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Abstract: Network coding techniques are usually applied upon network-layer protocols
to improve throughput in wireless networks. In scenarios with multiple unicast sessions,
fairness is also an important factor. Therefore, a network coding-aware packet-scheduling
algorithm is required. A packet-scheduling algorithm determines which packet to send
next from a node’s packet backlog. Existing protocols mostly employ a basic round-robin
scheduling algorithm to give “equal” opportunities to different packet flows. In fact, this
“equal”-opportunity scheduling is neither fair, nor efficient. This paper intends to accentuate
the importance of a coding-aware scheduling scheme. With a good scheduling scheme,
we can gain more control over the per-flow throughput and fairness. Specifically, we
first formulate a static scheduling problem and propose an algorithm to find the optimal
scheduling scheme. We then extend the technique to a dynamic setting and, later, to practical
routing protocols. Results show that the algorithm is comparatively scalable, and it can
improve the throughput gain when the network is not severely saturated. The fairness among
flows is drastically improved as a result of this scheduling scheme.
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1. Introduction

Network coding was originally proposed in wired networks and for multicast transmissions
only [1,2]. Soon, it was discovered that the broadcast nature of wireless transmissions was amenable
to network coding, and inter-flow network coding was then proposed to exploit this technique for unicast
scenarios [3]. Nodes in the wireless network may overhear packets that are not meant for them. Instead
of discarding these packets, nodes can choose to store them temporarily and use them later to decode
coded packets, therefore reducing the total required number of transmissions to fulfil certain transmission
tasks. The XOR-based coding scheme is the simplest yet effective coding scheme applied. Two or more
packets can be XOR-ed together, and a destination node can extract the original packet from the coded
packet by looking in its overheard packet buffer.

Existing protocols that utilize the power of network coding usually take the most straightforward
means to do network-packet scheduling, namely round-robin scheduling. Basically, an intermediate
node will construct many queues, each storing packets from a specific flow/session. When the MAC
layer obtains the right to transmit, the network layer selects the packet to be sent in a round-robin fashion
across all queues. When a certain queue is selected, the first packet in that queue is dequeued, and it
goes through a check for coding opportunity. Coding opportunities are depicted in a coding graph [4]. In
this graph, each vertex denotes a flow that passes by. An edge that links two vertices means that packets
from the respective flows can be coded together. When three flows can be coded together, it is shown
as a triangle. Similarly, N coding-possible flows are denoted as a complete N -vertex sub-graph, a.k.a.
N -clique.

However, with this scheduling, we do not have much control over the performance of the network
(namely, per-flow throughput and fairness). Some flows may be repeatedly transmitted, because they
can be coded with many other flows, while some flows with less or no coding counterparts can starve.
In addition, it is possible that we can increase the throughput by intelligently selecting the set of packets
to transmit.

In this work, we first study a simplified and static form of the scheduling problem. When given a
set of packets from multiple flows in a queue, we analyze how to empty the queue with the minimum
number of transmissions. This problem is abstracted and formulated as a weighted clique cover problem
(WCCP). WCCP is NP-hard as a whole, and some special cases of it can be solved in polynomial time.
In order to account for the general case, a search algorithm with pruning and approximation is proposed.
With this algorithm, the solution can be calculated much faster with known error bounds.

The solution to this static problem can then provide guidance to find the solution to the real problem,
i.e., the dynamic form of the problem. In this form, we consider that a node is an intermediate node for
multiple flows. A number of fixed-length queues are embedded in this node with packets stochastically
arriving. The processing speed is also limited. We estimate the fairness with two relevant performance
metrics: one is the minimum throughput and the other is the variance of the throughputs of all flows. A
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higher minimum throughput and smaller throughput variance imply better fairness. Our objective is to
find an optimal scheduling scheme, which first maximizes fairness, then maximizes throughput. We use
a heuristic scheduling method for this dynamic form of the problem.

The contributions of this paper are mainly two-fold:

(1) We raised concerns about the coding-aware packet scheduling method. This usually-neglected
field of research can actually lead to significant performance improvement in coding-enabled
networks. In addition, further analysis into the scheduling method opens up many more
possibilities. One can easily plug in a different performance metric other than the one we adopted
and arrive at a totally different scheduling method that achieves a new balance between fairness
and throughput gain.

(2) Technically, we provided a step-by-step decomposition of the complex coding-aware scheduling
problem. Even though the problem is mathematically hard to tackle (for its being NP-complete),
we managed to produce decent solutions within tractable cost. The results and experiences we
gained can be beneficial to other researchers.

In Section 2, we review the existing coding-aware scheduling algorithms. Section 3 formulates the
static scheduling problem as a WCCP and proposes an approximation algorithm. Section 4 describes
the dynamic form of the problem, and we propose here a heuristic scheduling scheme. Sections 3 and 4
contain some preliminary evaluations. Section 5 presents the scheduling scheme in the form of a routing
protocol, and a series of network simulations is done to evaluate the performance of this protocol. Lastly,
we conclude in Section 6.

2. Related Works

In this section, we refer readers to a few related works that considered the scheduling problem with
network coding. Additional literature on the problem formulation and solution are described along the
main body of the paper.

Network coding is a great fit for wireless networks. Fragouli et al. [5] study the case of applying
network coding in wireless networks in many aspects. These include throughput, reliability, mobility
and management. Several key challenges are proposed, as well.

There are many researchers working on the topic of scheduling in network coding settings. However,
most of them focus only on MAC-layer scheduling. The method usually gives “higher priority” to coding
nodes. Sagduyu et al. [6–9] give examples of this kind.

