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Abstract: Cognitive radio technology addresses the problem of spectrum scarcity by allowing
secondary users to use the vacant spectrum bands without causing interference to the primary
users. However, several attacks could disturb the normal functioning of the cognitive radio network.
Primary user emulation attacks are one of the most severe attacks in which a malicious user emulates
the primary user signal characteristics to either prevent other legitimate secondary users from
accessing the idle channels or causing harmful interference to the primary users. There are several
proposed approaches to detect the primary user emulation attackers. However, most of these
techniques assume that the primary user location is fixed, which does not make them valid when
the primary user is mobile. In this paper, we propose a new approach based on the Kalman
filter framework for detecting the primary user emulation attacks with a non-stationary primary
user. Several experiments have been conducted and the advantages of the proposed approach are
demonstrated through the simulation results.

Keywords: cognitive radio; primary user emulation attacks; mobile primary user; Kalman filter;
received signal strength

1. Introduction

Cognitive radio (CR) technology is a viable solution that addresses the problem of the spectrum
scarcity [1]. It enables secondary users to sense, dynamically adjust their transmission parameters,
and access the idle frequency channels (spectrum holes) without causing any harmful interference to the
primary users [2]. Due to the unreliable nature of the wireless communication, cognitive radio networks
can be subject to various cyber-attacks which can have a negative impact on their performance [3–5].
Examples of these attacks include asynchronous sensing attacks [3], primary user emulation (PUE)
attacks [5,6], spectrum sensing data falsification (SSDF) attacks [6,7], and jamming attacks [8,9].

A PUE attack targets the CR physical and MAC layers and is considered as one of the most severe
attacks in which a malicious user emulates the transmission characteristics of the primary user (PU)
and mimics its behavior to mislead legitimate secondary users. Such an attack can create a harmful
interference to the primary user and prevent other secondary users from using the idle spectrum
frequency channels [5,6]. There are two types of primary user emulation attackers [10]: selfish and
malicious. The purpose of the selfish attacker is to use and selfishly exploit an idle frequency channel
without sharing it with other legitimate secondary users. The malicious attacker, on the other hand,
aims at causing a denial of service in cognitive radio networks and preventing secondary users from
accessing the available frequency channels.
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Several approaches have been proposed to cope with the PUE attacks [11–24]. For instance,
the authors of Reference [11] proposed an energy-based detection approach to detect the source of
the signal and decide if it is emitted by a legitimate primary user or an attacker. In their approach,
each secondary user measures the power level of the received signal and compares it to that from a
legitimate PU. The authors of Reference [12] proposed a belief propagation framework based on a
Markov random field to detect the primary user emulation attacker. Each secondary user decides
whether the signal is coming from a legitimate primary user or not using the energy detection technique
then calculates the belief and exchanges it with other secondary users. If the average of the belief values
is lower than a predefined threshold, then the signal is coming from a malicious user, otherwise, it is
coming from a legitimate user. However, techniques based on energy detection are not efficient in
distinguishing between noise and signal, and they suffer from a high probability of false alarm [13].

Feature-based techniques, such as autocorrelation and matched filter [14,15], are also inefficient
in distinguishing between the PU signals and those of the PUE attacker. For instance, the authors
of Reference [16] used the cyclostationary feature of the transmitter’s signal to detect the source of
the incoming signal. However, this technique is not efficient in detecting malicious users which can
mimic the primary user signal features. In Reference [17], the authors proposed a radio-frequency
fingerprinting detection technique. In this technique, the transmitter is identified based on some
unique radiometric features extracted from its analog signals. In another paper [18], the authors
proposed a detection technique using the characteristics of wireless channels. As the statistical
property of the wireless channel between the transmitter and the receiver is unique in a wireless
environment, this feature is used as a radio fingerprint to detect the primary user emulation attacker.
However, radio fingerprinting based approaches require additional hardware or software to implement.
In addition, these techniques are inefficient in identifying the primary user signal effectively since the
characteristic of the noise introduced by the hardware is random.

