically independent as
h → ∞, i.e., the bivariate density functions gk`:h

(
yk`:h

)
will for large lags h approach the

product of the marginal densities, and the situation will thus stabilise when h is large
enough. This is in particular of importance for Item 6, since it implies that it will be possible
to find a nonzero bk`:0 that works for all h. Moreover, the finiteness assumptions in Item 7
are always trivially satisfied if the required density-functions are finite.

S1.1.2. An assumption for
(

Yk,t, Y`,t

)
and the score function u(w; θ) of ψ(w; θ)

The following assumption is in essence identical to JT22 [Assumption 2.2], which was
included due to the need for the asymptotic results from Tjøstheim and Hufthammer (2013)
to be applied for all the different lags h.

Assumption S2. The collection of local Gaussian parameters
{

θk`:v:h
}

at the point v for the
bivariate probability density functions gk`:h

(
yk`:h

)
, must all be such that

1. u(v; θk`:v:h) 6= 0 for all finite h.
2. limh→∞ u(v; θk`:v:h) 6= 0.

Note that an inspection of the 5 equations in u(w; θ) = 0 can be used to identify when
Items 1 and 2 of Assumption S2 might fail, cf. the discussion in JT22 [Section 2.4.2] for
further details.

S1.1.3. Assumptions for n, m and b =
(
b1, b2

)
The following assumption is identical to JT22 [Assumption 2.3]. The internal consis-

tency of it was verified in JT22 [Lemma C.3].

Assumption S3. Let m := mn → ∞ be a sequence of integers denoting the number of lags to
include, and let b := bn → 0+ be the bandwidths used when estimating the local Gaussian correla-
tions for the lags h = 1, . . . , m (based on n observations). Let b1 and b2 refer to the two components
of b, and let α, ν and a be as introduced in Assumption S1(2). Let s := sn → ∞ be a sequence of
integers such that s = o

(√
nb1b2/m

)
, and let τ be a positive constant. The following requirements

must be satisfied for these entities.3

1. log n/n
(
b1b2

)5 −→ 0.
2. nb1b2/m −→ ∞.

3. mδ
(
b1 ∨ b2

)
−→ 0, where δ = 2∨ ν(a+1)

ν(a−1)−2 .

4.
√

nm/b1b2 · sτ · α(s−m + 1) −→ ∞.

5. m = o
((

nb1b2
)τ/(2+5τ)−λ

)
, for some λ ∈ (0, τ/(2 + 5τ)).

2 Inequalities involving vectors are to be interpreted in a component-wise manner.
3 Notational convention: “∨” denotes the maximum of two numbers, whereas “∧” denotes the minimum.
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6. m = o(s).

S1.2. Convergence theorems for f̂ m
k`:v(ω), α̂ m

k`:v(ω) and φ̂ m
k`:v(ω)

This section repeats the asymptotic results given in Section 2.5.2. The proofs are given
in Section S1.3.

Theorem S1 (Theorem 1 in the main part). The estimate f̂ m
k`:v(ω) = ĉ m

k`:v(ω)− i · q̂ m
k`:v(ω) of

the local Gaussian cross-spectrum fk`:v(ω) = ck`:v(ω)− i · qk`:v(ω), will under Assumptions S1
to S3 satisfy

√
n
(
b1b2

)3/m ·
([

ĉ m
k`:v(ω)

q̂ m
k`:v(ω)

]
−
[

ck`:v(ω)
qk`:v(ω)

])
d−→ N

([
0
0

]
,

[
σ2

c|k`:v(ω) 0
0 σ2

q|k`:v(ω)

])
, (S11)

when ω 6∈ 1
2 ·Z =

{
. . . ,−1,− 1

2 , 0, 1
2 , 1, . . .

}
, where the variances σ2

c|k`:v(ω) and σ2
q|k`:v(ω) are

given by

σ2
c|k`:v(ω) = lim

m→∞

1
m

(
σ̃2

k`:v(0) +
m

∑
h=1

λ2
m(h) · cos2(2πωh) ·

{
σ̃2

k`:v(h) + σ̃2
`k:v̆(h)

})
(S12a)

σ2
q|k`:v(ω) = lim

m→∞

1
m

(
m

∑
h=1

λ2
m(h) · sin2(2πωh) ·

{
σ̃2

k`:v(h) + σ̃2
`k:v̆(h)

})
, (S12b)

with σ̃2
k`:v(h) and σ̃2

`k:v̆(h) the asymptotic variances related to the estimates ρ̂k`:v(h) and ρ̂`k:v̆(h),
see Theorem S4 for the details.

The local Gaussian quadrature spectrum is identical to zero when ω ∈ 1
2 ·Z, and for those

frequencies the following asymptotic result holds under the given assumptions√
n
(
b1b2

)3/m ·
(

f̂ m
k`:v(ω)− fk`:v(ω)

)
d−→ N

(
0, σ2

c|k`:v(ω)
)

, ω ∈ 1
2 ·Z. (S13)

The asymptotic results for the local Gaussian amplitude- and phase-spectra are a direct
consequence of Theorem S1 and Brockwell and Davis (1986, proposition 6.4.3, p. 211).

Theorem S2 (Theorem 2 in the main part). Under Assumptions S1 to S3, when αk`:v(ω) > 0

and ω 6∈ 1
2 ·Z, the estimate α̂ m

k`:v(ω) =
√(

ĉ m
k`:v(ω)

)2
+
(
q̂ m

k`:v(ω)
)2 satisfies√

n
(
b1b2

)3/m · (α̂ m
k`:v(ω)− αk`:v(ω))

d−→ N
(

0, σ2
α (ω)

)
, (S14)

where σ2
α (ω) is given relative to σ2

c|k`:v(ω) and σ2
q|k`:v(ω) (from Equation (S12), Theorem S1) as

σ2
α =

(
c2

k`:v(ω) · σ2
c|k`:v(ω) + q2

k`:v(ω) · σ2
q|k`:v(ω)

)
/α2

k`:v(ω). (S15)

Theorem S3 (Theorem 3 in the main part). Under Assumptions S1 to S3, when αk`:v(ω) > 0
and ω 6∈ 1

2 ·Z, the estimate φ̂ m
k`:v(ω) = args

(
ĉ m

k`:v(ω)− i · q̂ m
k`:v(ω)

)
satisfies√

n
(
b1b2

)3/m ·
(
φ̂ m

k`:v(ω)− φk`:v(ω)
) d−→ N

(
0, σ2

φ (ω)
)

, (S16)

where σ2
φ (ω) is given relative to σ2

c|k`:v(ω) and σ2
q|k`:v(ω) (from Equation (S12), Theorem S1) as

σ2
φ (ω) =

(
q2

k`:v(ω) · σ2
c|k`:v(ω) + c2

k`:v(ω) · σ2
q|k`:v(ω)

)
/α4

k`:v(ω). (S17)
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S1.3. The proofs of Theorems 1 to 3

This section presents the proofs of the asymptotic results stated in the main part of
the paper (copies of these results are given in Section S1.2). The proof of the result for the
m-truncated estimate of the local Gaussian cross-spectrum fk`:v(ω) is in essence identical
to the one encountered in JT22 for the local Gaussian auto-spectrum fkk:v(ω), whereas the
proofs for the estimates of the local Gaussian amplitude- and phase-spectra are identical in
structure to those encountered in the ordinary global case. Some technical details needed
for the proof of Theorem 1 are covered in Section S2.

Proof of Theorem 1.
The case ω 6∈ 1

2 ·Z will be treated first, since the other case follows from a trivial adjustment
of the setup. The key observation for this case is that the sum that defines f̂ m

k`:v(ω), see
Equation (9) in Algorithm 1(4), implies that ĉ m

k`:v(ω) and q̂ m
k`:v(ω) can be realised as the

following inner products,

ĉ m
k`:v(ω) = Λ′c|m(ω) · P̂k`:m|b(v, v̆) (S18a)

q̂ m
k`:v(ω) = Λ′q|m(ω) · P̂k`:m|b(v, v̆), (S18b)

where Λ′c|m(ω) and Λ′q|m(ω) respectively contains the coefficients λm(h) cos(2πωh) and

λm(h) sin(2πωh), and where P̂k`:m|b(v, v̆) =
[
ρ̂`k:v̆(m), . . . , ρ̂`k:v̆(1), ρ̂k`:v(0), . . . , ρ̂k`:v(m)

]′
contains the 2m + 1 estimates of the local Gaussian cross-correlations (based on the band-
width b). The vector P̂k`:m|b(v, v̆) can by the help of a suitable (2m + 1)× 5(2m + 1) matrix
E′m (based on the vectors e′5 that gives ρk`:v(h) = e′5 · θk`:v:h) be expressed as

P̂k`:m|b(v, v̆) = E′m · Θ̂k`:m|b(v, v̆), (S19)

where Θ̂k`:m|b(v, v̆) =
[
θ̂`k:v̆:m:n, . . . , θ̂`k:v̆:1:n, θ̂k`:v:0:n, . . . , θ̂k`:v:m:n

]′ is the length 5(2m + 1)
vector created by stacking into one vector all the estimated parameters from the local
Gaussian approximations. It follows from this that the target of interest can be written as[

ĉ m
k`:v(ω)

q̂ m
k`:v(ω)

]
=

[
Λ′c|m(ω)

Λ′q|m(ω)

]
· E′m · Θ̂k`:m|b(v, v̆), (S20)

which together with the asymptotic normality result from Theorem S5 (page 10), i.e.,√
n
(
b1b2

)3 · (Θ̂k`:m|b(v, v̆)−Θk`:m|b(v, v̆)
)

d−→ N
(

0, Σk`:v:m

)
, (S21)

and Brockwell and Davis (1986, proposition 6.4.2, p. 211) gives that√
n
(
b1b2

)3/m ·
([

ĉ m
k`:v(ω)

q̂ m
k`:v(ω)

]
−
[

ck`:v(ω)
qk`:v(ω)

])
(S22)

is asymptotically bivariate normally distributed with mean 0 and covariance matrix

1
m
·
([

Λ′c|m(ω)

Λ′q|m(ω)

]
· E′m · Σk`:v:m · Em ·

[
Λc|m, Λq|m

])
. (S23)

The specified form of the covariance matrix given in Theorem 1 now follows by the help of
some linear algebra, the observation in Theorem S5 that

Σk`:v:m :=

(
1⊕

h=m

Σv̆|`k:h

)⊕(
m⊕

h=0

Σk`:v:h

)
, (S24)
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and the definition σ̃2
k`:v(h) := e′5 · Σk`:v:h · e5 from Theorem S4.

It is easy to see that both σ2
c|k`:v(ω) and σ2

q|k`:v(ω) from Equation (S12) are nonzero

when ω 6∈ 1
2 ·Z, as required for the validity of Brockwell and Davis (1986, proposition 6.4.2,

p. 211). The proof for the case ω ∈ 1
2 · Z can be constructed in the same manner, simply

ignoring the components having sine-terms.

The key observation for the proof of Theorems 2 and 3 is that they both follow as a
consequence of Theorem 1 and Brockwell and Davis (1986, proposition 6.4.3, p. 211). Note
that these arguments are quite similar to those used for the investigation of the estimates of
the ordinary amplitude and phase spectra in Brockwell and Davis (1986, p.448-449).

Proof of Theorem 2.
First observe that the function h(x1, x2) =

√
x2

1 + x2
2 implies that

α̂ m
k`:v(ω)− αk`:v(ω) = h(ĉ m

k`:v(ω), q̂ m
k`:v(ω))− h(ck`:v(ω), qk`:v(ω)), (S25)

and then observe that the asymptotic covariance matrix in Theorem 1

Σk`:v(ω) :=

(
σ2

c|k`:v(ω) 0
0 σ2

q|k`:v(ω)

)
, (S26)

obviously is a symmetric non-negative definite matrix.
It now follows from Brockwell and Davis (1986, proposition 6.4.2, p. 211) that√
n
(
b1b2

)3/m · {h(ĉ m
k`:v(ω), q̂ m

k`:v(ω))− h(ck`:v(ω), qk`:v(ω))} d−→ N
(

0, σ2
α (ω)

)
, (S27)

where σ2
α (ω) = D · Σk`:v(ω) · D′, with

D =

[
∂

∂x1
h(x1, x2),

∂

∂x2
h(x1, x2)

]
=

[
x1/

√
x2

1 + x2
2, x2/

√
x2

1 + x2
2

]
(S28)

evaluated in (x1, x2) =
(
ck`:v(ω), qk`:v(ω)

)
.

A simple calculation gives D =
[
ck`:v(ω)/αk`:v(ω), qk`:v(ω)/αk`:v(ω)

]
, from which it

follows that σ2
α (ω) =

(
c2

k`:v(ω) · σ2
c|k`:v(ω) + q2

k`:v(ω) · σ2
q|k`:v(ω)

)
/α2

k`:v(ω).

Proof of Theorem 3.
This argument is quite similar to the proof of Theorem 2, and only the details that are differ-
ent will thus be included. In this case the function of interest is h(x1, x2) = tan−1(x2/x1

)
,

from which it follows that[
∂

∂x1
h(x1, x2),

∂

∂x2
h(x1, x2)

]
=
[
−x2/

(
x2

1 + x2
2

)
, x1/

(
x2

1 + x2
2

)]
. (S29)

This implies that D =
[
−qk`:v(ω)/α2

k`:v(ω), ck`:v(ω)/α2
k`:v(ω)

]
and a simple calculation

now gives

σ2
φ (ω) =

(
q2

k`:v(ω) · σ2
c|k`:v(ω) + c2

k`:v(ω) · σ2
q|k`:v(ω)

)
/α4

k`:v(ω), (S30)

which completes the proof.

S2. The underlying asymptotic results
S2.1. The bivariate case, a brief overview and the ρ̂k`:v(h)-case

The main ingredient for the theoretical setup is a translation of the bivariate results
from Tjøstheim and Hufthammer (2013) into the multivariate framework, and this is almost
identical to the discussion that was given in JT22 [Appendix B.1.2]. The main difference is
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that two extra indices (k and `) now are needed in order to specify which components from
Yt =

(
Y1,t, . . . , Yd,t

)
that are investigated.

The basic building-blocks was given in Section S1.1, see Definitions S1 to S4, and
the first target of interest is to define a suitable bivariate penalty function relative to the
requirement of Equation (S3). For a sample of size n from

{
Yk`:h:t

}
t∈Z, and with the

present notation, the local penalty function from Tjøstheim and Hufthammer (2013) can be
described as

Qk`:v:h:n(θk`:v:h) := −
n

∑
t=1

Kk`:h:b(Yk`:h:t − v) log ψ(Yk`:h:t; θk`:v:h)

+ n
∫
R2

Kk`:h:b(yk`:h − v)ψ(yk`:h; θk`:v:h)dyk`:h, (S31)

and from this, under suitable regularity conditions and by the help of the Klimko-Nelson
approach, the following asymptotic normality result can be obtained for the estimated
parameters, √

n
(
b1b2

)3 · (θ̂k`:v:h:n − θk`:v:h
) d−→ N(0, Σk`:v:h). (S32)

See Tjøstheim and Hufthammer (2013, Th. 3) for the details.
Notice that it only is the correlation component of θ̂k`:v:h:n − θk`:v:h that is of interest

for the present paper. The relevant result for that part is stated below in order to give a
reference for the statements in Theorem 1.

