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Abstract: In this paper we present the design and implementation of a generic GA-based 

optimization framework iMASKO (iNL@MATLAB Genetic Algorithm-based Sensor 

NetworK Optimizer) to optimize the performance metrics of wireless sensor networks. 

Due to the global search property of genetic algorithms, the framework is able to 

automatically and quickly fine tune hundreds of possible solutions for the given task to find 

the best suitable tradeoff. We test and evaluate the framework by using it to explore a 

SystemC-based simulation process to tune the configuration of the unslotted CSMA/CA 

algorithm of IEEE 802.15.4, aiming to discover the most available tradeoff solutions for 

the required performance metrics. In particular, in the test cases different sensor node 

platforms are under investigation. A weighted sum based cost function is used to  

measure the optimization effectiveness and capability of the framework. In the meantime, 

another experiment is performed to test the framework’s optimization characteristic in  

multi-scenario and multi-objectives conditions. 

Keywords: WSNs; optimization; MATLAB; genetic algorithm; performance metrics; 

simulation; evaluation; weighted sum; multi-objective; multi-scenario 

 

1. Introduction 

With the widespread development of embedded systems and various wireless communication 

technologies, wireless sensor networks (WSNs) have gained the attention of industrial and research 
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groups all over the world in recent years. The integration of sensing, data processing, and over-the-air 

transmission into a single miniaturized device enables the deployment of wireless sensor networks in 

many fields of applications. However, the weak computation ability, limited storage, short 

communication range, and severe energy constraints, to some extent, limit their use. Therefore, 

carrying out optimizations on these elements is very useful for the improvement of network lifetime, 

the reduction of packet loss, end-to-end delay, and other related metrics, all of which are essential to 

guarantee adequate performance for specific applications. Typically, two classes of objects are 

optimized in the design of wireless sensor networks: hardware and software. 

From the hardware perspective, better energy efficiency can be achieved by optimizing the power 

consumption of related hardware components. By employing an ultra-low power based microcontroller 

(e.g., MSP430) and configuring it to five different low power modes, a significant amount of energy 

can be saved. Besides, the reduction of sensing tasks and simplification of data processing algorithms 

can also be helpful. For the transceiver, some factors, such as the modulation scheme, transceiver 

packet frame, and duty cycle, can affect power consumption. The use of a high data rate as described 

in [1], has proven to be, not only a very energy-effective choice, but also a strategy that greatly 

improves network reliability. In recent years, some emerging radio-based technologies such as 

Bluetooth low energy technology [2], Ultra-wideband (UWB) [3], and ANT [4] have also provided 

excellent choices in lifetime improvement, reliability enhancement, as well as short network latency. 

From the viewpoint of energy supply, as most sensor motes are battery-driven, the battery type, 

capacity, and size play an important role in the node lifetime, cost, weight, and deployment ability. 

Emerging energy harvesting technologies [5] are also highly useful methods for overall energy 

optimization and power management. In addition, some hardware based algorithms have been 

proposed for optimizing energy consumption. An adaptive power control algorithm is presented and 

implemented in [6], by automatically configuring the programmable output power on a transceiver 

chip according to the distance information between nodes. This algorithm is tested via experiment for 

the validation of its energy-efficiency in increasing node lifetime. A Dynamic Voltage Scaling (DVS) 

algorithm [7] applied to microprocessors can also minimize the power consumption by dynamically 

scaling the supply voltage to match the required performance level. Finally, in the Dynamic Power 

Management (DPM) algorithm [8], a more traditional method is used by selectively turning off idle 

state components to save energy.  

From the software perspective, the optimization method can be grouped into three categories: the 

development of new communication protocols (MAC and routing) for optimization, the adoption of 

energy-aware strategies for optimization, and the configuration/exploration of the optimal set of 

existing protocols for optimization. Firstly, building on the contention-based scheme for collision 

avoidance and reliable transmission, both S-MAC [9] and T-MAC [10] are proposed to synchronize 

communication schedules and listening periods to minimize latency, while reducing energy 

consumption by turning off the radios during sleep periods. Through the use of low-power listening 

approaches, WiseMAC [11] and B-MAC [12] can save more energy from idle listening. For most of 

the new proposed routing protocols, optimizations focus on how to select the shortest path for energy 

saving, while, at the same time, guaranteeing the reliability of the network by reducing the number of 

communication hops. Secondly, the uses of strategies for optimization include in-network processing, 

data aggregation, and cross-layer related optimization methods. In-network processing in wireless 
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sensor networks typically involves operations such as data compression and fusion. Despite the cost of 

increased latency (more time is spent in data processing), the impacts of this approach on energy 

reduction in [13] are always found to be significant. The idea of data aggregation is to gather the data 

from different source nodes to be forwarded onto further destination nodes, and is considered as an 

essential part in routing protocols of wireless sensor networks as it directly aims at reducing the 

amount of data to be transported. A data aggregation based method derived from compressed sensing 

(CS) is proposed in [14] to minimize the total energy consumption in the sensory data collecting 

process. Overall, the aggregation process helps eliminate redundancy from packet overhead, minimize 

the number of transmissions, and thus save total energy [15]. By exploiting the interactions between 

different layers of WSNs, cross-layer optimization techniques are able to improve energy conservation. 

In [16], taking both MAC layer and routing layer into consideration, researchers extended Dynamic 

Source Routing (DSR) to improve its routing energy efficiency by minimizing the frequency of 

recomputed routes (routing overheads). For the final method, by exploring different parameter 

configurations of a beaconless IEEE 802.15.4 network [17] via simulation, the optimal parameter 

settings of unslotted CSMA/CA algorithm [17] under different traffic loads are suggested in [1].  

With an effective management mechanism for backoff counter/scheme, a semi-random  

backoff (SRB) method is proposed in [18] aiming to achieve resource reservation for channel access  

in contention-based wireless LANs.  

However, when considering increasingly complex system designs, the above-mentioned optimizations 

cannot be considered to be comprehensive, since they only focus on optimizing a specific objective. 

Even when several objectives are under evaluation, their optimization procedures are separate. Thus, 

such optimizations are inefficient to provide a quick overview of problem solutions. In the meantime, 

they cannot satisfy the requirements of application-specific wireless sensor networks, in which many 

design criteria need to be optimized simultaneously.  

