
Journal of

Actuator Networks
Sensor and

Article

Image Processor and RISC MCU Embedded Single
Chip Fingerprint Sensor

Seungmin Jung

School of Information Science and Telecommunication, Hanshin University, 137 Hanshindae-gil,
Osan-si 18101, Korea; jasmin@hs.ac.kr

Received: 28 August 2020; Accepted: 30 October 2020; Published: 2 November 2020
����������
�������

Abstract: In this paper, we propose a single chip fingerprint sensor with the algorithm processor
and 16-bit MCU. The algorithm processor is a logic circuit that implements the GABOR filter and
the THINNING step, which occupies 80% of the fingerprint image processing time. The rest of
the algorithm is processed by embedded 16-bit MCU with small circuit volume, so all steps of the
algorithm can be processed on the single chip without an external CPU. The capacitive sensing
circuit was designed by applying the parasitic-insensitive integrator with the variable clock generator.
The function was verified by Cadence Spectre for a 1-pixel sensor scheme and RTL and post
simulation for digital blocks synthesized by Synopsys Design Compiler in 180n 2-poly 6-metal CMOS
(complementary metal–oxide–semiconductor) process. The layout is done by automatic P&R for the
full chip in a 96 × 96 pixel array. The chip area is 5010 µm × 5710 µm (28.61 mm2) and the gate count
is 2,866,700. The result is compared with a conventional one. The proposed scheme can reduce the
processing time by 57%.

Keywords: fingerprint sensor; single chip; GABOR filter; binarization; thinning; embedded
MCU; VLSI

1. Introduction

Fingerprint is the most popular biometric method for authentication. Minutiae-based fingerprint
recognition algorithms are widely used. Minutiae means the position and angle information of ending
and ridge bifurcation. The image captured from the sensor is processed through an algorithm as shown
in Figure 1. The fingerprint algorithm is divided into a process of registering an existing fingerprint
and a step of confirming identity by matching a new fingerprint and a registered fingerprint [1–3].
Both steps go through a complex procedure of applying an algorithm and extracting feature points.
In order to extract the feature points, pre-processing, feature point extraction, and matching are
required. To date, various methods have been proposed mainly for software-oriented fingerprint
image processing. A high-performance processor and processing time are required for such a complex
algorithm. In order to perform the matching process on a large number of fingerprint images, the fast
speed of image analysis is important [4–6]. One of the ways to get an obvious increase in speed is
the hardware implementation of the algorithm [4,7–14]. In general, a sensor and an algorithm are
separated in a fingerprint recognition system. There are many advantages if the sensor and algorithm
can be operated on a single chip. Currently, the processing speed of the fingerprint recognition sensor
applied to the general security system is around 500 ms. In particular, when applied to mobile,
a processing speed of 500 ms or less is required. Embedded fingerprint identification systems require
high-performance microcontrollers such as 32-bit or 64-bit CPUs. This is expected to reduce the
operating speed and implement a small fingerprint identification system through the application of
the hardware-oriented method.

J. Sens. Actuator Netw. 2020, 9, 51; doi:10.3390/jsan9040051 www.mdpi.com/journal/jsan

http://www.mdpi.com/journal/jsan
http://www.mdpi.com
http://dx.doi.org/10.3390/jsan9040051
http://www.mdpi.com/journal/jsan
https://www.mdpi.com/2224-2708/9/4/51?type=check_update&version=2

J. Sens. Actuator Netw. 2020, 9, 51 2 of 15

J. Sens. Actuator Netw. 2020, 9, x FOR PEER REVIEW 2 of 15

Figure 1. Fingerprint identification algorithm.

Several attempts have been made in the hardware development of fingerprint recognition
algorithms for each step of the algorithm [7–14]. The papers deal with the hardware
implementation of Gabor filters [7–10] and thinning [13,14], respectively, or a combination of two
stages [11,12], while the final implementation is limited to simulation and FPGA (Field
Programmable Gate Array) verification. Although VLSI implementation has been proposed [9,10],
it is only a simulation, and there is no case in which the entire algorithm and MCU are integrated
on single chip. Since there are differences in target device, image size, process conditions, etc., it is
difficult to compare performance with old research results [7–14] for the two stages implemented in
hardware. Therefore, instead of step-by-step performance comparison, this will be dealt with in
terms of improved processing time and increased chip area when implemented with an integrated
single VLSI chip.

In this paper, we propose a single-chip fingerprint sensor structure with a built-in algorithm
processor and small MCU. The CPU occupancy of the algorithm was analyzed using the ARM
emulator and the FPGA environment. The algorithm processor handles only the binarization and
thinning step. The 16-bit RISC MCU handles the remaining steps that are processed by software.
The algorithm processor is designed by applying the Gabor filter for binarization and the ZS
(Zhang-Suen) algorithm for thinning [15]. The rest of the algorithm is processed by an embedded
16-bit MCU with a small circuit volume, so all steps of the algorithm can be processed on a single
chip without an external CPU. The operation of the circuit was verified by Cadence Spectre for a
1-pixel sensor system in 0.18 μm standard CMOS process and 1.8 V power condition, and the logic
synthesis circuit using Synopsys Design Compiler was performed by RTL and post layout
simulation. The layout is done by a full custom flow for the sensor cell array and automatic P&R for
the entire chip.

2. Sensor Array Design

2.1. Sensor Design

As shown in Figure 2 [16–19], a capacitive sensing circuit is introduced. The difference in
capacitance between a ridge and valley is very small, with a few femtofarads. This circuit is

Figure 1. Fingerprint identification algorithm.

Several attempts have been made in the hardware development of fingerprint recognition
algorithms for each step of the algorithm [7–14]. The papers deal with the hardware implementation of
Gabor filters [7–10] and thinning [13,14], respectively, or a combination of two stages [11,12], while the
final implementation is limited to simulation and FPGA (Field Programmable Gate Array) verification.
Although VLSI implementation has been proposed [9,10], it is only a simulation, and there is no case
in which the entire algorithm and MCU are integrated on single chip. Since there are differences
in target device, image size, process conditions, etc., it is difficult to compare performance with old
research results [7–14] for the two stages implemented in hardware. Therefore, instead of step-by-step
performance comparison, this will be dealt with in terms of improved processing time and increased
chip area when implemented with an integrated single VLSI chip.

In this paper, we propose a single-chip fingerprint sensor structure with a built-in algorithm
processor and small MCU. The CPU occupancy of the algorithm was analyzed using the ARM emulator
and the FPGA environment. The algorithm processor handles only the binarization and thinning step.
The 16-bit RISC MCU handles the remaining steps that are processed by software. The algorithm
processor is designed by applying the Gabor filter for binarization and the ZS (Zhang-Suen) algorithm
for thinning [15]. The rest of the algorithm is processed by an embedded 16-bit MCU with a small
circuit volume, so all steps of the algorithm can be processed on a single chip without an external CPU.
The operation of the circuit was verified by Cadence Spectre for a 1-pixel sensor system in 0.18 µm
standard CMOS process and 1.8 V power condition, and the logic synthesis circuit using Synopsys
Design Compiler was performed by RTL and post layout simulation. The layout is done by a full
custom flow for the sensor cell array and automatic P&R for the entire chip.

