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Abstract: An accurate 3-D wireless local positioning system (LPS) is a highly demanded tool for
increasing safety in, e.g., emergency response and security operations. An LPS is an attractive
approach that can meet stringent requirements and can achieve acceptable accuracies for a long time
during extended operations in global navigation satellite system (GNSS)-denied environments. In
this work, three closed-form (CF) least squares (LS) algorithms were considered, where two of them
were adapted to exploit the knowledge about nuisance parameters for accurate 3-D positioning based
on time difference of arrival (TDoA) measurements. The algorithms utilize the single set (SS) of
the TDoA measurements, an extended SS (ExSS) of the TDoA measurements, or the full set (FS) of
the TDoA measurements, and were denoted, respectively, as the CFSSLS, CFExSSLS, and CFFSLS
solutions. The performance of the algorithms was investigated with simulations and real-world
measurements, where the wireless system transmitters were placed in a quasi-coplanar arrangement.
At moderate to high signal-to-noise ratio (SNR) levels, the CFSSLS solution has the best performance,
followed by the CFExSSLS solution and then by the CFFSLS solution. At low SNR levels, the CFFSLS
algorithm outperformed the other two algorithms. Both the CFSSLS and CFFSLS solutions estimate
nuisance parameters that are utilized in refining the vertical position estimate of the receiver. The
CFFSLS solution delivers more accurate refined vertical position estimates since it utilizes more
nuisance parameters, i.e., more information. The experimental results confirmed the simulation study
in which the CFFSLS algorithm outperformed the other two algorithms, where the experimental
environment was dominated by total non-line-of-sight (NLoS) conditions and low SNR levels at
the receiver to be located. Therefore, it is recommended to use the FS TDoA measurements for 3-D
positioning in bad signal conditions, such as high noise levels and NLoS propagation.

Keywords: time difference of arrival (TDoA); least squares (LS) algorithms; closed-form (CF) solutions;
wireless positioning; local positioning system (LPS); nuisance parameters

1. Introduction

Determining the position of a receiver based on signal measurements from an array of spatially
separated transmitters with well-known locations has been, and is still, an important issue in wireless
sensor networks, mobile communications, radar, sonar, and global navigation satellite system (GNSS)
applications. Position information is also the key enabler for a constantly increasing number of
innovative services and applications. New applications increase the demand for positioning systems
where the GNSS signals are denied, e.g., indoors. Current local positioning systems (LPSs) may fail to
meet the requirements of certain applications such as indoor emergency operations, e.g., fire-fighting,
security and military missions, due to the need for a pre-installed radio frequency (RF) infrastructure.
The rapid deployment of a portable infrastructure for positioning during emergency operations may
not allow us to carry out extensive calibrations and signal characterization in the target environment,
in order to optimize positioning algorithms and increase their position solution accuracy.
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RF-based LPSs use wireless technologies to estimate the position of the receiver in areas where no
GNSS reception is available. Therefore, positioning based on wireless technologies is an active research
area. The commonly used signal measurements for positioning, i.e., location-dependent parameters,
include time measurements, i.e., time of arrival (ToA), time difference of arrival (TDoA), and round-trip
time of flight (RToF), phase measurements, i.e., phase of arrival (PoA) and phase difference of arrival
(PDoA), frequency-based measurements, i.e., signal Doppler frequency (SDF) and frequency difference
of arrival (FDoA) (also called differential Doppler (DD)), received signal strength (RSS), and angle
of arrival (AoA) of the transmitted signal in addition to hybrid signal measurements, e.g., ToA/RSS,
ToA/AoA or TDoA/FDoA. Distance information or range between the receiver and the transmitters can
be extracted from ToA, TDoA, RToF, PoA, PDoA, and RSS measurements. The nonlinear relationships
of these measurements with the receiver’s position render positioning a nontrivial task.

ToA techniques use the signal propagation time to calculate the distance between the transmitter
and the receiver, provided the signal propagation speed in the medium is known [1]. Strict
synchronization between transmitters and the receiver is required. The TDoA method exploits
the difference in signals’ propagation times from different transmitters, measured at the receiver.
Synchronization is required only between the transmitters. The positioning accuracy of ToA
and TDoA approaches depends on the signal bandwidth and sampling rate at the receiver. The
accuracy degrades in non-line-of-sight (NLoS) conditions. RToF measures the round-trip, i.e.,
transmitter–receiver–transmitter, signal propagation time to estimate the distance. Therefore, only
moderate clock synchronization between the transmitters and the receiver is required. RToF estimation
accuracy is also affected by the sampling rate and signal bandwidth, but even more severely due to
the two-way signal propagation. Moreover, the response delay at the receiver further deteriorates the
accuracy [1].

Phase measurement approaches exploit the phase or phase difference of the carrier signal to
estimate the distances between the transmitters and the receiver. The transmitted signals are commonly
assumed to be purely sinusoidal, having the same frequency and zero phase offset [2]. Line-of-sight
(LoS) conditions are required for high positioning accuracy.

Techniques for radio source location based on the Doppler effect include SDF and FDoA approaches.
SDF methods [3] estimate the Doppler frequency shifts in received signals from radio sources and can
be implemented by a single portable receiver. Spectrum analysis techniques enable the simultaneous
localization of multiple radio sources [4]. In FDoA methods [5], the signal of a stationary radio source
is intercepted by at least two moving receivers, and the frequency difference between the receivers is
measured at several positions along their trajectories in order to determine the radio source location.
For accurate FDoA estimates, the receivers’ frequencies have to be precisely synchronized.

The RSS-based approach is a simple, cost-efficient, and widely used method [6]. The actual signal
power strength received at the receiver is used to estimate the distance to the transmitter, where the
higher the RSS value the smaller the distance. The positioning accuracy is generally poor due to
multipath fading and especially in NLoS situations.

AoA-based approaches use antenna arrays [7] at the receiver side. The TDoA at individual
elements of the array are calculated to estimate the angle at which the transmitted signal impinges
on the receiver. AoA-based positioning provides accurate estimation at small transmitter–receiver
distances. With increasing distances and multipath effects, the accuracy deteriorates significantly.

Most positioning systems use the conventional suboptimal two-step approach, in which
measurements, i.e., location-dependent parameters, are first extracted from the signals and then
used for position determination. On the other hand, direct position determination (DPD) [8–10]
performs positioning in a single step and without first estimating the location-dependent parameters.
However, the DPD often needs to minimize a nonconvex cost function in order to estimate the position,
which demands high computational resources.