Theorem S4. Under Assumptions S1 to S3, the following univariate asymptotic result holds for
the estimates ρ̂k`:v(h) of the local Gaussian cross-correlations ρk`:v(h).√

n
(
b1b2

)3 · (ρ̂k`:v(h)− ρk`:v(h))
d−→ N

(
0, σ̃2

k`:v(h)
)

, (S33)

where σ̃2
k`:v(h) := e′5 · Σk`:v:h · e5.

Proof. With e′5 the unit vector that picks out the correlation part from θ̂k`:v:h:n − θk`:v:h, it
follows from Brockwell and Davis (1986, proposition 6.4.2, p. 211) that√

n
(
b1b2

)3 · (ρ̂k`:v(h)− ρk`:v(h))
d−→ N

(
0, e′5 · Σk`:v:h|5 · e5

)
. (S34)

S2.2. The asymptotic result for Θ̂k`:m|b(v, v̆)

The Klimko-Nelson approach from the bivariate case can be extended to the present
case of interest in the same manner as it was done for the local Gaussian auto-spectrum in
JT22 [Appendix B].

Definition S5. For each bivariate penalty function Qk`:v:h:n
(
θk`:v:h

)
(as given in Equation (S31)),

denote by Q̃k`:v:h:n
(
θk`:v:h

)
the extension of it from a function of Yk`:h:t :=

[
Yk,t+h, Y`,t

]′
to a

function of
[
Yk,t+m, . . . , Yk,t, Y`,t+m, . . . , Y`,t

]′
. Use these extensions do define the new penalty

function

Qv:v̆|k`:m:n

(
Θk`:m|b(v, v̆)

)
:=

1

∑
h=m

Q̃`k:v̆:h:n(θ`k:v̆:h) +
m

∑
h=0

Q̃k`:v:h:n(θk`:v:h). (S35)
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The 2m + 1 bivariate components in the sum that defines Qv:v̆|k`:m:n

(
Θ̂k`:m|b(v, v̆)

)
have no common parameters, so the optimisation of the parameters for the different
summands can be performed independently. The optimal parameter vector Θ̂k`:m|b(v, v̆)
for the penalty function Qv:v̆|k`:m:n (for a given sample) can thus be constructed by stacking

on top of each other the parameter vectors θ̂k`:v:h and θ̂`k:v̆:h that optimise the individual
summands in Equation (S35).

The Klimko-Nelson approach can now be used on the penalty function from Equa-
tion (S35) i.e., four requirements related to the penalty function must be verified before the
desired asymptotic result for the paramater-vector Θ̂k`:m|b(v, v̆) is obtained. The following
cross-spectrum analogue of JT22 [Theorem B.23] can now be stated for the present case of
interest.

Theorem S5. Under Assumptions S1 to S3, the following asymptotic behaviour holds for the
estimated parameters Θ̂k`:m|b(v, v̆) =

[
θ̂`k:v̆:m:n, . . . , θ̂`k:v̆:1:n, θ̂k`:v:0:n, . . . , θ̂k`:v:m:n

]′,√
n
(
b1b2

)3 · (Θ̂k`:m|b(v, v̆)−Θk`:m|b(v, v̆)
)

d−→ N
(

0, Σk`:v:m

)
, (S36)

where the matrix Σk`:v:m is the direct sum of the matrices from Equation (S32) that occurs when the
individual bivariate components of the penalty function are investigated, i.e.,

Σk`:v:m :=

(
1⊕

h=m

Σv̆|`k:h

)⊕(
m⊕

h=0

Σk`:v:h

)
. (S37)

Proof. This result follows when the Klimko-Nelson approach is used with the local penalty-
function Qv:v̆|k`:m:n

(
Θk`:m|b(v, v̆)

)
from Equation (S35), and the proof is in essence identical

to the proof of JT22 [Theorem B.23]. The three first requirements of the Klimko-Nelson
approach follows trivially from the corresponding investigation for the bivariate case,
whereas the proof of the fourth requirement must take into account how m → ∞ and
b→ 0+ as n→ ∞.

The investigation of the fourth requirement of the Klimko-Nelson approach can be
done in the exact same manner that was employed in JT22, i.e., first construct a col-
lection of simple random variables whose interaction and asymptotic properties are
easy to investigate, then use these basic building blocks to construct a more compli-
cated random variable Qnv|m that has the same limiting distribution as the estimator of√

b1b2∇k`:mQv:v̆|k`:m:n

(
Θk`:m|b(v, v̆)

)
(where ∇k`:m is obtained by stacking together ∇k`:h).

After this, it is sufficient to use standard methods to prove that the limiting distribution of
Qnv|m is the desired multivariate normal distribution, and the statement for the parameter

vectors then follows from the Klimko-Nelson theorem and some linear algebra.

S3. Sensitivity analysis of the tuning parameters

An investigation of how sensitive the estimates of the local Gaussian auto-spectra
f̂ m
``:v(ω) are to changes in the tuning parameters (and the point v) can be found in JT22 [Ap-

pendix D]. This section presents a similar investigation for the estimates of the local Gaus-
sian cross-spectra f̂ m

k`:v(ω), and it is seen here that the features observed for the univariate
case are also present in the multivariate case.

Different plots based on estimates of the local Gaussian cross-correlations and the
corresponding local Gaussian cross-spectra, i.e., ρ̂k`:v(h) and f̂ m

k`:v(ω), will be encountered,
and some of these plots are based on the distance function D from JT22 [Appendix D.1]. The
definition of D, and a short discussion of it, is for the convenience of the reader repeated in
Section S3.1 in the present Supplementary Material.

Sections S3.2 and S3.3 respectively consider the sensitivity of the point v and the
bandwidth b, whereas the sensitivity of the truncation level m is discussed in Section S3.4.
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The effect the value of the block length L has upon the bootstrap-based pointwise confidence
intervals is discussed in Section S5.3, since that gives the most natural flow.

The scripts required for the replication of the results in this section are contained in
the R-package localgaussSpec, and these scripts can be used as templates for those that
would like to investigate other time series in a similar manner. See Section S6.1 for details.

S3.1. Sensitivity analysis - the distance function

The purpose of this section is to repeat the motivation for and the definition of the distance
function D given in JT22 [Appendix D.1]. The discussion of possible alternatives will not
be included here.

Motivation: An investigation of the sensitivity of the different tuning parameters
requires a tool that can measure the differences that occur when these tuning parameters
are adjusted. The distance function D used in this paper is the one inherited from the
complex Hilbert space of Fourier series on the interval

[
− 1

2 , 1
2

]
, cf. e.g. Brockwell and

Davis (1986, Ch. 2.8), i.e., for f (ω) = ∑∞
h=−∞ ρ(h)e−2πih the norm is defined by || f (ω)||2 =∫ 1/2

−1/2 f (ω) f (ω)dω = ∑∞
h=−∞ ρ(h)2. This motivates the following definition.

Definition S6. Given two spectra f1(ω) = ∑∞
h=−∞ ρ1(h)e

−2πih and f2(ω) = ∑∞
h=−∞ ρ2(h)e

−2πih,
the distance between them is denoted by

D( f1(ω), f2(ω)) :=

√
∞

∑
h=−∞

(
ρ1(h)− ρ2(h)

)2. (S38)

Furthermore: The notation D( f1(ω)) will be interpreted as D( f1(ω), 0), which implies that
D( f1(ω), f2(ω)) also can be written as D( f1(ω)− f2(ω)) (which is used in Figure S3.10).

The obvious adjustment must be applied when the distance function D is used on
m-truncated estimates f̂ m

k`:v(ω), i.e., ρ(h) should be replaced with λm(h) · ρ̂k`:v(h) when
|h| ≤ m, and with 0 when |h| > m.

Regarding the frequency-dimension: The distance measure D given in Definition S6
does not contain any information about the frequencies, and completely different spectral
densities can have the same distance-value. It is thus, for the purpose of sensitivity analysis,
important to combine distance-based plots with plots that reveal something about the
frequency-component too.

S3.2. Sensitivity analysis: The point v

The point v, contrary to the bandwidth b and the truncation level m, is not a tuning
parameter of the estimation algorithm — but it is natural to investigate how the local
Gaussian spectra f̂ m

k`:v(ω) varies with v. Due to this it is also of interest to consider some
plots that can reveal how f̂ m

k`:v(ω) behaves as a function of the selected point v.
Figures 2, 4 and 7 of the main part used heatmap- and distance-plots to show how

f̂ m
k`:v(ω) varied with the selected point v (restricted to the diagonal), in particular Figures 2

and 4 considered the bivariate local trigonometrical examples used for the sanity testing of
the implemented estimation algorithm, whereas Figure 7 looked at the DAX- and CAC-
components of the EuStockMarkets-data. These plots are extensions to the multivariate
case of the corresponding heatmap- and distance-plots that was introduced for the univari-
ate case in JT22.

S3.2.1. Revisiting the univariate case

For a local Gaussian investigation of a multivariate sample, like the EuStockMarkets-
data, it is of course important to investigate both the local Gaussian cross-spectra f̂ m

k`:v(ω)

and the marginal local Gaussian auto-spectra f̂ m
kk:v(ω). Figure 7 from the main-part should
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Heatmap and distance plot: DAX and CAC

Figure S3.1. Heatmap- and distance-plots for the marginal DAX- and CAC-components of the
EuStockMarkets-data, the DAX-component to the left. Investigation with focus on how the local
Gaussian auto-spectra f̂ 10

kk:v(ω) changes when the point v varies along the diagonal. The three points
used in Figure 9 have been highlighted with lines/points.

thus be accompanied with the marginal heatmap- and distance-plots of the DAX- and
CAC-components of EuStockMarkets, as seen in Figure S3.1.

Note that the points v =
(
v1, v2

)
seen in Figure S3.1 only varies along the diagonal,

i.e., v1 = v2. This was used in JT22 since it simplified the graphical inspection (the local
Gaussian auto-spectra are always real-valued on the diagonal). The points v =

(
v1, v2

)
can

of course also vary along non-diagonal lines, but the resulting visualisation for the local
Gaussian auto-spectra must then deal with complex-valued results instead of real-valued
results.

Figure S3.1 shows how heatmap-plots can be used to see how the local Gaussian
auto-spectra f̂ m

kk:v(ω) varies with diagonal points v (for a fixed bandwidth b and a fixed
truncation level m). The distance function D from Definition S6 has been used to create
the distance-based plots, and these show how the norms D

(
f̂ m
kk:v(ω)

)
varies with v. Note

that the scales are different for the DAX- and CAC-components in Figure S3.1, with the
DAX-component (left side) having the highest values.

The distance-parts of Figure S3.1 also includes the distance-based value computed from
the ordinary (m-truncated) autospectra (red horizontal line). A comparison of the distances
from the ordinary spectra and the local Gaussian spectra can provide an indication of the
presence of non-Gaussian dependency structures in the time series under investigation.
Note that a comparison of the global spectra and the local Gaussian spectra is not possible
based on the heatmaps seen in Figure S3.1 (since they only reveal information based on
the local Gaussian spectra), and it is thus also necessary to consider plots like those seen in
Figures 1, 3, 5, 9 and 12 in the main part.

The points v in Figure S3.1 ranges from the 5% percentile to the 95% percentile of the
standard normal distribution, increasing in steps of 0.5% (altogether 91 different points).
This percentile based selection implies that the corresponding points are not equally spaced
along the actual diagonal, and the plots in Figure S3.1 (and all similar v-investigating
plots) have thus used the option that the points v have been presented according to their
underlying percentile-values — which implies that these plots primarily reveals information
about the copula-structure of the time series under investigation.
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The features seen for the DAX- and CAC-parts of Figure S3.1 are similar to those
observed for the dmbp-example4 investigated in JT22. In particular, the local Gaussian
auto-spectra f̂ m

kk:v(ω) are rather flat near near the 50% percentile, and in this region the
spectra are quite similar to those encountered from a sample from an i.i.d. white noise
situation. Moreover, it is also here seen (as it was for the dmbp-case) that there is a clear
asymmetric behaviour between the lower tail and upper tail, and this asymmetry is easier
to see from the distance-parts of Figure S3.1.5

The observed asymmetry, with a higher peak at the lower tail, are in agreement with
the asymmetry between a bear market (going down) and a bull market (going up).

It must be added that the 5% and 95% percentiles are quite far out in the tails of the
distribution, and it is thus natural to assume that the selected bandwidth in those cases
might fail to work properly — and the small sample variation of the points closest to the
point v might then render the estimated local Gaussian autocorrelations rather dubious. It
is possible to counter this problem by selecting a larger bandwidth for percentiles in the
tails, but it is then important to keep in mind that a too large bandwidth might completely
miss the desired local structure at the point of investigation.

S3.2.2. Extension to the multivariate case

The restriction to diagonal points, as seen in Figure S3.1, ensures that the resulting local
Gaussian auto-spectra f̂ m

kk:v(ω) always are real-valued. The local Gaussian cross-spectra
f̂ m
k`:v(ω) will however be complex-valued, and some modifications of the plotting procedure

are thus needed when these plots are extended to the multivariate case.
The distance function D from Definition S6 works equally well for real-valued and

complex-valued spectra, so the distance-part of the plots remains exactly the same.6 The
heatmap-part of the plots must however be updated, and a natural strategy for this endeav-
our is to split the complex-valued local Gaussian cross-spectra f̂ m

k`:v(ω) into a combination
of the related real-valued spectra given in Definition 2 in the main part

A complex number z can be represented in a Cartesian form, i.e., z = x + i · y, where x
and y respectively are the real and imaginary parts of the number. From the definition of
the Co-spectrum ck`:v(ω) and Quad-spectrum qk`:v(ω), it is clear that f̂ m

k`:v(ω) = ck`:v(ω)−
i · qk`:v(ω). This implies that one way to adjust the heatmap-plot to the bivariate case is to
present a pair of plots, where one plot represent the Co-spectrum and the other represent
the Quad-spectrum. This approach was used in Figures 2, 4 and 7 in the main part.

The complex number z can also be represented in a polar form, i.e., z = α · ei·φ, where
α and φ respectively are the modulus and the phase of the complex number. From the
definition of the Amplitude-spectrum αk`:v(ω) and Phase-spectrum φk`:v(ω), it is clear
that f̂ m

k`:v(ω) = αk`:v(ω) · ei·φk`:v(ω). This implies that another possible extension of the
heatmap-plot to the bivariate case is to use a pair of plots, where one plot represent the
Amplitude-spectrum and the other plot represent the Phase-spectrum.

Figure S3.2 shows a heatmap- and distance plot for the local Gaussian cross-spectrum
for the DAX- and CAC-components of the EuStockMarkets-data, where the heatmap-part
use the Amplitude + Phase decomposition. A comparison with Figure 7 from the main
part reveals that the information gained from the Amplitude-spectrum part of Figure S3.2
in this case is similar to the one gained from the Co-spectrum part of Figure 7. A similar

4 The Deutschemark/British pound Exchange Rate (dmbp) data from Bollerslev and Ghysels (1996), which is a
common benchmark data set for GARCH-type models. The data used in JT22 was found in the R-package
rugarch, see Ghalanos (2022), where the following description was given: “The daily percentage nominal
returns computed as 100[ln(Pt)− ln(Pt − 1)], where Pt is the bilateral Deutschemark/British pound rate
constructed from the corresponding U.S. dollar rates.”