In addition to MAC-layer scheduling, there are other novel solutions that involve scheduling. Yomo
and Popovski [10] propose an opportunistic scheduling algorithm. The links between the intermediate
nodes and receiver nodes are subject to channel fading. When this fading is time-varying, the authors
propose an opportunistic network coding scheme to determine how many and which packets are coded.
It is shown that such an opportunistic scheme can provide higher throughput than any coding scheme that
involves a fixed number of packets. Ni et al. [11] discuss the optimal physical-layer transmission rate in
the MIT Roofnetplatform. The basic idea is that a lower rate gives rise to a longer transmission range or
a higher delivery ratio. Furthermore, the distances from the intermediate node to the two recipients may
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not be the same. Therefore, their delivery ratios would be different. In 802.11b, if 5.5 Mbps or 11 Mbps
is used, the total expected coded transmission time (ECT) can be different.

Most network-coding schemes are agnostic about the PHYand MAC layer. They assume a greedy
algorithm to enforce network coding. However, Chaporkar and Proutiere [12] advocate that exploiting
every opportunity to enforce network coding may downgrade the overall throughput of the system.
The statement is demonstrated using a scenario where interference is incorporated into the analysis.
Hence, a specially tailored MAC-layer scheduling algorithm is proposed in order to achieve the expected
throughput gain.

Zhao and Yang [13] consider the joint scheduling problem for MIMO and network coding
(MIMO-NC) in wireless networks. A network in which each node is equipped with two antennas is
analyzed. In order to achieve higher throughput, the authors propose a packet scheduling algorithm,
which in essence matches all source-destination flows into pairs. When a pair is discovered, MIMO-NC
is applied to reduce the number of transmissions. However, this approach requires the full knowledge
of the network and traffic patterns. In addition, it is highly dependent on the traffic pattern. When the
prescribed pair is not available, the power of MIMO is then wasted.

3. The Static Form of the Problem

We formally define the “problem” under consideration here. That is, we aim to devise a total solution
in the network layer to answer the question: How does one coordinate the routing and packet scheduling
in a wireless network, so that the overall performance of the network is optimized? By “performance”,
we jointly consider the fairness and end-to-end throughput among flows.

The methodology we took was to find the optimal solution to a simplified version of the problem and
then gradually add complexity into the problem, enriching the solution on the fly. The mostly abstracted
version of the scheduling problem is its static form, which is in our work abstracted as a weighted clique
cover problem.

3.1. Weighted Clique Cover Problem

Consider an isolated scenario with only one node. This node has multiple queues of packets. Packets
from some of the queues can be coded together, while others cannot. This relationship is depicted in
a coding graph, where each vertex represents one queue and each edge represents a coding-possible
relationship between two queues. A set of k packets can be coded and sent in one transmission if and
only if they come from k distinct queues (k vertices) and each pair of queues is coding-possible (

(
k
2

)
edges). The objective is to find a scheduling algorithm that minimizes the number of transmissions,
either coded or non-coded, to empty all queues. This problem is called static in the sense that no new
packets would arrive.

This problem is mathematically formulated as a weighted clique cover problem as below:

Definition 1 (Weighted clique cover problem). Given a graph G = {V,E}, where V is the set of vertices,
E is the set of edges and a weight function w : V → Z+ that maps each vertex to a positive integer, we
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define a weighted clique w.r.t. the graph as C = {Vc, wc}, where Vc is a set of vertices that are fully
connected in G (i.e., Vc is the vertex set of a clique in G) and wc is a positive integer that satisfies:

∀v ∈ Vc, wc ≤ w(v)

We then further define a weighted clique cover w.r.t. the weighted graph as a set of weighted cliques
C = {Ci = {Vci , wci}, i = 1, 2 . . . , n}, such that:∪

i=1,2,...,n

Vci = V

∀v ∈ V,w(v) =
∑

ci:v∈Vci

wci

The problem is to find a weighted clique cover w.r.t. the weighted graph that minimizes
∑

i=1,...,n wci .

As one of the 21 Karp’s NP-complete problems [14], the clique cover problem (CCP) is NP-complete.
WCCP, as a generalized form of CCP, is known to be NP-complete, as well, and researchers have been
working on a practical solution to it. It is shown by Hsu [15,16] that for a special class of graphs, known
as claw-free perfect graphs, the WCCP problem can be solved in polynomial time. A claw is the shape
shown in Figure 1a. It is often referred to as K1,3, because it is essentially 1,3-bipartite. A claw-free
graph is a graph where none of its sub-graphs is a claw. A perfect graph was an idea raised in the 1970s
by Claude Berge [17]. Mathematically, a graph is said to be perfect if, for each of its induced sub-graphs,
the chromatic number equals the size of its largest clique of the subgraph. Take Figure 1b as an example.
Nodes A, B, D, E can form a sub-graph. The corresponding induced sub-graph contains the four nodes,
as well as the four edges that connect them. In this induced sub-graph, the chromatic number is three,
because we can color Nodes A and E as red, Node D as green and Node B as green, such that no
adjacent nodes have the same color. The size of the maximum clique in this sub-graph is also three, as
Nodes A, B and D form a three-node clique. The simplest imperfect graph is a ring of five nodes shown
in Figure 1c. The size of the maximum clique is two, but the chromatic number is three. A more recent
paper [18] summarizes the problem and some recent advances on the topic.

Figure 1. There exists polynomial solutions to the weighted clique cover problem (WCCP)
for claw-free perfect graphs. (a) Illustration of a claw; (b) an example of a perfect graph;
(c) an example of an imperfect graph.
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3.2. Solution to WCCP

As the size of the problem (i.e., the number of vertices, the number of edges and the amount of
weights) scales up, WCCP becomes very hard to tackle. Existing polynomial solutions focus only on
claw-free perfect graphs. However, claw-free graphs are rare in practice. For practical problems that we
may encounter in networks, we need a definitive method to solve them, irrespective of whether they are
claw-free or not.

