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Abstract: In this paper, we present a case study aimed at determining a billing plan that ensures
customer loyalty and provides a profit for the energy company, whose point of view is taken in the
paper. The energy provider promotes new contracts for residential buildings, in which customers
pay a fixed rate chosen in advance, based on an overall energy consumption forecast. For such
a purpose, we consider a practical Bayesian framework for the calibration and validation of a
computer code used to forecast the energy consumption of a building. On the basis of power field
measurements, collected from an experimental building cell in a given period of time, the code is
calibrated, effectively reducing the epistemic uncertainty affecting the most relevant parameters of
the code (albedo, thermal bridge factor, and convective coefficient). The validation is carried out by
testing the goodness of fit of the code with respect to the field measurements, and then propagating
the posterior parametric uncertainty through the code, obtaining probabilistic forecasts of the average
electrical power delivered inside the cell in a given period of time. Finally, Bayesian decision-making
methods are used to choose the optimal fixed rate (for the energy provider) of the contract, in order
to balance short-term benefits with customer retention. We identify three significant contributions of
the paper. First of all, the case study data were never analyzed from a Bayesian viewpoint, which is
relevant here not only for estimating the parameters but also for properly assessing the uncertainty
about the forecasts. Furthermore, the study of optimal policies for energy providers in this framework
is new, to the best of our knowledge. Finally, we propose Bayesian posterior predictive p-value
for validation.

Keywords: uncertainty quantification; Bayesian analysis; energy contracts

1. Introduction

Today, more and more green buildings are designed to keep energy consumption low
with the aim of dividing CO2 emissions by four by 2050. This challenge implies, among
other things, to be able to predict the energy performance of existing or future buildings,
a task which can be tackled using thermal building models, implemented in numerical
simulation computer codes, which can be thought of as deterministic functions with an
input, some fixed parameters that can be uncertain, and an output.

An important example is retrofit analysis, in which stakeholders are tasked with inves-
tigating and recommending specific restructuring measures from a wide range of possible
options, as described in Pasanisi and Ojalvo (2008). The retrofit analysis is based on all
available information concerning the building, contained for example in the building in-
formation model (BIM) (Eastman et al. 2011), as well as on energy consumption models
implemented into computer codes.
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For instance, building energy models specifically designed for the retrofit analysis
of office and school buildings are described in Refs. Rysanek and Choudhary (2012) and
Tian and Choudhary (2011). In both works, sensitivity analyses are provided in the form
of standard regression coefficient (SRC) indices (Saltelli et al. 2000), which help detect the
inputs that have the greatest impact on predicted energy consumption, and correction
factors are applied to make the model predictions more similar to historical consumption
data. A more principled use of historical data involves a calibration step, in which uncertain
model parameters are tuned so that model predictions fit the historical data as well as
possible. In Heo et al. (2012), such a calibration is performed for normative building
energy models.

Design (or conception) is another important application of building energy modeling.
Contrary to retrofit analysis, no historical data are available at the conception stage, and
predictions must be made for a whole range of possible designs in order to choose the
optimal one. Furthermore, special care should be paid to assessing the level of confidence
one can have in the predictions of such models, necessarily built in the absence of historical
data. In Rivalin (2016), a complete uncertainty treatment framework for thermal building
modeling is presented, following the popular ‘non-intrusive approach’ commonly used
in the industrial practice; see Pasanisi and Dutfoy (2012) and Baudin et al. (2017). This
includes: probabilistic modeling of different sources of uncertainty using expert opinion,
sensitivity analysis, meta-modeling to accelerate calculations (Sacks et al. 1989), and uncer-
tainty propagation using either Monte-Carlo (or quasi Monte-Carlo) methods, or quadratic
summation via Taylor’s approximation. Other aspects about energy in buildings have been
analyzed in, e.g., Wate et al. (2020), who considered the effect of insulation thickness and
window transmittance on the annual heating and cooling demand per unit floor area.

Recently, the concerns about design and maintenance of buildings and energy systems
to be as sustainable and green as possible, following a computer simulation approach, have
been extended to the neighborhood and the city level. This requires a systemic methodology,
which raises challenging problems for modelers and statisticians (Mirakyan et al. 2015),
since it has to take into account, in particular, the interactions between different uses of
energy, as well as transportation, water, and waste management. As an application example,
we point out the simulation platform developed for the city of Singapore (Blin et al. 2015).

However, all the above approaches rely on the capacity of the chosen physical model,
and the ensuing computer code, to mimic ‘well-enough’ in some sense the actual behavior
of a real building, even if most models are based on simplified equations, which only
partially reflect the building geometry and its physical properties. This is a common
question in science and engineering, when complex physical systems are studied by means
of computer codes, or because physical experiments are unfeasible or economically too
expensive. Indeed, large differences are regularly observed between physical measurements
and code predictions, raising the question of how well the code is capable of reproducing
the physical system. See Kennedy and O’Hagan (2001) for a detailed discussion, and
Damblin et al. (2018) for a statistical overlook on this topic. Therefore, it is necessary to
verify the agreement between these two sets of data to conclude whether or not the code
can be used as a surrogate for reality.

This task, called validation by Bayarri et al. (2007), has already been tackled in the
field of building energy simulation in Bontemps (2015), through graphical comparisons
between measurements and corresponding code predictions for quantities of interest,
such as temperature or power consumption. While easy to use, these methods remain
qualitative and do not provide the causes of a poor fit. Many works dedicated to validation
therefore propose to assess the accuracy of the code predictions in a quantitative way,
taking into account all sources of uncertainty, both aleatory and epistemic, as advocated in
Roy and Oberkampf (2011), and detailed below. These two sources of uncertainty have
been considered by other authors in the context of energy consumption in buildings; for
example, Shamsi et al. (2020) uses copulas and a nested Fuzzy Monte Carlo approach to
deal with correlations between different types of uncertainties.
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When modeling the thermal behavior of a building, aleatory uncertainty is essentially
due to both weather conditions and the profile of the inhabitants, which are naturally
variable. For instance, Spitz (2012) treats this source of uncertainty in the conception stage
by conducting a local sensitivity analysis, then a global sensitivity analysis, in order to
identify the factors that have the greatest impact on the code predictions. There is also an
increasing interest in the effects of climate change on the energy consumption of buildings;
see Fonseca et al. (2020), who dealt with uncertainty quantification using Gaussian mixture
models and neural networks.