5 It can also be seen that the DAX-component (left side of Figure S3.1) have a slightly more extreme behaviour
in the lower tail than the one observed for the CAC-component (right side).

6 It is worth noticing that the lowest value that can occur for the distance is 1 when an auto-spectrum is

investigated, whereas it is 0 when a cross-spectrum is investigated, i.e., D
(

f̂ m
kk:v(ω)

)
≥ 1 and D

(
f̂ m
k`:v(ω)

)
≥ 0

when k 6= `. The values seen in the distance-plot thus gives an investigator an idea with regard to how far
away from an i.i.d. white noise situation the resulting auto- and cross-spectra are.
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Figure S3.2. Heatmap and corresponding distance-based plots based on the DAX- and CAC-
components of the EuStockMarkets-data, showing how the complex-valued local Gaussian cross-
spectrum f̂ 10

k`:v(ω) changes when when the point v varies along the diagonal. Investigation based on
the Amplitude- and Phase-spectra, cf. Figure 7 the main part for the Co- and Quad-spectra version.
The three points used in Figure 9 have been highlighted with lines/points.

comparison of the Quad-spectrum and the Phase-spectrum from these reveals that these also
are quite similar (at least after taking into account that the definition of the Quad-spectrum
is minus one times the imaginary part of the cross-spectrum explains why positive and
negative regions have been inverted).

Based on the details seen in Figure S3.2 and Figure 7, it might be tempting to conclude
that it hardly matters what kind of decomposition (Cartesian or polar) that is used for the
inspection of the complex-valued local Gaussian spectra, but it should be noted that the
Quad-spectrum in this particular case have much smaller values than the Co-spectrum, and
that could be the source of the similarity.

The two cases investigated in Figures 2 and 4, i.e., the bivariate local trigonometrical
examples used for the sanity testing of the implemented estimation algorithm, can also
be investigated by the help of a polar composition of the complex-valued local Gaussian
cross-spectrum, and the resulting plots are presented in Figures S3.3 and S3.4.

An inspection of the Co- and Quad- spectra in Figures 2 and 4 clearly reveals that the
two bivariate local trigonometrical examples have different local properties, i.e., the peaks and
troughs occur at different frequencies for different points v. The distance-parts of Figures 2
and 4 did, however, not show this difference — and this highlights why it is important to
include a visualisation of the frequency component.

As seen in the previous paragraph, the Cartesian-type decomposition of the local
Gaussian cross-spectrum, i.e., f̂ m

k`:v(ω) = ck`:v(ω)− i · qk`:v(ω), made it easy to spot the
differences between the two bivariate local trigonometrical examples. What about the strategy
based on the polar-type decomposition, i.e., f̂ m

k`:v(ω) = αk`:v(ω) · ei·φk`:v(ω)?
The complex-valued data used for the construction of Figures 2 and 4 was also used for

the construction of Figures S3.3 and S3.4, but it is quite a bit harder to use the latter pair of
plots to spot the differences between the two bivariate local trigonometrical examples. In fact
the Amplitude-spectra parts of Figures S3.3 and S3.4 are so similar that it is hard to tell them
apart. The Phase-spectra parts are similarly quite hard to investigate, in particular since
the values in this case are restricted to the range (−π, π]. Unless the Phase-spectra values
have opposite signs, it is very hard to compare the colour-gradients in the Phase-spectra
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Figure S3.3. Heatmap and corresponding distance-based plots based on the local trigonometric constant
phase-adjustment example, showing how the complex-valued local Gaussian cross-spectrum f̂ 10

k`:v(ω)

changes when when the point v varies along the diagonal. Investigation based on the Amplitude-
and Phase-spectra, cf. Figure 2 in the main part for the Co- and Quad-spectra version. The three points
used in Figure 3 have been highlighted with lines/points. Vertical lines have been added to the
heatmap-plots to highlight the frequencies used to generate the local trigonometric example.
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Figure S3.4. Heatmap and corresponding distance-based plots based on the local trigonometric different
phases-adjustment example, showing how the complex-valued local Gaussian cross-spectrum f̂ 10

k`:v(ω)

changes when when the point v varies along the diagonal. Investigation based on the Amplitude-
and Phase-spectra, cf. Figure 4 in the main part for the Co- and Quad-spectra version. The three points
used in Figure 5 have been highlighted with lines/points. Vertical lines have been added to the
heatmap-plots to highlight the frequencies used to generate the local trigonometric example.
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Figure S3.5. Heatmap of the local Gaussian cross-correlations ρ̂k`:v(h) based on the DAX- and CAC-
components of the EuStockMarkets-data, showing how these estimates change when the point v
varies along the diagonal. The three points used in Figure 9 have been highlighted with lines.

parts of Figures S3.3 and S3.4 and conclude that there are significant differences between
the two bivariate local trigonometrical examples that are investigated in these plots.

The preceding discussion shows that it is easier to digest the information stored in the
complex-valued local Gaussian cross-spectrum when the heatmap-parts are decomposed
into Co- and Quad-spectra — and this motivated the use of this version for the heatmap-
and distance-plots included in the main part, i.e., Figures 2, 4 and 7.

S3.2.3. Heatmap-plots for the estimates ρ̂k`:v(h)

The computation of the complex-valued local Gaussian cross-spectra f̂ m
k`:v(ω) requires

the computation of the 2m + 1 local Gaussian cross-correlations
{

ρ̂k`:v(h)
}m

h=−m, and it
is thus (as a supplement to the plots seen in Figures 2, 4 and 7 in the main part and
Figures S3.2 to S3.4 in the preceding discussion) also possible to create heatmap-based plots
that can visualise how these estimates change as the point v moves along the diagonal from
the 5% to the 95% percentile. Figure S3.5 presents a heatmap-plot for the local Gaussian
cross-correlation between the DAX- and CAC- components of the EuStockMarkets-data.

Note that the values ρ̂k`:v(h) by construction lies in the interval [−1, 1], and the colour-
gradient has thus been predefined to use this range. It is quite easy to see from Figure S3.5
if the ρ̂k`:v(h)-values are close to zero (white) or if they are closer to the endpoints ±1. It
can from such an investigation also be seen if some lags behave differently from the others,
and it is also possible to see if it might be an asymmetric situation between the behaviour
in lower and upper tails. Finally, it can also help reveal if the estimation of the values in the
tails might be somewhat dubious, since that often will reveal itself by values that becomes
quite close to ±1, or suddenly changes from one extreme to the other.

S3.3. Sensitivity analysis: The bandwidth b

The bandwidth b =
(
b1, b2

)
is a bivariate parameter, but it was noted in JT22 that it is

quite natural to assume b1 = b2 for univariate time series {Yt}
n
t=1. This is due to the local

Gaussian autocorrelations ρkk:v(h) being computed based on (pseudo-normalised versions
of the) lag h pairs

(
Yt+h, Yt

)
, and the marginal time series in this case thus coincide with

the one we started with.
The justification from the univariate case for b1 = b2 does not work when the local

Gaussian cross-correlations ρk`:v(h) are to be estimated for a multivariate time series, but
in this case it is possible to use the pseudo-normalisation of the marginals as a justification
for the assumed equality of b1 and b2.

With this restriction it follows that the sensitivity of the complex-valued local Gaussian
cross-spectrum f̂ m

k`:v(ω), due to changes in the bandwidth b, can be investigated in a similar
manner to the one used in the preceding section for the diagonal points v. Figures S3.6
and S3.7 show the results of such an investigation (at the point 10%::10%) for the complex-
valued local Gaussian cross-spectrum f̂ m

k`:v(ω) based on the DAX- and CAC-components
of the EuStockMarkets-data. Figure S3.6 gives a Cartesian decomposition into the Co- and
Quad-spectra, whereas Figure S3.7 presents the polar decomposition into the Amplitude-
and Phase-spectra. As mentioned before: Since the scale of the imaginary part of f̂ m

k`:v(ω)
is much smaller than the real part in this particular case, the Amplitude-spectrum is in
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Figure S3.6. Heatmap and corresponding distance-based plots based on the DAX- and CAC-
components of the EuStockMarkets-data, showing how the complex-valued local Gaussian cross-
spectrum f̂ 10

k`:v(ω) changes when when the bandwidth b varies. Investigation based on Co- and
Quad-spectra, cf. Figure S3.7 for the the Amplitude- and Phase-spectra version. The bandwidth
b = 0.6 used in Figure 9 has been highlighted with a line/point.
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Figure S3.7. Heatmap and corresponding distance-based plots based on the DAX- and CAC-
components of the EuStockMarkets-data, showing how the complex-valued local Gaussian cross-
spectrum f̂ 10

k`:v(ω) changes when when the bandwidth b varies. Investigation based on the Amplitude-
and Phase-spectra, cf. Figure S3.6 for the Co- and Quad-spectra version. The bandwidth b = 0.6 used
in Figure 9 has been highlighted with a line/point.

essence the absolute value of the Co-spectrum — and since the Co-spectrum is positive for
this example it follows that the plots of the Amplitude-spectrum is very similar to the plot
of the Co-spectrum in this particular case.

As mentioned in JT22 [Appendix D.3]: “The bandwidth b should be selected according
to the Goldilocks principle, i.e. it should neither be ‘too low’ nor ‘too high’, it must be ‘just
right’.” An inspection of the heatmap and distance-based plots in Figures S3.6 and S3.7 can
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provide some information with regard to what kind of problems that can occur when the
bandwidth does not belong to the “just right” region. The bandwidths used in Figures S3.6
and S3.7 starts at 0.25 and ends at 1.5 (increasing in steps of 0.005, altogether 251 different
bandwidths), and the bandwidth b = 0.6 has been highlighted since it was that value that
was used in Figures 7 to 9 in the main part.

The problems occurring for the multivariate case are the same as those discussed in
JT22 [Appendix D.3] for the univariate case. If b becomes too large, then the estimated local
Gaussian cross-correlations ρ̂k`:v(h) will no longer capture the local structure of interest,
and the corresponding estimated local Gaussian spectral density f̂ m

k`:v(ω) (which no longer
deserves to be referred to as “local”) will then be indistinguishable from the ordinary
spectral density. It is clear from Figures S3.6 and S3.7 that a bandwidth greater than b = 1.0
will be too large for the investigation of the EuStockMarkets-data.

On the other side, it is expected that a too low bandwidth will trigger a degeneration
of the estimated local Gaussian cross-correlations, i.e., ρ̂k`:v(h) will tend towards either
+1 or −1 regardless of the actual structure of the underlying density distributions. The
reason for this is (as previously explained in JT22 for the local Gaussian auto-correlation
case) that ρ̂k`:v(h) will, due to the kernel function from the density estimation algorithm,
become increasingly sensitive to the position of the (pseudo-normalised) h-lagged pairs(

Yk,t+h, Y`,t

)
that lies nearest to the point v =

(
v1, v2

)
. To clarify, for a given point v

there will be a collection of Euclidean distances to the (pseudo-normalised versions of the)
h-lagged pairs

(
Yk,t+h, Y`,t

)
in the sample, and these distances could (after a re-indexing)

be sorted in ascending order
{

di
}n−h

i=1 .
Under the assumption that it is the product normal kernel that is used, the contribution

from a lag-h pair
(

Yk,t+h, Y`,t

)
that lies a distance of di from v will be weighted by wi:b :=

1
2πb2 e−d2

i /2b2
— and it is now natural to consider the set of all the weightsWv:b :=

{
wi:b

}n−h
i=1 .

The primary detail of interest is how much larger the weights are for the pairs that are

closest to v, and it is thus necessary to consider the fraction rij:b := wi:b/wj:b =
(

ed2
j−d2

i
)1/b2

.

The number rij:b will, when di < dj, grow to ∞ when b → 0+, and this implies that the
estimation algorithm for small b-values will become increasingly sensitive to the h-lagged
pairs that are closest to the point v when the bandwidth shrinks — and in the end it would
thus be natural to have a degeneration of the estimated value ρv(h) to either +1 or −1.

Note that the corresponding D
(

f̂ m
k`:v(ω)

)
will grow when this degeneration happens,

as can be seen for b = 0.25 in the distance-part plots in Figures S3.6 and S3.7.
Heatmap-plots for the estimates ρ̂k`:v(h): It is here, as it was for the investigation

of the diagonal points v, possible to also consider a heatmap-based investigation of the
underlying estimates

{
ρ̂k`:v(h)

}m
h=−m. Such a plot is given in Figure S3.8, and it can there

be observed how some of the ρ̂k`:v(h)-estimates changes from having a value close to
zero to a value that must be close to + or −1 as the bandwidth b decreases. This is, as
mentioned above, not a surprising observation — since this behaviour is expected when the
bandwidth b has shrunk to a level where the kernel function in the local penalty function
gives quite high weights to the few observations

(
Yk,t+h, Y`,t

)
nearest v, and very low

weights elsewhere.
Note that Figures S3.6 to S3.8 consider the situation where v is the “lower tail” diagonal

point at 10%::10%. Similar heatmap- and distance-plots could have been included for the
cases where v corresponds to either the center or the upper tail.7 A comparison of the
distance-based plots for these three points is presented in Figure S3.9, in order to show
how the bandwidth-sensitivity of f̂ m

v (ω) also depends on the selected point v. A common

7 The interested reader can use the scripts in the R-package localgaussSpec to get access to these plots for the
center and upper tail, cf. Section S6.1 for details.
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Figure S3.8. Heatmap of the local Gaussian cross-correlations ρ̂k`:v(h) based on the DAX- and CAC-
components of the EuStockMarkets-data, showing how these estimates change when the bandwidth
b varies. The bandwidth b = 0.6 used in Figure 9 has been highlighted with a line.
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Figure S3.9. Distance-based plots based on the DAX- and CAC-components of the EuStockMarkets-

data, that shows how the distance D
(

f̂ 10
k`:v(ω)

)
varies with the bandwidth b for the three percentiles

used in Figure 9, i.e., 10%, 50% and 90%. The bandwidth b = 0.6 used in Figure 9 has been highlighted
with a point.

scale has been used for the three subplots in order to emphasise the asymmetry between
the lower and upper tail.

The center plot of Figure S3.9 reveals that the “too low bandwidth problem” occurs a
bit slower in a high density region, but it will even there eventually create a situation where
the estimated local Gaussian autocorrelations degenerate towards either +1 or −1. This
is the exact same behaviour that was observed in JT22 for the local Gaussian auto-spectra
f m
kk:v(ω), and this is as expected since the higher concentration of (pseudo-normalised)

points at the center implies that the degeneration of the estimates first will occur at shorter
bandwidths.

The heatmap and distance-based plots in Figures S3.6 to S3.9 can detect the clearly
undesirable regions for the bandwidth b, but they do not reveal what the “just right” value
for the bandwidth should be. Nevertheless, it is still possible to gain some insight into how
sensitive the estimate of f m

k`:v(ω) will be for minor variations of the bandwidth b, and that
can be useful with regard to the selection of a few bandwidths that can be used when e.g. a
bootstrap-investigation is to be performed.