Thus, in the following section we give an overview of genetic algorithms (GAs) as an intelligent 

and efficient optimization technique, and present some of GA based optimizations in wireless  

sensor networks.  

2. GA-Based Works on WSNs 

2.1. Introduction of GA  

Genetic Algorithms (GAs) are stochastic search engines that mimic natural selection and biological 

evolution processes. Initially, a population holds randomly selected individuals that are generated from 

the candidate solution space. Following this, these individuals are made to evolve towards an optimal 

solution over successive generations via selection, crossover, and mutation processes. For GAs, the 

fittest individuals are selected to generate a new population of individuals at each step in the hope of 

improving the solution quality [19]. Figure 1 shows a brief flowchart of GAs.  

Apart from GAs, several other optimization algorithms are also widely used, such as gradient-based 

local optimization, random search, stochastic hill climbing, simulated annealing, and symbolic 

artificial intelligence [20]. However, when compared with these conventional optimization methods, 

GAs are considered to be highly efficient techniques and distinguish themselves from traditional 
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approaches, since their research is based on a whole population of individuals in parallel calculations 

rather than a single point, which improves the chance of achieving the global optimum solution and 

helps to avoid local stationary points. Further, the use of a fitness function (rather than derivatives) for 

evaluation can extend GAs to any kind of continuous or discrete optimization problems. As a  

domain-independent search technique, GAs are ideal for applications where domain knowledge and 

derivative information are difficult or impossible to provide [21]. In other words, tedious and 

knowledge-based processes can be greatly reduced, which is of special interest for inexperienced 

designers, as only the fitness function and corresponding fitness levels influence the whole search 

process [22,23]. Finally, some advantages of GAs are summarized and listed in Table 1.  

Figure 1. Brief flowchart of genetic algorithm. 

 

Table 1. Advantages of Genetic Algorithms (GAs) when compared to conventional methods. 

Advantages of GAs 

√ Parallelism, efficiency, reliability, easily modified for different problems 

√ Large and wide solution space searching ability 

√ Non-knowledge based optimization process 

√ Use of fitness function for evaluation 

√ Easy to discover global optimum, avoid trapping in local optima 

√ Capable of multi-objective optimization and can return a suite of potential solutions 

√ Good choice for large-scale/wide variety optimization problems 

2.2. GA-Based Optimization in WSNs  

Genetic algorithms have been applied and to solve many engineering problems with GAs’ excellent 

search abilities, and the use of GAs in wireless sensor network design has been proved to be successful 

by a number of works. The most common use of GAs is how to achieve an energy-aware network 

under specific routing conditions, which includes the finding of proper cluster heads for data 
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aggregation in the network; the selection of the optimal path to reduce hops (and thus transmission 

energy); and at the same time the reduction of channel contention. Such efforts for energy-efficiency 

can be found in [24–26]. In addition, researchers in [27] employed GAs in the multiple QoS (quality of 

service) parameter problem trying to determine near-optimal multicast routes for Mobile ad hoc 

network (MANET).  

In [28], a GA-based methodology is proposed for adaptive wireless sensor network design. A 

fitness function that incorporates seven design parameters from the aspects of the specific application, 

network connectivity and energy consumption is used for the evaluation, so that during the 

optimization process many requirements (such as the status of the sensor nodes, the selection of the 

cluster heads, as well as the distance between nodes) are taken into account for the design of a reliable 

and energy-aware wireless sensor network.  

In recent years, the use of GAs to find the optimal placement of wireless sensor network nodes 

before real deployment has gained wide attention from many research groups and academic institutions. 

However, in the placement problem, the optimization process is required to tune multiple conflicting 

objectives, e.g., reducing the energy consumption while achieving large coverage and robust 

connectivity, so Multi-Objective Genetic Algorithms (MOGA) are adopted in [29–31], aiming to find a 

deployed network arrangement to maximize area coverage, minimize energy cost (maximize lifetime), 

and maintain good connectivity. 

The remainder of the paper is organized as follows. Section 3 presents the motivation of proposing 

the optimization framework. Section 4 illustrates the detailed design method and implementation of the 

proposed framework including the description of the architecture, related performance metrics, 

weighted sum cost function based optimization, multi-scenario/multi-objective based optimization, the 

settings of the framework via command lines, and a MATLAB based GUI as well as the generic use of 

the framework. Section 5 is the experiment part used to verify the effectiveness and availability of the 

framework. Finally, we conclude in Section 6.  

3. Motivation of Proposing the Optimization Framework  

While previous optimization efforts on hardware have been mentioned, the limited energy supply, 

low processing ability, low data rate, and short communication range inevitably affect the performance 

behavior of the whole network and also limit their further potential utilizations. The solving of these 

hardware-based issues to improve performance quality takes some time, such that it is difficult to 

satisfy rapidly evolving applications and requirements. In comparison, efforts on non-hardware 

(software) aspects (for instance the development of energy-efficient and robust protocols, the design of 

specific communication strategies or the exploration of configurations on existing protocols) can 

provide a quick alternative for performance optimization on given scenarios in terms of various 

metrics (Section 4.2).  

The widely accepted methods of evaluating the above solutions before real deployment can be done 

through software modeling (theoretical model and simulation) or real-world testbed experiments. The 

latter are very time-consuming, with repeated experiments and large amounts of raw data required for 

subsequent evaluation, while the use of simulations/theoretical models can provide a more efficient 

way. When compared with simulations, theoretical models are faster to evaluate but are also 
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sometimes idealized and inaccurate for realistic conditions. Therefore, simulation is considered to be a 

more suitable trade-off between accuracy and efficiency. Nevertheless, in order to get a satisfactory 

performance for the given scenario, the selection of the optimal WSN infrastructure, out of hundreds of 

potential solutions, is still required before real deployment. Thus, the use of full and exhaustive simulations 

to explore all possible solutions is also regarded as a very time-consuming and inefficient method.  

Thus, how to effectively and accurately achieve an optimized simulation result from a large solution 

space is a challenge. As a fast and efficient search engine, the use of GA gives a solution. However, 

almost all GA-based optimization applications in wireless sensor networks mentioned in Section 2.2 

are based on theoretical and analytical models. In addition to the issues of inaccuracy for realistic 

situations, such models always require expert knowledge in related domains as well as strong 

mathematical background. Therefore, it prevents many non-expert researchers and some ordinary users, 

without much knowledge about sensor networks, from quickly accessing the optimization process. 