Here, we propose a search-based algorithm to solve WCCP for all perfect graphs (which is more
general than the existing algorithms). This algorithm can run in linear time for most of the cases (when
pruning is applicable). Note that pruning can be applied even when the graph has claw sub-graphs
and is imperfect. After each iteration of pruning, the graph can be modified, and this usually yields a
simpler graph. In some extreme cases, its running time grows exponentially with the size of the graph
(when pruning is not applicable); we therefore introduce an approximation method to guarantee that
the run time is invariant to the amount of weights. Fortunately, these extreme cases are hardly seen in
the settings of wireless communication [19], and they are very difficult to construct, even in the pure
mathematical setting.

In essence, our algorithm is a search algorithm that structures all possible solutions into a tree
structure. Consider the WCCP in such a way: for each vertex in the graph, its weight equals the sum
of the weights of all cliques of which this vertex is a part. Then, if we can list all cliques that one
vertex is a part of, the search of cliques that cover the graph can be transformed into the search for a
method to allocate weights to a node’s participating cliques, as will soon be defined in Definition 2.
The transformation of “covering” to “allocation” enables an iteration-based approach. We iteratively
allocate a weight for each vertex. When all vertices have their weights allocated, the solution to WCCP
is determined. The search tree is equivalent to a decision tree.

The root node of the search tree denotes the initial state of the problem. As we go down one level, a
decision is made at each vertex. After |V | levels, with the respective decision made at every vertex, one
solution, or a weighted clique cover, is determined at each leaf node. For example, consider the coding
graph shown in Figure 2. The first search decision can be made at the central vertex A. Its weight (three)
should be allocated to three adjacent cliques, (A,B), (A,C) and (A). However, due to the fact that
w(A) < w(B) + w(C), we can omit the last clique and allocate its weight only to the first two cliques.
This will be justified with the introduction of pruning rules in Section 3.2.1. The allocation can be done
in three possible ways: (3, 0), (2, 1) and (1, 2) between cliques (A,B) and (A,C). Therefore, in the first
layer, we have three branching nodes, each of which denotes one choice of possible allocations.

Figure 2. One example of a coding graph.

D(1) E(1) F(1) G(1)

C(2)B(3)

A(3)
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If we continue the search in this manner, it is a brute-force algorithm that has a time complexity of
O(

(
W+D−1
D−1

)|V |
), where W = maxv∈V w(v) and D is the average number of participating cliques that

one vertex can be in. In simple graphs, D is close to the average degree of vertices, which is easier
to calculate. In real cases, since W ≫ D,

(
W+D−1
D−1

)
≈ WD−1, the complexity can be simplified as

O(WD|V |). This is obviously unacceptable, as the scale factors are both on the base and the exponent.
Therefore, we seek a better algorithm through pruning and approximation.

3.2.1. Pruning

Before describing the pruning mechanism, we first formally define a concept—participating cliques.

Definition 2 (Participating clique). In a graph G = (V,E), a participating clique of a given vertex
v ∈ V is any clique G′ ⊂ G, such that v ∈ G′.

Before branching on one vertex, we need to get all of its participating cliques; the number of branches
then is dependent on the number of ways to allocate weights to these participating cliques. The pruning
rule below demonstrates that we only need to consider a subset of these participating cliques in certain
cases, and hence, we can significantly reduce the amount of computation. N(v) denotes the set of
neighbor vertices of vertex v.

Theorem 3 (Pruning rule). For a vertex v ∈ V , where w(v) ≤ w(vi)∀vi ∈ N(v), a participating
clique Cj of vcan be safely ignored when making the branching decision if it is subsumed by another
participating clique Ck,i.e., VCj

⊂ VCk
. Stated another way, allocating zero weight to the clique Cj will

not eliminate the possibility of finding the optimal solution in the pruned search tree.

Proof. Suppose in one optimal allocation, vertex v allocates w∗(0 < w∗ ≤ w(v)) to clique Cj . We use
VCk
− VCj

to denote the difference vertices set between clique VCk
and VCj

. For each vl ∈ VCk
− VCj

,
we assert that vl must allocate at least w′ = w∗ +w(vl)−w(v) ≥ w∗ to some of its participating cliques
that do not have vertex v involved. The reason is stated as below: for every unit of weight of vl, its
allocation may either fall in a clique that involves v or fall in a clique that does not involve v. With
w(vl) ≥ w(v), vl can allocate at most w(v) to cliques that involve v. Furthermore, with our assumption
that v has allocated w∗ to Cj , where vl is not part, vl can then allocate at most w(v)− w∗ to cliques that
involve v. Therefore, vl must allocate at least w(vl)− (w(v)− w∗) to cliques that do not involve v, just
as we have asserted. Consider the following reallocation: For each vl, we withdraw w∗ weights from
cliques that do not involve v. This withdrawal either shrinks the vertex set for some cliques or it totally
eliminates some cliques with only one vertex vl inside. In fact, the latter case will never happen if the
prior allocation is optimal. Then, these withdrawn weights are merged into the weighted clique Cj with
w∗ weights, yielding a weighted clique Ck with w∗ weights. This reallocation will never increase the sum
of weights of weighted cliques, so the new allocation is also optimal. From a local view, the decision to
allocate zero weight to clique Cj can therefore never go wrong, and the possibility of reaching optimality
is preserved after the decision.

