
J. Sens. Actuator Netw. 2013, 2, 557-588; doi:10.3390/jsan2030557
OPEN ACCESS

Journal of Sensor
and Actuator Networks

ISSN 2224-2708
www.mdpi.com/journal/jsan

Article

A Multi-Agent-Based Intelligent Sensor and Actuator Network
Design for Smart House and Home Automation
Qingquan Sun 1, Weihong Yu 2, Nikolai Kochurov 1, Qi Hao 1,* and Fei Hu 1

1 Department of Electrical and Computer Engineering, University of Alabama, Tuscaloosa,
AL 35487, USA; E-Mails: qsun3@crimson.ua.edu (Q.S.); nick.kochurov@gmail.com (N.K.);
fei@eng.ua.edu (F.H.)

2 College of Transportation and Management, Dalian Maritime University, Dalian 116026, China;
E-Mail: yuwhlx@163.com

* Author to whom correspondence should be addressed; E-Mail: qh@eng.ua.edu;
Tel.: +1-205-348-2618; Fax: +1-205-348-6959.

Received: 9 June 2013; in revised form: 2 August 2013 / Accepted: 6 August 2013 /
Published: 19 August 2013

Abstract: The smart-house technology aims to increase home automation and security with
reduced energy consumption. A smart house consists of various intelligent sensors and
actuators operating on different platforms with conflicting objectives. This paper proposes
a multi-agent system (MAS) design framework to achieve smart house automation. The
novelties of this work include the developments of (1) belief, desire and intention (BDI) agent
behavior models; (2) a regulation policy-based multi-agent collaboration mechanism; and
(3) a set of metrics for MAS performance evaluation. Simulations of case studies are
performed using the Java Agent Development Environment (JADE) to demonstrate the
advantages of the proposed method.

Keywords: multi-agent system; smart house; intelligent sensor-actuator networks; JADE

1. Introduction

A smart house consists of a variety of embedded sensors/actuators, distributed/mobile computing
units and energy harvesting devices. The smart house technology enables home automation functions,
such as lighting/venting/air conditioning control, multimedia, security, healthcare, etc. A smart house

J. Sens. Actuator Netw. 2013, 2 558

can understand environmental contexts, such as weather, time and location, as well as human contexts,
such as identity, activity and behavior. Based on the contextual information, the smart house can provide
services, such as energy efficiency control, security monitoring and medical assistance, as shown in
Table 1.

Table 1. The functions and devices in smart house systems.

Functions
temperature/illumination/ventilation control,
healthcare assistance, security management

Sensors
thermal, light, temperature, acoustic,
photo, pressure, medical

Actuators switch, heater, air-conditioner, lamp, speaker, TV
Operating systems TinyOS, SunSPOT, Android
Computing units smart phone, tablet, microcontroller

However, an integration of such a large number of distributed devices will result in a
complicated system, in which different components may have conflicting objectives. Besides, multiple
sensing/computing platforms, such as Android, TinyOS and SunSPOT, could be used. A promising
solution is to utilize multi-agent technology for system design and management. An agent is an
independent hardware/software co-operation unit, which can understand the situation and respond to
stimuli according to predefined individual behaviors [1]. Each agent has its own special functionalities:
such as sensing, action, decision and database. Multiple agents, when deployed together, can
automatically share information with each other and form collaborative group behaviors to achieve the
common goal [2]. However, in order to develop smart houses based on multi-agent systems (MASs), the
following technical challenges have to be resolved:

1. development of a generic approach that can systematically generate individual behavior for
different agents;

2. development of a framework that can control group behavior of multiple agents;
3. development of a set of metrics to evaluate the performance of individual and group behaviors

of agents;

Conventional approaches defining individual agent behavior are based on each agent’s functionalities
and roles. The lack of a unified methodology usually results in ad hoc procedures for agent system
design. We have been developing a belief, desire and intention (BDI)-based agent behavior generation
method. The user’s goal, tasks and contextual information can be converted into a set of belief, desire
and intention models. The individual agent behavior is then systematically developed based on BDI
models. Group interaction protocols and resource management policies are also generated to control
group behavior of multiple agents. For performance analysis and optimal design purposes, individual
and group behaviors can be modeled as finite-state machines, and their efficacy and efficiency can be
analyzed and evaluated through Petri-net methods.