Thus, in order to reduce time spent on evaluating all possible solutions and avoiding expert knowledge 

based analysis process. A generic optimization framework is proposed and will be described in detail 

in the following sections.  

4. Design and Implementation of the Optimization Framework 

4.1. Architecture of the Framework (iMASKO)  

In this section, a generic GA-based optimization framework called iMASKO (iNL@MATLAB 

GA-based Sensor NetworK Optimizer) is proposed. It is able to quickly and efficiently explore 

simulation-based results or the theoretical model-based results. Note that in this context, iMASKO is 

applied to automatically fine-tune the results from our house-built SystemC-based simulation [32–34]. 

In practical use, the optimization of related parameters in the design space can help find the 

application-specific solution to achieve the most optimal network performance for the given scenario 

before real deployment. By using iMASKO, only two things are needed: (i) a set of input parameters in 

the design space, and (ii) a user defined fitness function. As long as the system/model under evaluation 

can return the required data metrics to the fitness function, the detailed implementation of the 

system/model (simulators/emulators/mathematical models) can be ignored, which is of special  

interest for non-experts in wireless sensor network design. Finally, the configuration of the GA 

optimization process is very simple in iMASKO for users, since the interfaces of the corresponding 

algorithm parameters are provided and the configurations can be done via command lines and a  

MATLAB-based GUI.  

Firstly, a brief workflow of iMASKO is presented in Figure 2 and the detailed optimization process 

of iMASKO is given in Table 2. Before starting the optimization, relevant parameters are fed to the 

simulation environment and to the GA evaluation engine respectively. Once the corresponding metrics 

have been generated from simulations and processed within the fitness function, the GA evaluation 

engine will decide whether the final result can satisfy the criteria of the given task. If so, the solution 

can be considered and applied in real applications. Otherwise, another cycle of the parameter tuning 

will start until the qualified solution for the task is found.  
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Figure 2. Workflow of iMASKO. 

 

Table 2. Pseudo code of iNL@MATLAB GA-based Sensor NetworK Optimizer 

(iMASKO) optimization process. 

iMASKO Optimization Process 

Input initial solution: X, P ## X-parameters space, P-performance space 

1: assume that: Xbest  X, Pbest  P 

## Starting optimization until condition met 

2: while stop condition not met then do #condition (e.g., max generation exceeded) 

3: Xnext  generate(X) #GA operations: selection, crossover, mutation 

## Evaluations are proceeded in parallel 

4: Pnext  evaluate(Xnext) #evaluate results from SystemC simulations 

5: △cost  compare(Pnext, P) #△cost = Pnext − P 

5: if △cost ≤  0 

6: X  Xnext, P  Pnext 

7: if (P ≤ Pbest) 

8: Xbest  X, Pbest  P 

9: end if 

10: end if 

11: end while ## when condition is met 

12: return/output: Xbest, Pbest 

*Note: Process 5 is not necessary, when considering the case in Section 5.1, where one population size is used. 

In Table 2, the typical steps of optimization are given by easily identified syntax: generate, evaluate 

and compare. The parameter space X could be a set of communication strategies/protocols, different 

configurations of a given protocol, or different application scenarios as long as the parameters that 

under the investigation can be represented as the qualified individuals in GAs. For the performance 

space P, it contains the metrics that can reflect network performance presented in Section 4.2. The 

metrics are returned by the fitness function in two ways: one is to combine all related metrics into a 

weighted sum (Section 4.3), while another is to return separated and independent metrics for 

multiobjective optimization problems (Section 4.4).  
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4.2. Performance Metrics  

Despite the widespread use of wireless sensor networks and the variability in various  

application-specific requirements, the performance metrics that reflect the most fundamental 

characteristics of wireless sensor networks have always been the same, and can be classified into three 

major aspects: energy consumption, network reliability, and network delay. 

 Energy Consumption: in most application scenarios, the sensor network must run for a long 

period of time to fulfill the given task without human interference (e.g., for battery recharge), 

thus, energy saving has always been a significant concern for extending the lifetime of the 

sensor network/node. Otherwise, the network will not remain operational until the required task 

is completed. As the energy consumption of the microcontroller (μCEnergy) and transceiver 

(TraEnergy) are the most power consuming parts, most works focus on saving the energy from 

these two parts at both the hardware and software levels. In hardware, ultra low power devices 

are used, especially in medical/health-care applications [2,35,36]. In software, as mentioned in 

Section 1, various kinds of energy-efficient MAC protocols, duty-cycling based 

communication strategies and data aggregation routings are proposed and measured. All kinds 

of efforts are made to achieve an energy-aware sensor network, and according to different 

requirements, energy performance could be measured and expressed in many ways (e.g., power 

consumption-mW, µW, lifetime-days, months, years). A taxonomy of energy related 

performance metrics is summarized in [37]. 

 Network Reliability: for this metric, packet loss probability (PktLossPro) or packet delivery rate 

(PDR) are often adopted as the evaluation standard. PDR here is defined as the ratio of the 

number of packets successfully received (successful receiving of ACK) to the total number of 

packets that are sensed for transmitting. PktLossPro is the probability that a packet sensed for 

sending will be dropped or fail to be transmitted (PktLossPro=1 − PDR). If a MAC layer 

algorithm is used, such as the unslotted/slotted CSMA/CA algorithm of IEEE 802.15.4, the 

packet loss can take place due to the packet drop in channel access failures (PktCAFs) and 

collision failures (PktCFs). PktCAFs denotes that a packet encounters (1 + macMaxCSMABackoffs) 

consecutive CCA failures, while PktCFs occurs when it suffers (1 + macMaxFrameBackoffs) 

times of collision failures, which take place during the packet transmission or transmission of 

the ACK frame. Besides, the loss of packet can also be caused by packet overflow (PktOverflw), 

which means that before starting to transmit the pending data packet (pending in MCU), a new 

data packet is sensed and replaces the pending packet. Therefore, evaluations can be made in 

detail with PktCAFs, PktCFs, and PktOverflw in addition to PktLossPro and PDR. 