Epistemic uncertainty is strongly different by nature from aleatory uncertainty; it
derives from the lack of a precise knowledge of the physical laws governing the system or
the process under study. One example is the parametric uncertainty, i.e., the uncertainty
affecting some model parameters, seen as physical constants (Pasanisi et al. 2012). In a
Bayesian framework, parametric uncertainty can be encoded as a probability distribution
which combines a prior belief about the value of the uncertain parameters with the infor-
mation provided by the data; see Bernardo and Smith (1994). The quantification of this
parametric uncertainty is called calibration; see Campbell (2006).

Another source of epistemic uncertainty also arises from the lack of knowledge about
the degree of adequacy between the code and the physical phenomenon, as discussed
above. This can be quantified within the calibration step, together with the parametric
uncertainty, following Kennedy and O’Hagan (2001); however, this leads to a rather com-
plicated statistical analysis. In this work, we advocate a sequential approach where, as
in Cox et al. (2001), the presence of a discrepancy between available measures and code
predictions is tested using the posterior predictive p-value, as introduced by Gelman et al.
(1996). If such a test is inconclusive, in the sense that no significant discrepancy is detected,
then the code is considered as valid, meaning that it can be adequately used to predict the
building behavior.

Once the code has been validated, its final usage can be considered. In this study,
we address the decision-making problem of an energy supplier offering a new type of
contract, in which the customer pays a fixed fee chosen in advance, based on a forecast
of the overall energy consumption. According to Bayesian decision theory (Bernardo and
Smith (1994); French and Insua (2000); Robert and Casella (2004)), we show how to choose
this fee optimally from the supplier’s point of view, in order to balance the short-term
benefits with customer loyalty.

We identify three significant contributions of the paper. First of all, the Bayesian
analysis of the case study is new, although we rely on previous works, such as Bontemps
(2015). Those authors considered the sensitivity analysis to reduce the number of quantities
(parameters) that greatly affect power consumption, but we take an important step forward,
considering a Bayesian approach which allows for a sound estimation of the parameters.
As usual, the Bayesian approach allows us not only to estimate the parameters but also to
provide a measure of uncertainty around those values, through the posterior distribution.
The Bayesian approach allows for a better understanding of the effect of the three relevant
parameters on energy consumption. Furthermore, the Bayesian approach allows us to
undertake the second (and very relevant) new contribution: the choice of an optimal policy,
from the point of view of the supplier, about fixed price contracts, taking care of the supplier
profit, based on conflicting aspects such as the selling price and customer retention: when
the former is too high, then it is difficult to keep the customer. Finally the other important
contribution is more “technical”, due to the way we used the Bayesian posterior predictive
p-value for validation.

In Section 2, we present the case study and introduce some notations. In Section 3, after
assuming a statistical model between the code outputs and the power field measurements,
the calibration of the thermal code is performed using a Bayesian approach. In Section 4,
the validation of the code is conducted by calculating the uncertainty affecting the average
electric power delivered inside the cell over the time period. In Section 5, several optimal
consumption forecasts are calculated using Bayesian decision theory. We stress that, even
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though this study is based on real experiments, the application to optimal pricing must be
seen as a fictitious exercise and it is not representative of EDF (Électricité de France) billing
policies. The conclusions of the work are given in Section 6.

2. Overview of the Case Study
2.1. Dymola Computer Code

The computer code we use is a dynamic building energy model, which predicts the
electric power consumption needed to heat a room to a predetermined temperature. The
room is an experimental cell in the BESTLab laboratory, a description of which is given
below. The model was built using BuildSysPro, a library of components for modeling
buildings and energy systems (Plessis et al. 2014), written in the Modelica language, and
used for simulation in the Dymola software. Originally developed in Elmqvist (1978),
Modelica is well adapted for modeling large-scale structures, whose behavior is defined
through the interaction of its components, each described by a limited set of equations,
resulting in an overall system of (usually non-linear) equations, solved by general purpose
algorithms. An important aspect of this system-based approach is its modularity, enabling
to create quickly and simply large-scale models from a library of elementary building
blocks. The final computer code itself is an executable built using the Dymola software.

In terms of notations, let Pt be the actual electric power consumption in the cell at
time step t, for t ∈ {1, . . . , T}, and let yt be the corresponding code prediction. The latter
is computed given the power consumption yt−1 at the previous time step, and a vector
xt ∈ Rn of forcing variables (physical inputs) at time step t, including cell characteristics,
average temperature inside the cell, and weather conditions such as wind speed, outside
temperature and solar radiation, among others. In addition, this code depends on a vector
of fixed parameters θ ∈ Rp. The dimension of θ is p = 193, including both some physical
parameters such as albedo, convective factor, and many design variables such as floor
surface, window width, and so forth. Whereas the physical inputs change over time, in
general independently of the engineers’ will, the parameters can be tuned to reduce, e.g.,
the power consumption. The engineers identified 193 fixed parameters affecting the power
consumption and the computer code depends on them. Later on, we will show why we
actually considered and estimated only the three most relevant ones.

Consequently, the code can be denoted by the function gθ such that for t = 1, . . . , T:

yt = gθ(yt−1, xt).

In other words, the model-defining equations are solved iteratively at each time step,
reflecting how the cell dynamically reacts to variations in its environment.

Equivalently, the resulting dynamic code can be described more simply as a func-
tion Gθ depending on model parameters θ, computing a power consumption forecast
Y = (y1, . . . , yT) ∈ RT over the whole time period, given the initial power consumption y0,
the complete matrix X = (x1, . . . , xT) ∈ RT×n of forcing variables, so that:

Y(θ) = Gθ(y0, X), (1)

where we insist on the dependence of code predictions Y(θ) on the parameter θ, rather
than on the initial condition y0 and forcing variables X, which will be kept fixed during our
study. It is worth mentioning that Y : θ 7→ Y(θ) is a non-linear function, and this will affect
inferences later on.

However, note that defining X as input and Y as output of the physical model is
somewhat arbitrary, since the code essentially solves a system of equations for which
some variables have been fixed. Hence, it would be equally possible to redefine the
code as as a calculation of the temperature as a function of the electric power, as in
Bontemps et al. (2013). Our choice will become clearer when describing the particular
experimental sequence we have considered here.
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2.2. Experimental Data

The experimental cell is 1 of the 12 cells making up the BESTLab laboratory (see Figure 1),
in the EDF research and development site of Les Renardières, about 75 km southeast of Paris.
BESTLab was built in 2010, in the context of increasing demand for low energy buildings.
Its primary purpose is to test innovative building envelope components and integrated solar
technologies. See Bontemps et al. (2013) and Bontemps (2015) for a detailed description of
the installation.