In the following, we give several corollaries to further demonstrate the usage of this pruning rule.
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Corollary 4 (One-degree vertex). In WCCP, if there exists a degree-one vertex vj connecting to another
vertex vk, allocating min(w(vj), w(vk)) to the two-vertex clique (vj, vk) will not eliminate the possibility
of finding optimal solution in this branch.

Proof. The vertex vj has only one neighbor vk, so its participating cliques are (vj) and (vj, vk). Since
the former clique is subsumed by the latter one, we can allocate zero weight to the one-node clique (vj)

if w(vj) ≤ w(vk). For the cases when w(vj) > w(vk), we can allocate at most min(w(vj), w(vk)) to the
clique (vj, vk). Following the same reallocation-based logic in the proof of Theorem 3, we can assert
that this decision will not eliminate the possibility of finding the optimal solution either.

Corollary 5 (m-degree vertex). In WCCP, if there exists an m-degree (m ≥ 1) vertex vj and vj together
with its m neighbors form a (m+1)-vertex clique Gj , allocating minv∈V (Gj)(w(v)) to the clique Gj will
not eliminate the possibility of finding the optimal solution in this branch.

The proof of this corollary follows the same logic as the proof of Corollary 4.

3.2.2. Approximation

So far, we have discussed the pruning rule. When the pruning rule is carried out at a node, the number
of branches at this node in the search tree is significantly reduced. However, what happens when no
pruning rule is applicable? We use quantization to remove the scale effect of the weights on vertices.

We first determine a parameter Q in the algorithm. Q denotes the level of quantization of weights
used in the search algorithm. Consider a vertex with W weights and D participating cliques. In the
brute-force search algorithm, we will have

(
W+D−1
D−1

)
branches at this node, because there are a total

of
(
W+D−1
D−1

)
ways to allocate weights to the participating cliques. In our approximation algorithm, the

total number of weights W (= Q ×m) is split into Q equal shares, and these Q shares are allocated to
participating cliques instead. Therefore, the number of branches at this node is reduced to

(
Q+D−1
D−1

)
.

We then analyze the amount of error introduced in the approximation step. For a single vertex,
its weight can be arbitrarily allocated to its participating cliques. However, due to quantization, each
participating clique can only be assigned an integer multiple of m as its weight. Suppose that a
real optimal allocation exists and is denoted by Σ∗, and the “optimal” allocation found by our search
algorithm is Σ. We derive Σ − Σ∗ by comparing the allocated weights for each participating clique.
Consider the transformation from Σ∗ to Σ. Any negative value in Σ−Σ∗ implies a revocation of weights
for the clique in allocation Σ∗; any positive value in Σ− Σ∗ implies a reallocation to the corresponding
clique. Note that any revocation or reallocation involves at most one share of quantized weight, and this
is exactly 1/Q of the number of weights in the original problem. The size of the problem is reduced to
1/Q of the original problem, and we can derive that the error involved is limited to W/Q.
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3.3. Scalability and Error Analysis

3.3.1. Scalability

We use Gilbert’s random graph model [20] to randomly generate test coding graphs. This model
generates graphs by G(N, p), where N denotes the number of vertices and p denotes the probability
by which each edge is selected. For each set of parameters, we generate 25 random graphs and test our
algorithm, as well as a non-approximation algorithm (NA). Though the number 25 is chosen arbitrarily, it
turns out to be sufficient to demonstrate the performance differences. The non-approximation algorithm
also has the feature of pruning unnecessary branches, but it does not quantize total weights into blocks.
Therefore, it needs to consider a lot more branches when no pruning rule is applicable, but the solution
it provides is an accurate answer.

Since WCCP solves the problem on a weighted graph, weight information should be attached to
the randomly generated graphs. In this evaluation, we set the weights assigned to each vertex to be a
random variable conforming to a log-normal distribution. Log-normal distribution is chosen, because
it is the simplest yet practical distribution for real-life variables with positive values, finite mean and
finite variance. By adjusting the mean and standard deviation of this log-normal distribution, we are able
to test the algorithm with different scales of weights. The Colt (http://acs.lbl.gov/ACSSoftware/colt/)
library is the back-end for the random number generator.

The setting of the simulation environment is as follows: Intel i5-3570 3.40 GHz, 8 GB memory,
Windows 7 Enterprise 64-bit SP1. Because some of the test graphs are so complicated that it is
impractical to wait so long for the result, we take a different approach to measure the run time when
the program has been running for too long. We keep track of the amount of search tasks in the program.
When the program has run for 10 min and is still running, we estimate the total run time by dividing
10 min by the proportion that has finished searching. We have tested the validity of this approach for
some of the scenarios when the estimation is above 10 min but below two hours; the estimation error is
generally within 20%. Since we are more concerned about the order of magnitude instead of the absolute
value, this error is acceptable. In addition, even though the 25 graphs are generated using the same set of
parameters, their processing times can span from milliseconds to days or more. In order to capture this
distribution, we take the median value among these 25 values and draw the figures.

The baseline scenario is set with the parameters shown in Table 1. This baseline is chosen after
weighing two factors. Firstly, we want the scenario to be of some complexity. However, secondly, we
want to keep the size of the maximum clique as smaller than six. This number is worked out in [19] as the
theoretical maximum clique size in a coding graph. By setting the probability of generating a six-node
clique as 5%, we have worked out the baseline parameters. Then, we evaluate the performance of the
algorithm by adjusting each single parameter. Note that the ratio between the mean and the standard
deviation is fixed at 2:1 for the log-normal distribution. Figures 3 and 4 show that: (1) the processing
time grows for both algorithms when the size of the problem grows; (2) our algorithm consistently
runs faster than the non-approximation algorithm; and (3) the improvement (as big as several orders of
magnitude) is most significant when the scale of the problem is big. Figure 5 measures the performance
with different mean weights. It is clear that our algorithm is roughly invariant on the weight factor, while
the non-approximation algorithm grows exponentially with the mean weights.
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Table 1. Baseline scenario parameter settings.