 Network Delay: packet latency is usually used to evaluate network delay. Packet latency can be 

divided into three sub-types: successful packet latency (SucPktLatency), all packet latency 

(AllPktLatency), and data packet latency (DataPktLatency). SucPktLatency is defined as the 

time interval between the instant at which the data packet is sensed and the instant at which is 

successfully transmitted by receiving its ACK frame. Compared to SucPktLatency, 

AllPktLatency takes both successful packet transmission and failure packet transmission 

(caused by PktCAFs or PktCFs) into consideration. DataPktLatency is calculated as the time 

interval from sensing the data packet to the receipt of this packet by the sink node (or coordinator).  
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To sum up, the fundamental features of varying WSNs applications can be evaluated from the 

above three major aspects, and the detailed performance metrics presented in each of the three major 

aspects can be used simultaneously to provide a more comprehensive insight for the given scenario. 

4.3. Cost Function (Weighted Sum)  

As the metrics listed above, the performance evaluation of the specific application scenario is an 

overall and comprehensive process which must consider multiple objectives at the same time. The 

evaluation engine of iMASKO returns a set of performance metrics p (Section 4.2) that need to be 

optimized/improved simultaneously and is given as: 

( ) 1 2 3min [ , , ,......, ]X np p p pp  (1) 

where X is the parameter space. However, the solutions that can simultaneously optimize every metric 

are difficult to find for such a multi-objective problem. Therefore, a commonly used trade-off method 

combines different objectives into a linear cost function presented as a weighted sum:  

( )

1

min ( )
n

X i i

i

cost w p


  p  (2) 

where wi is the weight vector that is designed to emphasize the importance of each performance 

metrics pi. X is the parameter space, which can consist of different types of design parameters for the 

sensor network as shown in [28], or it can be just a set of protocol configurations if only the 

communication protocol is under investigation.  

Thus, the multi-objective problem becomes single objective and the optimization can proceed by 

directly evaluating the value of the cost function. Note that this cost function in GA-based optimization 

is also known as the fitness function. Based on the application-specific requirements at hand, the 

designers can decide whether to choose all or only part of the most competing performance metrics for 

the fitness function. An example of a fitness function in terms of energy consumption, network 

reliability, and network delay can be presented as follows:  

1 2 3performancef w nodeEnergy w PktLoss w SucPktLatency       (3) 

However, even with the same importance on each metric, each contribution to the weighted sum 

could also be different, since the scale of each metric is not the same. Hence, percentage data values 

are preferred to be used to reduce the impacts caused by the metrics’ scale. The above formula is thus 

modified as:  

1

2

3

( / ) ...

( / ) ...

( / )

performancef w nodeConsumedEnergy TotalEnergy

w PktLoss TotalSensedPkt

w SucPktLatency SampleInterval

  

 



 (4) 

where nodeConsumedEnergy denotes the average energy consumption on every sensor node. 

TotalEnergy represents the maximum energy volume that can be used on each node. Other metrics are 

self-explanatory and some of them have been defined in the Section 4.2. 

 

  



J. Sens. Actuator Netw. 2013, 2 684 

 

 

4.4. Multiobjective GA for Pareto-Front Optimization  

Despite the fact that the evaluation by a weighted sum cost function facilitates the optimization 

process to a great extent, the most significant limitation of this process is that the metrics (e.g., energy 

consumption-mJ, latency-ms, packet loss-how many) used in the cost function formula are sometimes 

not in the same scale. Even with the use of probability values in the experimental part, the equality of 

scale and avoidance of implicit weighting cannot be strictly guaranteed, considering that if the given 

energy volume for each node is set to be a large value (e.g., 10,000 mJ) or that if a high maximum 

latency is used as the dividend, then the importance of energy and latency impacts will be reduced.  

A more suitable solution to consider trade-offs among different metrics is Pareto-front based  

multi-objective optimization. As mentioned previously in Section 4.3, simultaneous multi-objective 

(Equation (1)) based techniques rarely exist in conventional optimization methods. However, the GA 

based multi-objective optimization provides an alternative, since the parallelizable characteristics of 

GA (represented by the population size) can help evaluate many different sets of solutions in the 

parameter space simultaneously, which greatly improves the efficiency. The selection of the best 

individuals is based on the Pareto-front (∂F , F-solution space), which can be described as a solution 

1[ ... ]nf ff  dominating * * *

1[ ... ]nf ff . This condition is true if each parameter of f  is not greater than 

the corresponding parameter in *
f  and there is at least one parameter that is less, i.e., *

i if f  for each i 

and *

i if f  for some i. This is presented as *
f f  to mean f  dominates *

f , and the total description in 

mathematics can be given as follows: 

* *

( {1,... }) ( {1,..., })( ) ( )i n i i i n i if f f f       (5) 

In other words, the Pareto-front is part of the boundary of performance space. On this boundary, no 

solution is better in criteria that makes at least one performance metric better without making other 

metrics worse. The Pareto front captures the trade-offs between competing performance metrics and 

identifies the solutions that are non-dominated, as shown in above Figure 3.  

Figure 3. Pareto-front optimality. 

 

In addition, with design problems becoming more complex and the system under investigation 

integrating multiple functionalities, performance metrics of several different cases need to be evaluated 

at the same time. This cannot be achieved if multi-objective optimization only focuses on a specific 

condition. Therefore, a multi-scenario optimization method is proposed and already has applications in 
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many engineering problems such as [22,38]. The use of this multi-scenario based multi-objective 

optimization is to find a robust solution which can give the optimal performance for all possible case 

scenarios and it can be presented as:  

( ) 1 2 1 2min [ , ,..., ,......, , ,..., ]X a a an m m mnp p p p p pp  

 
(6) 

where X is the vector of design parameters, and p denotes a set of related performance metrics of 

several scenarios which are returned by iMASKO evaluation engine from the simulations.  

Take two primary objectives, energy and reliability (packet loss), as the example in the optimization 

of network performance. If these two metrics need to be evaluated under different scenarios before 

practical use, the following four-dimensional (4D) front in above Figure 4 is able to transpose the 

concept for the case of multiple scenarios and help explore trade-offs for the metrics. 

Figure 4. 4D plot for multi-objective based multi-scenario optimization [39]. 

 

In this 4D coordinate, the dotted lines are plotted in quadrant one and four are the Pareto fronts. The 

rectangles are signs of metrics balance for different scenario requirements according to the decision 

maker. In this 4D Pareto front, A_Metric2 and B_Metric1 axes are reversed to make the plot clearer, 

and quadrant two and three are used as the auxiliary quadrant to help locate the rectangle tradeoff markers.  