2. Sensor Array Design

2.1. Sensor Design

As shown in Figure 2 [16–19], a capacitive sensing circuit is introduced. The difference in
capacitance between a ridge and valley is very small, with a few femtofarads. This circuit is designed

J. Sens. Actuator Netw. 2020, 9, 51 3 of 15

to detect weak capacitances by using a non-overlapping clock to eliminate the effect of parasitic
capacitance. The sensor plate is shielded with a second metal to prevent noise from occurring in the
circuit under the sensor plate, which forms a parasitic capacitance between the sensor plate and the
metal shield. The parasitic capacitance Cp1 is very large compared to the finger capacitance Cf and
must be removed. To eliminate this parasitic capacitance, we apply an output to the lower node of
Cp1 to maintain the same potential between the two nodes of Cp1, maximizing the sensitivity of the
fingerprint sensor. The operational amplifier acts like a buffer between the top metal with Cp1 and the
shield metal.

J. Sens. Actuator Netw. 2020, 9, x FOR PEER REVIEW 3 of 15

designed to detect weak capacitances by using a non-overlapping clock to eliminate the effect of
parasitic capacitance. The sensor plate is shielded with a second metal to prevent noise from
occurring in the circuit under the sensor plate, which forms a parasitic capacitance between the
sensor plate and the metal shield. The parasitic capacitance Cp1 is very large compared to the finger
capacitance Cf and must be removed. To eliminate this parasitic capacitance, we apply an output to
the lower node of Cp1 to maintain the same potential between the two nodes of Cp1, maximizing
the sensitivity of the fingerprint sensor. The operational amplifier acts like a buffer between the top
metal with Cp1 and the shield metal.

(a) Pixel level detection circuit

(b) Output signal wave of a ridge and valley

Figure 2. Pixel-level Sensor scheme and output voltage.

Figure 2b shows the pattern of sensor output signals in the ridge and valley of the fingerprint.
Because the capacitance at the ridge is greater than the valley, the output of the integrated signal is
different. The integration signal is decreased much more slowly in the valley. The proposed circuit
is resistant to noise and is advantageous in recognizing fingerprints with high sensitivity with low
power, but it takes a long time to integrate charges. As a result of the simulation, the proposed
sensing circuit requires a maximum of 112 clocks to charge the full range voltage. It needs about
0.922 s to obtain a 96 × 96 image frame at 10 MHZ. This is very long time, but the disadvantage can
be solved through a pipelined charge integration method.

2.2. Sensor Array Design

A pipeline type control circuit is applied to simultaneously detect the next pixel before the
integration of one pixel is completed. The pipelined scan driver can reduce image capture time
dramatically. Figure 3 shows 96 × 96 array fingerprint sensor with the pipelined scan driver

Figure 2. Pixel-level Sensor scheme and output voltage.

Figure 2b shows the pattern of sensor output signals in the ridge and valley of the fingerprint.
Because the capacitance at the ridge is greater than the valley, the output of the integrated signal is
different. The integration signal is decreased much more slowly in the valley. The proposed circuit
is resistant to noise and is advantageous in recognizing fingerprints with high sensitivity with low
power, but it takes a long time to integrate charges. As a result of the simulation, the proposed sensing
circuit requires a maximum of 112 clocks to charge the full range voltage. It needs about 0.922 s to
obtain a 96 × 96 image frame at 10 MHZ. This is very long time, but the disadvantage can be solved
through a pipelined charge integration method.

2.2. Sensor Array Design

A pipeline type control circuit is applied to simultaneously detect the next pixel before the
integration of one pixel is completed. The pipelined scan driver can reduce image capture time

J. Sens. Actuator Netw. 2020, 9, 51 4 of 15

dramatically. Figure 3 shows 96 × 96 array fingerprint sensor with the pipelined scan driver
architecture [20]. Figure 3b shows the timing diagram of the pipelined scan driver. v-ck1 to v-ck8 are
column control signals. This signal generates or resets the evaluation signal for the cell. The same
clock signal is generated every eight cells. Therefore, we can expand the depth of the pipeline scan
to evaluate eight cells simultaneously. Eight shift ring counters select the column clock generator
every 16 clock intervals. The sensor cell is designed to be evaluated every 16 clocks. Thus, it is
possible to effectively reduce the fingerprint image capture time without damaging the original signal.
The fingerprint sensor consists of a sensor cell array, shift ring counter, multiplexer, and decoder.
The shift ring counter generates a pipeline scan signal. The multiplexer selects the column output for
the sensor cell. The ADC converts the sense signal output to gray-scale. The analog signal is fed to
the ADC through an analog multiplexer. The proposed circuit provides three pipeline scan modes.
v-ck1 generates a reset signal for the first sensor cell, then the evaluation of the first sensor cell begins,
then v-ck2 generates a reset signal for the second sensor cell, and the evaluation of the second sensor
cell proceeds simultaneously. The 9th sensor cell receives the reset signal generated by v-ck1. As a
result, the evaluation of the sensor cell is performed every 16 clocks. As shown in Figure 3, the sensing
signal is integrated to increase the output voltage of the sensor cell linearly.

J. Sens. Actuator Netw. 2020, 9, x FOR PEER REVIEW 4 of 15

architecture [20]. Figure 3b shows the timing diagram of the pipelined scan driver. v-ck1 to v-ck8 are
column control signals. This signal generates or resets the evaluation signal for the cell. The same
clock signal is generated every eight cells. Therefore, we can expand the depth of the pipeline scan to
evaluate eight cells simultaneously. Eight shift ring counters select the column clock generator every
16 clock intervals. The sensor cell is designed to be evaluated every 16 clocks. Thus, it is possible to
effectively reduce the fingerprint image capture time without damaging the original signal. The
fingerprint sensor consists of a sensor cell array, shift ring counter, multiplexer, and decoder. The
shift ring counter generates a pipeline scan signal. The multiplexer selects the column output for the
sensor cell. The ADC converts the sense signal output to gray-scale. The analog signal is fed to the
ADC through an analog multiplexer. The proposed circuit provides three pipeline scan modes. v-ck1
generates a reset signal for the first sensor cell, then the evaluation of the first sensor cell begins, then
v-ck2 generates a reset signal for the second sensor cell, and the evaluation of the second sensor cell
proceeds simultaneously. The 9th sensor cell receives the reset signal generated by v-ck1. As a result,
the evaluation of the sensor cell is performed every 16 clocks. As shown in Figure 3, the sensing
signal is integrated to increase the output voltage of the sensor cell linearly.

(a) Variable clock generator

(b) Timing diagram of the pipelined scan driver

Figure 3. Pipelined scan driver architecture with variable clock generator.

Figure 3. Pipelined scan driver architecture with variable clock generator.

J. Sens. Actuator Netw. 2020, 9, 51 5 of 15

3. Analysis of Fingerprint Algorithm

We built an FPGA environment and implemented a general-purpose ARM7 compatible RISC
microcontroller to verify the correct operation of the Minutiae-based fingerprint algorithm. The applied
fingerprint algorithm is based on Jain’s references [3,21–23]. Figure 4 shows the FPGA emulation board
for algorithm verification. The sample image is a FVC2002 DB modified to a size of 96 × 96 pixels
at 500 dpi. A point routine is inserted in the lower right corner of the board to check each step of
the identification algorithm. The checkpoint routine turns on one of the eight LEDs in succession.
Finally, we confirmed that the embedded 32-bit RISC core successfully performed the fingerprint
authentication algorithm. All results of the algorithm instructions are compared with the results of the
ARM emulator, the software emulator of the ARM processor.