Figure 1. General layout of the EDF BESTLAB experimental platform. We will focus on the thermal
behavior of one of the lower level cells.

Our study focuses on one of the ground cells (see Figure 2), comprising a single,
windowed, wall in contact with the outside environment. A heating, ventilation, and air
conditioning (HVAC) system allows us to heat or cool the cell at will, thus allowing us to
test different types of scenarios. Figure 3 shows a typical experimental sequence, wherein
the cell is alternately maintained at certain target temperatures, heated with a fixed power
supply, or left unconditioned, so that the temperature evolves freely.

In our case, we will focus on the first 7 days period of this sequence, where the cell
is maintained at 20 ◦C. The main reason for doing so is that this experimental condition
mostly resembles the usual state of residential housing. Furthermore, the code can more
accurately reflect certain experimental conditions then others, so it makes more sense to
validate it separately for each experimental condition, before considering global validation.

Moreover, heterogeneity in experimental sequences raises the issue of defining what
the inputs and outputs of the computer code are, as discussed in the previous section.
Indeed, when maintaining the cell at a fixed temperature, it makes sense to consider the
latter as an input, and the power consumption as the output of interest. Conversely, when
the cell is heated with a fixed power supply, or when the HVAC system is turned off, it
would make more sense, from a physical point of view, to consider the power consumption
as an input (which can be zero), and the resulting temperature as an output.

Finally, because our final use of the code is to predict the total power consumption
over a given period, the measured and computed powers are averaged, resulting in 30 time
steps over 7 days, rather than the 2016 five-minute time steps initially considered. This
allows us to considerably reduce the computational burden of the analysis, also reducing
the variance, both in the experimental and the computer code outputs. Figure 4 shows the
resulting smoother data we use for code validation.
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Figure 2. Experimental cell under study, equipped with captors monitoring temperature, power
consumption, and other variables of interest, and whose thermal behavior is modeled by the DY-
MOLA code.

Figure 3. Four month sequence acquired in the experimental cell, comprising six periods: 1. tem-
perature maintained at 20 ◦C (7 days), 2. 15 ◦C (15 days), 3. 30 ◦C (29 days), 4. no air conditioning
(42 days), 5. temperature maintained at 20 ◦C (7 days), 6. heating with a constant power of 160 W
(20 days). Red: inside temperature, blue: outside temperature.
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Figure 4. 19 time-averaged power measurements from the first period of the experimental data. The
time step is approximately 5 h and 30 min.

2.3. Observation Model

We assume in the following that no aleatory uncertainty affects the inputs X of our
code, since they have been observed throughout the experiment and are thus considered
as fixed quantities (covariates). On the other hand, certain model parameters are consid-
ered uncertain, including the thermal bridge factor, the albedo, and the convective factor
associated with the HVAC system.

The power field measurements are denoted by the vector Z = (z1, . . . , zT). As dis-
cussed earlier, computations are performed based on the averaged power measurements
rather than the complete ones, resulting in approximately four measures per day instead of
one per 5 min, yielding 30 data over the 7 days. Due to measurement errors, the power
measurements zt are not exactly equal to the true power consumptions Pt. Modeling these
errors as a white noise, we have:

zt = Pt + εt (2)

εt ∼
i.i.d.

N (0, λ2),

where εt is a zero mean Gaussian random variable, with variance λ2, which can also account
for residual variability (Kennedy and O’Hagan 2001) as well as measurement errors.

2.4. Sensitivity Analysis

Since the dimension of θ is very large (p = 193), direct calibration of the thermal code is
not feasible. Hence, a preliminary screening step is necessary in order to identify parameters
that have a negligible influence on power predictions with the goal of fixing them at the
value set by the experts and excluding them from further analyses; see Saltelli et al. (2000).
To this end, we have used the results from Bontemps et al. (2013), which we describe now.

In a first step, a local sensitivity analysis was conducted, using a one-at-a-time (OAT)
approach, consisting in computing the deviations in the code outputs at each time step
when a single parameter was changed by 5 percent around its nominal value. We thought
that such a percentage was a good compromise to avoid too small, insignificant changes on
the one hand or completely different, unrealistic values on the other. The local sensitivity
analysis is performed through three steps, as described below.

1. First of all, the sensitivity indices were defined as the ratios of output over input
deviations:

Si =
Y(θ∗ + hiei)− Y(θ∗ − hiei)

2hi
≈ ∂Y(θ)

∂θi
|θ=θ∗ ,
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where θ∗ is the nominal value for code parameters, elicited from expert opinion,
ei = (0, . . . , 1, . . . , 0) is the i-th vector of the canonical orthonormal basis for Rp and
the perturbation hi is the 5%, in absolute value, of the i-th component of θ∗. Si is
approximately equal to the code’s partial derivative with respect to the i-th parameter,
computed at each time-step (keeping in mind that Y(θ) is a vector of size T);

2. Next, the mean Si,m and the standard deviation Si,std were computed over time,

resulting in a hybrid index Si,d =
√

S2
i,m + S2

i,std;

3. Finally, only the variables with Si,d larger than a certain threshold underwent uncer-
tainty quantification. By thresholding this indicator, the number of parameters was
eventually downsized from p = 193 to p = 3.

In a second step, a global sensitivity analysis of the remaining parameters was per-
formed, which consisted of computing their respective time-varying Sobol indices, using a
Monte-Carlo approach coupled with a polynomial chaos expansion response surface (for
further details, see Bontemps et al. (2013)). This second analysis showed that the sum
of first-order indices were always higher then 97%, suggesting no interaction between
the parameters at all time. Furthermore, the maximum values over time of the first order
Sobol indices were used to identify three parameters, with maximum values over 25%, the
remaining parameters having maximum Sobol indices below or equal to 7%.

Finally, the three scalar parameters with the greatest impact on the output were found
to be:

• θ1 ∈ [0, 1] which is the albedo factor;
• θ2 > 0 which encodes the effect of the thermal bridges;
• θ3 > 0 which is the convective factor of the HVAC system.

We will now quantify this impact following a Bayesian approach, specifying prior
distributions on these three parameters and use power field measurements and code
outputs to make forecast about the electric power supplied to the cell.