4.5. iMASKO Options via Command Lines and GUI 

iMASKO provides a series of interfaces to configure the optimization/evaluation process by 

command lines, which are shown in Italics and bold letters in this section. iMASKO command line 

options consist of five parts which are platform selection, simulation parameter configuration, GA 

configuration, seed generator, and result saving respectively.  

 Platform selection: this part is to load the mote platforms. Executable files of SystemC 

simulation are placed under the same folder, which contains several mote platforms 

Scenario_a Scenario_m 
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implemented in our SystemC simulation environment (including iHop@Node [40], Telos [41], 

MICAz, MICA2). The option -n <platform> is adopted to select the specific mote platform for 

the optimization experiments. An example command line can be given as: > ./imasko -n Telos. 

 Simulation parameters config: this part is used to set the corresponding parameters of SystemC 

simulation, such as sample rate, sample times, CSMA/CA algorithm, output power, receiver 

sensitivity, and independent simulation run times. The corresponding options in iMASKO for 

the above parameter settings are -sr <samplerate>, -st <simulationtimes>, -alg <algorithm>,  

-op <outputpwr>, -rs <sensitivity> and -r <runs>. Among the options, samplerate, 

simulationtimes, algorithm (0-unslotted, 1-slotted), outputpwr, sensitivity, and runs are all 

integers. An example command line would be: > ./imasko -sr 10 -st 100 -alg 0 -op 0 -rs -95 -r 

50, which means that the sample rate is set as 10 Hz, the simulation runs for 100 ms, unslotted 

CSMA/CA is selected, output power is set as 0 dBm, receiver sensitivity is configured as −95 

dBm and finally 50 independent simulations (different seeds) are required for average results. 

Default values will be used if the corresponding parameters are not set in the command line.  

 GA config: GA related parameters are configured in this part. Parameter space under GA 

optimization can be configured by setting their upper and lower boundaries. In the experiment 

of this work, the options -lbminBE <minBElb>, -ubminBE <minBEub>, -lbmaxBE 

<maxBElb>, -ubmaxBE <maxBEub>, -lbBackoff <Backofflb>, -ubBackoff<Backoffub>,  

-lbRetries<Retrieslb> and -ubRetries<Retriesub> are used to specify the lower and upper 

bounds of the unslotted algorithm’s four parameters, which are macMinBE, macMaxBE, 

macMaxCSMABackoffs and macMaxFrameRetries. These boundary values are used to limit the 

parameter space range during the whole optimization process, and they can also be employed to 

initialize the PopInitRange parameter in GA at the very beginning of the optimization. In 

addition, other commonly used GA parameters are also configurable by command lines, the 

provided parameters include GA’s PopulationSize, Generations, CrossoverFraction, 

CreationFcn, SelectionFcn, MutationFcn, CrossoverFcn. The corresponding options in 

iMASKO are -ps <populationsize>, -g <generations>, -cf <crossoverfraction>, -creatf 

<@creationfunction>, -selectf <@selectionfunction>, -mutf <@mutationfunction>, and -crossf 

<@crossoverfunction>. Among these options, populationsize and generations are integers, 

crossoverfraction is a float number within the range 0 through 1. Finally, creationfunction, 

selectionfunction, mutationfunction, and crossoverfunction are the names of the functions 

which are provided by the GA library (e.g., @gacreationuniform, @selectionstochunif, 

@mutationgaussian, @crossoverscattered) or the user custom functions. Likewise, if the 

parameters are not set via the command line, default values will be used. An example command 

line can be: > ./imasko -ps 20 -g 100 -cf 0.8 -mutf @mutationgaussian.  

 Seeds Generator: due to the quad-core CPUs of the server, each simulation actually consists of 

four parallel and independent (independent seeds) runs for average results, so the use of -s1 

<seeds1>, -s2 <seeds2>, -s3 <seeds3> and -s4 <seeds5> (integers for seeds1, seeds2, seeds3, 

and seeds4) can specify different seeds for the four independent runs, and all the generated 

seeds can be stored and used in the optimization process to guarantee reproducibility of results 

 Result Saving: the use of -save <filename> can save the final result file with the user defined 

file name and with any suffix. As an example: > ./imasko -save GAresults.log.  
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As the requirements of different tasks are application-specific and vary all the time, the complete 

configuration of iMASKO options via command lines not only satisfies the varying requirements, but 

also provides a flexible and effective way to set related parameters in the optimization/evaluation 

process for the given scenario.  

Since iMASKO command line options are not intuitive especially for non-experience designers and 

users, a MATLAB based GUI has been developed to link simulation and optimization, which 

facilitates configurations on both sides and makes the evaluation process visualizable. The GUI is 

shown in Figure 5, where all parameters mentioned in the previous section can be set in the 

corresponding edit box. Default values are used if the parameters are not set. All these parameters are 

passed to the simulation and GA evaluation engine by pressing the “Apply” button, and the evaluation 

will start when a specific platform is chosen on the right side of the GUI.  

Figure 5. iMASKO GUI. 

 

4.6. Generic Use of iMASKO 

Except for the multiple and detailed configuration interfaces support, iMASKO is generic in its use 

of the optimization/evaluation process. In this work, the fitness function uses iWEEP’s SystemC-based 

simulation results. However, the fitness function in iMASKO can be of multiple types as long as it 

provides parameter space inputs and performance metrics outputs. Thus, results from other well-known 

WSN simulators, such as NS-2, OMNeT++ [42] and Prowler [43], can also be used under the 

evaluation of iMASKO, even if the detailed implementation and knowledge of such simulations are 
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unknown. For instance, an executable C++ file of NS-2 and OMNeT++, as well as MATLAB’s m-file 

of Prowler, are all able to act as the fitness function, since the required performance metrics in the 

fitness function can be generated after the execution of these files. In addition, in some cases if the 

simulation process is controlled by a shell script, then such a shell script represents the fitness function. 

Furthermore, if the simulation is implemented directly in MATLAB as a theoretical model, then this 

m-file function can be used as the fitness function. Therefore, iMASKO GUI provides for path loading 

to help select different types of fitness functions (in the mid-left of GUI) according to each specific case. 