J. Sens. Actuator Netw. 2020, 9, x FOR PEER REVIEW 5 of 15

3. Analysis of Fingerprint Algorithm

We built an FPGA environment and implemented a general-purpose ARM7 compatible RISC
microcontroller to verify the correct operation of the Minutiae-based fingerprint algorithm. The
applied fingerprint algorithm is based on Jain’s references [3,21–23]. Figure 4 shows the FPGA
emulation board for algorithm verification. The sample image is a FVC2002 DB modified to a size of
96 × 96 pixels at 500 dpi. A point routine is inserted in the lower right corner of the board to check
each step of the identification algorithm. The checkpoint routine turns on one of the eight LEDs in
succession. Finally, we confirmed that the embedded 32-bit RISC core successfully performed the
fingerprint authentication algorithm. All results of the algorithm instructions are compared with
the results of the ARM emulator, the software emulator of the ARM processor.

Figure 4. FPGA emulation board for verifying the algorithm.

Table 1 shows the results of the ARM emulation. The algorithm’s total CPU cycle was 4.64 M
in 96 × 96 sample images. Gabor filters and Thinning algorithms occupy about 80% of the entire
cycle. A description of each step of the algorithm is shown in Figure 1. Here, I-cycle means an
internal cycle and the microprocessor does not request a transfer because it executes an internal
instruction. N-cycle means non-sequential period, and the microprocessor sends a request to an
address regardless of the address used in the previous cycle. S-cycle is a sequential period, where
the microprocessor sends a request to an address with a word or half word after the previous
address, or to the same address.

Table 1. CPU cycle distribution of the algorithm in 96 × 96 pixel sample images.

Process Step
Instruction Cycle

S-cycle N-cycle I-cycle Total %
Normalization 25,168 6292 3146 34,606 0.75%

Orientation Estimation 176,023 47,705 47,520 271,248 5.84%
Frequency Estimation 307,424 88,577 50,706 446,706 9.62%

Gabor Filtering 1,314,689 329,066 230,502 1,874,257 40.37%
Thinning 983,279 577,092 265,939 1,826,310 39.34%

Minutiae Detection 118,453 40,741 17,642 176,836 3.81%
Matching Processing 11,540 389 816 12,746 0.27%

Total Clock 2,936,577 1,089,862 616,271 4,642,709 100%

4. Algorithm Processor and MCU Design

4.1. Gabor Filter Design

Gabor filters are linear filters used for feature extraction, texture analysis, edge detection, and
more. Gabor filters are used in many image processing applications. Gabor filters have frequency

Figure 4. FPGA emulation board for verifying the algorithm.

Table 1 shows the results of the ARM emulation. The algorithm’s total CPU cycle was 4.64 M in
96 × 96 sample images. Gabor filters and Thinning algorithms occupy about 80% of the entire cycle.
A description of each step of the algorithm is shown in Figure 1. Here, I-cycle means an internal
cycle and the microprocessor does not request a transfer because it executes an internal instruction.
N-cycle means non-sequential period, and the microprocessor sends a request to an address regardless
of the address used in the previous cycle. S-cycle is a sequential period, where the microprocessor sends
a request to an address with a word or half word after the previous address, or to the same address.

Table 1. CPU cycle distribution of the algorithm in 96 × 96 pixel sample images.

Process Step
Instruction Cycle

S-cycle N-cycle I-cycle Total %

Normalization 25,168 6292 3146 34,606 0.75%

Orientation Estimation 176,023 47,705 47,520 271,248 5.84%

Frequency Estimation 307,424 88,577 50,706 446,706 9.62%

Gabor Filtering 1,314,689 329,066 230,502 1,874,257 40.37%

Thinning 983,279 577,092 265,939 1,826,310 39.34%

Minutiae Detection 118,453 40,741 17,642 176,836 3.81%

Matching Processing 11,540 389 816 12,746 0.27%

Total Clock 2,936,577 1,089,862 616,271 4,642,709 100%

J. Sens. Actuator Netw. 2020, 9, 51 6 of 15

4. Algorithm Processor and MCU Design

4.1. Gabor Filter Design

Gabor filters are linear filters used for feature extraction, texture analysis, edge detection, and
more. Gabor filters are used in many image processing applications. Gabor filters have frequency
and direction information and have optimal coupling resolution in spatial and frequency dimensions.
Therefore, it is appropriate to use a Gabor filter as a band pass filter to remove noise and recover the
improved ridge and valley structures [21,22]. Figure 5 shows an example of a Gabor wavelet and
40 filter banks with five frequencies and eight directions.

J. Sens. Actuator Netw. 2020, 9, x FOR PEER REVIEW 6 of 15

and direction information and have optimal coupling resolution in spatial and frequency
dimensions. Therefore, it is appropriate to use a Gabor filter as a band pass filter to remove noise
and recover the improved ridge and valley structures [21,22]. Figure 5 shows an example of a Gabor
wavelet and 40 filter banks with five frequencies and eight directions.

Figure 5. 2D Gabor wavelet and example of 5-frequency, 8-orientation 40 filter bank.

The input image is divided into non-overlapping window sizes in order to calculate the Gabor
filter coefficients. In this study, the window size of the Gabor filter kernel is 11 × 11. The Gabor filter
is calculated based on the angle (θ) and frequency(f) of the ridge obtained through the block ridge
orientation and frequency estimation steps shown in Figure 1. Gabor filters are two-dimensional
filters made of Gaussian and cosine functions and have the following general form

() ()
2 2
θ θ

θ2 2
x μ

x y1h x,y:θ,f =exp - + cos 2πfx
2 σ σ

  
      

 (1)

θ

θ

x =xcosθ+ysinθ
y =ycosθ-xsinθ

 (2)

where x and y are the pixel positions on the entire image and σx and σy are Gaussian space
constants. Appropriate care should be taken in determining the values of σx and σy. The smaller
the value, the less likely it is to generate false ridges and valleys. The higher the value, the stronger
the noise, but there is a possibility of generating wrong ridges and valleys. Therefore, the noise
reduction effect is less. In this study, the mentioned parameters were analyzed and the values of σx
and σy were set to 4.0.

Cosine, sine and exponential functions are required for kernel calculation. In this study, a
look-up table was applied to enable high-speed calculation for trigonometric function. It was
designed in 0~2 π at 0.03 radian intervals. The exponential function also applied a look-up table
rather than applying an IP requiring large chip area and complex operation. Pre-analysis was
performed to predict the exponential function input range. As a result of applying the average
frequency and orientation value of the fingerprint to Equation (2), the input range is −80 to 80, and
an interval of 6.28 is applied. The functional block of the Gabor filter is shown in Figure 6. The
designed circuit generates an address of memory that matched with 11 vertical images of the block
image P(i,j). The proposed circuit transfers the images to the 2D shift register every 11 clock cycles
and then performs a left shift operation. The designed circuit performs convolution by applying a
shift register and Gabor filter. If the convolution result is positive, P(i,j) means valley and if it is
negative, P(i,j) means ridge. The final output image is binary format.