The focus in this article is on conventional hyperbolic positioning, i.e., TDoA-based positioning,
where the position fix is computed from a set of intersecting hyperbolic curves generated by
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TDoA measurements. A summary of the most popular circular, i.e., ToA-based, and hyperbolic
positioning algorithms is presented in ref. [11]. When the positioning algorithm assumes an additive
measurement error model, the available approaches include the maximum likelihood (ML) and the
least squares (LS) approaches, which are implemented as iterative or non-iterative, i.e., closed-form
(CF) algorithms. The nonlinear hyperbolic equations were linearized by using the Taylor series
expansion and solved iteratively in [12,13] using the LS estimator (LSE). If the initial guess of the
position estimate is not accurate enough, the convergence to the global solution cannot be guaranteed.
Gradient-based techniques, such as the quasi-Newton technique [14] and the Gauss–Newton-type
Levenberg–Marquardt method [15], have also been used in iterative algorithms. The ML solution to
the hyperbolic equations [16] is widely used due to the proven asymptotic consistency and efficiency
of the ML estimator (MLE), which requires assumptions about the distribution of measurement errors.
However, the iterative algorithm to find the solution is computationally intensive.

In this article, three CF LS algorithms, i.e., closed-form single set least squares (CFSSLS) [17],
closed-form extended single set least squares (CFExSSLS), which is based on the direct method
(DM) algorithm in ref. [18], and closed-form full set least squares (CFFSLS) [19], are presented to
estimate the 3-D position of a receiver using wireless signal TDoA measurements. Two algorithms,
namely, CFSSLS and CFFSLS, estimate nuisance parameters. Therefore, both algorithms are extended,
according to refs. [19,20], respectively, to benefit from the nuisance parameter information in refining,
i.e., minimizing the error in, the vertical position estimates. Moreover, a design parameter is introduced
to control the amount of nuisance parameter information to be used. The DM algorithm in ref. [18],
which requires exactly five transmitters, is extended to work with an arbitrary number of transmitters,
i.e., N ≥ 5, in order to obtain an LS position solution called the CFExSSLS algorithm. With coplanar
transmitters, only 2-D position estimates can be obtained. To obtain 3-D position estimates, a height
sensor might be required, or transmitters have to be placed at enough different heights to create the
necessary good geometry for 3-D positioning. Simulations and experiments are carried out to confirm
the capacity of the adapted algorithms to obtain 3-D position estimates with coplanar transmitters in
challenging wireless signal conditions and without any extra sensors.

The rest of the article is organized as follows. Related work is discussed in Section 2. In
Section 3, CF LS algorithms for TDoA-based 3-D positioning are developed. The utilization of nuisance
parameters is introduced in order to refine the vertical position estimates when transmitters are
placed in a coplanar arrangement. The setup and results of the simulation study and the conducted
experiments are presented in Section 4. The findings are then discussed in Section 5 and conclusions
are given in Section 6.

2. Related Work

In the following, some useful material has been adopted from ref. [19] and is indicated by citing
at the end of the adoption. CF, i.e., analytical, methods were developed to overcome convergence
problems, where a nuisance parameter, i.e., the range from the receiver to the master transmitter, is
introduced to the set of the linearized equations. CF or analytical solutions are desirable because they
usually have fewer computational loads than iterative methods or ML approaches [19]. Moreover, CF
algorithms achieve estimation accuracies at acceptable levels, are mathematically simple, robust, and
easy to implement for practical real-time applications, where low computational time and memory
storage requirements are of high priority to meet imposed power constraints. Another important
class of techniques is the DMs, e.g., refs. [21–23], which are algebraic, i.e., exact, solutions to the
TDoA equations. However, their accuracy depends heavily on the accuracy of the measurements
and works with a certain number of equations, i.e., they do not make use of the additional available
measurements but the exactly required. Nevertheless, DMs may be desirable since they do not
involve any matrix operations. DMs and CF LS algorithms still have two major advantages: They do
not need an initial position estimate to run, and they do not require any probabilistic assumptions
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about the distribution of the measurement errors and therefore can be employed when the precise
characterization of measurement errors cannot be determined.

The total number of TDoA measurements that can be generated with N transmitters is N(N−1)
2

and is referred to as the full set (FS) measurements [24]. If only measurements with respect to a single
master transmitter are considered, they are referred to as the single set (SS) measurements, and their
total number is N − 1. Any transmitter can be considered as master, and thus, a number of N SSs can
be constructed [19]. Any SS represents an independent set of measurements. The FS extends any SS by
considering all possible linear combinations of the SS measurements. Thus, the FS also contains only
N − 1 independent measurements, and the remaining ones (constructed by linear combinations) are
dependent, i.e., redundant, measurements. When the SS and some extra measurements (less than the
FS) are used for the position estimation, the set of measurements is referred to as the extended single
set (ExSS).

CF unconstrained and constrained LS solutions using an SS of the TDoA measurements are well
described in ref. [17] and can be denoted as CFSSLS solutions. The CFSSLS algorithms developed in
refs. [25,26] are called the spherical interpolation (SI) and the linear correction LS (LCLS), respectively.
Both algorithms require range measurements which may not be available or may not be accurate
enough due to clock synchronization errors, and are, respectively, equivalent to the unconstrained
CFSSLS and constrained CFSSLS solutions in ref. [17] that depend only on TDoA measurements, as
correctly indicated in ref. [27]. The constrained CFSSLS solution of ref. [17] was repeated in ref. [28]
with corrections stated in ref. [29]. The extension of the CFSSLS solution as suggested in ref. [28]
yielded an algorithm that utilizes two SSs of TDoA measurements made with respect to two reference
transmitters, i.e., the total number of used measurements is 2(N − 1), where only N − 1 measurements
are independent [19]. The DM solution in ref. [21] requires exactly four transmitters and uses an
SS of the TDoA measurements, i.e., three independent measurements. The DM solution in ref. [18]
uses exactly N = 5 transmitters and depends on an ExSS, where the number of TDoA measurements
used is (N − 1) + (N − 2) = 7, i.e., N − 1 = 4 independent and N − 2 = 3 dependent (redundant)
measurements. Both DM solutions in refs. [22,23] require exactly four transmitters to work. The
method in ref. [22] uses four TDoA measurements; an SS, i.e., three independent measurements, in
addition to one dependent measurement from the FS. The algorithm in ref. [23] utilizes five TDoA
measurements from two SSs, where one measurement is common to both SSs. The CF LS solution using
an FS of the TDoA measurements is introduced in ref. [19] and can be denoted as CFFSLS solution. This
CFFSLS algorithm was used in ref. [30] with a data-selective procedure to discard bad measurements.