3. Calibration

As discussed earlier, the thermal code depends on a vector θ of physical parameters,
typically set to an unchanged value before running the code, for instance a nominal value
θ∗ set by experts. However, θ is often uncertain, typically because it is non-measurable in
the field. Code calibration consists of reducing this (epistemic) parametric uncertainty, by
identifying parameter values for which the code outputs are as close as possible to physical
measurements.

When calibrating, it is important to keep in mind that the code might be an imperfect
representation of the physical system. Hence, it should be considered as a more or less
accurate mathematical approximation of the thermal behavior inside the experimental cell.
This second source of epistemic uncertainty is called code uncertainty, and is dealt with in
Kennedy and O’Hagan (2001) by adding a discrepancy term in the statistical model used
for calibration. We here advocate for another approach, based on a post-hoc statistical
test to detect the presence of such a discrepancy between measures and code predictions
(see Section 4).

Adopting a Bayesian perspective, calibration requires the following ingredients:

• A statistical model that links the available field measurements Z with the code outputs.
This equation provides a likelihood functionL(Z|θ, ψ), where ψ is a vector of nuisance
parameters attached to the model, specifying for instance the error structure between
code outputs and field measurements;

• A prior density π(θ) encoding the uncertainty as a prior belief in favor of some values
of θ, which are more probable than others, based on expert opinion. If no such prior
information is available, a uniform prior distribution can be adopted. Similarly to θ,
ψ is endowed with a prior density π(ψ), which we can choose independently from
π(θ), meaning that we form a priori independent opinions about the plausible values
of both parameters.
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The prior uncertainty affecting both code θ and nuisance ψ parameters is then updated
according to Bayes’ theorem:

π(θ, ψ|Z) = L(Z|θ, ψ)π(θ)π(ψ)∫
θ,ψ L(Z|θ, ψ)π(θ)π(ψ)dθdψ

∝ L(Z|θ, ψ)π(θ)π(ψ). (3)

We now detail the choice of the statistical model and priors.

Statistical Model

Assuming that the model discrepancy is negligible, i.e., the code is a faithful represen-
tation of the cell’s behavior, we have:

∃θ0 ∈ T s.t. Y(θ0) = P, (4)

with P = (P1, . . . , PT) the sequence of ‘true’ power consumptions inside the cell, which
remain unknown. Then, (2) implies that:

Z = Y(θ0) + ε, (5)

where ε = (ε1, . . . , εT) is defined by (2). We are interested in estimating θ0 so that, based
on (5), we consider the model Z = Y(θ0) + ε with ε as in (2). Under this model, Z now
depends on θ via Y . Since εt is a Gaussian white noise, the likelihood is given by:

L(Z|θ, λ2) =
1

(
√

2πλ)T
exp

[
− 1

2λ2 SS(θ)
]
,

where
SS(θ) = ||Z− Y(θ)||2

is the sum of squares of the residuals between the power field measurements and the
code outputs.

3.1. Prior Densities

The only nuisance parameter appearing in our case is the variance λ2 of observation
errors, as defined by (2), hence ψ := λ2.

Prior distributions are, in principle, elicited from the experts’ opinions about the
parameters, but no expert was available at the time of this study. Therefore, we chose the
least informative approach to Bayesian analysis, via uniform and Jeffreys priors, which still
allows us to exploit the benefits of the framework.

Based on the available information, which was minimal, we defined π(θ) as a product
of independent uniform distributions, for which bounds were chosen by thermal modeling
experts in order for the parameter values to remain physically plausible. For instance, since
the albedo θ1 is a reflection coefficient, it is necessarily between 0 and 1. Furthermore, a
non-informative Jeffreys prior is specified on the variance λ2, yielding:

π(θ) = π(θ1)π(θ2)π(θ3)

where

π(θ1) =
1[0,1](θ1)

1
π(θ2) =

1[0,100](θ2)

100
π(θ3) =

1[0,100](θ3)

100
,

and
π(λ2) ∝

1
λ2 .
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3.2. Posterior Distribution

From Bayes’ formula (3),

π(θ, λ2|Z) ∝ L(Z|θ, λ2)π(θ, λ2). (6)

As Y : θ 7→ Y(θ) is non-linear, the posterior distribution (6) has no closed form. It is
sampled using a Metropolis–Hastings algorithm; see Robert and Casella (2004). The full
conditional distributions can be obtained in a very straightforward way by multiplying
the sampling distribution (or likelihood, as a function of the parameters) for the prior of
the parameter of interest. As an example, the full conditional of θ1 is just proportional to
the likelihood function restricted to 0 ≤ θ1 ≤ 1. In practice, calculations were carried out
using the algorithm implemented in the Open-TURNS software platform for uncertainty
treatment in numerical simulation (Baudin et al. 2017), consisting of component-wise
random-walk steps with adaptive lengths, tuned to maintain the acceptance rate within
reasonable bounds.

However, the posterior chain generated by this first approach turned out to be highly
autocorrelated, especially concerning the observation noise parameter λ2. This in turn
meant that the convergence of the empirical estimates for posterior expectations was
extremely slow. Remember that we additionally had to deal with an expensive computer
code. This code had to be called four times (one per sampled parameter) at each iteration of
the algorithm, for a total running time of 10 s per iteration. In practice, this meant that we
were limited to a few thousands iterations, making it crucial to have good mixing properties.

A more refined approach is to integrate out λ2 and sample only from the joint posterior
distribution of the calibration parameters, formally defined as

π(θ|Z) =
∫

λ2
π(λ2, θ|Z)dλ2.

Indeed, in the present case, the above integral can be computed analytically. To see
this, note that the Jeffreys prior for the nuisance parameter λ2, given by π(λ) ∝ λ−2, can
be seen as a limiting case of the inverse-Gamma distribution, defined by the following
density function:

f (x|α, β) =
βα

Γ(α)
x−(α+1)e−β/x.

Namely, it corresponds to α, β→ 0+.
As is well known, this prior is at least partially conjugate, given that θ1 Indeed, it

is easily shown that the conditional posterior distribution of λ2 is the inverse-Gamma
distribution:

λ2|θ, Z ∼ IG
(

α +
T
2

, β +
1
2
||Z− Y(θ)||2

)
. (7)

By integrating out this analytical posterior, we can then recover the partially-integrated
joint posterior for the calibration parameters, exploiting Bayes’ formula:

π(θ|Z) =
π(λ2, θ|Z)
π(λ2|θ, Z)

∝
L(Z|λ2, θ)π(λ2, θ|Z)

π(λ2|θ, Z)

∝
(

β +
1
2
||Z− Y(θ)||2

)−(α+ T
2 )

.