Figure 5. 2D Gabor wavelet and example of 5-frequency, 8-orientation 40 filter bank.

The input image is divided into non-overlapping window sizes in order to calculate the Gabor
filter coefficients. In this study, the window size of the Gabor filter kernel is 11 × 11. The Gabor filter
is calculated based on the angle (θ) and frequency(f) of the ridge obtained through the block ridge
orientation and frequency estimation steps shown in Figure 1. Gabor filters are two-dimensional filters
made of Gaussian and cosine functions and have the following general form

h(x, y : θ, f)= exp

−1
2

x2
θ

σ2
x
+

y2
θ

σ2
µ

 cos(2πfxθ) (1)

xθ= xcosθ+ ysinθ
yθ= ycosθ− xsinθ

(2)

where x and y are the pixel positions on the entire image and σx and σy are Gaussian space constants.
Appropriate care should be taken in determining the values of σx and σy. The smaller the value,
the less likely it is to generate false ridges and valleys. The higher the value, the stronger the noise,
but there is a possibility of generating wrong ridges and valleys. Therefore, the noise reduction effect
is less. In this study, the mentioned parameters were analyzed and the values of σx and σy were set
to 4.0.

Cosine, sine and exponential functions are required for kernel calculation. In this study, a look-up
table was applied to enable high-speed calculation for trigonometric function. It was designed in 0~2 π

at 0.03 radian intervals. The exponential function also applied a look-up table rather than applying
an IP requiring large chip area and complex operation. Pre-analysis was performed to predict the
exponential function input range. As a result of applying the average frequency and orientation value
of the fingerprint to Equation (2), the input range is −80 to 80, and an interval of 6.28 is applied.
The functional block of the Gabor filter is shown in Figure 6. The designed circuit generates an
address of memory that matched with 11 vertical images of the block image P(i,j). The proposed
circuit transfers the images to the 2D shift register every 11 clock cycles and then performs a left shift
operation. The designed circuit performs convolution by applying a shift register and Gabor filter.
If the convolution result is positive, P(i,j) means valley and if it is negative, P(i,j) means ridge. The final
output image is binary format.

J. Sens. Actuator Netw. 2020, 9, 51 7 of 15
J. Sens. Actuator Netw. 2020, 9, x FOR PEER REVIEW 7 of 15

Figure 6. Gabor filter convolution using 11 × 11 shift register.

4.2. Thinning Algorithm Design

The thinning algorithm has long been used for pattern recognition and image analysis to extract
feature points from images. Reduce the thick image to a binary digital pattern to obtain a unit width
skeleton that retains its unique topology and geometric properties. The thinning process is to make
the ridge a single line in the binarized image obtained by the Gabor filter. The best proven thinning
algorithm is Zhang and Suen (ZS) in several algorithms [6,13,14]. The ZS algorithm performs two
iteration steps in a 3 × 3 mask window. P(n) and P1 to 8 are the binary image values in Figure 7a. In
this study, an image value of 0 means white and 1 means black. Thinning is only done when the
center image Pi is black.

(a) (b)

Figure 7. pixel order and sample of N(Pi). (a) 3 × 3 winow index (b) number of black pixel neighbor P(i).

In the first sub iteration, the contour point Pi is deleted from the digital pattern if the following
conditions are met: In the first step, the following conditions are evaluated for the central point Pi.
When satisfied, the midpoint Pi turns white.

(i) P(i) is a value between 2 and 6;
(ii) A (Pi) = 1;
(iii) At least one of P2 and P6 and P8 is 0;
(iv) At least one of P4 and P6 and P8 is 0.

A(Pi) is the number of 01 patterns in Pi’s eight neighbors P1, P3, P4, …, P8 (Figure 8), and B(Pi) is
the number of nonzero neighbors of P1, that is

B(Pi) = ∑ 𝑃𝑛ே଼ୀଵ (3)

Figure 6. Gabor filter convolution using 11 × 11 shift register.

4.2. Thinning Algorithm Design

The thinning algorithm has long been used for pattern recognition and image analysis to extract
feature points from images. Reduce the thick image to a binary digital pattern to obtain a unit width
skeleton that retains its unique topology and geometric properties. The thinning process is to make
the ridge a single line in the binarized image obtained by the Gabor filter. The best proven thinning
algorithm is Zhang and Suen (ZS) in several algorithms [6,13,14]. The ZS algorithm performs two
iteration steps in a 3 × 3 mask window. P(n) and P1 to 8 are the binary image values in Figure 7a.
In this study, an image value of 0 means white and 1 means black. Thinning is only done when the
center image Pi is black.

J. Sens. Actuator Netw. 2020, 9, x FOR PEER REVIEW 7 of 15

Figure 6. Gabor filter convolution using 11 × 11 shift register.

4.2. Thinning Algorithm Design

The thinning algorithm has long been used for pattern recognition and image analysis to extract
feature points from images. Reduce the thick image to a binary digital pattern to obtain a unit width
skeleton that retains its unique topology and geometric properties. The thinning process is to make
the ridge a single line in the binarized image obtained by the Gabor filter. The best proven thinning
algorithm is Zhang and Suen (ZS) in several algorithms [6,13,14]. The ZS algorithm performs two
iteration steps in a 3 × 3 mask window. P(n) and P1 to 8 are the binary image values in Figure 7a. In
this study, an image value of 0 means white and 1 means black. Thinning is only done when the
center image Pi is black.

(a) (b)

Figure 7. pixel order and sample of N(Pi). (a) 3 × 3 winow index (b) number of black pixel neighbor P(i).

In the first sub iteration, the contour point Pi is deleted from the digital pattern if the following
conditions are met: In the first step, the following conditions are evaluated for the central point Pi.
When satisfied, the midpoint Pi turns white.

(i) P(i) is a value between 2 and 6;
(ii) A (Pi) = 1;
(iii) At least one of P2 and P6 and P8 is 0;
(iv) At least one of P4 and P6 and P8 is 0.

A(Pi) is the number of 01 patterns in Pi’s eight neighbors P1, P3, P4, …, P8 (Figure 8), and B(Pi) is
the number of nonzero neighbors of P1, that is

B(Pi) = ∑ 𝑃𝑛ே଼ୀଵ (3)

Figure 7. pixel order and sample of N(Pi). (a) 3× 3 winow index (b) number of black pixel neighbor P(i).

In the first sub iteration, the contour point Pi is deleted from the digital pattern if the following
conditions are met: In the first step, the following conditions are evaluated for the central point Pi.
When satisfied, the midpoint Pi turns white.

(i) P(i) is a value between 2 and 6;
(ii) A (Pi) = 1;
(iii) At least one of P2 and P6 and P8 is 0;
(iv) At least one of P4 and P6 and P8 is 0.

A(Pi) is the number of 01 patterns in Pi’s eight neighbors P1, P3, P4, . . . , P8 (Figure 8), and B(Pi) is
the number of nonzero neighbors of P1, that is

B(Pi) =
∑8

N=1
Pn (3)

J. Sens. Actuator Netw. 2020, 9, 51 8 of 15
J. Sens. Actuator Netw. 2020, 9, x FOR PEER REVIEW 8 of 15

Figure 8. Number of black to white change around P(i).