Parameter N p Mean(w) SD(w) Q

Value 20 0.15 100 50 10

Figure 3. Processing time sensitivity to N .
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Figure 4. Processing time sensitivity to p.
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Figure 5. Processing time sensitivity to mean(w).
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3.3.2. Error Analysis

Even though we have derived an upper bound for the approximation error introduced, we are still
interested in typical values. In fact, we observe in most cases that the error level is significantly lower
than the upper bound. Given a set of parameters, we define the error rate as the probability of getting a
scenario that results in an error out of all of the generated scenarios. The average error is defined as the
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average amount of error over all of the cases. Since the program stops at the 10th minute, any scenario
with a running time longer than 10 min does not come with a precise result value. Therefore, we only
sample the ones that have results worked out within 10 min.

Surprisingly, the measured error is significantly lower than what we have expected. Within the three
sets of experiments where we adjust N , p and mean(w), the error rate are 1.92%, 1.08% and 6.38%,
respectively. The average errors are also very small, at 0.17%, 0.09% and 0.15%, respectively. Therefore,
the overall error rate is much smaller than the upper bound we set, which is 5%. Note that the overall
error rate is given by the error rate multiplied by the average error, as we have defined. Further analysis
leads us to conclude that this is because of the limit we put on the processing time. For those test
cases where the processing time is longer than 10 min, there is a higher probability of getting an error
because of the greater amount of branching. Now that we have excluded those cases, the measured error
level is underestimated. Nevertheless, this experiment at least gives us some hints on the level of error
introduced. It also demonstrates that in real-life scenarios with real-time processing requirements, the
error introduced is negligible.

We also measure the amount of error introduced by adjusting the parameter Q. A larger Q means a
finer quantization and usually less error, as analyzed in Section 3.2.2. A smaller Q will lead to higher
levels of errors. The extreme case of Q = 1 is in essence a naive “all-or-none” algorithm. From Figure 6
we observe that: (1) our algorithm performs significantly better than the naive solution; and (2) a Q value
greater than five can give good-enough performance (with empirical errors smaller than 5%). The values
in Figure 6 are obtained by running the baseline scenario 50 times. Both the error rate and the average
error are presented in the figure.

Figure 6. The error rate and average error with different Q values.
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4. The Dynamic Form of the Problem

So far, we have analyzed the scheduling problem, where no new packets would arrive, a.k.a. the
static form. In this section, we will relax this restriction and study the problem when new packets are
arriving, while queued packets are being processed. The transmission capacity is also considered, as it
can be a restricting condition. These factors introduce dynamics into the problem, so it is termed the
dynamic form.

Before designing the scheduling method, we need to define the optimization target. When taking into
account transmission capacity, we need to consider the trade-off between throughput and fairness. Note
that existing coding-aware scheduling methods (e.g., round-robin) have no control over this trade-off



J. Sens. Actuator Netw. 2014, 4 285

at all. In order to avoid unnecessary complexity in describing the scheduling scheme, we discuss only
two extreme cases. The first is putting maximal throughput at the highest priority. Among all possible
ways to maximize throughput, we choose the one that achieves the best fairness. The second case is the
other way around, putting fairness over throughput. In fact, the second case is more sophisticated and
its solution reflects all of the tools that we use in designing the scheme for the first case. Therefore, only
the second case is expanded in the following.

A naive solution to the dynamic problem would be to blindly apply the solution from the static
problem with slight modification. Consider that the algorithm for the static problem can be applied
successively to the dynamic form of the scheduling problem periodically. We only need to substitute
the number of packets in the packet queues with the expected number of packets that would arrive per
second. The scheduling decisions obtained this way can then be used to schedule packets dynamically.

However, this approach is subject to several problems. The adverse effect of dynamic packet arrivals
is two-fold:

(1) Some flows may have no queued packets when the node is ready to transmit. This waste of
bandwidth would decrease the throughput.

(2) Some flows may have packets coming faster than they are being processed, resulting in queue
overflows. The static solution has never considered the transmitting capacity of nodes and, thus,
cannot guarantee better performance when the network is saturated.

Dynamic packet arrivals may introduce opportunities, as well. In the static setting, very often, some
“leftover” packets cannot be coded or fully coded, because there are no other packets left with which to
be coded. This situation is very much alleviated in the dynamic case, as this shortage of packets will
recover sooner or later.

There is another important change resulting from random packet arrivals. The dynamic form of
the problem has no deterministic optimal solutions. Moreover, due to the fact that packet arrivals are
usually bursty and error-prone, it is even impossible to work out an “optimal” solution in the probabilistic
measure. However, fortunately, this lack of “optimal” solution does not mean that we can do nothing
to improve the round-robin scheduling. In the following, we take a heuristic approach to optimize the
scheduling decision.

4.1. Heuristic Scheduling

The objective of dynamic scheduling is to get higher throughput given the capacity of the network
and to maintain a relative fairness among all flows when the network is saturated.

The starting point of this scheduling method is the naive solution that we mention above. First, we
translate the offered loads of flows into the expected number of packets that would arrive in one second.
These figures are used as the weight in WCCP, and from here, a static solution is obtained in the form of
a set of weighted cliques. We will refer to this solution as the initial plan.