5. Experimental Results 

In this experimental results section, the optimization framework is verified by using two test cases 

in Sections 5.1 and 5.2. The test cases are carefully chosen to prove the framework’s ability to search 

quickly for optimal performances, as well as its capability for fine tuning the parameter space in 

wireless sensor networks. For this work, the optimization process is based on the tuning of parameter 

configurations of existing protocols to achieve the best optimal behavior. In both cases, the parameter 

space under investigation consists of the four parameters of the unslotted CSMA/CA algorithm [17], 

which are macMinBE, macMaxBE, macMaxCSMABackoffs, and macMaxFrameRetries. With the 

range from 3 to 8 for macMaxBE, 0 to macMaxBE for macMinBE, 0 to 5 for macMaxCSMABackoffs, 

and 0 to 8 for macMaxFrameRetries, the total number of solutions has a wide possibility of 1,872 

combinations in the parameter space. Figure 6 shows the flowchart of the unslotted CSMA/CA algorithm.  

As shown in Figure 6, the transmitter node first performs a random backoff duration and checks the 

channel status. If the channel is detected to be busy, and the number of CCA attempts is larger than the 

protocol parameter macMaxCSMABackoffs, then a Channel Access Failure (CAF) is reported. If, on 

the other hand, the number of CCA attempts is smaller than macMaxCSMABackoffs, the transmitter 

node will go back for a new round of random backoff process. When the channel is indicated as free 

by CCA, the transmitter node will send a packet to its transceiver and trigger over-the-air transmission. 

After the transmission of an ACK required data packet, the protocol will make the transmitter node 

wait within a fixed time period (0.864 ms or 54 symbols) for the ACK frame confirmation. If ACK is 

received in time, this transmission is regarded as successful. Otherwise, the packet retransmission 

process will start. A Collision Failure (CF) occurs only after failure to receive ACK frame 

macMaxFrameRetries times, which might be caused by collision of data packets or collision between 

data packets and the ACK frames. In addition, as long as there are pending data packets in the node, 

they will be uploaded to the transceiver immediately, once the transmission process is over (no matter 

whether a success or a failure), which is to guarantee the timeliness and reliability of data transmission. 

In this work, the unslotted CSMA/CA algorithm is implemented in our SystemC-based simulation 

engine [32,33], and iMASKO is used to fine tune simulation’s parameter space (macMinBE, 

macMaxBE, macMaxCSMABackoffs, macMaxFrameRetries) for the optimum performance metrics 

based on the requirements of the given application.  
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Figure 6. Unslotted CSMA/CA algorithm model. 

 

In the following two sub-sections, the first case applies a weighted sum fitness function as the  

trade-off for evaluating multiple performance metrics. The second case is for a simultaneous  

multi-objective optimization under multi-scenario conditions. All the experiments performed in this 

section were executed on an Intel Xeon server operating with Linux CentOS (4 CPUs, 8 GB RAM,  

2.4 GHz).  

5.1. Part I—Results of Weighted Sum Optimization 

In this part, the search efficiency and reliability of this GA-based framework is tested. The 

performance metrics in terms of energy consumption, packet loss and packet delay are from our 

SystemC-based simulation which has 30 Telos nodes, 10 Hz sampling rate, 32 bytes payload in each 

data packet, and 4 s of simulation time and each sensor node transmits the data to the common sink 

node. The three performance metrics are modeled into a linear weighted sum cost function as the  

trade-off optimization method, to find the best optimal performance weighted sum value via the tuning 

of unslotted algorithm’s parameter configuration. Finally, the GA-based optimizations are compared 

with the time-consuming full/exhaustive simulations (simulations on all possible solutions) in terms of 

efficiency and results. The weighted sum cost function is derived from (Equation (4)) and given as follows:  

( ) 1 ( / ) ...

1 ( / ) ...

1 ( / (2* ))

PerformanceCostFcn nodeConsumedEnergy TotalEnergy

PktLoss TotalSensedPkt

SucPktLatency SampleInterval

  

 



 (7) 

In this test, the same importance is given to the three metrics with each weight vector as 1. 

Percentage numbers are used for the performance metrics to reduce the impact of the metrics’ 

contribution in the weighted sum. Here, TotalEnergy is given as 250 mJ (in the experiment, the 

maximum energy will not exceed 250 mJ). The use of twice the sample interval is because latency 
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could sometimes exceed 100 ms (1*Sample Interval) when longer backoff wait time happens, which 

can be caused by the use of larger BE value.  

The GA implemented in MATLAB R2012a has been integrated in the iMASKO framework and 

used for the parameter tuning in the experiment. The parameters of the unslotted algorithm are all 

integers rather than real numbers. Although MATLAB R2012a has a built-in integer number based 

optimization support, it provides limited configuration options. Namely, if integer optimization is 

applied, many commonly used options cannot be configured, such as the settings of CreationFcn, 

SelectionFcn, CrossoverFcn, MutationFcn, EliteCount, and CrossoverFraction are all unavailable in 

integer problems according to the user guide. Therefore, the default real number optimization is used 

in our experiments but with custom functions like CreationFcn and MutationFcn to produce integer 

individual parents and integer mutation children, in which the evaluation can proceed totally based on 

integer optimization while at the same time all the options in GA can be configured according to the 

problems at designers’ hands. 

In addition, the typical data sensing start point of each node is randomly generated by feeding with 

different seed values, but it could also be fixed with the same sensing start time. Since the different 

random sensing start time of the data can affect the network condition (even with the same 

combination of protocol parameters), the final performance results could be different. Hence, fixing 

the same data starting time can avoid such unpredictable elements and helps GA to effectively search 

the parameter space for the best performance exploration. The fixed starting point can be controlled by 

employing a set of fixed seeds (four different seeds are used for four parallel simulations, four runs for 

the average simulation result), which ensures that under each parameter combination case every node 

starts to generate the data at the same instant. This approach is typically used to reproduce the given 

result, and here enables the comparison between optimization results and exhaustive/full simulation 

results to validate the efficiency of GA’s searching ability under the proposed iMASKO framework.  

The comparison results are shown in the following part. At first, the weighted sum results of 

exhaustive/full simulations are presented in Table 3. In the table, since macMinBE must be less than 

macMaxBE, the value of macMaxBE is fixed as the maximum value for macMinBE in each row of the 

table. The range of weighted sum results are given in each fixed macMaxBE case and the total 

simulation time is also provided.  

Table 3. Exhaustive/Full simulation results. 