The above expression can then be used as the target density in a MCMC approach,
which directly samples θ’s posterior density. The full joint posterior distribution of (λ2, θ)
can then be easily recovered by simulating, for each generated posterior value θi of the cali-
bration parameters, the corresponding value λ2

i from the conditional distribution defined
in (7), substituting θi for θ.
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3.3. Results

We have implemented the MCMC algorithm targeting the marginal posterior density
of the calibration parameters, after having integrated out the nuisance parameter. More
precisely, the parameter components were updated sequentially, using the random-walk
Metropolis–Hastings algorithm with uniform proposals, so that the step sizes correspond
to the radii of support intervals. To test the convergence of our algorithm, we ran three
chains, initialized using independent draws from the uniform prior distribution. We
tuned the step sizes of our component-wise random-walk Metropolis–Hastings algorithm,
to obtain acceptance rates between 0.2 and 0.8 for all parameters; the actual values are
given in Table 1. Step size adaptation is done automatically within the algorithm each
30 iterations, by computing for each component the current acceptation rate, then increasing
the corresponding step size by 10% if the rate is larger than 0.8, and reducing it by 10% if
the rate is below 20%.

Each run consisted of 2100 iterations of the algorithm, taking about 11 h on a laptop
equipped with an Intel 2.20 GHz processor. Most of the calculation time was due to the
computer code, which took about seven seconds per run.

Table 1. Acceptance rates for the component-wise random-walk Metropolis–Hastings algorithm.
Each line corresponds to a different MCMC run.

Chain Parameter θ1 θ2 θ3

1 Acceptance rate 21% 20% 52%
2 Acceptance rate 26% 71% 58%
3 Acceptance rate 23% 70% 55%

Figure 5 shows the raw Markov chain generated by our algorithm, illustrating the
good mixing properties of the chain. Based on these three chains, we computed the Gelman–
Rubin convergence diagnostic Gelman and Rubin (1992), removing the 250 first iterations
from each chain to account for the burn-in period, clearly visible for one of the chains.
Table 2 shows the values of this test for each parameter component. These are all very close
to 1, meaning that no convergence problem was detected.

Figure 6 confirms the good mixing properties of our algorithm by showing the auto-
correlation function associated with each component of the chain: this shows that posterior
draws more than∼10 iterations apart are not significantly correlated. Additionally, Figure 7
shows that we can be reasonably confident that the empirical mean of each Markov chain
is close to the actual posterior expectation.

Table 2. Results of the Gelman–Rubin convergence test for each component of the Markov chains.

Parameter θ1 θ2 θ3

Gelman-Rubin test 1.014 1.017 1.018
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Figure 5. Raw outputs of the MCMC algorithm: a Markov chain approximating the joint posterior
distribution. Each color corresponds to a different MCMC run.

Figure 6. Componentwise autocorrelation of MCMC algorithm output. Each color corresponds to a
different MCMC run.
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Figure 7. Cumulative ergodic means computed from the MCMC output. Each color corresponds to
a different MCMC run.

Taking advantage of all the available computations, we pooled the values from our
three Markov chains, having removed the 250 first iterations to account for the burn-in
period, resulting in a final posterior sample of 1750× 3 = 5250 draws. Figure 8 shows
the densities of the marginal posterior distributions of π(θi|Z), while Table 3 summarizes
them with the so-called ’central’ values (posterior mean and median), a dispersion measure
(standard deviation) and 95% posterior credible intervals. These show that the 30 available
data allowed to significantly reduce the parametric uncertainty, yielding posterior densities
with masses concentrated in realistic regions of the parameter space. For instance, the
albedo is seen to be with high probability between 0.18 and 0.22, values usually associated
with bare soil and green grass, which happens to be precisely the environment of the
BESTLAB platform.

Table 3. Marginal posterior laws characteristics: central values, dispersion metric, and 95% bilateral
credible interval (lower/upper credible levels).

Parameter Mean Median LCL UCL

θ1 0.203 0.204 0.181 0.222
θ2 3.200 3.205 2.997 3.377
θ3 39.960 36.446 24.884 75.378



Econometrics 2022, 10, 34 14 of 24

Figure 8. From left to right: marginal posterior densities of θ1, θ2 and θ3.

4. Validation

Validation is the second task of the V&V (Verification and Validation) framework
aimed at quantifying the accuracy of code predictions; see AIAA (1998). Verification
consists in checking that all bugs inside the source code have been removed and, when
the code is constructed as a finite element solution, that the discretization errors are small
enough; see Roache (1998). In this paper, we are not concerned with verification although
this task should be addressed before any validation study.

The goal of validation is to ensure that the mathematical representation that underlies
the code is an acceptable representation of the physical system.

A naive approach, yet still very popular in everyday industrial practice, consists
in visually comparing code outputs and field measurements, and then deciding if the
difference is small enough. Much effort has been made over the past decade to more
rigorously quantify this difference and the uncertainty affecting it. For instance, Roy and
Oberkampf (2011) introduced several validation metrics, based on statistical tests taking
into account that the computer code can be subject to different types of error, such as
intrinsic input variability (aleatory uncertainty), and parametric (epistemic) uncertainty.

Bayarri et al. (2007) proposed a Bayesian validation framework in which the discrep-
ancy between the code and the field measurements is modeled by a random Gaussian
process, following the seminal idea of Kennedy and O’Hagan (2001). In our study, the
aleatory uncertainty is negligible because xt is precisely measured at each time step t in the
time period and the associated measurement error is included in the noise term εt (2). On
the other hand, the power predictions are affected both by the value of the code param-
eters and the adequacy of the code itself for the thermal system. The validation stage is
thus strictly dependent on the results of the calibration stage. In Bayarri et al. (2007), the
epistemic uncertainty is quantified during the calibration stage, and then propagated to the
code output. We will follow the same idea, except for the fact that we do not use a Gaussian
process modeling a possible code discrepancy. Indeed, introducing such a term comes at
an added computational cost, and may cause identifiability issues, so that in practice the
posterior distribution of calibration parameters strongly depends on the choice of a prior
for the code discrepancy. This is discussed for instance in Damblin et al. (2016), wherein
Bayes factors are computed between calibration models with and without a discrepancy
term. We rely instead on a statistical test of the presence of such a discrepancy.