Other techniques have been proposed to estimate the position of the transmitter and compare the
estimated position with the known position of the primary user. The authors of Reference [19] proposed
a time difference of arrival (TDoA) based approach to estimate the position of the transmitter. In this
approach, the time elapsed between the transmission of the signal and the reception of the reply is used
to estimate the location of the transmitter. Though TDoA can estimate more accurately the transmitter
position than other techniques, it requires a tight synchronization between the transmitters and the
receivers, which is challenging. In Reference [20], the authors proposed an angle of arrival based
approach for detecting the transmitter’s position. In this approach, the direction of the received signal
is measured at different reference nodes, then by applying the triangulation technique, the transmitter
location can be estimated. However, this technique is affected by the multipath phenomenon [21].
The authors of Reference [22] proposed a mitigation approach to distinguish the primary user signal
from other signals via an energy-efficient localization technique and channel parameter variance.
The authors of Reference [23] proposed a model based on the trilateration, the received signal strength
(RSS), and the particle swarm optimization to increase the detection accuracy of the primary user
emulation attacker. All the previously mentioned techniques do not deal with uncertainty which
affects the measurements. The authors of Reference [24] proposed a Bayesian model and trilateration
technique for detecting the primary user emulation attack position. Based on the received signal
strength, the Bayesian decision theory is used to deal with the uncertainty related to the primary user
environment and increase the detection accuracy of the primary user position.

The existing localization techniques assume that the primary user position is fixed and known.
Thus, each secondary user derives the position of the transmitter based on the received power and
then compares it to the known position of the legitimate PU in order to verify if the transmitter is
the legitimate PU or an attacker. However, in wireless communication networks where the primary
user is mobile, such as cognitive radio ad hoc networks, the existing techniques produce inaccurate
results since the position of the primary user varies over time. Therefore, in this paper, we propose
a localization approach to detect the primary user emulation attacks in the case of mobile primary



J. Sens. Actuator Netw. 2018, 7, 26 3 of 14

users. The proposed approach is based on the Kalman filter framework for tracking the position of
the primary user then the transmitter received power is used to derive the position of the transmitter
before comparing it to the position estimated by Kalman filter.

The Kalman filter has been applied in several contexts including robotics vision, wireless sensor
network, and tracking moving objects [25–35]. For instance, in Reference [25], the authors used the
Kalman filter for robot mobile localization purpose. In Reference [26], the Kalman filter was applied for
face tracking; and in Reference [27] the authors used the Kalman filter for tracking balls in the robotics
vision field. Other applications of the Kalman filter have been proposed in the field of wireless sensor
networks. For example, in Reference [28], the authors proposed an approach based on the Kalman filter
combined with the Maximum Likelihood Estimation for tracking nodes in wireless sensor networks.
The authors of Reference [29] proposed a routing protocol called SEARCH that predicts the destination
in advance using the Kalman filter so that the route is extended and packets are reliably delivered
to their destinations. In Reference [30], the authors used the Kalman filter for tracking the Global
Navigation Satellite System signal. In Reference [31], the authors proposed an approach based on
Kalman filtering combined with the particle swarm optimization algorithm for calculating the motion
vectors of moving objects. To the best of our knowledge, this is the first application of the Kalman filter
for tracking the PU position and detecting the PUE attacker in the cognitive radio context.

The remainder of this paper is organized as follows. In Section 2, we describe the proposed
localization approach based on the Kaman filter. In Section 3, we first present the metrics used for
evaluating the proposed approach’s performance, then we discuss some examples of results and
compare the proposed approach with the RSS-based location technique. Finally, some conclusions are
drawn in the last section.

2. Methodology

The proposed approach is based on the Kalman filter framework for tracking the primary user
location and deciding if the incumbent signal is emitted by a legitimate primary user or from an
attacker. Figure 1 shows the flowchart of the proposed approach. In this approach, the primary user
position is tracked using the Kalman filter [28], then the distance, dk f i between a node i and the
legitimate primary user is estimated. Next, the received power of the transmitter is used to calculate
the distance, dpi between the node i and that transmitter using the Free Space Path Loss Equation. If the
difference between dk f i and dpi is greater or equal to a predefined threshold τ, then the transmitter is
an attacker. Otherwise, it is a legitimate primary user.

In this work, we assume that the primary user is moving in a two-dimensional field and its state is
described by its position and its velocity. In addition, we assume that the initial position of the primary
user is known to the secondary users. The state of the primary user is represented as

xk =
[
x(k) y(k) vx(k) vy(k)

]T (1)

where (x(k), y(k)) are the coordinates of the primary user position at the time tk and (vx(k), vy(k)) are
the velocities of the primary user in x and y-directions at time tk, respectively. In addition, we assume
that the movement of the primary user is locally linear within the sampling interval time. Thus,
its motion can be modeled as

xk+1 = Akxk + Bkuk + wk (2)

where A and B represent the transition matrix and the control matrix, respectively. uk is the acceleration
of the primary user and wk is a white Gaussian noise with zero mean and covariance matrix Q, which is
given by

Q =

[
σ2

wx 0
0 σ2

wy

]
(3)
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where σ2
wx and σ2

wy are the covariances of wx and wy which correspond to the acceleration noise of
the primary user along the X-axis and Y-axis, respectively.
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The transition and the control matrix are given by