3. Materials and Methods

Simulations were conducted to investigate the performance of the proposed algorithms in order to
better interpret the results of the real measurements. The performance of the algorithms was evaluated
in terms of the root mean square error (RMSE) of the 3-D position estimates at a range of signal-to-noise
ratio (SNR) levels. Details on the simulation setup and results are presented in Sections 4.1 and 4.2,
respectively. To obtain real-world measurements, a wireless transmitter system was utilized to estimate
the position of an indoor passive receiver using TDoA measurements. The system consists of a set
of transmitting stations (TSs) located around the target building, user terminals (UTs) or receivers
inside the building, and a monitoring and control unit (MCU) for steering the TSs and for broadcasting
information to the UTs. TSs broadcast multicarrier navigation signals at 420 with 40 MHz bandwidth.
The signal design allows minimizing multipath effects in harsh indoor environments, such as massive
multilevel buildings made of concrete, steel, and metal-shielded windows. System architecture, details,
and measurement examples are given in ref. [31] and references therein.

The following mathematical treatment is partially adopted from ref. [19] for convenience and is
indicated by a citation before the equation. Consider an array of N transmitters located at known
positions ai = [xi , yi , zi]

T, in a 3-D Cartesian coordinate system, where i = 1, . . . , N and T is the
transpose operator, and a passive receiver, at an unknown position ar = [xr , yr , zr]

T, observing signals
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radiating from the transmitters. The receiver measures the TDoA of a pair of signals radiated by any
pair of transmitters i and j, where i , j. The TDoA measurement, τi j, is related to the range difference,
di j, by the relation: di j = c·τi j, where c is the known propagation speed of the signal in the medium.
Thus, di j is expressed in the error-free case as [19]:

di j = ‖a j − ar‖ − ‖ai − ar‖, (1)

where i = 1, . . . , N, j = 1, . . . , N, i , j, and ‖·‖ denotes the Euclidean vector norm. The problem, thus, is
to estimate the vector ar given a set of di j, i.e., τi j, noisy measurements and using the known vectors ai,
which in turn might contain uncertainties.

3.1. Closed-Form Single Set Least Squares Solution

LSE makes no assumptions about the statistical characteristics of the measurement errors and
therefore is an attractive alternative if the statistics of measurement errors cannot be determined
accurately. Moreover, a CF estimator would be advantageous for practical real-time applications. The
LSE minimizes a squared error function called the cost function. In the absence of measurement errors
and transmitter position uncertainties, the LSE minimization will yield a zero-cost function. From
Equation (1), we can get [19]:

‖a j − ar‖
2 =

[
di j + ‖ai − ar‖

]2
. (2)

With straightforward algebra, Equation (2) yields [19]:

di j·‖ai − ar‖+
[
a j − ai

]T
·ar =

‖a j‖
2
− ‖ai‖

2
− d2

i j

2
. (3)

Without loss of generality, the first transmitter is considered as the master transmitter. Thus,
Equation (3) is rewritten as [19]:

d1 j·‖a1 − ar‖+
[
a j − a1

]T
·ar = b1 j, (4)

Where b1 j =
‖a j‖

2
−‖a1‖

2
−d2

1 j
2 and j = 2, . . . , N. The LSE would minimize a cost function, f SS

c , which
is expressed as [19]:

f SS
c =

N∑
j=2

(
d1 j·‖a1 − ar‖+

[
a j − a1

]T
·ar − b1 j

)2
. (5)

Equation (4) can be expressed in matrix form as HSSsSS = bSS, where [19]:

HSS =


d12

d13

[a2 − a1]
T

[a3 − a1]
T

...
d1N

...
[aN − a1]

T

, (6)

bSS =
[

b12 b13 · · · b1N
]T

, (7)

and:

sSS =

[
‖a1 − ar‖

ar

]
. (8)

Note that HSS is a (N − 1) × 4 matrix, bSS is a (N − 1) × 1 column vector, and sSS is a 4× 1 column
state vector, where the range ‖a1 − ar‖ to the master transmitter is a nuisance parameter. The cost



J. Sens. Actuator Netw. 2020, 9, 2 6 of 24

function in Equation (5) can, thus, be rewritten using the matrix notation as f SS
c = ‖HSSsSS − bSS‖

2. The
unconstrained CFSSLS solution of sSS reads [19]:

ŝSS =
(
HT

SSHSS

)−1
HT

SSbSS. (9)

and the corresponding estimate of ar is given as [19]:

âr =
[

0 1 1 1
]
ŝSS. (10)

We originally estimate the 4 × 1 state vector sSS. Therefore, we need at least four independent
TDoA measurements with respect to a common master transmitter. That is, at least five transmitters
are required in order to obtain a 3-D CF solution [19].

In a practical LPS, transmitters are often installed in coplanar or quasi-coplanar arrangements, see
Figure 1. Such an arrangement is a major challenge for accurate 3-D positioning, namely, the vertical
component of the 3-D position estimate is of poor accuracy, and therefore, the LPS would be useless
for applications requiring accurate 3-D position estimates. The problem can be fixed by utilizing the
nuisance parameter of the CFSSLS solution [20], which is the first element in the state vector, sSS, in
Equation (8).
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When coplanar or quasi-coplanar transmitters are used for TDoA measurements at the receiver,
the CFSSLS solution of Equation (10) delivers acceptable accuracies for the 2-D, i.e., horizontal, position
estimate, x̂r, ŷr, and poor estimates for the vertical position, ẑr. Using the horizontal position estimate of
the receiver, x̂r, ŷr, and the known horizontal coordinates of the first, i.e., master, transmitter, x1, y1, the
horizontal range from the receiver to the first (master) transmitter, r̂2D

1 , see Figure 2, can be estimated
with acceptable accuracy as:

r̂2D
1 =

√
(x1 − x̂r)

2 + (y1 − ŷr)
2. (11)
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The 3-D range from the receiver to the master transmitter, ‖a1 − ar‖, i.e., the nuisance parameter,
which is the first element in the state vector, sSS, in Equation (8), is estimated by the CFSSLS algorithm
as ŝSS(1) and can be denoted as r̂3D

1 , see Figure 2. We can also see from Figure 2 that the difference,
h = zr − z1, between the vertical position of the receiver (Rx), zr, and the vertical position of the master
transmitter (Tx), z1 is estimated as:

ĥ =

√(
r̂3D

1

)2
−

(
r̂2D

1

)2
. (12)

Thus, the estimate of the receiver’s vertical position, ẑr, can be refined by:

ẑre f ined
r = z1 + α·ĥ, (13)

where α is a design parameter value, set by the system user, to adjust the amount of information
obtained via Equation (12), i.e., the amount of information obtained by the utilization of the nuisance
parameter. Thus, full information is included when α = 1. When α = 0, the vertical position of
the receiver is set at the height of the master transmitter, i.e., nuisance parameter information is not
included. The steps of the CFSSLS algorithm and the utilization of the nuisance parameter are exhibited
in Algorithm 1.