Last but not least, an important point is that a validation study should be carried out
by keeping in mind the intended use of the code; see AIAA (1998). Consequently, code
predictions should be judged to be sufficiently accurate according to the estimation of a
quantity of interest φ reflecting its intended use.
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In this study, we merely aim to assess the uncertainty affecting the average power
delivered inside the cell over the chosen time period. Hence,

φ(P) := P̄ =
1
T

T

∑
t=1

Pt. (8)

It follows that the uncertainty affecting P̄ derives from the uncertainty affecting Pt at
each time step over the period.

As detailed in Section 2, the validation of the thermal code consists in assessing the
uncertainty affecting the average power P̄ which is delivered inside the cell over the time
period. This process requires the followings steps:

1. Generate a sample (θ1, · · · , θM) from the posterior distribution π(θ|Z), as described
in Section 3;

2. Run the code over the M samples (θ1, . . . , θM)2. This leads to a sample (Y(θ1), . . . ,
Y(θM)) from the posterior distribution π(Y(θ)|Z) of the electric power over the
time-period. A point estimate can then be derived, such as the posterior mean:

E[Y(θ)|Z] =
∫

Y(θ)π(θ|Z)dθ,

which we approximate here by the empirical mean 1
M ∑M

m=1 Y(θm), as illustrated by
the blue line in Figure 9;

3. Estimate the posterior distribution of π(P̄|Z) by π(Ȳ(θ)|Z), following (4), a sample
of which is given by (Ȳ(θ1), . . . , Ȳ(θM)), where the upper bar denotes the mean over
the time period, as defined by (8).

Then, practitioners should decide whether the uncertainty on P̄ is not too large in view
of its intended use, for instance by calculating the quantiles at 95% of π(P̄) (see Figure 10,
where we see that the average power consumption is most likely between 170 W and
178 W).

Figure 9. Measurements versus calibrated code predictions of the electric power delivered inside the
cell at each time step of the period.
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Figure 10. Probability distribution of the averaged electric power (kWh) delivered inside the cell over
the time period.

Statistical Testing

To summarize, the above validation procedure consists of a Bayesian calibration
step, and two consecutive uncertainty propagation steps, which crucially depend on the
calibration result, that is, the probability distribution π(θ|Z), which in turn depends on
the statistical model chosen for calibration. In the literature dedicated to code calibration,
as we have previously discussed, an alternative to the assumption of unbiasedness of the
code with respect to reality (4) is given by:

Y(θ0) = P + b, (9)

where θ0 is often defined as a ‘best-fitting’ value (Kennedy and O’Hagan 2001) with respect
to the available data. This amounts to saying that there is no value of θ making a perfect
agreement between P and Y(θ) . The residual gap b is usually called code discrepancy. Joint
estimation of θ and b is performed in Bayarri et al. (2007), despite several conceptual as
well as practical difficulties:

• Assumption (9) leads to a statistical model in which only Y(θ) + b can be estimated;
this results in a confounding between θ and b which is solved in the literature by
adopting a Gaussian process (GP) prior distribution on b. This means that the esti-
mated value of θ depends entirely on the prior chosen for b, irrespective of the number
of available data;

• The definition of the ‘real value’ θ0 for the parameter becomes problematic as soon as
the code itself is no longer considered an exact depiction of reality;

• Adding the GP term makes model estimation as well as prediction more complex from
a purely technical point of view.

All these difficulties may explain why this approach has not yet been widely adopted
by the engineering community. As a consequence, we choose here to follow another path,
relying on a statistical test of the null hypothesis H0 : b = 0, that is, that our unbiased
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statistical model (5) is an accurate enough description of reality, vs. H1 : b 6= 0, meaning
that there is a systematic bias in the model predictions, according to (9).

Let us consider, as a goodness-of-fit test statistic, the X 2 discrepancy (Gelman et al. 1996):

X 2(Z, θ, λ2) =
||Z− Y(θ)||2

λ2 . (10)

The classical testing procedure then consists in computing the following p-value:

pval(θ, λ2, Z) = P[X 2(Zrep, θ, λ2) > X 2(Z, θ, λ2)|θ, λ2, Z,H0],

where Zrep is a vector of replicated data, simulated under the null hypothesis, given here
by our statistical model (5). Given a maximum acceptable type I (false positive) error
rate α (typically 5%),H0 is then rejected for values of the p-value smaller then α. If model
parameters θ and λ2 were perfectly known, and the observation errors normally distributed,
then the null distribution would be chi-square, with T degrees of freedom (df). This means
that the goodness-of-fit test is also a normality test, in the sense that both the presence of a
model bias, and departures from the normality assumptions, can lead to rejectH0.

The usual frequentist way of dealing with the uncertainty tainting θ and λ2 is to
estimate them from the data Z through, say, a maximum likelihood procedure. The null
distribution is then approached, either by bootstrap techniques (Efron 1981) or asymp-
totically, leading here to the chi-square distribution with T − (p + 1) degrees of freedom;
see van der Vaart (2000).

Since we have adopted a Bayesian perspective, our way to deal with parametric
uncertainty is to compute the posterior predictive p-value, as introduced by Gelman et al.
(1996), which takes into account the posterior distribution of θ and λ2, following:

pB(Z) = P[X 2(Zrep, θ, λ2) > X 2(Z, θ, λ2)|Z,H0] (11)

where Zrep is a vector of replicated data, which is now simulated from the predictive density
derived from (5). The probability in (11) is therefore computed with respect to the joint
posterior density of (Zrep, θ, λ2):

π(Zrep, θ, λ2|Z) = L(Zrep|θ, λ2)π(θ, λ2|Z).

This means that pB(Z) is simply the posterior expectation of the initial p-value:

pB(Z) = E[pval(θ, λ2, Z)|Z] =
∫

θ,λ2
pval(θ, λ2, Z)π(θ, λ2|Z)dθdλ2,

which we approximate here by the empirical mean

p̂B(Z) =
1
M

M

∑
m

pval(θm, λ2
m, Z),

as illustrated in Figure 11 (left). Recall that in our case pval(θm, λ2
m, Z) is given by the prob-

ability that a chi-square variate with T df exceeds the observed discrepancy X 2(Z, θm, λ2
m).