The framework used in the R-package localgaussSpec ensures that it is trivial to
compute and investigate/compare a wide range of bandwidths simultaneously, and the
key idea is that knowledge of the local dependency structure can still be obtained even if
the selected bandwidths are not spot on the “just right” value for the bandwidth.
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S3.4. Sensitivity analysis: The truncation level m

This section is in essence the same as JT22 [Appendix D.4]. The main differences
are primarily (1) that the notation have been updated in order to reflect that the target of
the investigation now is the local Gaussian cross-spectrum f m

k`:v(ω) (instead of the local
Gaussian auto-spectrum), and (2) that the sample under investigation in this case is the
multivariate EuStockMarkets-data instead of the univariate dmbp-data.

The shape of f m
k`:v(ω) for a low truncation level can be different from the shape seen

when a higher truncation level is used. It is thus of interest to investigate how sensitive the
estimates f̂ m

k`:v(ω) are to changes in the truncation level m.
This issue can easily be probed by performing an initial investigation with a high value

for the maximum lag to be computed, since the computational cost is not too large when
only a single sample (like the EuStockMarkets-data) is investigated. It did e.g. not take
a long time to estimate ρk`:v(h) for h = −200, . . . ,−1, 0.1, . . . , 200, which was needed for
the construction of Figure 8 in the main document — and with these estimates it is trivial
to compare f̂ m

k`(ω) and f̂ m
k`:v(ω) for m up to 200, since the integrated shiny-application of

the R-package localgaussSpec can animate the changes that occur in the spectra when m
grows from 0 to 200.

The computational costs can become rather large when it is necessary to find point-
wise confidence intervals, since a high number of replicates then must be investigated
with the same configuration of tuning parameters. It is then important to figure out
a sufficient truncation level m, and restrict the attention to the estimates of ρk`:v(h) for
h = −m, . . . ,−1, 0, 1, . . . , m.

A drawback with the shiny-based approach in localgaussSpec is that it requires an
inspection of many different plots. It could thus be of interest to also consider summary-
plots that either use the distance function D from Definition S6, or some heatmap-based
alternative visualisation of f̂ m

k`:v(ω), similar to those used for ρ̂k`:v(h) in Figures S3.5 and S3.8.
Distance plots: It is possible to investigate the m-sensitivity by distance-based plots,

but those plots are less useful in this case. One reason for this is that the norms D
(

f̂ m
k`:v(ω)

)
are monotonically increasing as functions of m. This can easily be seen by first recalling (cf.
Algorithm 1(4)) that the estimates f̂ m

k`:v(ω) are given by

f̂ m
k`:v(ω) := ρ̂k`:v(0) +

m

∑
h=1

λm(h) · ρ̂`k:v̆(h) · e
+2πiωh +

m

∑
h=1

λm(h) · ρ̂k`:v(h) · e
−2πiωh,

and then keeping in mind that the lag-window function λm(h) satisfies λm+1(h) ≥ λm(h).

It follows that D
(

f̂ m+1
k`:v (ω)

)
≥ D

(
f̂ m
k`:v(ω)

)
, which does not provide any useful new infor-

mation.
Instead of a plot of the norms D

(
f̂ m
k`:v(ω)

)
, it is slightly more interesting to consider a

plot that shows D
(

f̂ m+1
k`:v (ω)− f̂ m

k`:v(ω)
)

, i.e., the distances between f̂ m+1
k`:v (ω) and f̂ m

k`:v(ω) in
the Hilbert space of Fourier series. This idea is shown in Figure S3.10 for the three diagonal
points and 200 lags that was included in Figure 8. Note that Figure S3.10 takes into account
the scaling due to the lag-window function λm(h), and as such it does provide some new
information compared to that contained in the plot showing the estimated local Gaussian
cross-correlations.

The three subplots of Figure D.8 shows that D
(

f̂ m+1
k`:v (ω)− f̂ m

k`:v(ω)
)

rather quickly
starts to decrease monotonically, which is as expected given the presence of the lag-window
function λm(h). This decrease implies that the effect of a change in the truncation level from
m to m + 1 becomes smaller as m grows, and the sensitivity is thus largest when m is small.

Figure D.8 might indicate that the m = 10 used in the main part is a bit too small.
However, the purpose of that particular truncation level was simply to show that even a low
truncation level could be used to detect the presence of nonlinear dependency structures in
the time series under investigation, i.e., structures not detected by the ordinary spectrum.
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Figure S3.10. Distances between successive m-truncations of the local cross-spectra f̂ m
k`:v(ω) between

the DAX- and CAC-components of the EuStockMarkets-data.

It is natural to assume that two successive local Gaussian spectra f̂ m
k`:v(ω) and f̂ m+1

k`:v (ω)
should be similar in shape when m has grown a bit, but this does not imply that the
accumulated changes to f̂ m

k`:v(ω) are negligible. It is thus important to also inspect the
frequency-dimension, and this can as mentioned above easily be done by the interactive
shiny-application in the localgaussSpec-package.

Heatmap plots: The truncation level m is a discrete tuning parameter, and an inspec-
tion based on a heatmap-based approach could thus follow the setup used for the estimated
ρ̂k`:v(h)-values seen in Figures S3.5 and S3.8. The R-package localgaussSpec contains a
script that can be used to create such a heatmap-based plot for f̂ m

k`:v(ω), with the frequencies
ω along one axis and the truncation levels m along the other.

The resulting heatmap-based plot clearly showed that the peak seen in the Co-spectra
part of Figure 9 at ω = 0 (for m = 10 and a point either in the lower or upper tail) became
even more dominating as m increased, and the peak dominated to such an extent that the
heatmap-based plot did not reveal anything about the other frequencies. This plot has thus
not been included here, but the script is available in localgaussSpec, cf. Section S6.1 for
details.

S4. How to select the tuning parameters?

The sensitivity analysis in Section S3 considered the effect of minor changes to the
tuning parameters b and m, and it did also discuss the sensitivity of f̂ m

k`:v(ω) that is due to
the position of the point v — which is of interest to know when a given sample/model is to
be investigated. But what should the tuning parameters be for an actual investigation?

This topic was discussed in JT22 [Appendix E] for the local Gaussian auto-spectra
f̂ m
kk:v(ω), and this discussion extends without any changes to the present multivariate case.

The proposed strategy has been summarised below.
First of all, the R-package localgaussSpec can compute f̂ m

k`:v(ω) for a wide range of
tuning parameters, and for a large selection of different points v. The computation will
then also provide estimates of the univariate components, and all the relevant plots (of
local Gaussian auto- and cross-correlations, and local Gaussian auto- and cross-spectra) can
be investigated interactively by the shiny-application that is a part of localgaussSpec.

The computational cost for a single estimate f̂ m
k`:v(ω) is normally not too large (assum-

ing the truncation level m is not very high), but the total time can become quite large when
a wide range of points v and bandwidths b are to be investigated at the same time. The
creation of pointwise confidence intervals might on top of this require a large number of
replicates R (or bootstrapped samples).

An investigation can start by looking at a single sample (real data, or a sample gener-
ated by a parametric model). It is reasonable to first look at a coarse grid based on a low
number of points v. The bandwidths b should also be restricted to only a few values in this
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part. The truncation level m can be rather low (range 10-30), since it seems to be the case
that interesting features can be detected even for this range of truncation levels.

If the initial investigation detects the presence of non-Gaussian dependency structures
in the sample, then the next step is to select a (reasonable) bandwidth b and a (not too high)
truncation level m, and then create heatmap- and distance-based plots of the estimates
f̂ m
k`:v(ω) for a wide range of points v.

Select a collection of points v that it could be of particular interest to investigate further,
and then investigate e.g. R = 100 replicates (or bootstrap samples) in order to produce
pointwise confidence intervals for the resulting estimates of the local Gaussian auto- and
cross-spectra. (See the discussion in Section S5 for details related to the bootstrapping.)

Some comments regarding the bandwidth b: The discussion about the b-sensitivity
of the estimated local Gaussian cross-spectra f̂ m

k`:v(ω) in Section S3.3, see Figures S3.6 to S3.9,
indicate that the value used for the bandwidth b might not be that critical, unless it is
“too short” or “too long”. Insofar the purpose of the investigation is the detection of
non-Gaussian dependency structures, it seems to be the case that a reasonable range of
bandwidths will return the same conclusion. This implies that it instead of a “select the
optimal bandwidth”-algorithm, should be sufficient to perform an investigation for a few
bandwidths in order to see if any findings are consistent across those.

The interested reader can find a more in detail discussion related to the selection of the
bandwidth b in JT22 [Appendix E.2], including a short discussion of some papers that have
discussed the bandwidth selection for the estimation of the local Gaussian correlation ρv.

S5. Regarding sampling and resampling

The section corresponds to JT22 [Appendix F], and the topic of interest is how sampling
and resampling strategies can be used for different local Gaussian spectral investigations of
a time series.

Section S5.1 focuses on the parametric bootstrap approach, where repeated indepen-
dent simulations are done from given parametric models fitted to a given sample. It is
here seen how the univariate local Gaussian sanity testing of parametric models from
JT22 [Appendix F.2] can be extended to cover the multivariate case. This part includes an
investigation of the DAX- and CAC-margins of the EuStockMarkets example, and then
new plots are presented for the sanity testing of the cross-interaction of the multivariate
parametric models fitted to the EuStockMarkets data.

The discussion in Sections S5.2 and S5.3 focuses on the resampling problem, which is
critical for the production of the pointwise confidence intervals based on a given sample.
Section S5.2 gives a summary of the discussion in JT22 [Appendix F] that motivated
the introduction of the Circular index-based block bootstrap for tuples, with some additional
comments about the role of the block length L. Finally, Section S5.3 presents a sensitivity
analysis of the block length L for a multivariate example, which shows that this parameter
have a minor effect on the resulting estimated pointwise confidence intervals.

S5.1. Parametric bootstrap and local sanity-testing of models

The discussion in JT22 [Appendix F.2] (motivated by a similar approach in Birr et al.
(2019)) explained how a parametric bootstrap approach could be used to investigate models
fitted to real data. The key idea is that a parametric model first is fitted to the original
sample, and samples from that particular fitted model is thereafter used to produce the local
Gaussian estimates needed for the comparison with the actual sample under investigation.
This enables a local sanity-test (based on the m-truncated local Gaussian spectra) of the
fitted model, since it can be used to identify if there are any points/frequencies with a clear
mismatch between the local structures detected in the original sample and those seen in
samples from the fitted model.

A key restriction in the above mentioned comparison is that the number of obser-
vations simulated from the fitted model should equal the number of observations in the
sample. It is of course also possible to compare different fitted models against each other
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directly, in which case the length of the simulated samples can be selected freely. Such an
approach might be useful in order to check if different model-fitting approaches might
have deviating local Gaussian dependency structures. The plots from the main part (and
Section S3) can be used when comparing different fitted models.

It might also be of interest to simulate samples of different lengths from one particular
known parametric model, and then fit different parametric models to those samples. The
plots discussed in Sections S5.1.2 and S5.1.3 might be helpful for such an investigation.

S5.1.1. The example under consideration

The univariate example in JT22 [Appendix F.2] used the dmbp-data as the known
sample. The fitted model was a GARCH-type model, more precisely an asymmetric power
ARCH-model (apARCH) of order (2, 3), with parameters based on a fitting to the dmbp-
data.8 The univariate approach will now be extended to the multivariate case, with a
repetition of the setup from the univariate case in Section S5.1.2 (since any investigation of a
multivariate parametric model fitted to a multivariate sample should include a comparison
of the univariate components).

The multivariate example considered in this paper uses the EuStockMarkets-data as
the known sample, and in particular the restriction to the bivariate subset based on the
DAX- and CAC-components (see Figures S5.1 to S5.6). As described in Section 3.2.2, the
fitted parametric model in this case is a basic multivariate copula GARCH-model — which
was selected only in order to provide a proof of concept. From this starting point it is
natural to expect that the present local Gaussian sanity investigation should reveal that this
particular multivariate copula GARCH-model does not properly capture the local Gaussian
structures seen in the original sample.

S5.1.2. The univariate marginals

Figures S5.1 and S5.2 consider respectively the univariate DAX- and CAC-components
of the EuStockMarkets-data, and these use the comparison of fitted models and sample
that was introduced in JT22 [Figure F.1]. The description below is in essence the same as
the one given in JT22 [Appendix F.2], and it explains how these plots are to be interpreted.

The key idea in Figures S5.1 and S5.2 is that estimates of the m-truncated local Gaussian
auto-spectra f m

kk:v(ω), based on the original sample, can be superimposed on the plots based
on parametric bootstrapping from the fitted model, and this makes it easy to compare them.

Nine different points v =
(
v1, v2

)
are considered in Figures S5.1 and S5.2, and these

are based on the combinations that can be created when v1 and v2 varies over the 10%,
50% and 90% percentiles of the standard normal distribution. The corresponding plots are
ordered in a grid in accordance with the position of these nine points in the plane, as can
be seen by the information about v in the upper right corner of the respective plots.

The estimates f m
kk:v(ω) are always real-valued on the diagonal (since ρkk:v(−h) =

ρkk:v(h) when the point v is on the diagonal), and the three diagonal plots are thus marked
with f m

kk:v(ω) in order to signal that the content is the local Gaussian autospectrum. The
solid lines represents the estimates based on the original sample, whereas the dotted lines
and the 95 % pointwise confidence intervals are based on samples from the fitted model.

The estimates f m
kk:v(ω) are complex-valued for the six off-diagonal points, and in this

case the R-package localgaussSpec follows the convention used for the complex-valued
cross-spectra, viz., Co

(
f m
kk:v(ω)

)
= Re

(
f m
kk:v(ω)

)
and Quad

(
f m
kk:v(ω)

)
= − Im

(
f m
kk:v(ω)

)
.

The off-diagonal points are symmetric around the diagonal, i.e., both v =
(
v1, v2

)
and

its diagonal reflection v̆ =
(
v2, v1

)
are present. The property fkk:v(ω) = fkk:v̆(ω), implies

that it is sufficient to plot Co
(

f m
kk:v(ω)

)
on one side of the diagonal and Quad

(
f m
kk:v(ω)

)
on

the other side.

8 The R-package rugarch, Ghalanos (2022) was used to find the parameters of several GARCH-models, and the
asymmetric power ARCH model with the best fit was then selected. See JT22 [Section 3.4.3] for further details.
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Figure S5.1. Marginal investigation: cGARCH-model fitted to EuStockMarkets, the part correspond-
ing to the DAX-component.
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Figure S5.2. Marginal investigation: cGARCH-model fitted to EuStockMarkets, the part correspond-
ing to the CAC-component.
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Finally, the same scale is used for all plots showing real values, whereas another scale
is used for the plots related to the imaginary parts. This distinction is natural since the scale
needed for the imaginary part can be much smaller, as can be seen in Figures S5.1 and S5.2.

It was in JT22 [Appendix F.2] seen that the local Gaussian dependency structure of
the fitted apARCH(2, 3)-model agreed quite well with the one observed in the dmbp-data.
This did not come as a surprise, since the selected apARCH(2, 3)-model in that case was
obtained after a testing procedure that tried out several thousand different variations of the
GARCH-type models implemented in the rugarch-package.