The first heuristic rule is to overcome the restriction of transmission capacity. The capacity of a node
can be estimated by monitoring the transmission history. When the capacity is smaller than the arrival
rate, flows with heavy traffic should be cut off, while flows with less traffic remain intact. Basically,
we use the generate-quota algorithm shown in Algorithm 1 to allocate the limited transmission capacity.
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The final set of weights for all cliques obtained in this step is called a quota, and it is the starting point for
further steps. The idea is to maximize the minimum share of quota, while utilizing the coding benefits. If
the flow with the smallest offered load can be fully processed, we first allocate the quota accordingly to
cover this smallest offered load for all flows, effectively removing this flow from our computation. This
allocation is recursively executed until the transmission capacity is not enough to fully process the flow
with the smallest offered load. Then, we use a trial-and-error method to allocate same amount of weight
to all flows. In this way, we can achieve higher throughput, whereby fairness is achieved. The core of this
algorithm is the WCCP problem. In the worst case, the WCCP problem is solved 2|V | times, where |V |
is the number of vertices in the graph. Therefore, the worst case time complexity of the generate-quota
algorithm is O(

(
Q+D−1
D−1

)
∗ |V |).

The second heuristic rule is to exploit the order of packet arrival. In order to enforce a quota plan
with out-of-order packet arrivals, we employ a probabilistic scheduling method. If multiple cliques are
ready to transmit (i.e., their corresponding flows have packets in the queue), each of them is given a
probability to transmit in this round. The probability for one clique is its quota minus the amount that
has been transmitted in this instance, and then, this count is normalized by the sum across all cliques.
The randomness achieved by this probabilistic scheduling method avoids many problems faced by a fixed
scheduling method. There would be no bias towards any flow due to the absence of a sequential decision
model. Cliques with a higher quota are given higher probabilities in the beginning. With more packets
sent for this clique, its probability would decrease and other cliques will have higher probabilities. In
the equilibrium state, the number of packets sent for each clique would be generally proportional to its
quota. In cases when no clique has positive probability, the first packet in the queue is sent regardless of
whether other packets in its clique are ready.

The third heuristic rule is to exploit the opportunity to code more “leftover” packets. In our scheduling
scheme, packets are checked for on-the-spot coding opportunities before sending out. For example,
there may be a single-vertex clique representing one flow in the initial plan and quota plan. When this
clique gains the right to transmit as a result of the probabilistic scheduling, we check for hidden coding
opportunities right before sending out packets from this flow, i.e., if this packet can be coded with another
packet in the same queue, they are coded together and sent with the other flow marked with one packet
reserve. In future schedules, flows with a reserve are eligible for probabilistic scheduling even if they do
not have packets in their queue. The reserve works as if the packets are not sent until the reserve is used.
The mechanism of packet reserve can take advantage of the opportunities to code more packets, without
disturbing the existing quota-based system. It also adds more flexibility to the scheduling scheme.

All heuristic rules work together toward the same objective. When the network is able to sustain
all flows, we try to stick to the static scheduling scheme, because this is the scheduling that maximizes
the throughput. When the network cannot satisfy all flow traffic requirements, we aim to maximize the
minimum throughput among all flows, which is the most frequently used metric for measuring fairness.
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myfuncFunction Generate-Quota() Input: A weighted graph G = (V,E,w(·)),
transmission capacity C

Output: Quota Σ

if V is empty then
return (Φ, 0);

end
wmin ← the minimum vertex weight in G;
(Γ1, X1)← WCCP(G, 1);
(Γwmin

, Xwmin
)← WCCP(G, wmin);

if C ≥ Xwmin
then

G′ ← (G− Γwmin
);

C ′ ← (C −Xwmin
);

Σu ←Generate-Quota(G′, C ′);
return Γwmin

+ Σu;
else if X1 ≤ C < Xwmin

then
for u = ⌊ C

X1
⌋+ 1 to wmin do

(Γu, Xu)← WCCP(G, u);
if Xu > C then

G′ ← (G− Γwu−1);
C ′ ← (C −Xwmin

);
return Γu + Randomize(G′, C ′);

end
end

else
return Randomize (G, C);

end
WCCP () Input: A weighted graph G = (V,E,w(·)), uniform weight u
Output: Scheduling method Γ

modify w(·) in G such that all weights are set to u;
return the solution of WCCP with the modified G;
Randomize () Input: A weighted graph G = (V,E,w(·)), transmission capacity C

Output: Scheduling method Γ

Γ← Φ;
for i = 1to C do

randomly select a maximal clique c in G;
Γ← Γ + c;

end
return Γ;

Algorithm 1: Generate-quota algorithm.



J. Sens. Actuator Netw. 2014, 4 288

4.2. Performance with Poisson Arrivals

The effectiveness of our heuristic scheduling rules is examined next. In this subsection, we test our
scheduling scheme with Poisson packet arrivals. MASON (A multi-agent simulation environment) [21]
is chosen to be the simulator used, because it is a fast discrete-time Java-based simulator. In this
simulation, we simply model the behavior of a queuing system. We are interested to see whether,
in an isolated environment, our scheduling scheme can perform better than other existing scheduling
schemes. A more extensive and more realistic simulation is done in Section 5, so as to evaluate the
overall performance of our scheduling scheme with all network factors considered.

Two frequently used scheduling schemes are taken as the comparison group. One is FIFO-based,
and the other is round-robin-based. Basically these two-packet scheduling schemes cover all existing
literature on network coding protocols. In the FIFO-based scheduling scheme, all packets arrive at
a single queue, each with a tag denoting which flow it is coming from. When the node obtains the
right to transmit, the first packet in the queue is dequeued first, and it checks sequentially in the queue
for coding-possible packets. On the other hand, the round-robin-based scheduling scheme maintains
multiple queues, each for a flow. The scheduler then polls these queues in a round-robin fashion. This
scheme overcomes the problem in the FIFO-based method that a busy flow can crowd out all other flows.

