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Abstract: In recent years, wireless sensor networks have been studied in numerous cases. One of
the important problems studied in these networks is the optimal deployment of sensors to obtain
the maximum of coverage. Hence, in most studies, optimization algorithms have been used to
achieve the maximum coverage. Optimization algorithms are divided into two groups of local and
global optimization algorithms. Global algorithms generally use a random method based on an
evolutionary process. In most of the conducted research, the environment model and, sometimes, the
layout of sensors in the network have been considered in a very simplified form. In this research, by
raster and vector modeling of the environment in two- and three-dimensional spaces, the function of
global optimization algorithms was compared and assessed for optimal deployment of sensors and a
vector environment model was used as a more accurate model. Since the purpose of this paper is to
compare the performance and results of global algorithms, the studied region and the implementation
conditions considered are the same for all applied algorithms. In this article, some optimization
methods are considered for sensor deployment including genetic algorithms, L-BFGS, VFCPSO and
CMA-ES, and the implementation and assessment criteria of algorithms for deployment of wireless
sensor network are considered some factors such as the optimal coverage amount, their coverage
accuracy towards the environment model and convergence speed of the algorithms. On the other
hand, in this paper, the probability coverage model is implemented for each of the global optimization
algorithms. The results of these implementations show that the presence of more complex parameters
in environment model and coverage produce accurate results that are more consistent with reality.
Nonetheless, it may reduce the time efficiency of algorithms.

Keywords: wireless sensor networks; sensor deployment; network coverage; global optimization
algorithms; probability coverage model; raster model; vector model

1. Introduction

Today, wireless sensor networks have found numerous uses in engineering sciences and scientific
research. Smart cities, transportation, land use planning, studying the activities of volcanoes, and
environmental monitoring are some instances of these applications [1–3]. In general, sensors are
apparatuses in which there is the potential of traceability, computation and wireless connection. They
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receive the observational data from the environment and then measure them; next, they send them
into the integrated centers, named sinks, through wireless connections. These sinks are named base
stations, and are usually connected to the Internet to be able to send their data to far places for further
processing [4–6]. These sensors are located in the environment and receive various data from their
environment such as temperature, pressure, light, moisture, type of soil, vehicle motion, density of
pollutants, sound, noise level, existence and lack of existence of obstacles, mechanical forces, image
and videos [1–7].

It is evident that each sensor covers a limited section of the region and the area’s coverage
amount is obtained from the total coverage surface of sensors. Therefore, the optimal deployment of
sensors, which leads to achieve the maximum coverage, is one of the important problems in field of
wireless sensor networks [8–15]. In most of the research conducted about wireless sensor networks,
the raster data model has been used to model the environment around the sensors [16–18]. In a limited
number of studies, which used vector data model for environment modeling, only a two-dimensional
model has been considered and the presence of height obstacles and land topography have not been
considered [19,20]. Since the current available research deals with simplified forms of environmental
models for the Wireless Sensor Network (WSN) coverage problem, the contribution of this paper is that
it deals with a complex model for coverage optimization problem, by increasing the environmental
data dimension as well as using probabilistic optimization models. Hence, this paper applies global
optimization algorithms to two- and three-dimensional vector and raster models with considering
more obstacles in the environment.

The environmental obstacles, the type of data considered for environment modeling (raster or
vector) and the sensor detection model affect the computation of network coverage. Among the types
of used sensor detection models, we can refer to simple circular detection model, and directional
model [21–23].

The optimal layout of sensors is a very challenging problem and it has been proved that, for
most deployment formulas, it has high complexity. To cope with this complexity, several optimization
algorithms have been suggested to find the best place of location [24,25]. The global algorithms consider
all space of solving problem in the studied area for deployment of wireless sensor network, which
means they try altogether to find a solution to optimize the objective function in the space of unknowns.
Among the sensible features of these algorithms, we can refer to their randomness according to an
evolutionary process. In all of these algorithms, it is necessary to compute the sensor coverage as the
objective function. In fact, the coverage improvement is done regarding to the calculation method
of coverage.

Coverage is one of the important problems in deployment of sensor networks. The probability
coverage is closer to reality than binary coverage. Some parameters such as distance range and sensor
angle towards the objective are necessary to estimate the probability coverage. A specific area cannot
be assumed for this model. In this area, the objective is traced by a probability between zero and
one [22]. In this research, the suggested approach to gain the probability coverage is posed based on
these parameters.