Fixed macMaxBE Parameter Combinations Weight Sum Range Simulation Time (min) 

3 192 0.504349 ~ 0.812070 34.397 

4 240 0.498976 ~ 0.982988 43.622 

5 288 0.497637 ~ 1.292583 53.144 

6 336 0.507912 ~ 1.747466 61.901 

7 384 0.507912 ~ 1.834899 69.886 

8 432 0.507912 ~ 1.935943 76.702 

Total 1,872 0.497637 ~ 1.935943 339 
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The GA optimizations were launched with the settings of 2 elitecount, 0.8 crossoverfraction, and 

the roulette based selection process. A larger population size for individuals and more generations can 

certainly provide better optimization results, but at the cost of time. In this experiment, with the 

general efficiency and availability of the GA-based framework under the test, four population sizes 

with only one generation were measured (5/10/20/30 populationsize, 1 generation), since they were 

able to provide good results. Under each population size case, GA ran 100 times to determine the 

average results, because different seed values were generated according to the current time in every 

GA run. Hence, the randomly formed initial parent individuals, the children after crossover and 

mutation could be different, which led to different final results. Table 4 gives the efficiency 

information in terms of time and availability information in terms of the statistics probability of results 

falling into the weighted sum range area. 

Table 4. Test results of GA-based optimization. 

Full Weighted Sum Range:       0.497637-----------------------------------------> 1.935943 

Area 0.5% 1% 2% 3% 4% 5% 6% 7% 8% 

Value 0.5048 0.5120 0.5264 0.5408 0.5552 0.5696 0.5839 0.5983 0.6127 

Popul Size 

(Opt time) 

The following statistics indicate the probabilities that optimization results fall within each 

specific area (Average optimization time for 5/10/20/30 are shown next to the population size) 

5 (1.28 min) 2% 19% 45% 74% 85% 91% 94% 97% 98% 

10 (2.74 min) 3% 35% 72% 94% 100% 100% 100% 100% 100% 

20 (5.25 min) 5% 63% 94% 100% 100% 100% 100% 100% 100% 

30 (8.00 min) 7% 76% 99% 100% 100% 100% 100% 100% 100% 

The results show that even with a small population size of 5, the probability of achieving cost 

values inside 7% of the weighted sum range area is over 95%, while the optimization time is only 

about 1/264 compared to the exhaustive simulation. When the population size is raised to 10, there is 

over a 90% probability of achieving the area, which is 3% in the weighted sum range area, while the 

time is about 1/123 of the exhaustive simulation. Performances are further improved when the 

population size reaches 20 and 30, with all the results within the 3% of the weight sum area at a small 

cost of optimization time, which is about 1/64 and 1/42 respectively. On the other hand, for non-expert 

researchers and users who do not have much knowledge in how the configuration of the unslotted 

algorithm can affect performances, the default configuration ([macMinBE=3, macMaxBE=5, 

macMaxCSMABackoffs=4, macMaxFrameRetries=3]) of the algorithm could always be the priority of 

their choice for the comparison. In this experiment, the default configuration weighted sum value is 

0.737, so even with 5 population sized GA optimization all solutions can have better performance than 

this default configuration. Note that if another set of seed values are used, the above results could be 

different, but not significantly so, according to our tests. In addition, similar efficiency and availability 

can be achieved for MICAz, MICA2, iHop@Node based networks under the iMASKO framework.  

On the other hand, when a larger scale scenario (e.g., 80 Telos nodes) is considered in iMASKO, 

firstly the optimization time will increase, because the SystemC simulation needs more time for a 

larger scale network scenario. Secondly, the optimization performance in this large scale scenario 

could be not that obvious as in the small scale scenario, which is caused by the same level range of 

performance metrics under most of protocol parameter configurations, and the reason is analyzed as 
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follows: with a large number of nodes competing for the channel, an occupied channel is always 

expected. Based on the experimental results, most of the protocol parameter configurations applied in 

the large scale network give very close and stable values on energy consumption, packet loss, and 

packet latency. This is due to the busy channel conditions where packets are difficult to be sent and 

received, so packet loss keeps the same high-level range and so does for the packet latency. While for 

the energy consumption, the nodes tend to use up all the predefined protocol overhead (e.g., backoff 

duration, channel attempts, retransmission) and, hence, are more likely to maintain in active mode 

against the occupied channel for the data transmission. Therefore, energy consumption under most of 

the protocol configurations are expected to be in the same level, except for the configurations with 

smaller values where the protocol overhead can always be depleted before the next data transmission, 

so more sleep time can be acquired for the energy saving. Overall, iMASKO is capable of large scale 

network scenario optimization but as only a framework the optimization performance is greatly 

affected by the simulation/theoretical models as well as the detailed network conditions (optimization 

performance could be different, if 250 kbps data rate based Telos motes are replaced by 1Mbps data 

rate based iHop@Node in this 80 node scenario).  

In addition, the computational feasibility of iMASKO for the exhaustive search of large scale 

scenario can be different when simulation model (model from simulator/emulator) and mathematic 

formula model are respectively employed. To optimize the performance metrics from simulation 

model, iMASKO firstly has to wait the generated metrics from the simulation run and then can proceed 

to the evolution process. Thus, high efficiency cannot be guaranteed when longer time is required by 

the simulation for the given task. However, if mathematic formula based models implemented in  

m-file are used, iMASKO can launch many calculations with different parameter configurations in 

parallel, which can greatly accelerate the whole optimization process. In summary, iMASKO is 

computational feasible for the exhaustive search in large scale scenario but its performance is 

significantly affected by the type of software model it uses (simulation/emulation model, mathematic 

formula model).  