Algorithm 1: The CFSSLS algorithm and refinement of the vertical position estimate.

0. Input: The known transmitters’ coordinates, i.e., ai = [xi , yi , zi]
T , and the SS range difference measurements,

i.e., d1 j, as defined by Equation (4).
1. Compute: The matrix HSS and the vector bSS as defined by Equations (6) and (7), respectively.
2. Estimate: The state vector sSS by LS estimation via Equation (9).
3. CFSSLS Output: The receiver’s 3-D position estimate, i.e., âr = [x̂r , ŷr , ẑr]

T, via Equation (10).
4. Estimate: The horizontal range, i.e., r̂2D

1 , from the receiver to the master transmitter via Equation (11).
5. Estimate: The difference, i.e., ĥ, between the vertical positions of the receiver and master transmitter via
Equation (12).
6. Refine: The vertical position estimate of the receiver via Equation (13).

7. Output: The final 3-D position estimate of the receiver, i.e., âr = [x̂r , ŷr , ẑre f ined
r

]T
, where x̂r, ŷr were

estimated in step 3 and ẑre f ined
r was estimated in step 6.

3.2. Closed-Form Extended Single Set Least Squares Solution

The CF algorithm presented in ref. [18] is essentially based on transforming the hyperbolic
equations into a set of vector equations by squaring the set of equations in Equation (1) and then
differencing them. It requires a minimum of five transmitters, i.e., N = 5, and uses an SS of the TDoA
measurements in addition to extra measurements made by the successive pairs of the rest transmitters,
so that the following (N − 1) + (N − 2) = 7 measurements are used: d21, d31, d41, d51, d32, d43 and d54.
For an arbitrary number of transmitters, i.e., N ≥ 5, the simultaneous equations are expressed in
algebraic form, see ref. [18] for detailed derivation, as

a11·xr + a12·yr + a13·zr = b1

a21·xr + a22·yr + a23·zr = b2
...

a(N−2)1·xr + a(N−2)2·yr + a(N−2)3·zr = bN−2

(14)
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where:
a11 = 2

d21
(x2 − x1) −

2
d31

(x3 − x1)

a12 = 2
d21

(y2 − y1) −
2

d31
(y3 − y1)

a13 = 2
d21

(z2 − z1) −
2

d31
(z3 − z1)

b1 = 1
d21

(
x2

2 + y2
2 + z2

2 − x2
1 − y2

1 − z2
1

)
−

1
d31

(
x2

3 + y2
3 + z2

3 − x2
1 − y2

1 − z2
1

)
+ d32

...

(15)

The other constants in the set of equations in Expression (14) can be similarly written as in
Expression (15). Expression (14) can be put in the matrix form HExSSsExSS = bExSS, where

HExSS =


a11 a12 a13

a21 a22 a23
...

a(N−2)1

...
a(N−2)2

...
a(N−2)3

, (16)

bExSS =
[

b1 b2 · · · bN−2
]T

, (17)

and:
sExSS = ar. (18)

The dimension of the HExSS matrix is (N − 2) × 3, bExSS is a (N − 2) × 1 column vector and sExSS is
a 3 × 1 column state vector. The matrix notation of the cost function to be minimized by the LSE is
given by f ExSS

c = ‖HExSSsExSS − bExSS‖
2. The unconstrained CF LS solution reads

âr =
(
HT

ExSSHExSS
)−1

HT
ExSSbExSS. (19)

This is referred to as the CFExSSLS estimator. Note that only the unknown position vector of
the receiver is estimated without any nuisance parameters. Therefore, this algorithm will deliver
horizontal position estimates with acceptable accuracy and poor vertical position estimates if coplanar
transmitters are used for 3-D positioning. The steps of the CFExSSLS solution are given in Algorithm 2.

Algorithm 2: The CFSSExLS algorithm.

0. Input: The known transmitters’ coordinates, i.e., ai = [xi , yi , zi]
T, and the ExSS range difference

measurements, i.e., di1, d32, d43, . . . , and dN,N−1.
1. Compute: The matrix HExSS and the vector bExSS as defined by Equations (16) and (17), respectively.
2. CFExSSLS Output: The receiver’s 3-D position estimate, i.e., âr = [x̂r , ŷr , ẑr]

T, by the LS estimation in
Equation (19).

3.3. Closed-Form Full Set Least Squares Solution

The set of measurement equations in the SS case is given in Equation (4). Accordingly, the set of
measurement equations in the FS case can be straightforwardly written as [19]:

d1 j·‖a1 − ar‖+
[
a j − a1

]T
·ar = b1 j, j = 2, . . . , N

d2 j·‖a2 − ar‖+
[
a j − a2

]T
·ar = b2 j, j = 3, . . . , N

...
dN−1,N·‖aN−1 − ar‖+ [aN − aN−1]

T
·ar = bN−1,N

, (20)
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where also without loss of generality, the first, second, . . . and (N − 1)th transmitters are considered in
order as reference transmitters, and the corresponding range difference measurements di j = −d ji are
considered only once. Expression (20) can also be written in the matrix form HFSsFS = bFS, where [19]:

HFS =



d12 0 · · ·

d13
... · · ·
...

d1N 0 · · ·

· · · 0 [a2 − a1]
T

· · · 0 [a3 − a1]
T

...
· · · 0 [aN − a1]

T

0 d23 0
0 d24 0

...
0 d2N 0

· · · 0 [a3 − a2]
T

· · · 0 [a4 − a2]
T

...
· · · 0 [aN − a2]

T

...
0 · · · · · ·

...
0 dN−1,N [aN − aN−1]

T



, (21)

bFS =
[

b12 b13 . . . b1N b23 b24 . . . b2N . . . bN−1,N
]T

, (22)

and:
sFS =

[
‖a1 − ar‖ ‖a2 − ar‖ . . . ‖aN−1 − ar‖ ar

]T
. (23)

The HFS matrix has a dimension of N(N−1)
2 × (N + 2), bFS is a N(N−1)

2 × 1 column vector, and sFS is
a (N + 2) × 1 column state vector. The matrix notation of the cost function to be minimized by the LSE
is given as f FS

c = ‖HFSsFS − bFS‖
2, and the unconstrained CFFSLS solution for sFS is written as:

ŝFS =
(
HT

FSHFS

)−1
HT

FSbFS. (24)

Thus, the estimate of ar reads:

âr =
[

0 · · · 0 1 1 1
]
ŝFS. (25)

Note that the number of nuisance parameters, i.e., ‖ai − ar‖, where i = 1, . . . , N − 1, in the
(N + 2) × 1 column state vector sFS given in Equation (23) increased to N − 1 nuisance parameters,
which are 3-D range estimates to the transmitters that were considered as master transmitters in the
HFS matrix given in Equation (21), i.e., all transmitters with the indices 1 to N − 1 [19].