Moreover, in the present research, the performance of global optimization algorithms in
two- and three-dimensional vector and raster models with various resolutions were implemented,
assessed, and compared irrespective of obstacles and environmental topography. Regarding the
coverage method of sensor, binary and probability omni-directional models in two-dimensional
mood of environment, and binary and probability directional model in three-dimensional mood
of environment have been considered. Since the purpose is to compare the performance and
ability of global algorithms in the problem of wireless sensor networks’ coverage, the studied
area and implementation conditions have been considered the same. In this article, several
optimization methods have been implemented for sensor deployment, such as Genetic Algorithms
(GA), Limited-memory Broyden–Fletcher–Goldfarb–Shanno (L-BFGS), Virtual Force Co-evolutionary
Particle Swarm Optimization (VFCPSO), and Covariance Matrix Adaption-Evolution Strategy
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(CMA-ES). The reason to select these algorithms has been their evolutionary nature in comparison to
other global methods in optimization of wireless sensor network deployment. Contribution of this
paper is to study the impact of complex model for coverage optimization in WSN, and considering
two- and three-dimension environment data instead of simplified forms of environment. Hence,
to present the performance of these parameters over the global optimization algorithms, these four
global optimization methods were applied to indicate that selected global optimization method has
no impact on the final results. Afterwards, the performance of global optimization algorithms using
the probabilistic models was investigated. The criteria of algorithms’ evaluation for the problem of
wireless sensor networks’ deployment are the amount of optimal coverage, accuracy of coverage
towards the environment model and the convergence speed of algorithms.

For this purpose, in Section 2, we review the research literature done regarding this topic,
and introduce the evolutionary global optimization algorithms in raster and vector environments.
In Section 3, different coverage methods in sensors and the implementation models are introduced,
and investigated by considering the spatial parameters of environment. In Section 4, the introduced
global optimization algorithms with the evolutionary nature are implemented in the studied area and
the results are evaluated. Ultimately, the presented selective optimization methods are compared with
each other and in Section 5. Then, the conclusions and suggestions for future research are stated.

2. Previous Research and Some of Evolutionary Global Optimization Algorithms of Sensor
Network Deployment in Raster and Vector Environment Models

In this section, previous research that used evolutionary global algorithms to solve the
problem of sensor deployment is investigated. Among the optimization algorithms with
evolutionary and global approach to solve the problem of sensor network coverage, we can refer
to genetic algorithm, Covariance Matrix Adaption-Evolution Strategy (CMA-ES), Limited-memory
Broyden–Fletcher–Goldfarb–Shanno (L-BFGS) and Virtual Force Co-evolutionary Particle Swarm
(VFCPSO) Optimization. In addition, generally, in these studies, the model of raster environment
has been used to compute the coverage. In this section, the raster and vector models are defined as
environment model.

2.1. Genetic Algorithm

Genetic algorithm is a kind of evolutionary algorithms that is used to solve the optimization
problem with non-polynomial complexity. In deployment problem, increasing the number of sensors
will lead to NP complexity. Jordan et al. used genetic algorithm to optimize the network coverage
amount and as well, for network lifelong [22]. They considered the reduction of energy consumption as
the criterion of network lifelong increase. The input variables of genetic algorithm are the coordinates
of sensor nodes. In the first step of this algorithm, the vector of variables is made randomly in number
of the population defined in genetic algorithm. In each repetition, the coordinates of x and y are
integrated among the solutions and as well, they find direction randomly with a specific defined
proportion. Moreover, the vector of a variable with the best desirability is considered as the input of
next iteration. The termination condition in this algorithm is lack of change of network coverage in
next repetitions.

2.2. CMA-ES Algorithm

This evolutionary algorithm updates the covariance matrix of variables towards the optimal
objective function. The performance of this algorithm is similar to Hessian reverse matrix in
Newton method. Unlike pseudo-Newton method, this algorithm does not need to gradient analytic
computation. For deployment problem, position of sensors is considered as the solutions of algorithm
and the direction is considered as the solution for directional sensors. Akbarzadeh et al. used CMA-ES
algorithm for the problem of deployment by the approach of network coverage increase [25].
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2.3. L-BFGS Algorithm

This algorithm is one of the numerical optimization methods, which is used for nonlinear
optimization problems. This method is an example of pseudo-Newton optimization method, as
it moves towards the optimal part of the problem without computing the reverse Hessian matrix. This
algorithm updates the reverse Hessian matrix in estimated form. When the number of problem’s
variables increases, the computation time and a computer memory volume spent on updating the
matrix C increases greatly. Hence, LBFGS method can be used [26]. This algorithm aims to make an
approximation of Hessian reverse matrix properly. Instead of storing and updating the whole reverse
Hessian matrix C, this method uses the memory m, the last position of x and gradient of f(x). The last
memory, m, is used since m repetition in two methods of BFGS and L-BFGS have rather equal step and
motion direction. The complexity of this method equals O(nm) (size of m is usually small; for example,
for n = 103, m is chosen within 2–35). L-BFGS algorithm was used by Akbarzadeh et al. in deployment
problem to increase the network coverage [24].