The situation in this paper is completely contrary to the one in JT22, since a default
model from the rmgarch-package, see Ghalanos (2022), was fitted to the EuStockMarkets-
data in order to simply provide a proof-of-principle parametric model for how this kind
of investigation can be performed. It is thus natural to expect that an investigation of
Figures S5.1 and S5.2 would indicate that the local Gaussian dependency structures of the
fitted marginal models do not properly match those seen in the DAX- and CAC-components
of the EuStockMarkets-data — and this is indeed what is observed when the dashed and
solid lines in Figures S5.1 and S5.2 are compared against each other.

The plots related to the real parts in Figures S5.1 and S5.2 show that there is a mismatch
for the lower tail for low frequencies, in particular for the DAX-component as seen in
Figure S5.1. The plots related to the imaginary parts also indicate that the fitted models do
not properly reflect the dependency structure from the DAX- and CAC-components — but
it should here be noted that different scales are used for the two groups of plots (real-valued
versus complex valued-parts), and it is more critical when a deviation is observed within
the plots having the dominating scale.

The observed mismatch between the fitted marginal models and the DAX- and CAC-
components of the EuStockMarkets-data seen in Figures S5.1 and S5.2 clearly indicates
that the selected marginal models should be replaced. This is (as mentioned above) not a
surprising revelation, since the present marginal models were selected simply in order to
present a proof-of-principle for the methods discussed in this paper.

S5.1.3. The multivariate interdependency structure

This section provides an extension to the multivariate case of the univariate local
Gaussian sanity testing seen in Section S5.1.2. The target of interest in this case is the
cross-temporal interdependency structure of the parametric model that has been fitted
to a given multivariate sample. The idea is again to use visual inspections to see if clear
deviations can be seen when the local Gaussian cross-spectra based on the fitted model are
compared with the local Gaussian cross-spectra from the original sample.

The univariate investigation in Figures S5.1 and S5.2 focused on a grid of nine points
v =

(
v1, v2

)
, where v1 and v2 varied over the 10%, 50% and 90% percentiles of the standard

normal distribution — and the multivariate investigation will use the exact same grid (other
points can of course be used if it is of interest to focus on a particular region).

The “diagonal folding” seen in Figures S5.1 and S5.2 can not be used for the inves-
tigation of the cross-temporal case, since the local Gaussian cross-spectrum f m

k`:v(ω) are
complex valued even for the diagonal points. This implies that it, similarly to the situation
encountered for the heatmap- and distance plots (see discussion in Section S3.2), can be
natural to include pair of plots that either focus on the Cartesian decomposition or the polar
decomposition of the complex-valued local Gaussian cross-spectrum f m

k`:v(ω).
A visual investigation based on the Cartesian decomposition are given in Figures S5.3

and S5.4, which respectively present the Co- and Quad-spectra components of f m
k`:v(ω).

These figures gathers local Gaussian spectra from the original data (shown with solid
lines) and local Gaussian spectra based on simulations from the fitted models (shown with
dashed lines and pointwise confidence intervals). The same internal scale is used for all the
subplots, since that simplifies the task of detecting different behaviour between the points.

The scales for the Co-plots in Figure S5.3 are much larger than those for the Quad-plots
in Figure S5.4, and it is thus natural to focus on the Quad-plots in this case. An inspection
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Figure S5.3. Co-spectra based local Gaussian investigation of the cGARCH-model fitted to the
EuStockMarkets-data. Focus on the interaction between the DAX- and CAC-components of
EuStockMarkets
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Figure S5.4. Quad-spectra based local Gaussian investigation of the cGARCH-model fitted to
the EuStockMarkets-data. Focus on the interaction between the DAX- and CAC-components of
EuStockMarkets
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Figure S5.5. Amplitude-spectra based local Gaussian investigation of the cGARCH-model fitted
to the EuStockMarkets-data. Focus on the interaction between the DAX- and CAC-components of
EuStockMarkets

of Figure S5.3, in particular the points in the tails, shows that the local Gaussian cross-
spectra based on the fitted parametric model deviates quite a bit from those computed
from the original EuStockMarkets-sample. This is not surprising at all, since the most basic
parametric model was used simply in order to provide a proof-of-concept for the present
investigation.

The polar decomposition of the complex-values local Gaussian cross-spectra f m
k`:v(ω) into

Amplitude- and Phase-spectra are given in Figures S5.5 and S5.6. The Amplitude-plots in
Figure S5.5 are quite similar to the Co-plots seen in Figure S5.3, which is as expected since
the scales of the Co-plots are much larger than those for the Quad-plots. For this particular
example it follows that the same conclusions can be drawn from Figures S5.3 and S5.5,
i.e. that it would be preferable to look for a better model than the trivial one used as a
proof-of-concept example in this paper.

Note that the similarity between Figures S5.3 and S5.5 is due to the real part of
f m
k`:v(ω) are the dominating component, and it could be that would not always be the case.

Furthermore, the Phase-spectra seen in Figure S5.6 can be quite hard to interpret if the
observations of f m

k`:v(ω) lies in the third and fourth quadrant of the complex plane. Due to
this it seems natural to consider a Co- and Quad- based investigation of f m

k`:v(ω) instead of
an Amplitude- an Phase-investigation when a local Gaussian sanity testing is performed
for a parametric model of the the cross-temporal interdependency structure for a given
multivariate sample.

S5.2. Nonparametric bootstrapping techniques

The local Gaussian estimates f̂ m
k`:v(ω), with pointwise confidence intervals, are straight-

forward to construct when a given parametric model is investigated — simply generate a
sufficiently high number of samples from the model, compute f̂ m

k`:v(ω) for each sample, and
then (for each frequency ω) use suitable quantiles (like, e.g., the 5% and 95%) to construct
the pointwise confidence intervals.

Pointwise confidence intervals are also of interest when the local Gaussian estimates
f̂ m
k`:v(ω) are based on a given sample (like the EuStockMarkets-data), and such confidence

intervals can, e.g., be seen in Figure 9 in the main part. These intervals are again (for each
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Figure S5.6. Phase-spectra based local Gaussian investigation of the cGARCH-model fitted to
the EuStockMarkets-data. Focus on the interaction between the DAX- and CAC-components of
EuStockMarkets

frequency ω) based on quantiles of f̂ m
k`:v(ω) from a collection of samples, but these samples

must now be constructed by a suitable resampling strategy.
The initial resampling strategy was the block bootstrap from Künsch (1989). The

block bootstrap can (as explained below) be applied for the estimators underlying the local
Gaussian estimates f̂ m

k`:v(ω), but it was early on observed that it was necessary with rather
heuristic arguments regarding the selection of the block length argument L for the time
series samples of interest (cases where Yt and Yt+h are dependent but not correlated).

Comments received during the review-process of JT22 initiated an investigation of
how estimates based on the block bootstrap method can suffer from edge-effect noise when
it is used on smaller sample sizes — and this resulted in the development of the circular
index-based block bootstrap for tuples resampling strategy in JT22 [Algorithm F.4]

A summary of this story will be given below. The interested reader should consult
JT22 [Appendices F.3 and F.4] for an in depth discussion of different bootstrapping methods,
with emphasis on the problems that occur due to edge-effect noise. The revised resampling
algorithm is based on a tweaking of the block bootstrap, and it thus inherits the block
length argument L. Note that the block length L plays a different role in this algorithm, and
that the sensitivity analysis (based on the EuStockMarkets-data) in Section S5.3 shows that
the resulting pointwise confidence intervals for f̂ m

k`:v(ω) are quite stable.

S5.2.1. Summary of JT22 [Appendix F.3]

The discussion in JT22 [Appendix F.3] started out with an explanation of why resam-
pling based on the block bootstrap should be an acceptable strategy for the estimators
needed for the computation of m-truncated estimates of the local Gaussian spectra f m

k`:v(ω),
then it addressed the problem that edge-effects between the blocks could potentially cre-
ate serious problems for the estimates f̂ m

k`:v(ω) when used on the “short” dmbp-sample
(length 1974) that was investigated in JT22. Potential solutions to these problems were
addressed, including the block-of-blocks bootstrap (where edge-effects do not occur), but
these solutions did not provide an optimal approach for a statistic computed by means of
an algorithm that contains a kernel function.

Justification for the block bootstrap: The estimates f̂ m
k`:v(ω) of the local Gaussian

spectral densities are based on linear combinations of the estimates
{

ρ̂k`:v(h)
}m

h=−m of the
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local Gaussian cross-correlations. These are all estimated by a local likelihood approach —
and the asymptotic properties of the estimates f̂ m

k`:v(ω) were developed in JT22 using the
procedure from Klimko and Nelson (1978). A statistic obtained from the Klimko-Nelson
procedure was explicitly mentioned by Künsch as an example for which the block bootstrap
method would be applicable, cf. Künsch (1989, Example 2.4, p. 1219-20), and a resampling
based on the block bootstrap was thus initially used for the construction of the pointwise
confidence intervals for the dmbp-example seen in JT22 [Figure 9].

Edge-effect noise: The blocks in the block bootstrap algorithm will introduce noise
into the estimation procedure, since sequences will occur in the resampled data that was
not present in the original data. The following paragraphs from JT22 [Appendix F.3.2]
introduce the “corrupt tuple”-concept and some notation needed later on.

For example, if a time series {Yt}
n
t=1 of length n is given, then an estimate of

ρv(h) will be based on the bivariate set Yh :=
{(

Yt+h, Yt
)}n−h

t=1 of size n − h.
When the block bootstrap is used with some block length L, then there will be a
resampled sequence {Y∗t }

n
t=1 and the idea is that an estimate of ρv(h) now should

be computed based on the bivariate set Y∗h:L :=
{(

Y∗t+h, Y∗t
)}n−h

t=1 .

However, the set Y∗h:L will contain corrupt tuples that do not exist in Yh, i.e., the
first and second component of

(
Y∗t+h, Y∗t

)
can belong to different blocks, and this

will add a bit of edge-effect noise into the estimation process. The edge-effect noise
is negligible in the asymptotic situation (very large sample sizes n and large block
lengths L), but it can make an impact when smaller samples are investigated.

The example used in JT22 was the dmbp-data (n = 1974 unique observations), and the
plots of the estimated local Gaussian autospectra f̂ m

v (ω) used the truncation level m = 10.
It was thus of particular interest to compute (for different block lengths L) the expected
amount of corrupt tuples when estimating the local Gaussian autocorrelations ρv(h) for
h = 1, . . . , 10 — and a copy of the resulting table from JT22 is given in Table S1.

L \ h 1 2 3 4 5 6 7 8 9 10
25 4.0% 7.9% 11.9% 15.8% 19.8% 23.8% 27.8% 31.7% 35.7% 39.7%

100 1.0% 1.9% 2.9% 3.9% 4.8% 5.8% 6.8% 7.7% 8.7% 9.7%

Table S1. Copy of JT22 [Table 2]. The expected fraction of corrupt tuples when ρv(h) are estimated
from block bootstrap replicates of the dmbp-data (n = 1974), when L ∈ {25, 100} and h ∈ {1, . . . , 10}.

Table S1 shows that the amount of noise due to edge-effects can be severe when the
block bootstrap is used with a too short block length, and this was also seen when attempts
were made at making pointwise confidence intervals for f m

v (ω) based on this. The resulting
“confidence intervals” for small block lengths L did in some cases (for low frequencies ω)
not even contain the actual estimate f̂ m

v (ω) based on the sample under investigation.
The observations in Table S1 indicated that an adjusted resampling technique was

needed, preferably one that completely (or at least partially) removed the corrupt tuples
from the estimation algorithm. Two different approaches that completely avoids the corrupt
tuples was discussed in JT22, but they had some issues that made them less interesting to
implement — as briefly explained below.

Resampling from the tuples in Yh :=
{(

Yt+h, Yt
)}n−h

t=1 , for h = 1 to h = m, was
considered in JT22 [Appendix F.3.3] as one option for finding an estimate f̂ m

k`:v(ω) of the
m truncated local Gaussian autospectrum f m

k`:v(ω). The resampling must be done in a
manner that properly takes into account the time-connection between the bivariate pairs(
Yt+h, Yt

)
for different h-values, but it is easy to find an algorithm that does this for a

selected truncation level m: Simply consider the bivariate tuples in Yh as projections from
the (m + 1)-variate tuples Ym:0 =

{(
Yt+m, . . . , Yt+1, Yt

)}n−m
t=1 , and start out by sampling

the desired number of elements from Ym:0. A shortcoming with this approach is that the
resulting estimates ρ̂v(h) will depend on the selected m-value — and this dependency
on the truncation level m implies that all the local Gaussian autocorrelations must be
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recomputed if the initial truncation level m is changed to m + 1, and this is computational
costly and not desirable to implement.

The block-of-blocks bootstrap introduced in Politis and Romano (1992) was discussed
in JT22 [Appendix F.3.4]. This method completely avoids the edge-effect issue that occurs
for the block bootstrap, since the statistic of interest are computed on the individual blocks.
However, as mentioned in JT22:

This restriction to individual blocks can be an excellent idea for many statistics
of interest, but it is a somewhat questionable approach for the estimates ρ̂v(h)
of the local Gaussian autocorrelations. The reason for this is that the bandwidth
argument b in the kernel function Kb(w− v) must be much larger if the estimation
algorithm is to be used on only a subset of the observations — and the local
structures of interest might then not be detected at all.

It would of course be of interest to implement the block-of-block bootstrap for the
estimates of the local Gaussian spectra if very large samples are encountered, i.e.,
when the individual blocks contains several thousand consecutive observations —
but for shorter samples (like the dmbp-example) it seems better to use something
else.

S5.2.2. Summary of JT22 [Appendix F.4]

The circular index-based block bootstrap for tuples was introduced in JT22 [Appendix F.4].
This is a minor adjustment of the ordinary block bootstrap, and it inherits the block
length argument L as a tuning parameter (see Section S5.3 for a sensitivity analysis). The
key motivation for the revised approach is that an estimate f̂ m

k`:v(ω) of the m-truncated
local Gaussian autospectrum f m

k`:v(ω) should be based on m “linked samples” from Yh :={(
Yt+h, Yt

)}n−h
t=1 , for h = 1 to h = m, and that these “linked samples” should be used for

the estimation of the local Gaussian autocorrelations ρv(h).
This approach avoids the computational cost problem that made the method men-

tioned in JT22 [Appendix F.3.3]) less interesting to implement, i.e., the estimates ρ̂v(h) do
not depend on the truncation level m — but the price to pay for this is that some “corrupt
tuples” will still be present, and the issue with noise due to edge-effects does not completely
disappear. However, the expected amount of this noise for the revised resampling strategy
(see Table S2 on page 31) is reduced a lot from the one seen for the resampling based on the
block bootstrap (see Table S1 on page 29).

The following toy-example are copied from JT22 in order to explain the underlying
motivation for the circular index-based block bootstrap for tuples resampling algorithm, i.e.,
that it is the indices of the observations that are the key detail of interest to keep track of.

It will be a bit easier to digest the definitions and the algorithm that are given
later on in this section, if a simple toy-example is investigated first: Consider
a situation with a time series having five unique observations Y1, Y2, Y3, Y4, Y5
and assume that there is an interest for an estimate based on the four lag-1
tuples in Y1 =

{(
Yt+1, Yt

)}4
t=1. If a block bootstrap with block length L = 2

is used, the resampled time series might e.g. look like Y∗1 = Y4, Y∗2 = Y5, Y∗3 =
Y3, Y∗4 = Y4, Y∗5 = Y2, and the corresponding set of lag-1 tuples would be Y∗1:2 ={(

Y∗t+1, Y∗t
)}4

t=1. It is easy to see that Y∗1:2 in this case will contain the two corrupt
tuples (Y3, Y5) and

(
Y2, Y4

)
, i.e., tuples that are not present in Y1.