The nuisance parameters can also be exploited to refine the vertical position estimate of the
receiver using the TDoA measurements from coplanar or quasi-coplanar transmitters in a similar
way to the procedure explained in Section 3.1 for the CFSSLS solution. Using the horizontal position
estimate of the receiver, x̂r, ŷr, delivered by the CFFSLS solution, see Equations (24) and (25), and
the known horizontal coordinates of the transmitters with the indices 1 to N − 1, i.e., xi, yi, where
i = 1, . . . , N − 1, the horizontal ranges from the receiver to these transmitters, r̂2D

i , can be estimated
with acceptable accuracy as:

r̂2D
i =

√
(xi − x̂r)

2 + (yi − ŷr)
2. (26)

The 3-D ranges from the receiver to these transmitters, ‖ai − ar‖, i.e., the nuisance parameters,
which are the first N − 1 elements in the state vector, sFS, in Equation (23), are estimated by the CFFSLS
algorithm as ŝFS(i), i = 1, . . . , N − 1 and can be denoted as r̂3D

i . The differences, hi = zr − zi, between
the vertical position of the receiver, zr, and the vertical position of the transmitters, zi, are estimated as:

ĥi =

√(
r̂3D

i

)2
−

(
r̂2D

1

)2
. (27)
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We can determine the minimum vertical difference estimate, denoted as ĥselected, from the difference
estimates, ĥi, according to:

ĥselected = min
i=1,...,N−1

(
ĥi

)
. (28)

Using ĥselected and the vertical position of the corresponding transmitter, zselected, the estimate of
the receiver’s vertical position, ẑr, can be refined as:

ẑre f ined
r = zselected + α·ĥselected, (29)

where α is a design parameter value already defined. The steps of the CFFSLS algorithm and the
utilization of the nuisance parameters are listed in Algorithm 3.

Algorithm 3: The CFFSLS algorithm and refinement of the vertical position estimate.

0. Input: The known transmitters’ coordinates, i.e., ai = [xi , yi , zi]
T, and the FS range difference

measurements, i.e., d1 j, d2 j, . . . , and dN−1,N , as defined by the set of equations in (20).
1. Compute: The matrix HFS and the vector bFS as defined by Equations (21) and (22), respectively.
2. Estimate: The state vector sFS by LS estimation via Equation (24).
3. CFFSLS Output: The receiver’s 3-D position estimate, i.e., âr = [x̂r , ŷr , ẑr]

T, via Equation (25).
4. Estimate: The horizontal ranges, i.e., r̂2D

i , from the receiver to the transmitters i = 1, . . . , N − 1 via Equation
(26).
5. Estimate: The differences, i.e., ĥi, between the vertical positions of the receiver and transmitters
i = 1, . . . , N − 1 via Equation (27).
6. Find: The minimum vertical difference estimate, i.e., ĥselected, via Equation (28).
7. Refine: The vertical position estimate of the receiver via Equation (29).

8. Output: The final 3-D position estimate of the receiver, i.e., âr = [x̂r , ŷr , ẑre f ined
r

]T
, where x̂r, ŷr were estimate

in step 3 and ẑre f ined
r was estimated in step 7.

4. Results

4.1. Simulation Setup

Computer simulations were conducted using MATLAB to evaluate the performance of the
proposed TDoA-based CF LS algorithms in terms of the RMSE at a range of SNR levels from −5 to
40 dB. The range difference measurement was simulated as true value, di j, where i , j, added with error.
The error has two components: A constant bias (positive or negative), b, and a zero-mean Gaussian
noise. The SNR of any range difference signal is defined as [32]:

SNR = 10log
d2

i j

σ2
i

[dB]. (30)

Thus, the variance of the Gaussian noise, σ2
i , is computed as [32]:

σ2
i =

d2
i j

10SNR/10
. (31)

The constant bias is defined as:
b = ±0.1·d2

i j. (32)

A seven-transmitter geometry, listed in Table 1, was considered to resemble the experimental
transmitters’ geometrical arrangement in order to get representative simulation results. The receiver
was placed at 160, 50, and 6 m. The layout of the receiver and transmitters is shown in Figure 3.
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Table 1. The 3-D coordinates of the seven transmitters used in simulations and experiments.

Transmitter x (m) y (m) z (m)

Tx 1 184.44 50.00 1.61
Tx 2 180.66 30.76 1.72
Tx 3 160.05 30.84 1.82
Tx 4 139.61 30.54 1.78
Tx 5 139.11 67.49 1.88
Tx 6 159.96 67.72 1.68
Tx 7 184.60 67.53 1.62
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conducted simulations.

Five error input conditions were considered: noise only, positive bias only, noise plus positive
bias, negative bias only, and noise plus negative bias. The statistical result of 10,000 independent runs
in each error input condition was considered for the RMSE performance, except in the bias only error
input conditions, where only a single simulation run was necessary since the bias was constant over
the range of considered SNR levels, and therefore, the root square error (RSE) of the position estimate
is obtained. The RMSE performance was separated into the horizontal, i.e., xy, and the vertical, i.e., z,
spaces, and were, respectively, defined as:

xy RMSE =

√√
1
n

n∑
i=1

[(xr − x̂i
r)

2
+ (yr − ŷi

r)
2
] (33)

and:

z RMSE =

√√
1
n

n∑
i=1

[(zr − ẑi
r)

2
], (34)

where n is the number of simulation runs. Thus, the overall 3-D RMSE, i.e., xyz RMSE, is defined as:

xyz RMSE =

√√
1
n

n∑
i=1

[(xr − x̂i
r)

2
+ (yr − ŷi

r)
2
+ (zr − ẑi

r)
2
]. (35)