Among all generated coding graphs using the baseline parameters (cf. Table 1), the one that
corresponds to the median processing time is used in this experiment. This choice guarantees that the
generated coding graph is neither too plain, nor too complex. In the baseline test bench, a total of 20
flows are present. The total offered load is 1868 packets per second (pps), with the minimum flow being
48 pps and the maximum being 282 pps. Each simulation is run for 60 s (time in simulation). The
average throughput and minimum throughput among all flows are sampled from the end of the 10th
second until the end of the simulation. After 10 s, the system has already stabilized, so we choose to
measure the throughputs from 10 s onward to the end of the simulation. All experiments are done with
10 different random seeds, and the average is plotted in Figures 7 and 8.

Figure 7. Average throughput performance with Poisson arrivals.
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In the static version of this scheme, a round-robin-based scheduling scheme requires 1198
transmissions to clear the queued packets. However, our static solution requires only 1010 transmissions.
This is almost a 20% improvement.
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Figure 8. Minimum throughput performance with Poisson arrivals.
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In the dynamic case, the average throughput improvement is not as significant. We scale the offered
packets with a multiplier and generate different offered loads. The distribution of service rates follows a
Poisson distribution with mean service time as 100 packets per second. It is observed that our heuristic
scheduling scheme (HEU) can outperform round-robin (RR) when the offered load is below 400. This
is four-times the transmission capacity. The maximum improvement can reach 13%. This amount is
smaller than the 20% promised in the static form. This is generally because our heuristic scheduling
method balances between better performance and higher anomaly tolerance. Only if we can always stick
to the optimal scheduling scheme can we achieve the highest performance improvement. However, a
fixed scheme cannot adapt to the dynamic network conditions. With the introduction of probabilistic
scheduling and the allowance mechanism, we achieve adaptability to network contingencies at a small
cost of potential performance gain. When the offered load continues to rise above 400, RR provides
higher average throughput as compared to HEU. At the same time, we turn to Figure 8 for more insight
about this underperformance. One can soon discover that the minimum throughput of HEU is slightly
below 10 pps, while the average throughput is slightly above 10 pps. This indicates that our scheme
achieves the de facto fairness by allocating almost equal-throughput channelsfor each flow. The RR
scheme can provide around 12 pps average throughput, but its minimum throughput is only around
5 pps. This is most conspicuous for the FIFO scheme where the minimum throughput is plainly zero.
In fact, from the 250 pps offered load and above, HEU can provide better fairness than RR. However, it
only starts to underperform in terms of average throughput after 400 pps.

To sum up, when the network is not severely saturated (e.g., the offered load is four-times higher than
the processing speed), our heuristic scheduling scheme for the dynamic case can provide higher average
throughput across all flows. At the same time, our scheduling scheme constantly provides better fairness
than other scheduling schemes. It overcomes the crowd-out effect of other scheduling schemes when the
offered load is too high, and some flows may suffer for low or even zero throughput.

5. Evaluation

In this section, we evaluate our work in a sophisticated network environment, specifically, an
environment with upstream/downstream nodes, contentions and interferences. We first tune our heuristic
scheduling scheme to counter the adverse effects that we may encounter in real networks. Then, the tuned



J. Sens. Actuator Netw. 2014, 4 290

scheduling scheme is tested in Qualnet simulations, where a set of network topologies with multiple
nodes are constructed. The evaluation results would reveal that with some tailored packet scheduling
algorithms, we can, for example, improve the fairness among flows without severely impacting overall
throughput. If fairness is of less importance in some scenarios, one can modify the ideas underlying our
algorithm to improve throughput. One simple idea is to shift some quota from flows with less coding
degree to flows with higher coding degree, as in the generate-quota algorithm.

There are mainly three assumptions in the evaluation of our heuristic scheduling scheme, as described
in the last section. However, they are not immediately valid in real network settings.

(1) The offered load of each flow is known and fixed.
(2) The transmission capacity of each node is known and fixed.
(3) The arrival of packets follows the Poisson process.

Therefore, we have to make adjustments to fit the scheduling scheme in a real protocol. Hence,
we designed DPSA (dynamic packet scheduling algorithm), on top of the routing protocol proposed
in [22]—SCAR. SCAR is a routing protocol based on DSR (The dynamic source routing protocol for
multi-hop wireless ad hoc networks) [23]. Routes are selected in an on-demand fashion, and source
routing is used to navigate packets through the network. SCAR is able to discover coding opportunities
and compare potential throughput gain among multiple paths.

The first adjustment is the design of a cross-layer channel. Using this channel, the application layer
can give hints to the offered load to lower layers. Consider a flow with three nodes, S, I and D. The
offered load information is directly available through the cross-layer channel in Node S. However, the
offered load in Node I is usually smaller, because Node S may not have processed all packets from the
flow. At the same time, some packets may be dropped due to queue overflow.

Therefore, the second adjustment is the delivery of offered load information from the upstream nodes
to the downstream nodes. An upstream node calculates the offered load for a downstream node by
subtracting the amount of packets dropped from its own offered load, periodically. This delivery of
information is encoded in the source routing header.

The third adjustment is the introduction of changing transmission capacity. This is a critical value
used in the heuristic scheduling scheme. Overstating this value will generally lead to unfair scheduling,
and understating this will lead to lower throughput gain. In our protocol, this value is measured as the
number of packets processed per second, averaged over a window of 5 s. Therefore, it can reflect changes
in the network condition, but filter out unnecessary noises.