As usual in a Bayesian approach, we deal here with uncertainty on parameters by integrat-
ing over them, as opposed to setting them to estimated values, as it would be done in a
frequentist setting. Finally, the resulting Bayesian test mimics the original test by rejecting
H0 at a user-chosen level α whenever pB(Z) ≤ α.

Alternatively, pB(Z) can be estimated using realisations (Zrep,m, θm, λ2
m)1≤m≤M, where

the (θm, λ2
m) are given by the calibration procedure, and:

Zrep,m ∼
i.i.d.
N
(
yθm(.), λ2

m
)
.
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From (11), a second Monte-Carlo estimate of pB(Z) is then given by:

p̂B(Z) =
1
M

M

∑
m

1{
X 2(Zrep,m, θm, λ2

m) > X 2(Z, θm, λ2
m)
}.

This estimator is more general than the previous one, since it requires no evaluation of
the conditional p-value pval(θ, λ2, Z), and thus can be used if the latter has no closed form3.

Figure 11 (right) shows the scatterplot of X 2(Zrep, θ, λ2) against X 2(Z, θ, λ2). By either
method, pB is found equal to 0.45, meaning that there is no evidence to reject model (5) nor
the underlying normality assumption.
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Figure 11. Left: Histogram of the posterior sample of pval(θ, λ2, Z): the posterior p-value is estimated
by the average over this sample. Right: Scatterplot of predictive vs. realized X 2 discrepancies: the
posterior p-value is estimated by the proportion of points above the y = x line.

Complimentary to the above test, we have also considered some additional graphics
to check the assumption of normality of the observation errors, which are estimated here
by the residuals. As shown in Figure 12 (left), we considered the popular QQ-plot, which
compares the order statistics of the standardized residuals, to the corresponding standard
normal quantiles. However, the residuals depend on model parameters and are hence
uncertain. We have summarized this uncertainty by computing the median QQ-plot, as
well as its 95% credible bounds. As can be seen, these credible bounds contain the y = x line,
meaning that no departure from normality has been detected. In Figure 12 (right), we have
also represented the posterior predictive density of the code outputs vs the corresponding
observed value. Again, the predicted and recorded values seem reasonably close, except
for a single data point, which is clearly underestimated by the code.
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Figure 12. (Left): posterior median (solid line) and 95% credible intervals of the normal QQ-plot.
(Right): Posterior distribution of code outputs versus observed values.

5. Optimal Power Consumption Forecasts

Most energy contracts are based on a description of the building occupied by customers,
accounting for all electrical devices inside the building. This description is used to predict the
nominal level of power included in the contract, which can be modified later if the effective
consumption is far from the initial forecast. In all cases, the monthly bill paid by the customers
depends both on the type of contract they have and their effective consumption.

In contrast, it is now common in many other lines of business, such as web access/data
services, to propose so-called ‘unlimited access’ contracts, for which the customers pay a
fixed fee, based on an initial estimation of their needs. In this section, we investigate how
such energy contracts could be designed, based on probabilistic forecasts, as illustrated in
Figure 10.

In short, the problem can be summarized as that of computing a point estimate of the
average electric consumption Ȳ(θ) delivered inside the experimental cell over a certain
period of time. The standard approach would suggest computing a central value, such as
the mean, median, or maximum of the a posteriori predictive distribution; see Berger (1985).

However, such choices do not take into account the underlying stakes, which is hardly
possible in an industrial context.

The link between statistical estimation and decision under uncertainty in industrial
studies has been carefully studied by Pasanisi et al. (2012), grounded in Bayesian decision
theory (described, e.g., in Berger (1985); Bernardo and Smith (1994); French and Insua
(2000); Robert and Casella (2004)). We now recall the main ingredients of this approach
applied to the field of energetic building modeling.

Bayesian inference provides a measure of the uncertainty about quantities of interest
under the form of a probability distribution. If a point estimate is required, a Bayesian
estimator should be calculated based both on the probability distribution of the quantity
and a cost function, which assesses the economical consequences of all possible estimation
errors, that is, the differences between all candidate point estimates and the unknown true
value of the quantity. Eliciting the cost function is a complex task, closely related to that of
eliciting prior distributions of unknown quantities, as explained in the above references.
In practice, obtaining a realistic cost function is often very difficult, so we aim instead for
a simplified expression which summarizes the analyst’s understanding of the problem.
A good example is the LINEX asymmetric loss function Chang and Hung (2007).

More formally, let d be the energy forecast used to define an energy contract for a new
customer. The cost function, denoted by C(d, P̄), measures the economical consequences
induced by the choice of d instead of the true average consumption P̄ (of course unknown
in advance).
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Equivalently, the cost function can be replaced by a utility function as an assessment
of the profit instead of the loss. In this case, the associated Bayes estimate d̂ maximizes the
expected utility:

d̂ = argmax
d

∫
P̄

U(d, P̄)π(P̄|Z)dP̄.

For illustration purposes, we now describe a possible utility function that can be used
to optimize an ‘unlimited access’ energy contract, assuming that the customer pays a fixed
fee d. In the case where the effective consumption P̄ exceeds d, the energy supplier commits
to pay the surplus amount, thus ensuring customer satisfaction (and hence loyalty). This
first goal alone suggests drastically underestimating P̄, with the risk of inciting customers
to waste the energy they have not paid for. Hence, a company that proposes such a contract
should carefully assess its benefits.

To this end, we suggest using the following utility function, based on a linear energy price:

U(d, P̄) = (m× d)1{P̄>d} +
m× d

c(d− P̄) + 1
1{P̄≤d}, (12)

where

• m is the marginal electricity price,
• c characterizes the probability 1 − (c(d − P̄) + 1)−1 that the customer breaks the

contract, given that he/she pays more than he/she has consumed. For small values of
c, this probability is approximately equal to c(d− P̄), hence c can be interpreted as a
customer defection rate, assuming that the number of defecting customers is proportional
to the amount of unused energy they have paid for.

Figure 13 shows the optimal energy forecast d̂ corresponding to several values of the
defection rate c, given a certain marginal energy price m. Note that, due to our linear price
assumption, m simply acts as a scaling factor and does not in fact influence the choice of d̂,
which is entirely driven by c. Consequently, a small defection rate c = 1% (solid line) leads
to d̂ = 175, close to the MAP (Maximum A Posteriori) estimate (as seen in Figure 10), while
the higher rate of c = 20% (dot-dashes) leads to the much lower optimal value d̂ = 172.8,
necessarily yielding lower benefits (the dot-dashed curve has a lower maximum than the
solid line curve).
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Figure 13. Expected utilities as functions of the fixed contract fee d, for different defection rates c.