Ak =


1 0 ∆tk 0
0 1 0 ∆tk
0 0 1 0
0 0 0 1

, Bk =


∆tk2

2
∆tk2

2
∆tk
∆tk

 (4)

where ∆tk = tk+1 − tk is the sampling interval time between two successive measurements at tk+1 and
tk. The measurement model zk adopted is given by

zk = Cxk + vk (5)

where C is the measurement matrix and vk is the measurement noise which is a white Gaussian noise
with zero mean and covariance matrix R. C is given by
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C =

[
1 0 0 0
0 1 0 0

]
(6)

During the first process of Kalman filter, the state of the primary user x̂k+1 and its associated
covariance error matrix Pk+1 at time tk+1 are predicted using the following equations

x̂k+1 = Ak x̂k + Bkuk (7)

Pk+1 = AkPk AT
k + Qk (8)

where x̂k is the primary user state at time k, Pk is the covariance error matrix at time k, and AT
k is the

transpose of transition matrix A at time k. During the update process of Kalman filter, the estimated
state and its covariance error matrix at time k + 1 are updated and corrected using the Kalman filter
gain Gk+1 as follows

Gk+1 = Pk+1CT
(

CPk+1CT + R
)−1

(9)

x̂′k+1 = x̂k+1 + Gk+1(zk − Cx̂k+1) (10)

P′k+1 = Pk+1 − Cx̂k+1Pk+1 (11)

where CT is the transpose matrix of the measurement matrix C, x̂′k+1 is the updated state of the
primary user state at k+ 1, and P′k+1 is the updated covariance error matrix Pk+1. Once the coordinates
of the primary user position (xp, yp) are estimated using the Kalman filter, the distance dk f i between
a fixed position of an anchor node (xi, yi) and the primary user can be obtained using the following
equation

dk f i =

√(
xp − xi

)2
+
(
yp − yi

)2 (12)

In order to verify if the incoming signal is emitted by a legitimate primary user or by an attacker,
a distance dpi between the transmitter and a node i is required. This distance can be obtained from the
received power signal of the transmitter using the Free Space Path Loss Equation [24]:

Pr =
PtGtGrλ2(

4πdpi
)2 (13)

where Pr is the received power, Pt is the transmitted power, Gr is the antenna gain of the receiver, Gt is
the antenna gain of the transmitter, λ is the wavelength, and dpi is the distance between an anchor
node i and the transmitter. Equation (13) can be expressed in dB as

Pr(dB) = −10αlog10
(
dpi
)
+ A (14)

where α is the propagation path loss exponent and A is expressed as

A = 10log10

(
PtGtGrλ2

)
− 20log10(4π ) (15)

The received signal strength at an anchor node i can be impacted by the noise, Equation (14) can
be written as

Pr(dB) = −10αlog10
(
dpi
)
+ A + ni (16)

where ni is a white Gaussian noise that follows the normal distribution N
(
0, σ2). Thus, the distance

dpi can be estimated as

dpi = 10
(A+ni−pr)

10α (17)
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By comparing the difference between the estimated distance dk f i and dpi at an anchor node i to
a predefined threshold τ, the transmitter is considered as a primary user emulation attacker if the∣∣∣dk f i − dpi

∣∣∣ ≥ τ and as a legitimate primary user when the
∣∣∣dk f i − dpi

∣∣∣< τ .

3. Experiments and Results

To evaluate the performance of the proposed approach, a simulation of a primary user emulation
attack scenario in a virtual cognitive radio network was performed using Matlab. The experiments
were carried out on an Intel Core(TM) i7-6700 CPU @ 3.40 GHz 3.41 GHz, 16 GB RAM with a windows
10 64-bit Operating system. In the simulated scenario, we assume that there is a legitimate primary
user, a PUE attacker, several secondary users along with some anchor nodes. We assume that the
initial position of the primary user is known to the secondary users. Each anchor node gathers the
measurements related to the primary user positions and share the results with the secondary users to
track the movement of the primary user. These anchor nodes are positioned at specific positions while
the secondary users are randomly deployed to simulate a real-world network scenario. Table 1 gives
the simulation parameters used in this paper along with the positions of the anchor nodes, the initial
position of the PU, and the position of the PUE attacker.

Table 1. The simulation parameters.