The key idea in the adjusted algorithm is to move the focus to the indices of the
original sample, i.e., 1, 2, 3, 4, 5, and then use the block bootstrap to sample from
these. The resampled set of indices for the example above would be 4, 5, 3, 4, 2,
and from these it is possible to construct the cyclically h = 1 shifted set of indices
5, 1, 4, 5, 3. The method is simply to add the lag h = 1 to all the resampled
indices — and to start back on 1 if a value exceeds n = 5. The four desired lag-1

tuples Y ]
1:2 =

{(
Y]

t+1, Y]
t

)}4

t=1
are now created by using the resampled set of
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indices in the Y]
t -component, whereas the cyclically h = 1 shifted indices are

used for the Y]
t+h-component. This results in the following four tuples, Y ]

1:2 ={(
Y5, Y4

)
,
(
Y1, Y5

)
,
(
Y4, Y3

)
,
(
Y5, Y4

)}
, and it is easy to see that the only corrupt

tuple in Y ]
1:2 is

(
Y1, Y5

)
. Note: It could in principle now also be added a fifth tuple

(Y3, Y2) to Y ]
1:2, but that is not of interest since there are only four tuples in Y1.

The adjusted resampling algorithm is, as seen above, based on a simple tweaking of
the ordinary block bootstrap. The formal definition of the algorithm requires some rather
technical steps, and these will not be repeated in this paper. The interested reader can
consult JT22 [Appendix F.4] for further details, see in particular JT22 [Definitions F.1 to F.3
and algorithm F.4].

Note that the resampling algorithm from JT22 [Algorithm F.4] by construction will
return the same results as those obtained from the ordinary block bootstrap when the
sample size n and the block length L are large. The situation is different for smaller sample
sizes, since the adjusted approach then will remove the majority of the corrupt tuples
that adds edge-effect noise into the estimation of the local Gaussian autocorrelations ρv(h).
This can be seen clearly by comparing the expected amount of corrupt tuples when the
block bootstrap (see Table S1 on page 29) with the corresponding numbers for the revised
resampling algorithm, as given in Table S2.

L \ h 1 2 3 4 5 6 7 8 9 10
25 0.002% 0.006% 0.012% 0.020% 0.030% 0.043% 0.057% 0.073% 0.092% 0.112%

100 0.001% 0.002% 0.003% 0.005% 0.008% 0.011% 0.014% 0.019% 0.023% 0.028%

Table S2. Copy of JT22 [Table 3]. The expected amount of corrupt tuples when ρv(h) are estimated
for the dmbp-data by the circular index-based block bootstrap for tuples, cf. JT22 [Algorithm F.4].

A comparison of the entries in Tables S1 and S2 reveals that it, for a time series of
length n = 1974, is quite a drastic reduction in the number of corrupt tuples when the
block bootstrap is replaced with the circular index-based block bootstrap for tuples resampling
strategy in JT22 [Algorithm F.4]. From the h = 10 column it can be seen that the expected
amount have been reduced from 39.7% to 0.112% when L = 25, and it has been a reduction
from 9.7% to 0.028% when L = 100. The edge-effect noise are thus in this case rather
negligible when the adjusted resampling strategy is used.

Table S2 indicates that the expected amount of corrupted tuples will be low even
for short block lengths L. This implies that the pointwise confidence intervals for the
m-truncated local Gaussian autocorrelations f m

v (ω) should not be too sensitive to the block
length L when the circular index-based block bootstrap for tuples resampling strategy is used.

S5.3. Sensitivity analysis: The block length L

The block length sensitivity for the adjusted resampling strategy from JT22 [Algo-
rithm F.4] was investigated for two different cases in JT22 [Appendix F.5]. The first case
was based on the dmbp-data, whereas the second case was based on resampling of a single
sample generated by the local trigonometric model initially used for the sanity testing
of the estimation algorithm. For each case the m = 10 truncated local Gaussian spectral
density was estimated, and then pointwise confidence intervals were generated for each
case based on resampling using the circular index-based block bootstrap for tuples strategy. The
exact same results for both of the cases, i.e., the resulting pointwise confidence intervals
hardly changed when the block length L increased from 10 to 69.

The topic of interest for the present paper is the extension of the local Gaussian
spectral theory to the multivariate case, and the script used for the univariate dmbp-case in
JT22 [Appendix F.5] was thus modified to cope with the multivariate EuStockMarkets-case
— and the results are shown in Figures S5.7 and S5.8. Note that these figures are strikingly
similar to those encountered in JT22 [Appendix F.5], and the discussion below is with some
minor adjustments the same as the one found there.

Figure S5.7 contains two sequences of boxplots, indexed by the block length L which
increases in steps of 1 from L = 10 to L = 69. The distance function D mentioned in
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Figure S5.7. Distance based box-plots for the investigation of the sensitivity of the block length L for
the adjusted resampling strategy from JT22 [Algorithm F.4]. The numbers in the two bottom rows
show q = dn/Le and r = n− (q− 1) · L, i.e., the number of blocks and the length of the last block.

Section S3.1 is used to generate the values the boxplots are based on. Keep in mind that the
distance function does not reveal anything about the frequency-component of the cases
under investigation, so it is also necessary to include a plot that focus on that aspect for a
few of the block lengths L, as seen in Figure S5.8.

The panel at the top of Figure S5.7: A box-plot for the D
(

f 10
k`:v(ω)[L]

)
-values (based

on R = 100 replicates) is given for each block length L. A horizontal red dashed line
has been added that shows the D

(
f 10
k`:v(ω)

)
-value for the original sample. It can be seen

that the medians of the box-plots tend to be slightly smaller than the horizontal line that
corresponds to the value based on the original sample, but these medians are based on
R = 100 replicates — and another realisation might thus look slightly different. It does not
seem to be any pattern here with regard to how these box-plots changes when L increases.

The panel at the bottom of Figure S5.7: These box-plots shows the percent-wise
changes in the distances when the block length goes from L to L + 1, and everything else is
kept identical, i.e., 100 ·

(
D
(

f 10
k`:v(ω)[L+1]

)
/D
(

f 10
k`:v(ω)[L]

)
− 1
)

. This is possible to do since
the reproducibility setup enables a tracking for each individual realisation.

A horizontal red dashed line has been added at 0, and it is clear that the median-part
of these box-plots are quite close to this horizontal line. It can also be observed that some
of these box-plots are more compact than the other ones, and a simple investigation of the
numbers given at the bottom of the plots reveals that this phenomenon occurs when an
increase from L to L + 1 does not reduce the number of blocks that are needed, i.e., they
occur when dn/Le = dn/(L + 1)e.

For the individual bootstrapped time series, this indicates that the changes are minimal
when the number of blocks remains the same — whereas the changes are much larger when
the increase of L triggers a reduction in the number of blocks. However, as is evident from
an inspection of the panel at the top of Figure S5.7, this effect is only on the level of the
individual replicates, and it is averaged away when a collection of replicates is considered.

Note that the effect noticed in the bottom panel of Figure S5.7 also is present for the
global spectral densities (based on these bootstrapped samples), so this phenomenon is
thus not an artefact of the way the local Gaussian spectral densities are estimated.

The frequency-component: Figure S5.7 indicates that the block length sensitivity, as
measured by D

(
f m
k`:v(ω)

)
, for the circular index-based block bootstrap for tuples resampling

strategy from JT22 [Algorithm F.4] is rather small. But does this imply that these block
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Figure S5.8. Four different block lengths L (from those investigated in Figure S5.7) have here been
used in the circular index-based block bootstrap for tuples resampling strategy given in second part of
Section S5. The values of L are 10, 25, 50 and 69, and this information is plotted at the lower right
corner of the plots. The observed differences are tiny.

lengths should be considered equally good or equally bad? That can not be concluded from
Figure S5.7 alone, and it is thus necessary to also consider a plot that takes the frequency-
dimension into account. Figure S5.8 does this, using the Co-spectra component, for the four
block lengths L ∈ {10, 25, 50, 69}.

It is clear from Figure S5.8 that the differences between these estimates are rather small,
and it is necessary to look closely in order to see that the pointwise confidence intervals are
slightly wider near ω = 0 for the case L = 50.

Conclusion: These results, are as previously mentioned, in complete agreement with
the corresponding results from the univariate case in JT22 [Appendix F.5], i.e., the effect of
changing the block length L is minuscule. The interested reader can in JT22 [Appendix F.4.3]
find an in depth discussion of why the block length only plays a role as a tuning parameter
in the circular index-based block bootstrap for tuples resampling strategy.

Reproducibility: The scripts needed for the reproduction of the plots in this section
are included in the R-package localgaussSpec (see Section S6.1 for further details), and
the interested reader can there easily adjust the range of the block lengths to be used. It is
also possible to adjust all the other tuning parameters needed for the estimation of f m

k`:v(ω),
and it is even possible to perform the computations with the ordinary block bootstrap if so
should be desired.

S6. Scripts and details related to the examples

The reproducibility of all the examples in this paper can be done by the scripts
contained in the R-package localgaussSpec, and Section S6.1 explains how the interested
reader can extract these scripts. This section also contains some further details/discussions
related to the examples in Section 3 in the main paper. Details related to the bivariate
Gaussian test-example are given in Section S6.2, whereas Section S6.3 presents the R-code
used to estimate the parameters used for the cGARCH-example seen in Figure 12.

Section S6.4 contains a short explanation of how animations of complex-valued plots
can be used to investigate the estimated local Gaussian cross-spectra, a part that was moved
here in order to improve the flow of the main part.

Section S6.5 investigates the local bivariate trigonometric example seen in Figures 2 to 5
of Section 3.1 in the main part. This is quite similar to the corresponding discussion for
the univariate case in JT22 [Appendix G.4], it adjusts to the bivariate case the theoretical
investigation of the general construction of which the local trigonometric examples are
particular realisations, and it also briefly summarises the heuristic arguments from JT22
that was used to sanity test the implemented estimation algorithm.

Finally, once more mirroring the discussion in JT22 [Appendix G], the last part of
Section S6.5 verifies that it for a large sample is possible to detect an elusive component
that only occurs with probability 0.05 in the local bivariate trigonometric example, and it ends
with some comments related to issues that can occur (under specific circumstances) when
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the local Gaussian machinery is used on a time series whose global spectrum does not look
like white noise.

S6.1. The scripts in the R-package localgaussSpec

All the examples in this paper (and all the examples in JT22) can be reproduced
by the scripts in the R-package localgaussSpec. This R-package can be installed by us-
ing “remotes::install_github("LAJordanger/localgaussSpec")”. The simplest way
to extract the scripts from the internal storage of this R-package is to use the R-function
“LG_extract_scripts()” after the package has been installed.

These scripts can either be used as they are (reproduction of the examples in this
paper), or they can be used as templates for similar investigations of other samples/models
that the user would like to investigate.

The reproduction of the figures requires two different scripts. The first scripts contain
the code needed for the estimation of the local Gaussian auto-correlations ρkk:v(h) and cross-
correlations ρk`:v(h) for all the specified combinations of the tuning parameters, whereas
the second scripts contain the code that creates the particular visualisations seen in the
figures in this paper. Note that it is sufficient to use the first type of scripts in order to
use the integrated shiny-application that enables an easy interactive investigation of the
resulting estimates. The second type of scripts is first needed when one wants to put many
figures into one larger grid.

S6.2. The bivariate Gaussian white noise example

This section contains the details related to the bivariate Gaussian white noise example,
used for the sanity testing of the estimation algorithm for the local Gaussian cross-spectra
fk`:v(ω), that was referred to in the initial discussion of Section 3 in the main part.

It is natural to start with a Gaussian example, since it is the one case where it is
explicitly known what the true value of the the local Gaussian cross-spectra fk`:v(ω) is, in
particular, it is known from Lemma 1(1) that the local Gaussian cross-spectrum coincide
with the ordinary cross-spectrum when the time series under investigation is Gaussian.

The plots in Figure S6.1 shows the Co-, Quad- and Phase-plots based on 100 indepen-
dent samples of length 1859 from a bivariate Gaussian distribution with standard normal
marginals and correlation 0.35. The left column of Figure S6.1 shows the situation for a
point off the diagonal, whereas the right column shows the situation for a point at the
center of the diagonal, i.e., v1 = v2 = 0. Note that the global spectra are identical for all the
points, i.e., the red components9 are the same for each row of Figure S6.1.

In this simple case, where the true values of the local Gaussian versions of the spectra
coincides with the ordinary global spectra, it follows that the Co-, Quad- and Phase-spectra
(for any truncation level m) respectively should be the constants 0.35, 0 and 0. Figure S6.1
shows that the red and blue dotted lines, that respectively represents the estimates of the
global and local m-truncated spectra,10 seems to match these true values quite reasonably
— and this provides a sanity check of the code that generated these plots. Note that the 90%
pointwise confidence interval for the local Gaussian versions (blue ribbons) are wider than
those for the ordinary spectra (red ribbons) since the bandwidth used for the estimation
of the local Gaussian cross-correlations, in this case b = (0.6, 0.6), reduces the number of
observations that effectively contributes to the computation of the local Gaussian spectra.

S6.3. The cGARCH-example in Figure 12

The cGARCH-example seen in Figure 12 (see also Figures 10 and 11) had coefficients
that were fitted to the pseudo-normalised log-returns of the EuStockMarkets-data by
the help of the rmgarch-package Ghalanos (2022). The “c” in cGARCH implies that a

9 If you have a black and white copy of this paper, then read “red” as “dark” and “blue” as “light”.
10 The dotted lines represents the means of the estimated values, whereas the 90% pointwise confidence intervals

are based on the 5% and 95% quantiles of these samples.
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Figure S6.1. Co-, Quad- and Phase-plots for two points: Samples from the bivariate Gaussian white
noise model, for which it is known that the local Gaussian spectra are equal to the ordinary spectra.
The equality of the estimates are clear from this figure, the wider pointwise confidence intervals for
the local Gaussian spectra is a consequence of the kernel-function in the estimation algorithm.

Copula-based approach is used for the modelling of the interdependency-structure, and
the following steps can be used to fit a Copula-GARCH model to a multivariate sample:

1. For each univariate subset of the sample, create a uGARCHspec-object (univariate
GARCH specification) by using the ugarchspec-function from the rugarch-package.

2. Create a uGARCHmultispec-object (univariate multiple GARCH specification) by using
the multispec-function from the rugarch-package on the list of univariate GARCH
specifications obtained in the first step.

3. Create a cGARCHspec-object (Copula-GARCH specification) by using the cgarchspec-
function from the rmgarch-package on the uGARCHmultispec-object obtained in the
second step.

4. Create a cGARCHfit-object (Copula-GARCH fit object) by using the cgarchfit-function
from the rmgarch-package. The spec-argument should be the cGARCHspec-object from
the third step, and the data-argument should be the multivariate sample under inves-
tigation.