4.2. Simulation Results

4.2.1. Noise Only Results

Figure 4 plots the xy RMSE of the CFSSLS, CFExSSLS, and CFFSLS solutions versus the SNR.
We see that the CFSSLS algorithm performed best followed by the CFExSSLS algorithm at high SNR
levels. The CFSSLS algorithm utilizes only the independent measurements, i.e., all noises appear just
once, unlike the CFExSSLS algorithm that also utilizes some dependent measurements, and therefore,
some noises affect more than once and increase the overall estimation error. The CFFSLS algorithm
performance seems to be insensitive to noise, as shown by its almost constant accuracy over the range
of SNR levels. Here, noises affect several times, positively and negatively, through propagation into the
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extra dependent measurements utilized in the algorithm. The performance of the CFExSSLS algorithm
deteriorates rapidly below the 10 dB SNR level, while the CFSSLS solution accuracy starts to decrease
below the 5 dB SNR level. At very high noise levels, below 5 dB, the CFFSLS algorithm delivers the
best possible solution. The insensitivity of the CFFSLS solution to noise indicates the upper bound on
the horizontal position accuracy attainable at high noise levels, which is the case in environments that
are challenging to wireless signals. Figure 5 shows a similar trend in the vertical space. However, the
vertical position estimates of the three algorithms in their original formulation are useless due to the
quasi-coplanar arrangement of the involved transmitters; thus, only the horizontal position estimates
can be accepted.
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Figure 6 shows the z RMSE of the CFSSLS and CFFSLS algorithms when the nuisance parameters
are utilized to refine the vertical position estimates as explained in Sections 3.1 and 3.3. The CFExSSLS
solution does not estimate any nuisance parameters to be utilized in a similar procedure. The accuracy
of the vertical position estimates was reduced to a couple of meters. The accuracy of the CFSSLS refined
solution ranged between about 2.10 and 3.35 m, and that of the CFFSLS refined solution between 1.50
and 2.50 m. The better accuracy was generally obtained at lower SNR levels, especially for the CFSSLS
solution, while the less accurate estimates of the CFFSLS solution were obtained in the 10 to 20 dB
SNR levels. The accuracy of the CFFSLS solution decreases slightly after 0 dB to reach less than 2.5 m
at 15 dB and then starts again to increase to an almost constant accuracy of less than 2 m at SNR ≥
30 dB. Both algorithms deliver similar accuracies between about 8 and 15 dB. However, the accuracy
differences over the range of SNR levels are still not greatly significant, they are less than 1.5 and 1
m for the CFSSLS and CFFSLS solutions, respectively, and depend on the geometry of receiver and
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transmitters. The CFFSLS algorithm delivered more accurate refined vertical position estimates due to
the utilization of more nuisance parameters, which is equivalent to the utilization of more information.
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4.2.2. Positive Bias Only Results

From Figure 7, we see that in the case of positive bias only measurement errors, the CFSSLS
algorithm delivers the most accurate horizontal position estimate. This result is consistent since all
biases contribute to the CFSSLS solution only once, unlike the CFExSSLS and CFFSLS solutions, where
bias errors contribute more than once due to the utilization of extra dependent measurements beyond
the SS independent set of TDoA measurements. It would further be expected that the horizontal
positioning accuracy of the CFExSSLS solution has to be higher than that of the CFFSLS solution, since
it utilizes fewer dependent measurements. However, as can be seen from Figure 7, the horizontal
positioning accuracy of both the CFExSSLS and CFFSLS algorithms are identical, indicating the
canceling-out of some bias effects when using the FS of TDoA measurements, resulting in the identical
horizontal accuracy of the CFExSSLS and CFFSLS solutions. A similar and more obvious trend for
the vertical positioning accuracy is seen from Figure 8, despite the fact that these vertical position
estimates are useless due to the quasi-coplanar arrangement of the transmitters. The most accurate
vertical position estimate is obtained by the CFSSLS algorithm followed by the CFExSSLS algorithm
and then by the CFFSLS algorithm. No canceling-out of bias errors in the FS TDoA equations obviously
appeared in the vertical, i.e., one-dimensional, space. Figure 9 confirms again that the accuracy of the
CFFSLS refined vertical position estimate is higher than that of the CFSSLS result, since more nuisance
parameters are utilized by the CFFSLS algorithm to refine the vertical position estimate. The accuracies
of the CFFSLS and CFSSLS refined vertical position estimates are 0.30 and less than 1.10 m, respectively.
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4.2.3. Noise Plus Positive Bias Results

Figure 10 plots the xy RMSE of the CFSSLS, CFExSSLS, and CFFSLS solutions when simulated
measurements are corrupted by noise and positive bias. At high SNR levels, the best performance is
obtained by the CFSSLS algorithm, as expected, and both the CFExSSLS and CFFSLS solutions are
identical, in accordance with the results from Figure 7, as long as measurement errors are dominated
by positive bias. The CFFSLS solution is almost insensitive to the noise level and outperforms the
CFSSLS solution at high noise levels, i.e., below 5 dB. The z RMSE trend, shown in Figure 11, is similar
to that in the noise-only case plotted in Figure 5. At high SNR levels, the CFSSLS algorithm performs
best and is followed by the CFExSSLS algorithm. As the noise level increases, the CFFSLS solution
outperforms the CFExSSLS and CFSSLS below 15 and 5 dB, respectively. We repeat again that all these
vertical position estimates are useless for 3-D applications due to the quasi-coplanar arrangement of
the transmitters. The z RMSE of the refined vertical position estimates of the CFSSLS and CFFSLS
algorithms are plotted in Figure 12. The CFFSLS solution outperforms the CFSSLS solution due to the
utilization of more nuisance parameters. The vertical position estimates are accurate enough for many
3-D applications.
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4.2.4. Negative Bias Only Results

From Figure 13, we see that the CFExSSLS algorithm performs much better than the CFFSLS
algorithm and approaches the performance of the CFSSLS solution in horizontal space, xy, unlike with
positive bias only errors, see Figure 7, in which the CFExSSLS estimation approaches towards the
CFFSLS solution, where both have identical performance. Figure 14 shows that the vertical positioning
performance of the CFExSSLS algorithm is better than the other two solutions. When comparing
Figure 13 with Figures 7 and 14 with Figure 8, it seems that negative bias errors enhance the horizontal
and vertical positioning performance of the CFExSSLS algorithm, while the relative performances of
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the CFSSLS and CFFSLS algorithms are not greatly affected. Figure 15 shows that the accuracy of the
CFSSLS refined vertical position estimation is slightly better than that of the CFFSLS solution, i.e., it
reverses the result in Figure 9, which indicates that negative bias errors degrade the advantage of using
more nuisance parameters.
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4.2.5. Noise Plus Negative Bias Results