2.4. VFCPSO Algorithm

This algorithm has been made by combination of VF algorithm as a local optimization algorithm
and CPSO algorithm. VF algorithm is a self-organizing algorithm which considers the obstacles
and position of other sensors. This algorithm uses attraction and repulsion forces for displacement
of sensors [27]. This algorithm is inspired from the theory of closed disk [28] and uses the robotic
concepts [29]. To make VFPSO algorithm, VF algorithm is added into the updating of particles’ speed to
improve the convergence speed of PSO algorithm. It is different from PSO as, when updating the speed
of particles, it uses the force used on sensors in VF algorithm as well as previous parameters. CPSO
algorithm was introduced to improve the capability of PSO for problems with high dimensions [30].
This algorithm divides the search space into one-dimensional subdivisions. In fact, the solution vector
is divided into smaller vectors [31]. A point that should be considered when combining VF and PSO or
CPSO is that the force computed in VF algorithm is inserted only on the position parameters of sensor,
which means, to compute the speed of position change, parameters such as direction from the force
inserted on the sensors, which is obtained by VF algorithm, are not used.

3. Coverage Computation Model in Sensors and Models of Problem
Implementation Environment

In terms of the considered data, environment models are divided into vector and raster models.
In most of conducted research, and in the problem of sensor deployment, raster models have been used
to consider the environmental obstacles and land topography [32–34]. For this purpose, digital surface
model (DSM) has been used as the land model. Nonetheless, the accuracy of this raster modeling is
limited to the model’s resolution (Figure 1A–C). Moreover, DSM model has two and half dimensions;
thus, it cannot model buildings’ sides, under bridges, and inside buildings, which consequently has
great effects on the network coverage computation. Hence, by presenting a proper model to solve the
coverage in more accurate environmental models, which are related to vector models, the impact of
environment on algorithms’ evaluation can be investigated (Figure 1D).

This article uses the model proposed and presented in [35] for environment vector and raster
models in two and three-dimensional spaces to compute the sensor coverage (Figure 2). In both
methods, two parameters of limited angle and the distance of sensor performance are used to calculate
the coverage.

In two-dimensional raster model (Figure 2), pixel q with distance range (Rs, 0) and performance
angle (G1, G2) is covered by sensor S. Therefore, the pixel should have the following conditions to be
located in the coverage range of sensor:{

Distance(S, q) ≤ Rs
G1 ≤ Gsq ≤ G2

(1)
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By the above conditions, the area of the whole zone covered by sensor is obtained by the
following formula:

Area = number of covered pixels × (size of pixel)2 (2)

In three-dimensional raster model (Figure 3), we should review the visibility between sensor and
pixels regarding the presence of obstacles and topography, besides angle restriction, and performance
distance of sensor to compute the sensor coverage.
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sensor S); and (B) vector model (gray part is in the sensor S coverage zone) [32].

Figure 3. Estimation of three-dimensional coverage in raster model (red pixels are not covered by the
sensor S).

Hence, the coverage condition of each pixel q is reviewed. In the following condition, pixel q is
covered by the sensor S. 

distance(S, q) ≤ Rs
βsq ≤ α

visibility(S, q) = 1
(3)

To investigate the visibility between sensor and pixels, the line of sight is used [36]. The algorithm
of line of sight uses the height of each pixel in DSM model to determine the visibility of one pixel
through sensor, which is itself located in another pixel. This visibility depends on some parameters,
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among which we can refer to position and height of sensor, position and height of pixel, orientation of
sensor, detection distance of sensor, line of sight and position of obstacles. All of these parameters are
simply extractable from three-dimensional model of GIS to review the visibility.

In two-dimensional vector model, the surrounding of sensors is defined as a flat plate restricted
to a rectangle. Each polygon is made up a set of line segments. In the proposed method to compute
the coverage value, we should first identify the line segments and arcs visible by sensor, and then, it is
necessary to collect the area of sectors and triangles resulted from identified arcs and line segments to
compute the coverage rate. Finally, in three-dimensional model, the environment is modeled based
on City GML Standard, which contains a collection of objects, each made up of a set of polygons.
Three-dimensional polygons are ordered according to the farthest distance from the sensor up to
the nearest distance from it. According to Figure 4A, a polygon which is towards sensor and is
located in the performance range of sensor, is figured on the perspective surface (which is a flat plate
perpendicular to the sight direction of sensor, as such that the distance of this plate to sensor is a
definite and predetermined rate) [37]. If the figured polygon is located in the perspective circle, it
is super-positioned on the polygons existing in the new list. The polygons, which are hidden from
sensor’s sight through other polygons, should be removed. Accordingly, the polygons, which passed
the previous steps, and were not removed, are figured on perspective plate according to perspective
geometry. The polygons figured on the two-dimensional plate of perspective are classified as following:

(1) The polygons that are totally located in the perspective circle are considered as visible polygons
(polygon A and B). (2) Polygons that are totally outside of the perspective circle are not in the range
of sensor’s performance angle. (3) Polygons that interrupt the perspective circle have some visible
parts (polygon C). The visible parts of these polygons are extracted through their interruptions with
perspective circle (Figure 4B) [38]. Then, all figured polygons are transferred to three-dimensional
space and their areas are computed.
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Probability Coverage Model

The measurement model of sensor coverage basically depends on the distance, direction and
visibility. The coverage C(Si,q) from sensor Si at point q in environment is defined by a function from
distance d(Si,q) = ‖pi − q‖, Pan angle p(Si,q) = ∠p(q− pi)− θi, tilt angle t(Si,q) = ∠t(q− pi)− ξi, and
visibility v(Si,q) of sensor (Figure 5):

C(si, q) = f
[
µd(‖pi − q‖), µp

(
∠p(q− pi)− θi

)
, µt(∠t(q− pi)− ξi), v(pi, q)

]
(4)

where p(q− pi) = arctan
(
yq − ypi /xq − xpi

)
is the angle between Si sensor and the point q along x

axis, and tilt angle t(q− pi) = arctan
(
zq − zpi /‖pi − q‖

)
is the angle between Si sensor and point q

along the z axis. In other words, the computation of measurement range, measurement angle and
visibility are needed for point q which is covered by sensor Si. Estimation of coverage in binary
model is more unrealistic than what happens in reality. In probability model, two main distances are
considered for the sensor. The first distance Rs (radius of sensor performance) is like binary model.
If the distance of objective to sensor is less than Rs, the objective is traced with probability of 1. The
second distance is Ru. This distance specifies the uncertainty range. If the distance to sensor is between
Rs and Rs + Ru, the probability that the objective is traced by sensor depends on the distance between
them. If the distance between the objective and sensor is more than Rs + Ru, the objective will not be
traced by sensor. Regarding the range of direction, whatever the direction between sensors towards
objective makes more angle with the direction of sensor, the probability of traceability is reduced.
Figure 6 shows the probability measurement model.
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Equations (5) shows the distance probability and Equation (6) shows the equation of direction
probability, and the performance of this model.

Pd


1, Dts ≤ Rs

1
1+exp[−( λ

a +ß)]
, Rs < Dts� Rs + Ru

0, Rs + Ru < Dts

(5)

Pa =

(
cos(a− θ) + 1

2

)ω

(6)

In the probability coverage model, the distance and directional probability for each pixel in the
region towards one sensor have been computed, respectively, by Equations (5) and (6), and they are
multiplied together. The obtained probability indicates the coverage probability that one sensor covers
one pixel [39].

Ps¡t = Pa¡ × Pd¡ (7)

where Pd¡ and Pa are distance probability and directional probability of pixel i, respectively.

4. Implementation and Evaluation of Results

In this section, the evolutionary global optimization algorithms consider the network coverage as
the objective function for the problem of sensor network deployment. Two- and three-dimensional
raster models with different resolutions, and the two- and three-dimensional vector models, as more
accurate models, are considered. Moreover, the binary omni-directional model has been considered
for sensor model in two-dimensional environment model and binary directional model has been
considered for sensor model in three-dimensional environment model. The purpose is to achieve
the maximum coverage of sensors, which is obtained by regarding to the coverage percentage of all
sensors of the region. In this research, algorithms update their own solutions regarding the coverage
percent (objective function), which is the proportion of covered area to the maximum coverage power
of sensors in the region. For the problem of wireless sensor network deployment, the amount of
optimal coverage, the accuracy (by computing coverage in vector model), and convergence speed are
considered as the criteria to assess the algorithms. In addition, the solutions of global optimization
algorithms are upgraded based on the coverage probability objective function. The criteria of the
probability coverage percentage and convergence speed are related to their assessment. The models
considered for the sensor and environment are omni-directional sensor model in two-dimensional
environment model, and directional model of sensor in three-dimensional environment model. The
sensors in this evaluation are considered as CCD cameras, and the sensing and setting parameters were
set as a sample CCD sensor. The probability parameters of sensor are, respectively, considered as β = 1
and α = 10 for the distance probability performance andω = 3 for the direction probability performance
of sensor. These values were set based on real sensor parameters, which meet the intended purpose of
considered CCD sensors.