In this paper, we present a multi-agent design framework for smart house applications, as shown
in Figure 1. A BDI-based agent model is proposed for individual behavior formulation. A regulation

J. Sens. Actuator Netw. 2013, 2 559

policy-based group behavior control is proposed based on Petri-net analysis. A set of performance
metrics is presented to evaluate individual and group behaviors for system optimization. Case studies
are performed using the Java Agent Development Environment (JADE) tools.

Figure 1. The proposed design and evaluation procedure of multi-agent systems for smart
house technology.

Belief, Desire,
Intention (BDI)

Policy and
Protocol

Individual Agent
Behavior

Multi-Agent
Group Behavior

JADE
Implementation

Performance
Evaluation

Parameter
Optimization

User Goal and Tasks Environmental & Human Contexts

SUNSPOT
Implementation

This paper is organized as follows: Section 2 reviews related work. Section 3 describes the system
architecture and problem statement. Section 4 summarizes the individual and group behavior generation
and control methods. Section 5 presents the JADE implementation. Section 6 discusses the evaluation
metrics. Section 7 provides related results and discussions. Section 8 concludes the paper and outlines
future work.

2. Related Works

Smart Home technology aims to provide a flexible, comfortable and energy-efficient home
environment to improve upon the quality of life for residents through the use of sensor-actuator
networks and information processing techniques. Most smart home designs emphasize the use of
artificial intelligence algorithms [3–8]. Sensor networks [9–11] and multi-modal information fusion
techniques [12] have also been utilized to perceive situations and achieve automatic control. However,
these systems usually involve large amounts of information processing and centralized implementation
schemes. Their mechanisms are not optimal to achieve distributed, scalable and robust smart house
automation.

On the other hand, distributed data acquisition and in-network processing mechanisms have been
proposed to improve sensor-actuator networks’ efficiency and speed in information acquisition and
situation perception [13,14]. Techniques, such as adaptive sampling, in-network aggregations, runtime
reconfiguration and multi-task query are used to enhance query performance with reduced data
throughput and power consumption. Furthermore, [15] provides a building management framework
for multiple node platforms, which can dynamically capture the morphology of the building and
management multiple node groups with different functionalities. These technologies assume that:
(1) only simple operations are involved for data acquisition and actuation; (2) only basic computing
algorithms are used for in-network processing; and (3) the whole system can be homogeneously
developed, except for the base station. However, many sensors/actuators for home automation require

J. Sens. Actuator Netw. 2013, 2 560

complicated procedures of calibration, configuration and cooperation. Besides, sensors and actuators
impose different requirements upon hardware and computing capabilities. Machine learning techniques
are required for in-network processing to achieve context and situation perceptions. Learned context
and knowledge models need to be stored in databases for easy access. Therefore, these distributed units
have to be enhanced with different computing, communication, configuration and storage capabilities,
without losing the system scalability and robustness against local failures.

Agent-based approaches have been used to develop scalable smart house and home automation
technology [16–18]. A typical smart house includes sensing agents (e.g., temperature, floor
sensors), administration and decision agents (e.g., interface, butler and reasoning units), action agents
(e.g., effector, actuator and housekeeper), and database agents (e.g, context and knowledge bases).
Sensing agents are used to collect information about the environment, resources and human activity.
Administration and decision agents manage interactions among agents, dispatch events, perform
reasoning and assign tasks. Action agents execute the tasks, reconfigure the system and provide services.
Database agents accumulate information and knowledge from other agents’ experiences. In the existing
implementations, agents are designed according to their roles; there is no unified procedure for agent
behavior design nor a mathematical model for agent performance analysis.