Figure 16 plots the xy RMSE of the CFSSLS, CFExSSLS, and CFFSLS solutions when simulated
measurements are corrupted by noise and negative bias. At high SNR levels, the best performance is
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obtained by the CFSSLS algorithm and the CFExSSLS solution approaches the CFSSLS solution very
tightly when measurement errors are dominated by negative bias, which is a result obtained in the
previous subsection, see Figure 13. The constant performance of the CFFSLS algorithm outperforms
the CFExSSLS and CFFSLS solutions below the 15 and 5 dB SNR levels, respectively. The z RMSE
performance in Figure 17, despite its uselessness for 3-D positioning, shows that at high SNR levels,
the CFExSSLS algorithm performs better than the other two solutions, a result obtained from Figure 14.
The performances of the CFExSSLS and CFSSLS solutions deteriorate further also below the 15 and
5 dB SNR levels, respectively. The z RMSE of refined vertical position estimates of the CFSSLS and
CFFSLS algorithms are always below 2.5 m as depicted in Figure 18.
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this experimental scenario. Figure 22 shows the error of the SS range difference measurements at the 
eight receiver test positions, and Figure 23 illustrates the histograms of these measurement errors. 
From both figures, we can see that the measurement errors are a mix of positive and negative biases 
added to non-uniform noises and some outliers. The mean errors of these SS measurements at the 
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4.3. Experimental Setup and Results

Real-world TDoA measurements were obtained in a multilevel massive building of 66.25 m length
and 11.94 m width, see Figure 19. The test building is made of 60 cm thick reinforced concrete with
metal shielded windows. Seven transmitters were installed outside the building, see Figure 20, and a
test receiver indoors observed the TDoA of the transmitted signal at eight reference test positions. The
layout of the receiver test positions and the transmitters is illustrated in Figure 21. The coordinates
of the transmitters and the test receiver positions are listed in Tables 1 and 2, respectively. Table 2
also includes the number of TDoA measurement epochs (runs) at each receiver test position. This
total NLoS situation and the material properties of the test building are extremely challenging to
wireless signals when used for positioning. NLoS bias errors and high-level noise are expected in this
experimental scenario. Figure 22 shows the error of the SS range difference measurements at the eight
receiver test positions, and Figure 23 illustrates the histograms of these measurement errors. From
both figures, we can see that the measurement errors are a mix of positive and negative biases added to
non-uniform noises and some outliers. The mean errors of these SS measurements at the test positions
are listed in Table 3.J. Sens. Actuator Netw. 2020, 9, x FOR PEER REVIEW 19 of 25 
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Table 2. The 3-D coordinates of the eight receivers’ test positions.

Test Position x (m) y (m) z (m) Number of
Measurement Epochs

Pos 1 160.24 45.76 5.95 97
Pos 2 159.79 47.73 5.94 98
Pos 3 159.70 50.29 5.94 96
Pos 4 164.21 47.42 4.56 44
Pos 5 164.32 46.12 7.85 26
Pos 6 160.41 51.87 9.22 90
Pos 7 160.15 48.35 9.23 86
Pos 8 159.65 45.81 9.23 95

Total = 632
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Figure 22. Errors of the single set (SS) range difference measurements at the eight receiver test positions.

Table 3. Rounded mean errors (m) of the SS range difference measurements at the eight receiver
test positions.

Test Position d12 d13 d14 d15 d16 d17

Pos 1 1.66 0.82 1.98 −1.82 0.62 −5.80
Pos 2 1.46 −0.27 −0.85 −2.10 −1.81 −9.42
Pos 3 −3.72 −2.18 −4.96 −3.41 −1.96 −7.47
Pos 4 5.80 5.67 6.27 −0.93 −1.25 0.67
Pos 5 2.14 4.84 4.10 15.26 4.11 2.59
Pos 6 0.98 0.12 −5.57 0.93 −2.11 1.00
Pos 7 3.40 2.79 −3.88 0.58 2.45 −4.11
Pos 8 −0.97 4.74 −0.20 −3.29 2.04 −4.43
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Table 4 lists the RMSE of the horizontal, vertical, and overall 3-D positioning performance of the
CFSSLS, CFExSSLS, and CFFSLS algorithms. The horizontal positioning accuracies of the CFSSLS,
CFExSSLS, and CFFSLS solutions were, respectively, 3.57, 2.91, and 2.90 m. As mentioned before, the
vertical position estimates without refinement are useless. The refined vertical positioning of both
the CFSSLS and CFFSLS solution were similar, i.e., 2.59 and 2.61 m, respectively. Thus, the overall
3-D positioning accuracy of the CFFSLS algorithm, i.e., 3.90 m, is higher than the accuracy of the
CFSSLS algorithm, i.e., 4.41 m, during the experiments, in which total NLoS conditions and low SNR
levels prevailed.

Table 4. Horizontal, vertical, refined vertical, and refined 3-D RMSE of the investigated algorithms in
the experiments.

Algorithm xy RMSE (m) z RMSE (m) z RMSE Refined (m) xyz RMSE Refined (m)

CFSSLS 3.57 557.11 2.59 4.41
CFExSSLS 2.91 534.10 - -

CFFSLS 2.90 317.48 2.61 3.90

5. Discussion

There are no positioning algorithms that best fit in all environments, situations, and wireless
signal conditions. Positioning algorithms are usually developed for certain special cases because real
environments are complex, and the geometries of receivers and transmitters are quite variable [11].
Despite improvements in wireless, hardware, and software technologies, the development of low-cost
and high-accuracy positioning systems is still a challenging task. Therefore, new positioning systems
and approaches will be developed in the next few years since the current technology has not yet matured.