To evaluate algorithms in two-dimensional environment model, a point with dimensions of
180 m × 200 m was considered. In addition, raster and vector models were used as evaluators of
environmental model in two-dimensional model (Figure 7). In this region, buildings were considered
as obstacles in environment model that their dimensions in various resolutions are different due to
their diverse accuracy.
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Figure 7. (A) vector model; and (B) raster model with resolution of 100 cm.

While the three-dimensional model was used for the environment of sensors’ deployment, from a
region with dimensions of 200 m × 200 m, a vector three-dimensional dataset with City GML model
with two levels of details, and raster model (DSM) were used for different resolutions (spatial features
that are structured in five subsequent levels of details in which (LoD0) define a vast regional model
and (LoD4) with the most details includes the complications inside the building) (Figure 8). All these
regions and study samples were extracted from a real city’s (Delft, The Netherlands) topography [40].
This region, besides land topography, contains buildings and trees, which were considered as obstacles.
Number of network sensors, as one of the parameters in wireless sensor networks’ deployment, was
considered 20. The distance of sensor performance was constant and equaled 15 m. The performance
angle of directional sensors was 120 degrees. The interval of sensor height in three-dimensional model
for deployment problem as considered as 10 m height (greater height of sensor leads to bigger visibility
range due to presence of obstacles). The resolution of two-dimensional and three-dimensional raster
models as the environment model of wireless sensor networks’ deployment were assumed as 100, 200,
300 and 500 cm.
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The convergence diagram for binary and probability models in raster environment model with
different separation models are shown based on global algorithms in Figures 9–16. In Tables 1–4,
the final coverage amount, vector amount, accuracy of coverage and time, computation of
coverage by global algorithms are shown. All termination conditions and setting parameters for
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different four applied global optimization algorithms were set based on literature [22,25,26,30] and
authors’ experiments.

4.1. Genetic Algorithm

The solutions of genetic algorithms were considered as decimal numbers. Two-dimensional model
was implemented by considering the omni-directional sensor model. At first, the omni-directional
sensor model was implemented in two-dimensional environment for genetic algorithm. In this case, the
solutions were considered as chromosome form. In these solutions, the sensors’ position was assumed
as varying parameters. Then, the optimization process of genetic algorithm for three-dimensional
model was implemented by directional sensor model. The number of population members in genetic
algorithm was considered as 50. The racing selection operator was considered to choose the optimal
solution in this algorithm. In the algorithm, the parameter of integration rate, which is used to
determine the percentage of present population as the parents for production of new generation, was
considered as 70. It means that 70% of population in each repetition are integrated together to produce
the next generation.

In fact, this parameter specifies the effect rate of last generation on new generation. In this research,
the parameter of mutation rate was considered as 30%. The termination condition was assumed to
be 100 repetitions. The final coverage of genetic algorithm of raster model with resolution of 100 cm
increases towards the model with resolution of 500 cm. This is because the searching space of model
gets smaller by reducing the resolution of model. The convergence diagram of coverage optimization
is shown in Figure 9, and the coverage values in Table 1.
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Table 1. Values obtained based on genetic algorithm for two- and three-dimensional models.

Dimension of
Environment

Resolution
(cm)

Coverage
(%)

Vector
Coverage (%)

Accuracy of
Coverage (%) Time (s)

Two-dimensional

100 90.039 90.024 0.014 87.858
200 91.334 91.117 0.216 24.808
300 92.437 91.008 1.429 13.508
500 93.724 90.975 2.549 7.288

Three-dimensional

100 39.159 38.682 0.477 122.764
200 41.932 40.526 1.405 34.883
300 43.083 40.850 2.232 18.152
500 44.328 36.921 7.407 9.508
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The optimal method of research was implemented for the case in which the directional sensor
is deployed in three-dimensional environment model; with this difference, their solutions were
considered as such that a part of it was related to position parameters and the other part was related
to directional parameters of sensor. In this case, height enters chromosomes as the third variable
of position.

According to the presented convergence diagrams, the convergence trend of genetic algorithm
for two-dimensional model is quicker than three-dimensional model, which is due to presence of
more parameters in three-dimensional model. The convergence trend of genetic algorithm in all raster
models with different resolutions is the same.

In the following, the optimization of probability coverage has been considered to evaluate the
algorithms. Hence, with this purpose, the two and three-dimensional environment models and
directional and all-direction model of sensor were implemented for assessment. The convergence
trend of coverage optimization trend is shown in Figure 10.