As in the example in Figure 8, A (Pi) is 2 or 3. Since it is not 1, the Pi is not deleted. Where B(Pi)
is the number of 1s in the neighboring pixels in Figure 7b.

In the second step only conditions iii) and iv) are changed. The image of the result of the first
step is executed again under the following conditions.

(v) At least one of P2 and P4 and P8 is 0;
(vi) At least one of P2 and P4 and P6 is 0.

In this paper, we proposed the operation structure shown in Figure 9 for efficient operation of
the ZS algorithm. The designed circuit generates an address of memory that matched with three
vertical images. That is, every three clocks, an image of three pixels is transferred to the 3 × 3 2D
shift register and simultaneously shifted to the left of the window. As shown in Figure 8, A(Pi)
means the number of 1 to 0 (1 → 0) patterns in eight-neighbor pixels. In order to determine the
coincidence of two consecutive P(n), P(n + 1) and 2 bit binary “10”, the circuit uses exclusive-OR
operation and then not-OR. Add up all the values. In the case of this operation, it is possible to
obtain a result faster than the previous SW operation because it is possible for one clock. The
following Verilog-HDL code is applied to calculate the A[Pi] so that the value can be obtained
within one clock by simple operation.

A(Pi) <= ~|({P1,P2} ^ 2′b10) + ~|({ P2,P3} ^ 2′b10) + ~|({ P3,P4} ^ 2′b10) +
~|({ P4,P5} ^ 2′b10) + ~|({ P5,P6} ^ 2′b10) + ~|({ P6,P7} ^ 2′b10) + ~|({ P7,P8} ^ 2′b10)

+ ~|({ P8,P1} ^ 2′b10) ;

Figure 9. Thinning operation using 3 × 3 shift register.

It is possible to obtain a thinning result of Pi image in three clocks with simple circuit. The
24-bit image read from memory by three clocks is stored in the shift register by the ‘done’ signal,
and 3 × 3 values and thinning operation is done, as shown in Figure 9.

Figure 8. Number of black to white change around P(i).

As in the example in Figure 8, A (Pi) is 2 or 3. Since it is not 1, the Pi is not deleted. Where B(Pi) is
the number of 1s in the neighboring pixels in Figure 7b.

In the second step only conditions (iii) and (iv) are changed. The image of the result of the first
step is executed again under the following conditions.

(v) At least one of P2 and P4 and P8 is 0;
(vi) At least one of P2 and P4 and P6 is 0.

In this paper, we proposed the operation structure shown in Figure 9 for efficient operation of
the ZS algorithm. The designed circuit generates an address of memory that matched with three
vertical images. That is, every three clocks, an image of three pixels is transferred to the 3 × 3 2D shift
register and simultaneously shifted to the left of the window. As shown in Figure 8, A(Pi) means the
number of 1 to 0 (1→ 0) patterns in eight-neighbor pixels. In order to determine the coincidence of
two consecutive P(n), P(n + 1) and 2 bit binary “10”, the circuit uses exclusive-OR operation and then
not-OR. Add up all the values. In the case of this operation, it is possible to obtain a result faster than
the previous SW operation because it is possible for one clock. The following Verilog-HDL code is
applied to calculate the A[Pi] so that the value can be obtained within one clock by simple operation.

A(Pi) <= ~|({P1,P2} ˆ 2′b10) + ~|({ P2,P3} ˆ 2′b10) + ~|({ P3,P4} ˆ 2′b10) +

~|({ P4,P5} ˆ 2′b10) + ~|({ P5,P6} ˆ 2′b10) + ~|({ P6,P7} ˆ 2′b10) + ~|({ P7,P8} ˆ 2′b10) +

~|({ P8,P1} ˆ 2′b10) ;

J. Sens. Actuator Netw. 2020, 9, x FOR PEER REVIEW 8 of 15

Figure 8. Number of black to white change around P(i).

As in the example in Figure 8, A (Pi) is 2 or 3. Since it is not 1, the Pi is not deleted. Where B(Pi)
is the number of 1s in the neighboring pixels in Figure 7b.

In the second step only conditions iii) and iv) are changed. The image of the result of the first
step is executed again under the following conditions.

(v) At least one of P2 and P4 and P8 is 0;
(vi) At least one of P2 and P4 and P6 is 0.

In this paper, we proposed the operation structure shown in Figure 9 for efficient operation of
the ZS algorithm. The designed circuit generates an address of memory that matched with three
vertical images. That is, every three clocks, an image of three pixels is transferred to the 3 × 3 2D
shift register and simultaneously shifted to the left of the window. As shown in Figure 8, A(Pi)
means the number of 1 to 0 (1 → 0) patterns in eight-neighbor pixels. In order to determine the
coincidence of two consecutive P(n), P(n + 1) and 2 bit binary “10”, the circuit uses exclusive-OR
operation and then not-OR. Add up all the values. In the case of this operation, it is possible to
obtain a result faster than the previous SW operation because it is possible for one clock. The
following Verilog-HDL code is applied to calculate the A[Pi] so that the value can be obtained
within one clock by simple operation.

A(Pi) <= ~|({P1,P2} ^ 2′b10) + ~|({ P2,P3} ^ 2′b10) + ~|({ P3,P4} ^ 2′b10) +
~|({ P4,P5} ^ 2′b10) + ~|({ P5,P6} ^ 2′b10) + ~|({ P6,P7} ^ 2′b10) + ~|({ P7,P8} ^ 2′b10)

+ ~|({ P8,P1} ^ 2′b10) ;

Figure 9. Thinning operation using 3 × 3 shift register.

It is possible to obtain a thinning result of Pi image in three clocks with simple circuit. The
24-bit image read from memory by three clocks is stored in the shift register by the ‘done’ signal,
and 3 × 3 values and thinning operation is done, as shown in Figure 9.

Figure 9. Thinning operation using 3 × 3 shift register.

It is possible to obtain a thinning result of Pi image in three clocks with simple circuit. The 24-bit
image read from memory by three clocks is stored in the shift register by the ‘done’ signal, and 3× 3 values
and thinning operation is done, as shown in Figure 9.

J. Sens. Actuator Netw. 2020, 9, 51 9 of 15

4.3. Algorithm Processor Design

Figure 10 shows the integrated logic of proposed algorithm processor. The yellow box is Gabor
filter block and blue box is thinning block. The address generator, counter and memory-A are shared.
The logic was designed in RTL and synthesized by Synopsys Design Compiler using a 180n CMOS
process. The Figure 11 shows the logic circuit simulation. Simultaneous operation is impossible because
thinning must be processed with the image obtained as a result of Gabor filter. It took 266,439 cycles
for Gabor filter operation and 55,303 cycles for thinning operation. The total required cycle is 321,742.
The result shows a valid operation of proposed logic circuit. The layout is performed by auto P&R for
the algorithm processor. The area is 0.962 mm2 and gate count is 96,393.