The experimental testing and evaluation of any indoor positioning system is a difficult task due to
the need for a network deployment and for testing in several types of buildings [33]. If a particular
system is intended to be widely deployed, specific testing and evaluation in expected deployment
environments may make sense. However, the repeatability of tests in the same environment is difficult
to achieve because it is almost impossible to repeat the same environmental and signal conditions.
Therefore, measures should be developed in order to create almost constant testing and evaluation
conditions, in order to maximize repeatability and enable objective and fair performance comparisons.
Repeatability can easily be achieved by simulations. However, simulation may not always be able to
exactly resemble the varying conditions of the real world.
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As previously indicated in ref. [19], the TDoA-based positioning technique has increasing practical
and theoretical importance in a wide range of applications. The TDoA measurements used in CF
parametric estimation also depend on some nuisance parameters. The question of whether it is
advantageous to exploit the knowledge about the nuisance parameters was addressed. Knowledge
about the nuisance parameters is equivalent to having a more precise probabilistic model [34] for
the stochastic connection between the TDoA measurements and the receiver’s position. Thus, it
contributes to uncertainty and estimation error reduction. The optimal exploitation of the knowledge
about nuisance parameters or the contribution of this knowledge to theoretical lower bounds, e.g., the
Cramer–Rao lower bound (CRLB), on the estimation errors are issues that still need further research
efforts [19]. The system designer often wants to know in advance the best an estimator can perform as
a check against available designs in certain situations. The CRLB provides a benchmark for the best
positioning accuracy for any unbiased estimator, e.g., the CFSSLS estimator. Both the CFExSSLS and
CFFSLS are biased estimators since they use dependent TDoA measurements. If perfect knowledge
of the real world is available, the CFSSLS estimator can deliver the best performance. However, an
estimator designed to approach the CRLB is not robust if the estimator is not perfectly matched to
the real world. The CRLB provides no indication of what to do to achieve the predicted performance
in the presence of uncertainty. Therefore, the practical meaning of the CRLB is no other than to say
that the designer must have perfect knowledge about the real world to obtain small estimation errors.
Investigating the performance of estimators given some level of uncertainty yields the best an estimator
can do. In this regard, a CRLB lacks a practical meaning, because it assumes that even smaller errors
can be achieved, but without providing any indications of how to attain the predicted performance
given the present level of uncertainty. Therefore, the CRLB might not always represent an objective to
achieve when designing a practical estimator.

When simulated TDoA measurements were only corrupted by noise, the best position estimates
were obtained by the CFSSLS, CFExSSLS, and CFFSLS solutions (ordered from best to worst),
respectively, at moderate to high SNR levels. At low SNR levels, i.e., high noise levels, the CFFSLS
algorithm delivers the best estimates. The CFFSLS algorithm is a biased solution, where noises
contribute many times in different combinations leading to cancel-out effects, which are indicated
by the constant accuracy, i.e., steady-state behavior, over the range of investigated SNR levels. The
CFSSLS and CFFSLS algorithms can refine the vertical position estimate if they utilize the nuisance
parameters. Generally, the CFFSLS solution delivers more accurate refined vertical position estimates
as it utilizes more nuisance parameters, i.e., more information, than the CFSSLS solution.

When only positive bias errors were present in the simulated TDoA measurements, the most
accurate position estimates were obtained by the CFSSLS, CFExSSLS, and CFFSLS solutions (ordered
from more to less accurate), respectively. In the horizontal space, using the FS TDoA measurements
cancels out some bias effects and renders the CFExSSLS and CFFSLS solutions identical. The refined
vertical position estimate of the CFFSLS algorithm is more accurate than that of the CFSSLS algorithm
due to the utilization of more nuisance parameters.

The results of the two error input conditions, noise only and positive bias only, were consistently
combined when simulated TDoA measurement errors were corrupted by noise and positive bias. The
best performance is obtained by the CFSSLS algorithm followed by the CFExSSLS algorithm and then
by the CFFSLS algorithm at moderate to high SNR levels. Both the CFExSSLS and CFFSLS horizontal
position estimates are identical at high SNR levels. The CFFSLS solution is insensitive to the SNR
level and, therefore, outperforms the other two solutions at low SNR, i.e., high noise, levels. The
refined vertical position estimates of the CFFSLS solution is more accurate due to the utilization of
more nuisance parameters.

The simulations showed that negative bias only errors generally favored the CFExSSLS algorithm
more than the other two solutions. In the horizontal space, the CFSSLS algorithm performed best
and closely followed by the CFExSS solution. In the vertical space, the CFExSSLS algorithm was less
affected than the other two algorithms. Negative biases also did not favor the utilization of more
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nuisance parameters for refining the vertical position estimation. The accuracy of the CFSSLS refined
vertical position estimation is slightly better than that of the CFFSLS solution. Similar conclusions also
apply when noise is added to negative bias errors.

The experimental measurement errors contained a mix of the error conditions studied in the
simulations. The CFFSLS algorithm had a better performance in the RMSE sense, since total NLoS
conditions and non-uniform SNR levels prevailed during the experiments.

Thus, the concept of obtaining useful receiver’s vertical position estimates by the utilization of
nuisance parameters in the coplanar transmitters’ setting was proved. However, a comprehensive
evaluation of the approach is still needed, by repeating the experiments many times on different days
and in several test buildings with different characteristics, in order to meet the recommendations
provided in ref. [33].

6. Conclusions

It was demonstrated with simulations and experiments that with quasi-coplanar arrangement
of transmitters and at moderate to high SNR levels, the CFSSLS solution had the best performance,
followed by the CFExSSLS solution and then by the CFFSLS solution. At low SNR levels, the CFFSLS
algorithm outperformed the other two algorithms. Both the CFSSLS and CFFSLS solutions estimate
nuisance parameters. It was also demonstrated that the exploitation of these parameters was useful, in
accordance with intuition, to significantly increase, i.e., refine, the accuracy of the receiver’s vertical
position estimates. This study invites for more specific investigations to test and evaluate the presented
approaches for potential positioning applications, in order to demonstrate that more conclusive results
may be found for certain sets of error conditions, since different sets of error conditions seem to favor
one algorithm over the other. Therefore, more research is needed to further develop and test the
proposed ideas in a wider range of environments and error conditions.
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Abbreviations

AoA Angle of Arrival
CF Closed-Form
CFExSSLS Closed-Form Extended Single Set Least Squares
CFFSLS Closed-Form Full Set Least Squares
CFSSLS Closed-Form Single Set Least Squares
CRLB Cramer–Rao Lower Bound
DM Direct Method
DPD Direct Position Determination
ExSS Extended Single Set
FS Full Set
GNSS Global Navigation Satellite System
LCLS Linear Correction Least Squares
LoS Line-of-Sight
LPS Local Positioning Systems
LS Least Squares
LSE Least Squares Estimation or Estimator
MCU Monitoring and Control Unit
ML Maximum Likelihood
MLE Maximum Likelihood Estimator
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NLoS Non-Line-of-Sight
PDoA Phase Difference of Arrival
PoA Phase of Arrival
RF Radio Frequency
RMSE Root Mean Square Error
RSE Root Square Error
RSS Received Signal Strength
RToF Round-Trip Time of Flight
SI Spherical Interpolation
SNR Signal-To-Noise Ratio
SS Single Set
ToA Time of Arrival
TDoA Time Difference of Arrival
TS Transmitting Station
UT User Terminal
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