The convergence diagram of this case also greatly specifies the difference of two- and
three-dimension models trend. The obtained coverage percentage reduced in comparison to binary
case. It is due to computing the coverage probability, which is lower than binary mood.
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4.2. CMA-ES Algorithm

CMA-ES algorithm is an evolutionary algorithm based on population methods. In CMAE-S
algorithm, the population parameter λ was considered as 3 + 4 [ln (n)], in which n is the number of
variables. To optimize the solutions, CMAE-S algorithm considers the covariance matrix of solutions.
Covariance matrix and mean of desirable solutions (the generative solution) specify the new space
for exploration. Therefore, the parameter that affects the formation of solutions’ mean is the number
of generative solutions considered as λ/2. Among the other parameters related to this algorithm,
there is the parameter σ that specifies the direction of the algorithm. This parameter was assumed as
0.167. This parameter was considered as 1 for two-dimensional positions. Ultimately, the termination
condition of this algorithm was considered as 300 repetitions, since it has less population than genetic
algorithms. The convergence diagram of coverage optimization is shown in Figure 11, and the coverage
values in Table 2.

The convergence speed of CMAE-ES algorithm in two-dimensional model is more than in
three-dimensional model. The dispersion of convergence diagram in three-dimensional model is
more than that of two-dimensional model. From repetition 177 onwards, the improvement trend
in two-dimensional model is reduced while in three-dimensional model the convergence diagram
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continues its trend with a small balance. The results show that coverage amount in all models have
been maximized, which indicates the superiority of this algorithm to other previous algorithms.J. Sens. Actuator Netw. 2018, 7, x FOR PEER REVIEW  12 of 19 
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Table 2. Values obtained based on CMA-ES algorithm for two- and three-dimensional models.

Dimension of
Environment

Resolution
(cm)

Coverage
(%)

Vector
Coverage (%)

Accuracy of
Coverage (%) Time (s)

Two-dimensional

100 97.792 97.494 0.297 79.038
200 98.237 97.851 0.385 17.851
300 98.527 94.843 3.683 10.566
500 99.630 95.794 3.836 6.188

Three-dimensional

100 62.813 61.861 0.951 103.638
200 64.473 63.291 1.182 28.439
300 68.839 65.796 3.043 14.143
500 75.451 65.690 9.761 10.628

Regarding to CMAE-ES algorithm, deployment of probability sensors in the region was
implemented by considering the obstacles to reach the higher probability coverage. To compare
the improvement trend of this algorithm, its convergence diagram is given in Figure 12.
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Regarding the convergence diagram, the appropriate performance of this algorithm was
specified. Hence, the coverage obtained in two-dimensional model of this algorithm was more
than genetic algorithm.

4.3. L-BFGS Algorithm

L-BFGS algorithm is a basic gradient algorithm. This algorithm, unlike other algorithms, does
not have many parameters, and it just uses its previous m memories to make Hessian covariance
matrix. M was considered as 20. To compute gradient numerically, the motion step ε equal to 1 was
chosen for two-dimensional positions of sensor. Moreover, the motion step for height variable and
directional variable were considered as 0.0056 and 0.0028, respectively. The termination condition of
this algorithm was considered as 200, since it uses a solution for optimization of objective function.
To compare the raster models with different resolutions, L-BFGS algorithm was implemented for
two- and three-dimensional models.

Their convergence model with the termination condition of 200 repetition is shown in Figure 13.
The results show that, despite previous methods, the overall coverage is reduced by reducing of the
resolution. The reason is that it has more discrete spaces in high resolution models. Table 3 shows the
obtained values based on LBFGS algorithm.

L-BFGS algorithm was used for two- and three-dimensional models to evaluate the coverage
probability assessment. To better evaluate this method, the convergence diagram for two- and
three-dimensional models is shown in Figure 14.
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Table 3. Values obtained based on LBFGS algorithm for two- and three-dimensional models.

Dimension of
Environment

Resolution
(cm) Coverage (%) Vector

Coverage (%)
Accuracy of

Coverage (%) Time (s)

Two-dimensional

100 96.914 96.584 0.330 92.196
200 96.709 93.971 2.738 41.304
300 95.110 85.759 9.352 22.542
500 88.24 74.484 13.758 12.312

Three-dimensional

100 50.651 48.805 1.845 132.301
200 45.784 42.710 3.070 40.030
300 43.413 37.686 5.727 23.800
500 36.332 25.915 10.416 16.682
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In this scenario, the algorithm efficiency in comparison to three-dimensional model does not have
proper certainty, because intensive fluctuations in the improvement trend of coverage reduces quick
reaching to optimal coverage value. In this algorithm for three-dimensional model, the convergence
process takes place slowly since there are many parameters, and to compute the coverage for each
parameter regarding previous algorithms.