J. Sens. Actuator Netw. 2020, 9, x FOR PEER REVIEW 9 of 15

4.3. Algorithm Processor Design

Figure 10 shows the integrated logic of proposed algorithm processor. The yellow box is Gabor
filter block and blue box is thinning block. The address generator, counter and memory-A are
shared. The logic was designed in RTL and synthesized by Synopsys Design Compiler using a 180n
CMOS process. The Figure 11 shows the logic circuit simulation. Simultaneous operation is
impossible because thinning must be processed with the image obtained as a result of Gabor filter.
It took 266,439 cycles for Gabor filter operation and 55,303 cycles for thinning operation. The total
required cycle is 321,742. The result shows a valid operation of proposed logic circuit. The layout is
performed by auto P&R for the algorithm processor. The area is 0.962 mm2 and gate count is 96,393.

Figure 10. Functional block diagram of algorithm processor.

Figure 11. Algorithm processor simulation results.

4.4. 16-Bit Risc MCU Design

The 16-bit Reduced Instruction Set Computing (RISC) processor is designed using the Verilog
harware description language (HDL), as shown in Figure 12. The processor handles the reset of the
algorithm, except for Gabor and thinning. The processor has a four-stage pipeline. The applied

Figure 10. Functional block diagram of algorithm processor.

J. Sens. Actuator Netw. 2020, 9, x FOR PEER REVIEW 9 of 15

4.3. Algorithm Processor Design

Figure 10 shows the integrated logic of proposed algorithm processor. The yellow box is Gabor
filter block and blue box is thinning block. The address generator, counter and memory-A are
shared. The logic was designed in RTL and synthesized by Synopsys Design Compiler using a 180n
CMOS process. The Figure 11 shows the logic circuit simulation. Simultaneous operation is
impossible because thinning must be processed with the image obtained as a result of Gabor filter.
It took 266,439 cycles for Gabor filter operation and 55,303 cycles for thinning operation. The total
required cycle is 321,742. The result shows a valid operation of proposed logic circuit. The layout is
performed by auto P&R for the algorithm processor. The area is 0.962 mm2 and gate count is 96,393.

Figure 10. Functional block diagram of algorithm processor.

Figure 11. Algorithm processor simulation results.

4.4. 16-Bit Risc MCU Design

The 16-bit Reduced Instruction Set Computing (RISC) processor is designed using the Verilog
harware description language (HDL), as shown in Figure 12. The processor handles the reset of the
algorithm, except for Gabor and thinning. The processor has a four-stage pipeline. The applied

Figure 11. Algorithm processor simulation results.

4.4. 16-Bit Risc MCU Design

The 16-bit Reduced Instruction Set Computing (RISC) processor is designed using the Verilog
harware description language (HDL), as shown in Figure 12. The processor handles the reset of the

J. Sens. Actuator Netw. 2020, 9, 51 10 of 15

algorithm, except for Gabor and thinning. The processor has a four-stage pipeline. The applied
embedded MCU is based on Harvard architecture with separate data memory and instruction
memory to avoid bottlenecks and enable pipelines. Memory Access Instructions are Load and
Store. Data Processing has eight instructions including arithmetic, logical and transfer operations.
Control Flow Instructions are a branch on Equal, branch on not Equal and Jump. The basic architecture
of a RISC processor is as given below. It includes eight general-purpose registers that can store 16-bit
data and a 16-bit ALU that can perform logical and arithmetic operations. The flag register can check
parity, carry, and zero status. Addressing Modes are Immediate, Register, Register Indirect and PC
relative. The address for conditional jump instructions is calculated by adding the 16-bit sign-extension
of an eight-bit signed offset to the program counter. The architecture was verified by Verilog with RTL
and then synthesized at the Gate level using 180n CMOS design kit. The synthesized gate-level MCU
first verified basic command operation in the FPGA environment. In the emulation environment, the
number of cycles required for the rest of the algorithm except Gabor filter and thinning was analyzed.
After the layout was performed with the Auto P&R tool, the back-annotation verification result was
confirmed through post simulation. The layout area is 54,483 µm2 and gate count is 5460. The operating
speed was maximum 50 MHz. It has been confirmed that the embedded 16-bit RISC core successfully
performs steps excluding thinning and GB steps in the fingerprint authentication algorithm step.

J. Sens. Actuator Netw. 2020, 9, x FOR PEER REVIEW 10 of 15

embedded MCU is based on Harvard architecture with separate data memory and instruction
memory to avoid bottlenecks and enable pipelines. Memory Access Instructions are Load and Store.
Data Processing has eight instructions including arithmetic, logical and transfer operations. Control
Flow Instructions are a branch on Equal, branch on not Equal and Jump. The basic architecture of a
RISC processor is as given below. It includes eight general-purpose registers that can store 16-bit
data and a 16-bit ALU that can perform logical and arithmetic operations. The flag register can
check parity, carry, and zero status. Addressing Modes are Immediate, Register, Register Indirect
and PC relative. The address for conditional jump instructions is calculated by adding the 16-bit
sign-extension of an eight-bit signed offset to the program counter. The architecture was verified by
Verilog with RTL and then synthesized at the Gate level using 180n CMOS design kit. The
synthesized gate-level MCU first verified basic command operation in the FPGA environment. In
the emulation environment, the number of cycles required for the rest of the algorithm except
Gabor filter and thinning was analyzed. After the layout was performed with the Auto P&R tool,
the back-annotation verification result was confirmed through post simulation. The layout area is
54,483 μm2 and gate count is 5460. The operating speed was maximum 50 MHz. It has been
confirmed that the embedded 16-bit RISC core successfully performs steps excluding thinning and
GB steps in the fingerprint authentication algorithm step.

Figure 12. Functional block diagram of proposed 16-bit RISC MCU.

5. Full Chip Integration

Figure 13 shows the functional block diagram and Figure 14 is floor planning of 96 × 96
fingerprint sensor chip. Figure 15 shows the logic simulation results of the single-chip architecture.
Figure 16 shows the chip layout is 5010 μm × 5710 μm at 0.18 μm standard CMOS process. Since the
sensor is an analog circuit, the design and layout are performed in a full custom method, and the
entire chip is performed through automatic placement and routing in a cell-based design method.
The circuit contains two compiled static memories, an input/output pad, and an analog block
containing an ADC. Figure 17 shows the layout of the proposed single-chip fingerprint sensor
scheme. The chip area is 28.61 mm2 and gate count is 2,866,700 with memory. To verify the behavior
of the proposed processor, we extracted each parasitic capacitance from the layout and performed
post-simulation with 180n CMOS conditions, as shown in Figure 15. This shows that the proposed
method can effectively handle the fingerprint algorithm. The conventional fingerprint sensor does

Figure 12. Functional block diagram of proposed 16-bit RISC MCU.

5. Full Chip Integration

Figure 13 shows the functional block diagram and Figure 14 is floor planning of 96 × 96 fingerprint
sensor chip. Figure 15 shows the logic simulation results of the single-chip architecture. Figure 16
shows the chip layout is 5010 µm × 5710 µm at 0.18 µm standard CMOS process. Since the sensor is
an analog circuit, the design and layout are performed in a full custom method, and the entire chip
is performed through automatic placement and routing in a cell-based design method. The circuit
contains two compiled static memories, an input/output pad, and an analog block containing an
ADC. Figure 17 shows the layout of the proposed single-chip fingerprint sensor scheme. The chip
area is 28.61 mm2 and gate count is 2,866,700 with memory. To verify the behavior of the proposed
processor, we extracted each parasitic capacitance from the layout and performed post-simulation with

J. Sens. Actuator Netw. 2020, 9, 51 11 of 15

180n CMOS conditions, as shown in Figure 15. This shows that the proposed method can effectively
handle the fingerprint algorithm. The conventional fingerprint sensor does not include an algorithm
processor and MCU. The area of an algorithm processor and MCU is 1.47 mm2. Therefore, the area of a
conventional fingerprint sensor is 27.14 mm2. This means that the chip area increase in the proposed
circuit is just 5.4%.