Forming and managing collaborations among multiple agents is a challenging problem. Both
centralized and distributed methods have been developed [19–21]. In the centralized scheme, there
is a control agent, which manages the information exchange among agents, coordinates their actions
and resolves conflicts. However, centralized schemes are not scalable, and a failure of some agents
will result in dysfunctions of the whole system. In the distributed scheme, there is no central control
agent, but there is an agent management platform, which maintains task stacks and message queues and
resolves the conflicts among resource requests. The whole platform is scalable to the number of agents.
This platform is implemented among distributed computing units. Still, such a platform cannot solve
the intrinsic conflicts among agent actions. Therefore, it is necessary to develop a set of mathematical
models and tools for multi-agent performance analysis.

Petri-net technology has been developed to analyze the functionality and evaluate the performance of
asynchronous, distributed, discrete systems [22]. It provides a set of graph based tools under a unified
framework that can be used to study the reachability, liveness and boundedness of a system. Petri-net
based strategies have been proposed for multi-agent scheduling [22–24]. A property-preserved Petri-net
method has been developed to analyze the BDI model [25].

However, Petri-net-based analysis tools are only suitable to validate logic models of group behavior.
A more detailed study of multi-agent group behavior, with physical models of sensors and actuators,
needs a proper simulation/implementation platform. Among existing implementation platforms of
multi-agent systems, such as Zeus, TAOM4E [26], JADE is the most popular one due to the use of
the Java programming language and its compliance with IEEEstandards on Foundation for Intelligent
Physical Agents (FIPA) [27]. Furthermore, its mobile versions (JADE Leap, SubSense) can be
implemented on Android devices and Java-based SunSPOT sensor motes [28]. JADE has also been
used in smart house and healthcare applications [29,30].

Our research aims to develop a unified framework for behavior design and control for different types
of agents using belief, desire and intention models. We develop a set of methods for group behavior

J. Sens. Actuator Netw. 2013, 2 561

design and control based on regulation policies and Petri-net analysis. JADE tools are used to analyze
the computational complexity, communication throughput and energy consumption of the proposed
multi-agent system.

3. System Setup and Problem Statement

3.1. Intelligent Agents

An agent is an independent hardware/software co-operation unit with the following characteristics:
goal-oriented, adaptive, mobile, social and self-reconfigurable. Each agent is capable of understanding
its situation and adapts to changing environments through self-configuration, as shown in Figure 2a. The
situation perception is achieved through learning and contextual modeling of event data, as shown in
Figure 2b. After a set of contextual bases are learned from the high-dimensional event data, different
scenarios can be represented by the clustered contextual coefficients. The agents are then able to percept
the situation and localize regions of interest (RoIs) through identified scenarios [31–33]. Each agent has
a behavior state machine and a behavior library; it chooses a certain behavior according to individual
goals and other agents’ behaviors.

Figure 2. Illustration of (a) agent architecture; (b) situation perception from event
sequences.

Event Dispatcher

Situation

Variables

Situation

Functions

Behavior 1 Behavior N

Local

Variables

Local

Functions

Local

Variables

Local

Functions

Events

…
S1

S2

S3

S1

S2

S3

S4

(a)

RoI
Localization

Situation Perception

S1 S5 S3 S2 XX S5

Event Data

Contextual Basis

Contextual Coefficient

(b)

3.2. Multi-Agent Interactions and Collaborations

Multi-agent-based smart house technology aims at providing environmental control, security,
entertainment and healthcare services for users with high energy efficiency. The system consists of four
major types of agents: sensing, action, decision and database as shown in Figure 3. Such a multi-agent
architecture will enable efficient, distributed information collection and processing, as well as system
adaptation. Each agent has a set of beliefs, desires and intentions. All agents share beliefs through
inter-agent communication. Given a set of beliefs, each agent can plan its short-time behavior, according
to its understanding of the situation and recent events, to achieve the desired goal. The multi-agent
platform provides an agent execution engine, as well as other related services, such as communication,

J. Sens. Actuator Netw. 2013, 2 562

naming, timer and resource management. There is a library for communication protocols, collaboration
mechanisms and resource management schemes. Given a regulation policy and the user’s goal, a
communication protocol, a collaboration scheme and a resource management policy will be selected
from the library.