Parameter Value/Range

Transmission power 150 W

Transmitter antenna gain 12 dB

Receiver antenna gain 4 dB

Frequency 2400 MHz

Path loss exponent 2

SNR Range [−20, 20]

Initial position (x(k), y(k)) of the PU at k = 0 (1400, 1400)

Coordinates of the anchor nodes positions
(500, 500); (500, 1000); (500, 1500); (1000, 15,000); (1500, 1500);
(1500, 1000); (1500, 500); (1000, 500); (725, 1000); (1225, 1000);
(1000, 725); (1000, 1225); (1225, 1500); (725, 1500); (1225, 500)

Position of the PUE attacker (1470, 1470)

Coordinates of the secondary users positions (750, 1350); (1200, 1400); (1300, 650); (800, 1000); (700, 750); (1000, 1100);
(850, 650); (1400, 1100); (1450, 1200); (1400, 600); (1450, 850);

Due to a number of random variables used in the proposed approach, including the noise affecting
the acceleration, the measurement, and the signal, the Monte Carlo technique was used to handle the
uncertainty in the simulation. The proposed approach was extensively tested and evaluated using
several metrics including the probability of detection, the probability of false alarm, the probability of
miss detection, and the error function. The results of the proposed approach were compared to those
of the RSS-based localization technique.

The probability of detection, Pd, corresponds to the number of times where the primary user
emulation attacker signal is correctly classified as an attack divided by the total number of attacks. It is
given by

Pd =
Number o f PUE detections

Total number o f attacks
(18)

The probability of false alarm, Pf a, corresponds to the number of times where the legitimate
primary user signal is wrongly classified as an attack divided by the total number of legitimate signals.
It is expressed as
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Pf a =
Number o f f alse detected attack

Total number o f legitimate signals
(19)

The probability of miss detection, Pm, corresponds to the number of times where an attack is
incorrectly classified as a normal signal divided by the total number of attacks. It is given by

Pm =
Number o f miss detected attacks

Total number o f attacks
(20)

The error function calculates the error between the estimated and the actual trajectory of the
primary user. It is given by

Error function =
1
n

n

∑
i=1

(
X− X′

)2 (21)

where X is the actual trajectory, X′ is the predicted trajectory, and n is the number of
collected measurements.

Examples of results are given in Figures 2–9. Figure 2 illustrates the error function versus the
measurement noise. As it can be seen from this figure, this function remains almost constant when
the measurement noise values are less than 0.02, and it increases exponentially after that value.
For measurement noise values equal to 0.2 and 0.07, the error function is 0.1 and 0.11, respectively.
When the measurement noise is greater than 0.3, the error function increases exponentially. For instance,
when the measurement noise is equal to 7, the error function is equal to 10 and when this measurement
noise increases to 8.5, its corresponding error function value rises to 15. These results suggest that
measurements noise values that are less than 0.2 are the optimal values for the experiments since they
reduce the error between the actual and the predicted trajectory leading to a better estimation of the
primary user position. Thus, we selected 0.05 for conducting the remaining experiments.
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Figures 3 and 4 show the scenario used for simulating the mobile primary user, the fixed PUE
attacker, secondary users, and anchor nodes. In Figure 3, the red symbols represent the measurements
collected by the anchor nodes regarding the movement of the primary user. Due to the measurement
noise, these collected measurements are not precise enough to accurately predict the primary user
trajectory. From Figure 4, it can be seen that after using the optimal measurement noise value selected
previously, which is 0.05, and by applying the Kalman filtering process, the predicted trajectory is close
to the actual one. These results suggest that the secondary users can use the collected measurements
with the Kaman filter to accurately predict the position of a mobile primary user.
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symbols represent the predicted PU path after applying Kalman filtering with an optimal measurement
noise value.

Figure 5 shows the probability of detection as a function of the distance, dpu_pue between a
mobile primary user and a primary user emulation attacker for different SNR values. As one can
see, the probability of detection increases as the distance between the primary user and the attacker
increases. For example, for an SNR value of −10 dB, the probability of detection is equal to 37% when
the distance between the primary user and the attacker is 50 m, but this probability increases to 60%
when the distance is equal to 100 m. In addition, this figure shows that the probability of detection
increases with the increase of SNR values. For instance, for a distance of 50 m between the PU and the
PUE attacker, the probability of detection is equal to 37%, 80%, 96%, 99.2%, and 99.7%, for SNR values
corresponding to −10 dB, −5 dB, 0 dB, 5 dB, and 10 dB, respectively.
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Figure 5. Probability of detection as a function of the distance dPU_PUE between a mobile PU and
a PUE.