4.4. VFCPSO Algorithm

VFCPSO algorithm has been made up of combination of VF and CPSO algorithms. CPSO
algorithm is proper for problems in which there are many parameters, as it prevents from trapping in
local optima. VF algorithms as a complement algorithm is one of the local optimization algorithms
which in the problem of sensor deployment, prevents sensor from getting near to obstacles and
other sensors.

In addition to parameters related to particles’ mass algorithm, the parameters of this algorithm
include a parameter as the effect coefficient of VF algorithm in motion speed of particles. This
coefficient was considered as 0.2. Since VFCPSO algorithm makes mass as the number of problem’s
parameters, the population of each mass was considered as 10. Moreover, its termination condition was
considered as 10 iterations. The convergence diagram of coverage optimization is shown in Figure 15,
and the obtained values in Table 4.

Table 4. Values obtained based on VFCPSO algorithm for two- and three-dimensional models.

Environment
Dimension

Resolution
(cm) Coverage (%) Vector

Coverage (%)
Accuracy of

Coverage (%) Time (s)

Two-dimensional

100 98.407 98.057 0.349 77.290
200 98.580 98.464 0.084 17.419
300 99.207 96.404 2.802 9.301
500 100.585 97.174 3.411 7.365

Three-dimensional

100 52.400 52.184 0.215 101.580
200 61.370 61.141 0.228 28.769
300 62.624 57.707 4.916 13.698
500 67.906 56.819 11.086 11.173



J. Sens. Actuator Netw. 2018, 7, 20 15 of 19

J. Sens. Actuator Netw. 2018, 7, x FOR PEER REVIEW  14 of 19 

 

 
 

(A) (B) 

Figure 14. Convergence diagram of probability coverage based on L-BFGS algorithm for: (A) two-

dimensional; and (B) three-dimensional raster models. 

In this scenario, the algorithm efficiency in comparison to three-dimensional model does not 

have proper certainty, because intensive fluctuations in the improvement trend of coverage reduces 

quick reaching to optimal coverage value. In this algorithm for three-dimensional model, the 

convergence process takes place slowly since there are many parameters, and to compute the 

coverage for each parameter regarding previous algorithms. 

4.4. VFCPSO Algorithm 

VFCPSO algorithm has been made up of combination of VF and CPSO algorithms. CPSO 

algorithm is proper for problems in which there are many parameters, as it prevents from trapping 

in local optima. VF algorithms as a complement algorithm is one of the local optimization algorithms 

which in the problem of sensor deployment, prevents sensor from getting near to obstacles and other 

sensors. 

In addition to parameters related to particles’ mass algorithm, the parameters of this algorithm 

include a parameter as the effect coefficient of VF algorithm in motion speed of particles. This 

coefficient was considered as 0.2. Since VFCPSO algorithm makes mass as the number of problem’s 

parameters, the population of each mass was considered as 10. Moreover, its termination condition 

was considered as 10 iterations. The convergence diagram of coverage optimization is shown in 

Figure 15, and the obtained values in Table 4. 

  
(A) (B) 

Figure 15. Convergence diagram based on VFCPSO algorithm for: (A) two-dimensional; and (B) 

three-dimensional raster models. 
Figure 15. Convergence diagram based on VFCPSO algorithm for: (A) two-dimensional; and
(B) three-dimensional raster models.

This algorithm quickly gets near to optimal value. As such, it goes through a proper growth in
two iterations, and, after that, the improvement trend moves slowly. The dispersion of convergence
diagram is high in three-dimensional model.

In this part, VFCPSO algorithm was used to consider the effect of sensor probability model for
two- and three-dimensional raster models. In this respect, convergence diagrams are presented based
on two- and three-dimensional models (Figure 16) to better compare the performance of VFCPSO
algorithm in the proposed scenario.
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(B) three-dimensional raster models.

Implementation of this scenario based on VFCPSO algorithm and the obtained coverage values
show the superiority of this method in terms of reaching a better coverage than other algorithms.
In two-dimensional model of this scenario, the algorithm converged quickly, whereas the convergence
trend in three-dimensional model has taken place slowly.

In addition to the raster modeling above, the environment of sensor networks was modeled based
on the vector coverage for each of the two- and three-dimensional raster models, and their results are
shown in Figure 17.