J. Sens. Actuator Netw. 2020, 9, x FOR PEER REVIEW 11 of 15

not include an algorithm processor and MCU. The area of an algorithm processor and MCU is 1.47
mm2. Therefore, the area of a conventional fingerprint sensor is 27.14 mm2. This means that the chip
area increase in the proposed circuit is just 5.4%.

Figure 13. Logic diagram of fingerprint sensor chip.

Figure 14. Floorplan of fingerprint sensor chip.

Figure 13. Logic diagram of fingerprint sensor chip.

J. Sens. Actuator Netw. 2020, 9, x FOR PEER REVIEW 11 of 15

not include an algorithm processor and MCU. The area of an algorithm processor and MCU is 1.47
mm2. Therefore, the area of a conventional fingerprint sensor is 27.14 mm2. This means that the chip
area increase in the proposed circuit is just 5.4%.

Figure 13. Logic diagram of fingerprint sensor chip.

Figure 14. Floorplan of fingerprint sensor chip. Figure 14. Floorplan of fingerprint sensor chip.

J. Sens. Actuator Netw. 2020, 9, 51 12 of 15
J. Sens. Actuator Netw. 2020, 9, x FOR PEER REVIEW 12 of 15

Figure 15. Post-simulation result of full chip.

Figure 16. Layout of proposed architecture (5010 × 5710 mm2 @180n 2-poly 6-metal CMOS process).

Figure 15. Post-simulation result of full chip.

J. Sens. Actuator Netw. 2020, 9, x FOR PEER REVIEW 12 of 15

Figure 15. Post-simulation result of full chip.

Figure 16. Layout of proposed architecture (5010 × 5710 mm2 @180n 2-poly 6-metal CMOS process). Figure 16. Layout of proposed architecture (5010 × 5710 µm2 @180n 2-poly 6-metal CMOS process).

Table 2 compares the CPU occupancy of the conventional architecture and the proposed architecture.
SETP-A means the algorithm before the GABOR filter, and STEP-B means the algorithm after
THINNING. Figure 17 shows Table 2 as a graph, and shows that the proposed architecture shows 57%
performance improvement in CPU cycle occupancy. Table 3 is a performance comparison considering
the burden of increasing the chip area. Table 3 shows that even with a small area increase of 5.4%
compared to the conventional chip, the proposed architecture can achieve 57% improvement in
algorithm processing. It is a future work to analyze the improvement in power consumption through
power analysis of the conventional circuit in the future. If the proposed architecture is embedded

J. Sens. Actuator Netw. 2020, 9, 51 13 of 15

in the authentication fingerprint sensor system, it is expected to reduce the CPU burden and greatly
improve the processing speed without significantly affecting the chip size.J. Sens. Actuator Netw. 2020, 9, x FOR PEER REVIEW 13 of 15

Figure 17. Graph of CPU cycle distribution.

Table 2 compares the CPU occupancy of the conventional architecture and the proposed
architecture. SETP-A means the algorithm before the GABOR filter, and STEP-B means the
algorithm after THINNING. Figure 17 shows Table 2 as a graph, and shows that the proposed
architecture shows 57% performance improvement in CPU cycle occupancy. Table 3 is a
performance comparison considering the burden of increasing the chip area. Table 3 shows that
even with a small area increase of 5.4% compared to the conventional chip, the proposed
architecture can achieve 57% improvement in algorithm processing. It is a future work to analyze
the improvement in power consumption through power analysis of the conventional circuit in the
future. If the proposed architecture is embedded in the authentication fingerprint sensor system, it
is expected to reduce the CPU burden and greatly improve the processing speed without
significantly affecting the chip size.

Table 2. Comparison of CPU cycle distribution.

 STEP-A Gabor Thinning STEP-B Total
Conventional 752,560 1,874,257 1,826,310 189,582 4,642,709

Proposed 1,346,420 266,439 55,303 330,477 1,998,639

Table 3. Performance comparison between the proposed and previous method. (@180n CMOS
process, 96 × 96 pixel array).

Conventional
Architecture (SW
only)

Proposed Architecture
((SW+HW+MCU))

Improvement
(%) Remarks

Total CPU Cycle 4,642,709 1998639 57
Chip Area (mm2)
with 2 SRAM 27.14 28.61 −5.4 96 96 pixels

area full chip
Power
Consumption - 5.25 mW - 20 MHz, 1.8 V

6. Conclusions

This paper proposes a novel fingerprint sensor architecture that processes a binarization and
thinning step, which occupy 80% of the algorithm processing time, in hardware, and the remaining
steps, which is processed by embedded 16-bit RISC MCU. The CPU occupancy of the algorithm
was analyzed using the ARM emulator and the FPGA environment. The algorithm processor was
designed by applying the Gabor filter for a binarization and the ZS algorithm for a thinning. The

Figure 17. Graph of CPU cycle distribution.

Table 2. Comparison of CPU cycle distribution.

STEP-A Gabor Thinning STEP-B Total

Conventional 752,560 1,874,257 1,826,310 189,582 4,642,709

Proposed 1,346,420 266,439 55,303 330,477 1,998,639

Table 3. Performance comparison between the proposed and previous method. (@180n CMOS process,
96 × 96 pixel array).

Conventional
Architecture (SW only)

Proposed Architecture
((SW+HW+MCU)) Improvement (%) Remarks

Total CPU Cycle 4,642,709 1,998,639 57

Chip Area (mm2) with 2 SRAM 27.14 28.61 −5.4 96 × 96 pixels area full chip

Power Consumption - 5.25 mW - 20 MHz, 1.8 V

6. Conclusions

This paper proposes a novel fingerprint sensor architecture that processes a binarization and
thinning step, which occupy 80% of the algorithm processing time, in hardware, and the remaining
steps, which is processed by embedded 16-bit RISC MCU. The CPU occupancy of the algorithm was
analyzed using the ARM emulator and the FPGA environment. The algorithm processor was designed
by applying the Gabor filter for a binarization and the ZS algorithm for a thinning. The rest of the
algorithm is processed by an embedded 16-bit MCU with small circuit volume, so all steps of the
algorithm can be processed on a single chip without an external CPU. In this paper, we implemented a
96 × 96 array high-sensitivity fingerprint sensor. In the sensor circuit of the pixel unit, an insensitive
charge transfer integrator is applied that can effectively reduce the effect of parasitic capacitance.
The proposed circuit in the paper uses an active output voltage feedback integrator. The whole circuit
was verified by RTL simulation of digital blocks synthesized in a 180n two-poly six-metal standard
process. The layout is performed by auto P & R for the full chip with 96 × 96 pixel array. The area of
our chip is 5010 × 5710 µm (28.61 mm2) and the gate count is 2,866,700. The result is compared with a
conventional one. The proposed scheme can reduce the algorithm processing time by 57% in total
algorithm. If the designed architecture is adopted in the fingerprint AFIS, it is expected to reduce

J. Sens. Actuator Netw. 2020, 9, 51 14 of 15

the CPU burden and greatly improve the processing speed without significantly affecting the chip
size. Although not shown in the results of this paper, it is expected to reduce power consumption by
minimizing the operation of the CPU implemented in a large-scale circuit. The addition of circuits
for part of the algorithm leads to an increase in the chip area, but the proposed architecture has a
relatively small burden on the chip area in terms of speed improvement. The proposed architecture
improves the algorithm speed by up to 57%, so we can replace the traditional 64-bit or 32-bit CPU with
a 16-bit or 8-bit CPU, which will enable low power consumption and the implementation of small
fingerprint systems.