The model and parameters stored in the cGARCHfit-object can now be used as the fit-
argument of the cgarchsim-function from the rmgarch-package. This implies that samples
from the fitted model can be generated, from which it is possible to find estimates and
pointwise confidence intervals for the m-truncated local Gaussian auto- and cross-spectra
for this particular model.

Note that the ugarchspec, uGARCHmultispec and cgarchfit all have many arguments,
and tweaking of these arguments enables a plethora of different GARCH-type models to
be investigated. The cGARCH-model used for the creation of Figure 12 used the default
arguments in the previously mentioned functions, and this was done since the desired
target was to produce a simple proof-of-concept model for the local Gaussian sanity testing
presented in Section S5.1. It was no surprise that Figures S5.1 to S5.6 revealed that the local
Gaussian spectra based on this “trivial” cGARCH-model had some clear deviations from
the local Gaussian spectra based on the EuStockMarkets data.

The full list of default arguments for the R-functions ugarchspec, uGARCHmultispec
and cgarchfit will not be included here, since that would require several pages of code
and explanations. The interested reader can look these details up in the documentation of
the rugarch- and rmgarch-packages.

A final comment: It is of course possible to follow the strategy used in JT22, where an
apARCH(2,3)-model was fitted to the dmbp-data after a procedure that tested several thou-
sand different variations of the GARCH-type models implemented in the rugarch-package.
This strategy was not adopted in the present paper since the multivariate nature of the
EuStockMarkets-data, and the amount of arguments to tweak in the functions ugarchspec,
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Figure S6.2. Complex-valued representation of 100 samples of f12:v(ω) from Equation (20), at the
peak frequency ω = 0.302. Left panel: Pointwise 90% confidence bands based on polar representation.
Center panel: Pointwise 90% confidence bands based on Cartesian representation. Right panel:
Zoomed in plot.

uGARCHmultispec and cgarchfit, would have required a rather big computational invest-
ment for a sample that ended out being used simply due to it being available in R.

S6.4. Plots of the complex-valued spectra

This section contains a discussion related to animations of complex-valued plots, and
how these might be used to investigate the estimated local Gaussian cross-spectra. This
was initially contained in the main part, but it was then moved here in order to improve
the flow of that part. Before reading on, recall the following from the main part:

The reference case: The heuristic argument needed for the bivariate case is
identical in structure to the one used in the univariate case, and for the present
investigation the reference for the plots later on is based on the following simple
bivariate model,

Y1,t = cos(2παt + φ) + w1,t and Y2,t = cos(2παt + φ + θ) + w2,t,

where wi,t is Gaussian white noise with mean zero and standard deviation σ,
with w1,t and w2,t independent, and where it in addition is such that α and θ
are fixed for all the replicates whereas φ is drawn uniformly from [0, 2π) for
each individual replicate. A realisation with σ = 0.75, α = 0.302 and θ = π/3
has been used for the Co-, Quad-, and Phase-plots shown in Figure 1, where 100
independent samples of length 1859 were used to get the estimates of the m-
truncated spectra and their corresponding 90% pointwise confidence intervals
(based on the bandwidth b = (0.6, 0.6)). Some useful remarks can be based on
this plot, before the bivariate local trigonometric case is defined and investigated.

It can be enlightening to compare the Co-, Quad- and Phase-plots in Figure 1 with a plot
that shows the underlying estimates upon which the pointwise confidence intervals were
based. Such a plot is shown in Figure S6.2, where the left panel presents the complex-valued
estimates of the local Gaussian cross-spectrum at the frequency ω = α, and where means
and quantiles relative to a polar representation, i.e., z = reiθ , have been added to the plot.

The center panel of Figure S6.2 shows the same estimated values, but this time the
means/quantiles are based on a Cartesian representation z = x + iy. These two panels
gives a geometrical view to the observations presented above. The third panel of Figure S6.2
presents a zoomed in version of the estimated values of the local Gaussian cross-spectrum,
and it gives a reminder that it in principle is possible to extract more information from
these estimates than what has been done so far. A closer inspection of these estimates could
e.g. be used to see how much they (for the given m-truncation) deviate from the expected
asymptotic distributions that was given in Section 2.5.2.
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S6.5. The local bivariate trigonometric examples in Figures 2 to 5

This section will discuss some topics related to the local bivariate trigonometric examples,
whose local Gaussian spectral density were investigated in Figures 2 to 5 of Section 3.1
in the main part. This discussion is quite similar to the one given for the univariate local
trigonometric examples in JT22 [Appendix G.4], and the interested reader should consult
this source for some of the in depth discussions.

The local bivariate trigonometric examples are a special case of a more general bivariate
construction, which follows from an extension of the corresponding univariate construction
given in JT22 [Appendix G.4.1]. The details are slightly technical, and they have for the
benefit of the reader been included in Section S6.5.1.

A brief discussion of the heuristic arguments that explains why the local bivariate
trigonometric examples can be used to sanity test the implemented estimation algorithm are
given in Section S6.5.2. An in depth discussion can be found in JT22 [Appendix G.4.2].

The local bivariate trigonometric examples that was used as the basis for the plots in
Figures 2 to 5, contained four components, of which one occurred with a lower probability.
This setup was inherited from the local unvariate trigonometric examples in JT22, and it
was there seen (cf. Figure G.3 in JT22 [Appendix G.4.3]) that the “lower tail”-component
could be detected when the sample size was large enough. Section S6.5.4 presents a similar
investigation for the local bivariate trigonometric examples.

The discussion in JT22 also considered issues that could occur if the m-truncated local
Gaussian spectrum was estimated for samples from a deterministic function perturbed by
very low random fluctuations, and it was there seen (cf. JT22 [Appendix G.4.4]) that the
local Gaussian machinery did not work well for such cases. This discussion will not be
duplicated in this paper, but the key observations can be mentioned here: It might be safest
to apply the local Gaussian spectral machinery to time series with rather flat global spectra.
If a “clear” global structure is present, then it might be preferable to use the local Gaussian
spectral machinery on the residuals that are left after some suitable model have been fitted
to the data.

S6.5.1. Some properties of the general construction

The local bivariate trigonometric examples considered in Section 3.1 are (as mentioned
there) particular cases of a general construction that is based on the key idea that an artificial
bivariate time series

{(
Y1,t, Y2,t

)}
t∈Z

can be constructed by the following scheme:

1. Select r ≥ 2 bivariate time series
{(

C1,i(t), C2,i(t)
)}r

i=1
.

2. Select a random variable I with values in the set {1, . . . , r}, and use this to sample
a collection of indices {It}t∈Z (that is, for each t an independent realization of I is
taken). Let pi := P

(
Ii = i

)
denote the probabilities for the different outcomes.

3. Define Yt by means of the equation

Y1,t :=
r

∑
i=1

C1,i(t) · 1{It = i}, (S39a)

Y2,t :=
r

∑
i=1

C2,i(t) · 1{It = i}. (S39b)

The basic properties of
{(

Y1,t, Y2,t

)}
t∈Z

can be expressed relatively those of
{(

C1,i(t), C2,i(t)
)}r

i=1
,

as seen in the following result:

Lemma S1. With
{(

Y1,t, Y2,t

)}
t∈Z

as defined above, it follows that:

1. E
[
Yk,t

]
= ∑r

i=1 pi · E
[
Ck,i(t)

]
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2. E
[
Yk,t+h ·Y`,t

]
=

∑r
i=1 ∑r

j=1 pi · pj · E
[
Ck,i(t + h) · C`,j(t)

]
h 6= 0

∑r
i=1 pi · E

[
Ck,i(t) · C`,j(t)

]
h = 0

3. Cov
(

Yk,t+h, Y`,t

)
=


∑r

i=1 ∑r
j=1 pi · pj ·Cov

(
Ck,i(t + h), C`,j(t)

)
h 6= 0

∑r
i=1 pi · E

[
Ck,i(t) · C`,i(t)

]
−(

∑r
i=1 pi · E

[
Ck,i(t)

])
·
(

∑r
j=1 pj · E

[
C`,j(t)

])
h = 0

4. For k, ` ∈ {1, 2}, the additional assumption that
(

C1,i(t), C2,i(t)
)

and
(

C1,j(t), C2,j(t)
)

are independent when i 6= j, simplifies the h 6= 0 case to: Cov
(

Yk,t+h, Y`,t

)
= ∑r

i=1 p2
i ·

Cov
(

Ck,i(t + h), C`,i(t)
)

.

Proof. The results in Items 1 to 4 are in essence the same as those seen in JT22 [Lemma G.1],
with some extra indices k and ` added to it. The proof is short, and it is repeated below.

The random variable It that produces the set of indices is independent of Ck,i(t) and
C`,j(t), and Item 1 thus follows without further ado. For the h 6= 0 case of Item 2 it is suffi-
cient to note that It+h and It then are independent, and it follows that E

[
1
{

It+h = i
}
· 1{It = j}

]
=

E
[
1
{

It+h = i
}]
· E[1{It = j}] = P

(
It+h = i

)
· P(It = j) = pi · pj. For the h = 0 case of

Item 2 it is enough to note that 1{It = i} · 1{It = j} = 0 when i 6= j, which together with
1{It = i} · 1{It = i} = 1{It = i} gives the required expression. The statements in Items 3
and 4 follows trivially from those in Items 1 and 2.

The key idea in the local bivariate trigonometric example is that the r bivariate time
series

(
C1,i(t), C2,i(t)

)
all should be “connected cosine-pairs with some noise”, since this

implies (given a reasonable parameter configuration) that it should be possible to present a
decent guesstimate with regard to the expected shape of the m-truncated local Gaussian
cross-spectrum density (for some carefully selected tuning parameters of the estimation
algorithm). The global cross-spectrum in this case will not be flat, but it will for low
truncation levels be “flat enough” for the purpose of showing that the global spectrum
does not detect the underlying frequencies whereas the local Gaussian cross-spectrum can
do that task.

The following result reiterates the
(

C1,i(t), C2,i(t)
)

-definition used in the local bivari-
ate trigonometric example, and it presents some basic properties related to this definition.

Lemma S2. Let the bivariate random variables
(

C1,i(t), C2,i(t)
)

, for i = 1, . . . , r, be defined by

C1,i(t) = Li + Ai(t) · cos
(
2παit + φi

)
and C2,i(t) = Li + Ai(t) · cos

(
2παit + φi + θi

)
in the

following manner: Li and αi are constants that respectively defines the horizontal base-line and
the frequency. The amplitude Ai(t) are for each t uniformly distributed on an interval

[
ai, bi

]
,

and Ai(t + h) and Ai(t) are independent when h 6= 0. The phase-adjustment φi are uniformly
drawn (one time for each realisation) from the interval between 0 and 2π, whereas the phases θi are
constants. It is also assumed that the stochastic processes φi and Ai(t) are independent of each other.

1. E
[
Ck,i(t)

]
= Li, for k ∈ {1, 2}.

2. E
[
Ck,i(t + h)C`,j(t)

]
= Li Lj, for k, ` ∈ {1, 2} when i 6= j.

3. Cov
(

Ck,i(t + h), C`,j(t)
)
= 0, for k, ` ∈ {1, 2} when i 6= j.

4. E
[
Ck,i(t + h) · Ck,i(t)

]
=

{
L2

i +
1
4 ·
(
a2

i + 2aibi + b2
i
)
· cos(2παih) h 6= 0, k ∈ {1, 2}

L2
i +

1
3 ·
(
a2

i + aibi + b2
i
)

h = 0, k ∈ {1, 2}

5. Cov
(

Ck,i(t + h), Ck,i(t)
)
=

{
1
4 ·
(
a2

i + 2aibi + b2
i
)
· cos(2παih) h 6= 0, k ∈ {1, 2}

1
3 ·
(
a2

i + aibi + b2
i
)

h = 0, k ∈ {1, 2}

6. E
[
Ck,i(t + h) · C`,i(t)

]
=


L2

i +
1
4 ·
(
a2

i + 2aibi + b2
i
)
· cos(2παih + θi) h 6= 0, k = 1, ` = 2

L2
i +

1
4 ·
(
a2

i + 2aibi + b2
i
)
· cos(2παih− θi) h 6= 0, k = 2, ` = 1

L2
i +

1
3 ·
(
a2

i + aibi + b2
i
)
· cos(θi) h = 0, k, ` ∈ {1, 2}
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7. Cov
(

Ck,i(t + h), C`,i(t)
)
=


1
4 ·
(
a2

i + 2aibi + b2
i
)
· cos(2παih + θi) h 6= 0, k = 1, ` = 2

1
4 ·
(
a2

i + 2aibi + b2
i
)
· cos(2παih− θi) h 6= 0, k = 2, ` = 1

1
3 ·
(
a2

i + aibi + b2
i
)
· cos(θi) h = 0, k, ` ∈ {1, 2}

Proof. The independence of Ai(t) and φi, together with some simple results related to the
expectations of functions based on the uniformly distributed random variables Ai and φ is
needed in order to obtain these results.

The assumption that Ai is uniformly distributed on the interval
(
ai, bi

)
implies that

its density function is given by 1
bi−ai

on this interval (and 0 outside of it). From this it is

easy to find E
[
Ai(t)

]
= 1

2 ·
(
ai + bi

)
and E

[
A2

i (t)
]
= 1

3 ·
(
a2

i + aibi + b2
i
)
. Moreover, since

Ai(t + h) and Ai(t) are independent when h 6= 0, it also follows that E
[
Ai(t + h)Ai(t)

]
=

1
4
(
a2

i + 2aibi + b2
i
)

in this case.
Similarly, the assumption that φi is uniformly distributed on the interval (0, 2π) implies

that its density function is given by 1
2π on the interval (0, 2π) (and 0 outside of it). From

this it follows that E
[
cos
(
φi
)]

= E
[
sin
(
φi
)]

= E
[
cos
(
φi
)

sin
(
φi
)]

= 0 and E
[
cos
(
φi
)2
]
=

E
[
sin
(
φi
)2
]
= 1

2 . In addition to this, since φi and φj are independent when i 6= j, it

also follows that E
[
cos
(
φi
)

sin
(

φj

)]
= 0. From this it follows that E

[
cos
(
2παit + φi

)]
=

E
[
cos
(
2παit + φi + θi

)]
= 0.

The trigonometric formula cos(u± v) = cos(u) cos(v)∓ sin(u) sin(v) can be used to
show that the expectation of a product of the form cos

(
u1 + φi

)
cos
(

u2 + φj

)
is equal to 0

when i 6= j, whereas it is equal to 1
2 cos

(
u1 − u2

)
when i = j. From this last observation it

is easy to conclude the following:

E[cos(2παi(t + h) + φi) cos(2παit + φi)] =
1
2

cos(2παih) (S40a)

E[cos(2παi(t + h) + φi + θi) cos(2παit + φi + θi)] =
1
2

cos(2παih) (S40b)

E[cos(2παi(t + h) + φi) cos(2παi + φi + θi)] =
1
2

cos(2παih− θi) (S40c)

E[cos(2παi(t + h) + φi + θi) cos(2παi + φi)] =
1
2

cos(2παih + θi) (S40d)

From these observations it is trivial to verify Items 1 and 2, and Item 3 follows im-
mediately from these two. The statements in Items 4 and 6 are easily verified by mul-
tiplying the relevant expressions for C1,i(t) = Li + Ai(t) · cos

(
2παit + φi

)
and C2,i(t) =

Li + Ai(t) · cos
(
2παit + φi + θi

)
, and then using the above mentioned results related to

Ai(t) and φi to establish the expected values. The covariance-results in Items 5 and 7 now
follows trivially.