5.2. Part II—Results of Multi-Scenario and Multi-Objective Optimization 

The main goal of this test case is to verify the capability of the iMASKO framework under the 

conditions of multi-scenario and multi-objective optimization. The case applied in this experiment is 

the typical wireless body area networks (WBANs) [44,45], which are widely used in medical and 

health care applications and it is shown in Figure 7. This typical on-body sensor network consists of 

six different functional sensor nodes for physiological signals monitoring and measurement, which are 

ECG (electrocardiogram, 125 Hz sampling rate) sensor node for measuring the rate and regularity  

of heartbeats, Arterial (125 Hz) and Glucose (50 Hz) nodes for pressure measurements, Motion node 

(100 Hz) for movement strength recording, Respiration node (25 Hz) for the test of respiration 

frequency, and Temperature node (10 Hz) for the real-time temperature monitoring of human body. In 

the experiments, both Telos node and iHop@Node [40] based networks are under investigation, the 

typical payload length in the packet is set to 2 bytes, and each simulation is set to 2 s. Fixed seed 

values are also adopted to mitigate the influence of the starting time of data sensing. Further, note that 

iHop@Node consists of a low power microcontroller PIC16F88 [46] and a high data rate transceiver 
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nRF24L01+ [47] which supports the rate of 2 Mbps, 1 Mbps, and 250 kbps. Since that Microchip’s 

non-beacon based (unslotted CSMA/CA algorithm) MiWi [48] protocol stack is designed for PIC 

microcontroller families from PIC16 to dsPIC33, so the simulation of unslotted CSMA/CA algorithm 

is implemented in the PIC16F88 microcontroller of iHop@Node and related results will be shown 

(detailed use of unslotted CSMA/CA algorithm on iHop@Node is described in [1]). 

Figure 7. Typical WBANs for medical and health care. 

 

For such a network, each sensor node represents a specific scenario, and the use of different 

configurations of the unslotted CSMA/CA algorithm under this multi-scenario case could cause 

different performances at each sensor node. Note that in this experiment during the algorithm tuning 

process, the same algorithm parameter combination is used to configure all sensor nodes. As 

mentioned previously, performance optimization problems always involve multiple objectives to be 

met simultaneously in each specific scenario. These objectives are usually conflicting such as 

achieving maximum network reliability and at the same time minimizing the energy consumption. 

However, this kind of situation cannot happen most of the time, because with channel competition 

packet loss can be prevented if more channel access attempts, retransmission attempts, or longer 

backoff wait time are used, and hence more energy will be consumed in these processes. Therefore, 

there is no single solution to a multi-objective optimization problem such as this one, in addition to the 

use of the Pareto front method to find a set of mathematically equal solutions (Section 4.4).  

In the test, two objectives (energy consumption and packet loss rate) are subjected to optimization 

within the framework to achieve the solution trade-offs. In the multi-scenario situation of the network, 

the fitness function of each individual is composed of two pairs of energy consumption and packet loss 

rate for two different sensor nodes. The detailed fitness function is given as: 

( )min [ 1, 1, 2, 2]X EnergyNode PktLossProNode EnergyNode PktLossProNodep  (8) 



J. Sens. Actuator Netw. 2013, 2 694 

 

 

where X is the parameter space of the unslotted algorithm (four parameters). Node1 and Node2 are 

different nodes that are selected from ECG, Arterial, Motion, Glucose, Respiration, and Temperature 

sensor nodes. The multi-objective genetic algorithm in MATLAB R2012a optimization toolbox  

(ver. 6.2) was integrated into the iMASKO framework and was used to generate the Pareto front for 

energy consumption and packet loss probability. The GA was configured for 60 initial integer 

individuals, 30 generations, scattered crossover, 0.8 crossover fraction as well as 2 elite children. 

Figure 8 shows the obtained four-dimensional Pareto front from the Telos mote based network. 

Figure 8. Energy and packet loss Pareto front (Glucose vs. Respiration/Temperature). 

 

In the Figure, the node energy consumption and network packet loss rate of the glucose sensor node 

are compared with the corresponding performance metrics of the respiration and temperature nodes 

respectively. According to the problem requirements, a good tradeoff solution for both energy and 

reliability can be manually selected by the decision maker based on their knowledge and intuitive 

experience (e.g., dashed rectangle in the Figure 8). Algorithm configurations are also presented next to 

the tradeoff point in the Figure 8 (e.g., [macMinBE, macMaxBE, macMaxFrameBackoffs, 

macMaxFrameRetries] = [3, 5, 3, 1]). On the other hand, while the glucose sensor node is in both 

experiments, the results show that under such multi-scenario network conditions, the best tradeoff 

solution for two specific cases might not guarantee the best tradeoff for another two cases. Therefore, 

if an overall tradeoff solution is required for the whole network then a more comprehensive 

optimization on all possible scenarios needs to be evaluated.  

In addition, the performances (energy, reliability) of the highest sample rate based ECG node are 

also tested and compared with the glucose node for the iHop@Node based network. Two cases were 
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under investigation, 1 Mbps based high data rate and 250 kbps based low data rate. Figure 9 shows the 

4D Pareto front between energy cost and packet loss for two data rate cases.  

Figure 9. Energy and packet loss Pareto front (ECG vs. Glucose 1 Mb and 250 kb). 

 

The results in Figure 9 show that the balance of tradeoffs between energy consumption and packet 

loss still needs to be found on the Pareto front for both data rate cases. As compared to the commonly 

used 250 kb low data rate, the high data rate based network can provide both lower energy 

consumption and packet loss, which brings it closer to the ideal performance area. This is because the 

high data rate reduces the channel occupation condition, so more packets can be successfully 

transmitted. For energy saving, this comes from two parts. Firstly, with good channel conditions under 

high data rate, mechanisms like repeated channel check and retransmission in the unslotted algorithm 

are no longer necessary, since almost all the packets can be successfully transmitted with one attempt, 

and energy is saved from protocol overhead. Secondly, despite the fact that a high data rate case 

consumes more current during the packet and ACK frame transmission, the time spent in both 

transmissions are greatly reduced due to the high data rate, and ultimately a large amount of energy 

can be saved from this part.  

6. Conclusion and Future Work  

In this work, a generic genetic algorithm-based optimization framework iMASKO is proposed for 

the performance metric optimization of wireless sensor networks. It supports the optimization of both 

theoretical analysis based models and simulation based models. The high efficiency and availability of 

the framework have been proved by modeling the required performance metrics into a weighted sum 

based cost function and comparing these results with exhaustive simulations. In the meantime, with the 

study of a typical health-care network on human body, the simultaneous optimization of four 
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performance metrics on different node platforms and different data rates has proved that the 

framework can well support multi-scenario and multi-objective based optimization.  

For the future work, in the weighted sum based optimization, how to make each metric belong to 

strictly the same scale is still a challenge. In addition to the simple linear weighted sum cost function 

for the protocol parameter optimization, a set of fundamental performance bounds is required since it 

is essential for determining whether the target protocol is appropriate for a specific network design 

choice [49]. On the other hand, the optimization of SystemC-based simulation could improve the whole 

evaluation process of the framework even when larger population size and generations are employed.  
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