These results show how, with the help of the proposed utility function, we can quantify
precisely how, in a highly competitive market, companies must reduce their benefits in
order to preserve market share. Obviously, such results are highly sensitive to the fine-
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tuning of m and c, which should be carefully assessed with the help of the company’s
commercial sector. These in turn could be estimated on the basis of existing data, in which
case they would be added to the list of uncertain parameters on which the expectation of
the utility is computed.

6. Discussion

In this paper, we have proposed a practical Bayesian methodology for the calibration
and validation of a computer code used to forecast a quantity of interest in an industrial
study, used to guide some strategic decisions for the company, and taking into account
the stakes behind these decisions, based on Bayesian decision theory. We illustrated this
methodology in a case study concerned with forecasting the energy consumed to heat a
building, in view of optimizing an electrical contract including an energy supply guarantee.

We have used a dynamic thermal code implemented with the Dymola software, but
other computer codes are available, such as the stochastic building performance simulator
(S-BPS) considered in Wate et al. (2020), who used a Gaussian process emulator. We have
considered a Bayesian approach but others have been proposed in literature; for example,
Shamsi et al. (2020) took a fuzzy approach.

The method presented here is quite generic, and can in principle be applied to any
application domain, when decisions need to be taken, based on the behavior of a physical
system with uncertain outputs.

It is important to note that the three stages of the validation process we propose, i.e.,

• Statistical testing of the code’s goodness of fit;
• Parametric uncertainty propagation through the code;
• And posterior utility maximization;

are entirely based on the output of the Bayesian calibration step, and require no additional
code runs. This makes our approach very attractive from a computational perspective,
since it requires only minimal efforts once calibration has been done.

Nevertheless, the practical implementation of our approach still depends on the
different elements at hand. In the simplified setting presented here, the calculations were
fairly standard, but many exciting challenges remain to be met in order to apply the
proposed framework to more realistic settings, as discussed below.

To begin with, we are currently working on extending the time period over which the
code is calibrated, then validated. This raises several issues, even when considering a single
cell (rather than a complete building). Indeed, running the code over an extended period
increases the computational cost, requiring the use of a metamodel to speed up calculations,
such as the dynamic emulator proposed in Liu and West (2009). However, one should be
warned about the difficulties of using an emulator in a calibration context. Indeed, this
can result in significant distortions of the posterior distribution, even when the pointwise
emulation error is small, as shown in Damblin et al. (2018). Dealing with this issue is
not straightforward, which is why in the paper we have chosen to work directly with the
computer code in spite of the added computation time, as our aim is to demonstrate a
simple, robust, and widely applicable methodology.

Since data from different periods correspond to different experimental settings, consid-
ering different versions of the code (depending on whether the temperature or the power,
or both, are considered outputs of interest), subject to dynamic constraints, is a promising
perspective. Another challenge is posed by the albedo. In the paper, this uncertain parame-
ter is assumed constant but it might be more realistic to model it using a time series. This
would require more sophisticated calibration procedures.

In the paper we have considered the three parameters identified by Bontemps et al. (2013)
and we presented our analysis, given them. As pointed out by one referee, it could have been
possible to perform variable selection implementing Bayesian penalization methods such as
shrinkage priors. This is an important suggestion that is worthy of future studies.

Furthermore, we have specified some utility functions to commit for an overall con-
sumption forecast to customers according to a new type of energy contract. How to build
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them remains a considerable challenge, which should only be addressed with the help of
the energy supplier’s commercial sector. The simplified functions proposed here should be
viewed as guidelines for building more realistic ones.

Finally, the Bayesian test proposed here, which mimics the behavior of a classical test,
only allows to control the type I (false positive) error rate, but not the type II (false negative)
error rate, meaning that we cannot ensure that the code is valid with a given confidence
level. In addition, we have not dealt with the case where the test rejects the null hypothesis,
meaning that a significant discrepancy between model and reality has been detected.

Both issues can be overcome in the more general context of Bayesian model selection
and averaging, as suggested in Damblin et al. (2016). This would imply comparing the
predictions from the statistical model used here, which assumes that the code is a perfect
representation of reality, with the statistical model in Kennedy and O’Hagan (2001), which
adds a discrepancy term to account for the model errors. This would allow to either select
the best model for prediction, or combine predictions from both models, weighted by their
respective posterior probabilities given the available data.

In any case, there is a rising trend for the use of numerical simulations to guide
industrial choices, in an increasingly competitive market, under higher and higher safety
and regulatory constraints. Hence, the issue of assessing model uncertainty and its impact
on decision making is becoming a central question. The methodology we have introduced
in this paper is a contribution to addressing this challenge, but represents in no way a
definitive answer.

Author Contributions: Conceptualization, G.D., P.B., M.K., A.P., F.R. and M.S.; methodology, G.D.,
P.B., M.K., A.P., F.R. and M.S.; software, G.D. and M.K.; validation, G.D. and M.K.; formal analysis,
G.D., P.B., M.K., A.P., F.R. and M.S.; investigation, G.D., P.B., M.K., A.P., F.R., M.S. and E.P.; resources,
P.B., M.K., A.P. and M.S.; data curation, G.D. and M.K.; writing—original draft preparation, G.D.,
M.K. and F.R.; writing—review and editing, M.K. and F.R.; visualization, M.K.; supervision, M.K.,
F.R. and E.P.; project administration, P.B., M.K., A.P. and M.S.; funding acquisition, P.B., M.K., A.P.
and M.S. All authors have read and agreed to the published version of the manuscript.

Funding: This research was partially funded by the French Agence Nationale de la Recherche (ANR),
under grant ANR-13-MONU-0005 (project CHORUS).

Data Availability Statement: The data are not publicly available due to their confidentiality.

Acknowledgments: This work was part of Guillaume Damblin’s PhD work at EDF R&D and
AgroParisTech, on the calibration and validation of computer codes.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript; or
in the decision to publish the results.

Notes
1 Complete conjugacy is only attained for linear codes, for which the full calibration posterior distribution is explicit.
2 In fact, these runs are necessarily performed during the calibration step. A good practice is therefore to store all the computer

code evaluations done during calibration, to avoid having to do them all over again for the validation.
3 This generality comes at a cost, since the Monte-Carlo variance associated with this second estimator is systematically higher

than that of the first one.
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