Funding: This research received no external funding

Acknowledgments: This work was supported by Hanshin University Research Grant.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Chugh, T.; Cao, K.; Jain, A.K. Fingerprint spoof buster: Use of minutiae-centered patches. IEEE Trans. Inf.
Forensics Secur. 2018, 13, 2190–2202. [CrossRef]

2. Tolosana, R.; Gomez-Barrero, M.; Busch, C.; Ortega-Garcia, J. Biometric presentation attack detection: Beyond
the visible spectrum. IEEE Trans. Inf. Forensics Secur. 2019, 15, 1261–1275. [CrossRef]

3. Jung, S.-M.; Nam, J.-M.; Yang, D.-H.; Lee, M.-K. A CMOS integrated capacitive fingerprint sensor with 32-bit
RISC microcontroller. IEEE J. Solid-State Circuits 2005, 40, 1745–1750. [CrossRef]

4. Alibeigi, E.; Samavi, S.; Shirani, S.; Rahmani, Z. Real time ridge orientation estimation for fingerprint images.
Computer Vision and Pattern Recognition. arXiv 2017, arXiv:1710.05027.

5. Gayathri, S.; Sridhar, V. Design and simulation of Gabor filter using verilog HDL. Int. J. Latest Trends
Eng. Technol. 2013, 2, 77–83.

6. Chen, W.; Sui, L.; Xu, Z.; Lang, Y. Improved Zhang-Suen thinning algorithm in binary line drawing
applications. In Proceedings of the 2012 International Conference on Systems and Informatics (ICSAI2012),
Yantai, China, 19–20 May 2012; pp. 1947–1950.

7. Voß, N.; Mertsching, B. Design and Implementation of an Accelerated Gabor Filter Bank Using Parallel
Hardware. In International Conference on Field Programmable Logic and Applications; Springer: Berlin/Heidelberg,
Germany, 2001; pp. 451–460.

8. Spinei, A.; Pellelin, D.; Fernandes, D.; Heraults, J. Fast Hardware Implementation of Gabor Filter Based
Motion Estimation. Integr. Comput. Eng. 2000, 7, 67–77. [CrossRef]

9. Painkras, E.; Charoensak, C. A VLSI architecture for Gabor filtering in face processing applications.
In Proceedings of the 2005 International Symposium on Intelligent Signal Processing and Communication
Systems, Hong Kong, China, 13–16 December 2005.

10. Jothi, S.A.; Dhatchayani, K.; Devi, G.G.R.; Raja, M.R. VLSI Implementation of Gabor Filter in Image
Detection–Research Direction. Int. J. Circuit Theory Appl. 2017, 10, 133–138.

11. Kheiri, F.; Samavi, S.; Karimi, N. Hardware design for binarization and thinning of fingerprint images.
arXiv 2017, arXiv:1710.05749.

12. Das, R.K.; De, A.; Pal, C.; Chakrabarti, A. DSP hardware design for fingerprint binarization and thinning
on FPGA. In Proceedings of the 2014 International Conference on Control, Instrumentation, Energy and
Communication (CIEC), Calcutta, India, 31 January–2 February 2014.

13. Wakil, Y.; Tariq, S.G.; Humayun, A.; Abbas, N. An FPGA based Minutiae Extraction System for Fingerprint
Recognition. Int. J. Comput. Appl. 2015, 111, 31–35. [CrossRef]

14. Hermanto, L.; Sudiro, S.A.; Wibowo, E.P. Hardware implementation of fingerprint image thinning algorithm
in FPGA device. In Proceedings of the 2010 International Conference on Networking and Information
Technology, Manila, Philippines, 11–12 June 2010.

15. SUPREMA. Available online: https://www.supremainc.com/embedded-modules/en/main.asp (accessed on
28 August 2020).

16. Jung, S. Implementation of 144 × 64 Pixel Array Bezel-Less CMOS Fingerprint Sensor. Int. J. Smart Sens.
Intell. Syst. 2018, 11, 1–5. [CrossRef]

http://dx.doi.org/10.1109/TIFS.2018.2812193
http://dx.doi.org/10.1109/TIFS.2019.2934867
http://dx.doi.org/10.1109/JSSC.2005.852019
http://dx.doi.org/10.3233/ICA-2000-7105
http://dx.doi.org/10.5120/19592-1362
https://www.supremainc.com/embedded-modules/en/main.asp
http://dx.doi.org/10.21307/ijssis-2018-013

J. Sens. Actuator Netw. 2020, 9, 51 15 of 15

17. Jung, S. A Modified Architecture for Fingerprint Sensor of Switched Capacitive Integrator Scheme. Int. J.
Bio-Sci. Bio-Technol. 2016, 8, 139–144. [CrossRef]

18. Yeo, H. Analysis and Performance Comparison of Charge Transfer Circuits for Capacitive Sensing. J. Next
Gener. Inf. Technol. 2014, 5, 16–26.

19. Hyeopgoo, Y. A New Fingerprint Sensor based on Signal Integration Scheme using Charge Transfer Circuit.
Int. J. Bio-Sci. Bio-Technol. 2015, 7, 29–38. [CrossRef]

20. Yeo, H. Touch fingerprint sensor based on sensor cell isolation technique with pseudo direct signalling. Int. J.
Smart Sens. Intell. Syst. 2019, 12, 1–9.

21. Hong, L.; Wan, Y.; Jain, A. Fingerprint Image Enhancement: Algorithm and Performance Evaluation.
IEEE Trans. Pattern Anal. Mach. Intell. 1998, 20, 777–789. [CrossRef]

22. Molaei, S.; Abadi, M.E.S.A. Maintaining filter structure: A Gabor-based convolutional neural network for
image analysis. Appl. Soft Comput. 2020. [CrossRef]

23. Jung, S. Design of low power and high speed CMOS fingerprint sensor Design of low power and high speed
CMOS fingerprint sensor. Int. J. Bio-Sci. Bio-Technol. 2013, 5, 1–16.

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional
affiliations.

© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.14257/ijbsbt.2016.8.6.14
http://dx.doi.org/10.14257/ijbsbt.2015.7.1.04
http://dx.doi.org/10.1109/34.709565
http://dx.doi.org/10.1016/j.asoc.2019.105960
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Sensor Array Design
	Sensor Design
	Sensor Array Design

	Analysis of Fingerprint Algorithm
	Algorithm Processor and MCU Design
	Gabor Filter Design
	Thinning Algorithm Design
	Algorithm Processor Design
	16-Bit Risc MCU Design

	Full Chip Integration
	Conclusions
	References