Figure 6 shows the probability of detection as a function of the probability of false alarm for a
distance dpu_pue = 30 m between the primary user and the primary user emulation attacker. As it can be
observed, the probability of detection increases with the increase in the probability of false alarm. For
example, for an SNR value of −15 dB and with a probability of false alarm of 10%, the probability of
detection is 16%, but when the probability of false alarm increases to 30%, the probability of detection is
equal to 61%. In addition, with the increase of the SNR value, the probability of detection increases. For
instance, with a probability of false alarm of 2%, the probability of detection is equal to 39%, 63% 90%,
99%, and 100% for SNR values corresponding to −15 dB, −10 dB, −5 dB, 0 dB, and 5 dB, respectively.
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Figure 6. Probability of detection as a function of the probability of false alarm for dPU_PUE = 30 m.

Figure 7 shows the probability of miss detection as a function of the distance dpu_pue between
a mobile primary user and a primary user emulation attacker. As expected, the probability of miss
detection decreases as the distance between the PU and the PUE increases. For example, for an SNR
value of −10 dB, the probability of miss detection is equal to 65% when the distance between the
primary user and the attacker is equal to 50 m, but this probability drops to 41% when the distance
increases to 100 m. In addition, this figure shows that when the SNR value increases, the probability of
miss detection decreases. For example, with a distance of 110 m between the primary user and the
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attacker, the probability of miss detection is equal to 37%, 10%, 5%, 1%, and 0% for SNR values of
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Figure 8 shows a comparison between the proposed approach and the RSS-based localization
technique in terms of the probability of detection as a function of distance with an SNR value of
−10 dB. The RSS-based localization technique is selected for comparison purpose since it has been
proposed in several previous papers [20,23,24]. This technique uses the transmitter received power
to derive the position of the transmitter. The calculated position is combined with other techniques
including Particle Swarm Optimization and the Maximum Likelihood estimation to optimize the
detected location of the transmitter. This technique meets the Federal Communication Commission
which states that no modification to the primary user system should be performed to accommodate
the opportunistic use of the spectrum by secondary users. As shown in this figure, the probability of
detection for the proposed approach, as well as the RSS-based localization approaches, is low when
the attacker is in a close proximity to the legitimate primary user location. When the distance increases,
the probability of detection of the proposed approach increases while it remains almost the same for the
RSS-based localization technique. For instance, when the distance between the primary user emulation
attacker and the primary user is equal to 50 m, the probabilities of detection of the proposed approach
and the RSS-based localization technique are 24% and 16%, respectively. When the distance increases
to 100 m, the probability of detection of the proposed approach increases to 49% while it remains equal
to 16% for the RSS-based localization approach. This result suggests that it is challenging to detect the
primary user emulation attacker when the attacker is in a close proximity to the legitimate primary
user location. However, when the distance becomes larger, the proposed approach produces better
results than the RSS-based approach because in this latter, the secondary users use the received signal
strength to calculate the position of the transmitter then compare it to the fixed and known position of
the legitimate primary user. Since the position of the primary user changes over time, this RSS-based
approach produces inaccurate results in terms of the probability of detection.
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Figure 9 illustrates a comparison between the proposed technique and the RSS-based localization
technique in terms of the probability of miss detection as a function of the distance with an SNR value
equal to −10 dB. As one can see, the miss detection probabilities of the proposed approach and the
RSS-based localization technique are high when the attacker is close to the primary user location.
As expected, when the primary user starts moving and the distance becomes larger, the probability
of miss detection of the proposed approach decreases while it remains the same for the RSS-based
localization technique. For example, when the distance is 50 m, the probabilities of miss detection
of the proposed approach and the RSS-based localization technique are 76% and 84%, respectively.
When the distance increases to 150 m, the probability of miss detection of the proposed approach
decreases to 19% while it remains equal to 84% for the RSS-based localization technique.
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4. Conclusions

Cognitive Radio networks are subject to several cyber-attacks. The primary user emulation attack
is one of the most severe attacks that can impact the normal functioning of these networks. In this
paper, we propose a new approach for detecting primary user emulation attacks with a non-stationary



J. Sens. Actuator Netw. 2018, 7, 26 12 of 14

primary user. A Kalman filter based technique is used for tracking and estimating the position of
the mobile primary user, then the transmitter received power is used to derive the position of the
transmitter before comparing it to that estimated by Kalman filter. Thus, secondary users can verify if
the transmitter is a legitimate primary user or an attacker. Several experiments were conducted and the
model was extensively tested and its results were compared to those of the RSS-based location approach.
The results show that the proposed approach produces satisfactory results in terms of tracking the
primary user in a non-stationary environment and it outperforms the RSS-based localization technique
in terms of probability of detection and probability of miss detection. However, the proposed technique
has a few limitations that need to be addressed in future works. These limitations include finding the
initial coordinates of the primary user, handling the uncertainty in the measurements, and detecting
an attacker that is in close proximity to the legitimate primary user position.
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