J. Sens. Actuator Netw. 2018, 7, 20 16 of 19
J. Sens. Actuator Netw. 2018, 7, x FOR PEER REVIEW  16 of 19 

 

 
(A) 

 
(B) 

Figure 17. Comparison of final vector coverage of each of global optimization algorithms: (A) two-

dimensional model; and (B) three-dimensional model. 

5. Conclusions and Suggestions 

In this research, the performance of evolutionary global optimization algorithms were evaluated 

and compared to make the maximum coverage of wireless sensor networks with the approach of 

increasing coverage value. Moreover, comparing the results obtained from implementations 

indicates that, although the examined optimization algorithms in two-dimensional model reached 

the same results in estimation of probability coverage, their final coverage dropped in three-

dimensional model due to high number of parameters in this model. 

Moreover, due to twofold local and global approach, VFCPSO algorithm has the best 

performance among all the implemented algorithms. Since CMA-ES algorithm considers the 

correlation among solutions’ positions, it has more power in optimizing the coverage value in 

comparison to its peer, genetic algorithm. L-BFGS algorithm has the most coverage value in raster 

model with higher resolution, and, in this case, it has a great convergence speed. The running time 

to compute coverage in three-dimensional model is more than that of two-dimensional model of 

environment. VFCPSO algorithm possesses shorter running time of coverage computation in 

comparison to other algorithms. 

The other result is that considering the environment with more resolution does not necessarily 

lead to a better deployment in terms of coverage, since increasing resolution may increase the 

exploration space of global optimization algorithms and cause that, besides endangering the 

algorithm to become trapped the local optima, the resolved optima has less coverage. Moreover, 

increasing the resolution of environment model, the coverage computation processing time for each 

algorithm decreases. In addition, the final coverage value in three-dimensional model in comparison 

to two-dimensional model reaches lower value in all algorithms. The reason is the existence of 

Figure 17. Comparison of final vector coverage of each of global optimization algorithms:
(A) two-dimensional model; and (B) three-dimensional model.

The obtained results of applying different global optimization algorithms indicate that using the
proposed models leads to significant accuracy of coverage, which confirms the initial hypothesis of this
paper. All four applied algorithms parameters are adapted to enable convergence based on previous
simulations. Results show that VFCPSO has the best performance among other proposed optimization
methods. Increasing the resolution in both raster and vector models lightly increase the coverage value
in all optimization methods. L-BFGS performs slightly worst among other methods, especially when
the resolution is low. The other advantage of VFCPSO algorithm is the number of iteration to converge
to the optimum coverage compared other methods.

5. Conclusions and Suggestions

In this research, the performance of evolutionary global optimization algorithms were evaluated
and compared to make the maximum coverage of wireless sensor networks with the approach of
increasing coverage value. Moreover, comparing the results obtained from implementations indicates
that, although the examined optimization algorithms in two-dimensional model reached the same
results in estimation of probability coverage, their final coverage dropped in three-dimensional model
due to high number of parameters in this model.

Moreover, due to twofold local and global approach, VFCPSO algorithm has the best performance
among all the implemented algorithms. Since CMA-ES algorithm considers the correlation among
solutions’ positions, it has more power in optimizing the coverage value in comparison to its peer,
genetic algorithm. L-BFGS algorithm has the most coverage value in raster model with higher
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resolution, and, in this case, it has a great convergence speed. The running time to compute coverage
in three-dimensional model is more than that of two-dimensional model of environment. VFCPSO
algorithm possesses shorter running time of coverage computation in comparison to other algorithms.

The other result is that considering the environment with more resolution does not necessarily lead
to a better deployment in terms of coverage, since increasing resolution may increase the exploration
space of global optimization algorithms and cause that, besides endangering the algorithm to become
trapped the local optima, the resolved optima has less coverage. Moreover, increasing the resolution
of environment model, the coverage computation processing time for each algorithm decreases.
In addition, the final coverage value in three-dimensional model in comparison to two-dimensional
model reaches lower value in all algorithms. The reason is the existence of topography, and more
parameters of sensor, i.e., height of sensor and direction of component z of sensor in three-dimensional
model. By reducing the resolution in raster models, the effect of environmental factors such as obstacles
and topography are declined and it makes more errors in coverage computation.

In next steps of this research, the deployment problem will be integrated with the other goals of the
network such as communications’ topography, minimum consuming energy, and maximum lifetime.
Moreover, the efficiency of global optimization algorithms will be compared by using these aims in
more complex environment models. In addition, for future research, we can consider assessment
of global optimization algorithms in vector environment model and review the global optimization
algorithms in a fixed period together with possessing environment spatial parameters in animated
mood and as well as their evaluation by time-spatial approach of spatial information systems.
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