Finally, the local bivariate trigonometric example is obtained by using r bivariate time
series

(
C1,i(t), C2,i(t)

)
, of the form given in Lemma S2, in the construction of the bivariate

time series
(

Y1,t, Y2,t

)
, i.e.,

Y1,t :=
r

∑
i=1

1{It = i} · [Li + Ai(t) · cos(2παit + φi)], (S41a)

Y2,t :=
r

∑
i=1
·1{It = i} · [Li + Ai(t) · cos(2παit + φi + θi)], (S41b)

where it furthermore is assumed that the i-indexed stochastic variables Ai(t) and ϕi are
independent of the j-indexed variants when i 6= j. It now follows from Lemmas S1 and S2
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that the h 6= 0 auto-correlations of the bivariate time series
(

Y1,t, Y2,t

)
in Equation (S41) is

given by

ρ11(h) = ρ22(h) =
1
4 ·∑

r
i=1 p2

i ·
(
a2

i + 2aibi + b2
i
)
· cos(2παih)

∑r
i=1 pi ·

[
L2

i +
1
3 ·
(
a2

i + aibi + b2
i
)]
−
(
∑r

i=1 pi · Li
)2 . (S42)

The cross-correlations ρY12
(h) and ρY12

(h) can for h 6= 0 similarly be written out as

ρY12
(h) =

1
4 ·∑

r
i=1 p2

i ·
(
a2

i + 2aibi + b2
i
)
· cos(2παih + θi)

∑r
i=1 pi ·

[
L2

i +
1
3 ·
(
a2

i + aibi + b2
i
)]
−
(
∑r

i=1 pi · Li
)2 , (S43a)

ρY21
(h) =

1
4 ·∑

r
i=1 p2

i ·
(
a2

i + 2aibi + b2
i
)
· cos(2παih− θi)

∑r
i=1 pi ·

[
L2

i +
1
3 ·
(
a2

i + aibi + b2
i
)]
−
(
∑r

i=1 pi · Li
)2 , (S43b)

whereas the h = 0 case is given by:

ρY12
(0) = ρ21(0) =

∑r
i=1 pi ·

[
L2

i +
1
3 ·
(
a2

i + aibi + b2
i
)]
· cos(θi)−

(
∑r

i=1 pi · Li
)2

∑r
i=1 pi ·

[
L2

i +
1
3 ·
(
a2

i + aibi + b2
i
)]
−
(
∑r

i=1 pi · Li
)2 . (S44)

An inspection of Equations (S42) and (S43) reveals that it is fairly easy to find a param-
eter configuration for which the numerator is rather small compared to the denominator.
This is of course not white noise, but the key idea is that it is close enough to white noise
to make it impossible to deduce anything about the underlying frequencies αi and the
phase-differences θi based on the ordinary cross-spectrum.

S6.5.2. The heuristic argument underlying the local bivariate trigonometric example

The purpose of this section is to give a short summary of the corresponding discussion
from JT22 [Appendix G.4.2], i.e., to briefly explain the reasoning that motivated the con-
struction of the local bivariate trigonometric example in Section S6.5.1. Only the general ideas
will be described here, and the interested reader should consult JT22 [Appendix G.4.2] for
an in depth discussion.

The key motivation for the construction of the local bivariate trigonometric models is the
sanity testing of the estimation algorithm for the m-truncated local Gaussian cross-spectrum
f̂ m
k`:v(ω), i.e., to construct models in such a manner that heuristic arguments can be used

to give a “decent guesstimate of the result” when the m-truncated estimates f̂ m
k`:v(ω) are

created based on pseudo-normalised samples from these models.
In order for this to work, it is necessary to select several parameters in a structured way,

both on the side of the local bivariate trigonometric models (probabilities pi, amplitudes Ai,
base-lines Li, frequencies φi and phases θi) and on the side of the local Gaussian estimation
algorithm (truncation level m, bandwidth b and point of investigation v).

The problem is to figure out how the parameters pi, Ai and Li should “map to” points
v and bandwidths b when the samples are pseudo-normalised. This problem was discussed
in detail in JT22 [Appendix G.4.2], and this discussion will not be repeated here.

The following observation is the pivotal one for the heuristic argument that motivates
the sanity testing. For a local bivariate trigonometric random variable

(
Y1,t, Y2,t

)
, as given

in Equation (S41), the idea goes as follows: For specified indices i and j, it should be
possible to find a “good combination” of point v and bandwidth b, such that the estimated
m-truncated local Gaussian spectrum f̂ m

k`:v(ω) looks similar to the spectrum that would
occur if only the Ck,i(t) and C`,j(t) components had been used to generate the sample under
investigation.

The argument for this part is actually quite simple: For the “correct combination”
of v and b, the local kernel function in the estimation algorithm of the local Gaussian
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cross-correlations ρk`:v(h) will in essence “ignore” the contributions from other components
than Ck,i(t) and C`,j(t) when the lag h pairs from Yk,t and Y`,t are considered (since low
weights are assigned to the lag h pairs that lies “far away” from the point v). The lag h pairs
that contribute most to the estimated value ρk`:v(h), can be seen as a “randomly selected
subset” of those lag h pairs that would have occurred if all the observations had been from
the Ck,i(t) and C`,j(t) components.

If this “randomly selected subset” from Ck,i(t) and C`,j(t) is sufficiently large, then it
can be expected that the local Gaussian cross-correlation ρ̂k`:v(h) estimated from this subset
should be “fairly close to” the one estimated from the full set. This argument does not
depend on the lag h value, so the expected result is that the estimates ρ̂k`:v(h) all should be
“fairly close to” to those estimated from the full set.

Since the estimate f̂ m
k`:v(ω) of the local Gaussian cross-spectrum f m

k`:v(ω) is a linear
combination of the estimates ρ̂k`:v(h), it now seems reasonable to expect that the shape
of it should share some clear similarities with the one based on the full set. This is the
reasoning that enabled local bivariate trigonometric models to be used for the sanity testing
of the estimation algorithm for the m-truncated local Gaussian cross-spectrum f̂ m

k`:v(ω), as
seen in Section 3.1.2 in the main part.

Strictly speaking, neither fk`(ω) nor fk`:v(ω) are well defined for the local bivariate
trigonometric times series, but this is not a problem when the m-truncated spectra f m

k`(ω) and
f m
k`:v(ω) are investigated. The important detail is that it (for suitably selected combinations

of point v and bandwidth b) is possible to “predict” that the m-truncated estimates f m
k`:v(ω)

seen in Figure 3 should look a bit like like the “global bivariate cosine combination” seen in
Figure 1.

S6.5.3. What points to investigate for the bivariate local trigonometric examples?

The local bivariate trigonometric models used for the sanity testing in the main part used
points located along the diagonal, like seen in Figure 3. The diagonal points were selected
since it for them was “fairly clear” that the resulting local Gaussian spectra would share
some similarities with the basic reference example seen in Figure 1, which enabled an easy
visual comparison of the results.

The heatmap+distance plot seen in Figure 2 also focused on points along the diagonal,
and from this it can be seen that the spectra will (as expected per construction) change a lot
as the point v varies along the diagonal. It is of course possible to consider points outside of
the diagonal too, and an example of this can be seen in Figure S6.3. The same sample that
was used for Figure 3, has here been investigated for the three points 10%::90%, 10%::50%
and 50%::90% (percentages relates to quantiles of the standard normal distribution). This
plot is, as was done for Figure 3, based on a presentation of the Co-, Quad- and Phase-plots
of the m = 10 truncated local Gaussian cross-spectrum.

The plots in Figure S6.3 shows that the Co-, Quad- and Phase-plots at the point 10%::90%
(middle column) looks more like the i.i.d. white noise that was encountered in Figure S6.1
(see page 35), whereas the plots for the two points 10%::50% and 50%::90% do detect the
presence of local phenomena. It might not be any obvious interpretation of these plots
when seen isolated, but it should at least be noted that the plots for the two points 10%::50%
and 50%::90% have troughs/peaks for the α-values that corresponds to the first and second
coordinates of these points — and this seen in conjunction with the previously investigated
points in Figure 3 supports the idea that there are local features in the data that depends
on these α-values. These features are not detected by the m = 10 truncated ordinary
cross-spectrum f m

k`(ω), but they are detected by the local Gaussian spectrum f m
k`:v(ω).

Note that it is possible to create new “global trigonometric examples”, like the one
seen in Figure 1, in order to see if the figures in Figure S6.3 are similar to those — but that
is only part of the work to do. The bandwidth b = 0.6 used for he investigation in Figure 3
might not be the “correct one” for the points investigated in Figure S6.3. If the bandwidth
b is too big, then “contamination” might occur, i.e, the resulting local Gaussian spectra will
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Figure S6.3. Co-, Quad- and Phase-plots for points away from the diagonal: three diagonal points: The
bivariate local trigonometric model in Equation (S39), constant phase-changes θi = π/3, i = 1, 2, 3, 4.
The frequencies αi shown as vertical lines. The local Gaussian spectra detects structures that are not
detected by the ordinary spectrum.

pick up features from the other components used in the construction of the local bivariate
trigonometric models, see the discussion in JT22 [Appendix G.4.2] for further details.

S6.5.4. Heatmap+distance plots, bivariate local trigonometric and extreme tail

Another aspect that can be discussed based on the local bivariate trigonometric examples
is the capability of the local Gaussian estimation machinery to pick up local structures that
occurs far out in the tails. This section will mirror the discussion in JT22 [Appendix G.4.3],
and it will also here be investigated if a known local structure in the periphery of the data
might be detected if the sample size is large.

The local bivariate trigonometric example in this paper is based on a simple bivariate
extension of the corresponding local trigonometric example from JT22. It contains 4 different
components

(
C1,i(t), C2,i(t)

)
, i = 1, . . . , 4, of which the first component

(
C1,1(t), C2,1(t)

)
occurs with probability p1 = 0.05. For a sample of length 1859 (length inherited from the
investigation of the EuStockMarkets-example) it is then expected that 0.05 · 1859 = 92.95
observations are from this first component — and these observations will (by construction)
all be in the lower tail.

As explained in JT22 [Appendix G.4.3], the “border” between the observations from
the i = 1 and i = 2 components should occur near the 5% percentile, but it is necessary
to “zoom in” on a diagonal point v that lies farther out in the tail than p1/2 = 0.025. This
requirement occurs since the estimate should avoid “contamination” from the observations
from the i = 2 component.

The parameters selected for the present investigation are all inherited from the follow-
ing discussion in JT22 [Appendix G.4.3]:

Based on the idea that it might be necessary to go all the way out to the 1%, it
seemed natural to attempt an investigation based on n = 25000 observations.
Since the point v now is far out in the lower tail, e.g. the 1% percentile of the stan-
dard normal distribution is −2.326, it seemed reasonable to use the bandwidth
b = (0.4, 0.4).

The heatmap and distance plots in Figure G.2 is based on an investigating of
a single realisation, that included percentiles based on values starting from 2
bandwidths below the 5% percentile and ending at 1/2 bandwidth below the 5%
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Figure S6.4. Co- and Quad-heatmaps, distance-plot: Sample from the bivariate local trigonometric model
in Equations (S39) and (S41), constant phase-changes θi = π/3, i = 1, 2, 3, 4. The frequencies αi shown
as vertical lines. This can be used to search for an “optimal” percentile that can reveal the elusive α1
frequency in the lower tail.
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Figure S6.5. Amplitude- and Phase-heatmaps, distance-plot: Sample from the bivariate local trigono-
metric model in Equations (S39) and (S41), constant phase-changes θi = π/3, i = 1, 2, 3, 4. The
frequencies αi shown as vertical lines. This can be used to search for an “optimal” percentile that can
reveal the elusive α1 frequency in the lower tail.

percentile, i.e., the diagonal points starts at approximately the 0.72% percentile
and ends at the 3.25% percentile.

Note that the reference to Figure G.2 in this quoted text is to JT22 [Figure G.2]. The
corresponding heatmap and distance plots for the local bivariate trigonometric example are
given in Figure S6.4 (Co- and Quad-version) and Figure S6.5 (Amplitude- and Phase-version).

The heatmap-parts of Figures S6.4 and S6.5 reveal that the contribution from the i = 2
component completely dominates at the 3.25% percentile, and it can also be seen that it is
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Figure S6.6. Heatmap plots for the local Gaussian cross-correlations ρk`:v(h), for diagonal points v in
the lower tail. Values close to +1 and −1 can indicate that the estimates have started to degenerate.
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Figure S6.7. The detection of the α1 = 0.267 frequency in the lower tail of the local trigonometric
example requires a large sample and an investigation far out in the lower tail. In this case the result
ended out being contaminated by the α2 = 0.091 frequency.

necessary to go down to at least the 1% percentile in order to detect the local structures due
to the i = 1 component (frequency α1 = 0.267). Note that Figures S6.4 and S6.5 are based
on only 1 single realisation, and other realisations might look slightly different.

The content of Figures S6.4 and S6.5 are based on estimates ρ̂k`:v(h) of the local Gaus-
sian cross-correlations ρk`:v(h). Note that these local Gaussian estimates focus on points
in the periphery of the observations, and the kernel function in the estimation algorithm
might then, as explained in the sensitivity analysis in Section S3.3, give estimates that
degenerate towards +1 or −1. The presence/absence of this degeneration-problem can
be investigated using the heatmaps in Figure S6.6, and the conclusion in this case is that it
seems to be some (but not all) estimates that have degenerated in this manner.

Figure S6.7 shows the situation when R = 100 replicates are used to estimate the
local Gaussian cross-spectrum f m

k`:v(ω) at the diagonal point v that corresponds to the 1%
percentile. The conclusion in JT22, when a similar investigation was performed for the
univariate local trigonometric example, see in particular JT22 [Figure G.3], was that the local
Gaussian estimates resulted in a plot with the expected “cosine-shape” and a peak near the
frequency α1 = 0.267 of the i = 1 component.

The situation for the bivariate case investigated in this section, see Figure S6.7, diverges
from the one seen for the univariate case. There is also for this case a peak near α1 = 0.267
due to the i = 1 component, but there is also a similar clear peak near the frequency
α2 = 0.091 due to the i = 2 component. This indicates that the bandwidth b = 0.4 is too
large in this case, since it is a clear contamination from the i = 2 component.

The i = 1 component
(

C1,1(t), C2,1(t)
)

was included in the local bivariate trigonometric
example in order to emphasise that extra care is needed when investigating points v in the
extreme tails of a sample — and the present discussion reveals that it even for a known
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model can be quite tricky to detect local interdependency-structures, in particular if they
do not occur frequently in the observations. The size of the sample is pivotal for the level of
details that can be extracted, but the selection of the bandwidth must also take into account
the point v under investigation.

Keep in mind, as explained in Section S3.3, that a too small bandwidth b can trigger
degenerate estimates close to +1 and −1, whereas a too big bandwidth returns estimates
that can be contaminated by neighbouring structures. A local Gaussian investigation
should thus investigate a range of bandwidths, in order to see what kind of behaviour that
occurs. The heatmap and distance plots can be useful for this task.
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