In the following text, we test our scheduling method in two types of topologies. The first one is
specially designed to contain plentiful coding opportunities. The second one is a randomly generated
mesh network, which resembles real-world ad hoc networks. In this topology, the amount of coding
opportunity is intermediate. In topologies where coding opportunities are rarely seen, our scheduling
method is retrograded to a round-robin scheme and, thus, is omitted in this analysis.

5.1. Experiment 1

We choose a circle topology in Experiment 1, as shown in Figure 9. First, we fix a central node O

and the radius r of a circle. Then, we randomly generate an angle θ1 between zero and 360. Node A1 is
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added on the circle, such that the line segment that connects A1 and O intercepts the positive axis with an
angle θ1. This process is repeated N times until N nodes are added on the circle. The traffic patterns are
randomly generated as long as the source node and the destination node are not in transmission range (R)
of each other [19]. A total of e flows are selected, and all of these flows use Node O as the intermediate
node. The experimental parameters are described in Table 2. The generated topology and the coding
graph are shown in Figures 10 and 11, respectively. For simplicity, we manually choose Node O as the
intermediate node for all flows.

Figure 9. A topology where source and destination nodes are on the same circle.
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Table 2. Experiment 1 parameter settings.

Parameter N e r R

Value 10 10 100 150

The comparison group is chosen to be SCAR [22], which uses round-robin scheduling. In this
experiment, each simulation is repeated 10 times with different random seeds, and the measurements
are averaged.

The per-flow average throughput is shown in Figure 12, with the error bars showing the minimum
and maximum per-flow throughput. Note that the points are slightly shifted along the x-axis for visual
clearance. The exact x value should be the mid-point between each pair of data points. It is observed
that DPSA can initially provide higher throughput than SCAR. This is because DPSA systematically
schedules the packets to be coded together, minimizing the number of transmissions to clear packets in
the queue. In addition, DPSA almost provides a straight line connecting the zero point to its highest
achievable throughput. On the other hand, the curvature of the SCAR line is much higher.

Figure 12. Per-flow throughput in Experiment 1.
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However, DPSA’s maximum throughput level is lower than DPSA’s. This happens when the network
is fully saturated, i.e., the transmission capacity of the router node is smaller than the offered load.
DPSA schedules packets in an order first to guarantee fairness. In terms of the coding graph, DPSA
intentionally shifts transmission capacity from those well-connected vertices to the ones that have fewer
neighbors. The result of this shifting is conspicuous. The throughput span is significantly narrowed,
meaning smaller variance and better fairness. DPSA can fairly allocate bandwidth to all flows: the
minimum throughput among all flows is roughly 70% of the average throughput. On the other hand,
some flows receive only around 20% of the average throughput in SCAR.



J. Sens. Actuator Netw. 2014, 4 293

As the offered load continues to rise, the average throughput of both protocols declines. This is mainly
because of MAC-layer contention of source nodes. The router node has decreasing transmission capacity,
because the media is more often occupied by the source nodes. In fact, we have designed a congestion
control mechanism for our protocol. Such a congestion control mechanism can detect the congestion
and reduce the amount of packets sent by the source nodes. Therefore, our protocol can maintain the
highest throughput, even when an offered load further increases. However, this paper emphasizes the
importance of a packet scheduling scheme, so this part is omitted intentionally.

5.2. Experiment 2

In this experiment, we take a random topology to mimic real-life ad hoc networks. The topology
is shown in Figure 13. We randomly choose 10 S-Dpairs and generate traffic according to a
randomly-generated ratio.

Figure 13. The topology of Experiment 2.
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In Figure 14 we have plotted the average throughput versus the average offered load. In this
experiment, we can still observe that DPSA provides higher throughput than SCAR when the network
is not yet saturated. However, the difference in the average throughput of a saturated network almost
vanishes. This can be explained by the cascading effect: In Experiment 2, most flows have more than
two hops. The scheduling decision made at one node can affect the offered load of the next. Without
proper planning (as in round-robin scheduling), a great proportion of packets are discarded along the way.
This is a great waste of bandwidth, which effectively decreases the maximum throughput achievable by
the round-robin scheduling. This can be explained by the cascading loss effect. In a flow with more
than one hop, the scheduling decision made at an upstream node can affect the offered load of the
immediate downstream node. Without proper planning (as in round-robin scheduling), the mismatch in
each hop would waste a certain amount of bandwidth. The more hops one flow has, the more severe
becomes bandwidth loss. This is referred to as the cascading loss. A great proportion of packets can be
discarded this way, which effectively decreases the maximum throughput achievable by the round-robin
scheduling. Also note that DPSA managed to schedule packets more fairly, and the scheduling maintains
a good linkage between upstream nodes and downstream nodes, minimizing the cascading effect. In
addition, the significant decrease of throughput, as seen in Experiment 1, is not present. This is simply
because the MAC-layer contention is not as severe as in Experiment 1’s topology.
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Figure 14. Per-flow throughput of Experiment 2.
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6. Conclusions

In this paper, we have highlighted an area of a problem that has long been neglected—the packet
scheduling scheme with network coding enabled. The problem is tackled first in a simplified and
static version. With our scheduling method, intermediate nodes can clear packet queues faster, and
the scalability of the algorithm is also tested. The findings are then applied to the dynamic form of
the scheduling problem, where we consider multiple queuing systems. Though it is hard to analyze
the system, we proposed a heuristic scheduling method addressing the challenges posed by a dynamic
system. The solution to this dynamic problem is then incorporated into a routing protocol. Simulation
results for this routing protocol reveal that with proper scheduling, we can have better control over the
fairness of the network. When fairness is not a concern, one can easily adapt our protocol to put more
emphasis on those higher coding gain pairs to improve throughput.
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