Figure 3. Illustration of multi-agent collaboration.

Belief, Desire, and Intention (BDI)

Tasks: Target Tracking/Recognition/Analysis and Sensor Self-Calibration

Sensing

Agent

Action

Agent

Decision

Agent

Database

Agent

Resource Management Policy and Agent Interaction Protocol

3.3. User Interface and Event Dispatching

The user interface has two functions: (1) convert user’s goal and environment and human context
into a set of beliefs, desires and intentions for each agent; and (2) select a communication protocol, a
collaboration mechanism and a resource management scheme based on the regulation policy provided
by the user. For example, goal: house security; constraints: one month with an operation of 100 mW
power consumption; tasks: measuring the gait biometrics of subjects inside the house. These inputs will
be converted into selections of sensor modalities, algorithms/protocols, context/behavior templates and a
resource management policy. There are two types of events: (1) external and (2) internal. External events
represent different states of the environment and human subjects’ behavior. Internal events represent
different states of agents’ behavior. These events will be dispatched to operating agents, and in each
agent, events will trigger behaviors under certain situations.

3.4. Problem Statement

The goal of this study is to develop a MAS framework with a set of design tools for smart house and
home automation applications, which can:

1. design and control individual agent behaviors based on a belief, desire and intention model;
2. design and control multi-agent group behaviors based on a regulation policy; and
3. evaluate system performance and optimize design parameters based on a set of metrics.

The system diagram is illustrated in Figure 4. It can be seen that the operation of the whole
system relies on the interaction and collaboration among various agents: sensing, action, decision and
database. The individual and group behaviors of these agents are formulated by agent models and
regulation policies. The design of agent models and regulation policies should be a strict procedure
instead of an ad hoc one. Therefore, it is an important issue to develop a set of mathematical models
that can describe the individual and group behaviors of agents. Based on these mathematical models,

J. Sens. Actuator Netw. 2013, 2 563

the collaboration performance of agents can be analyzed, and design parameters for the whole system
can be optimized.

Figure 4. The proposed multi-agent system (MAS) architecture for smart house technology.

User

S1 S2

S4

…

Database Agents

User interface
Administra!on

and dispatch

Rule Base

Workflow

Home Healthcare

…

D1 D2

D3 D4

Environment

control Action Agents
Sensing Agents

S3 Security

Management

Personalized

Entertainment

…

Decision

Agents

…

…

……

4. Agent Behavior Design and Evaluation

Our system design is mainly focused on three topics: (1) individual agent behavior; (2) multi-agent
group behavior; and (3) agent behavior analysis. The developed MAS will enable the functionalities of
a smart house technology, as listed in Table 1, through multi-agent collaboration.

4.1. BDI Model-Based Individual Agent Behavior

An agent is a system that is situated in a changing environment and chooses autonomously among
various options available. Each agent needs to have an appropriate behavior (i.e., actions or procedures
to execute in response to events) based on a belief, desire and intention (BDI) model.

1. Beliefs represent the information the agent has about itself, other agents and environments.
2. Desires store the information on the goals to be achieved, as well as properties and costs associated

with each goal.
3. Intentions represent action plans to achieve certain desires.

Beliefs of an agent are derived from its perception of situations (i.e., the environment, itself and other
agents). For example, an agent may have the following beliefs: (1) its own position, state, capability;
(2) time, ambiance, temperature, location; (3) user’s activity disposition, preference; and (4) other
agents’ state, conditions, capability. The desires of an agent are generated by user’s input and its own
beliefs. Compared with the user’s goals, an agent’s desires are more practical and achievable. Intentions
consist of feasible action plans. Each set of plans is formed from beliefs, desires and old plans. An
intention depends on the current situation and updates events and user goals. Given an intention, the
agent will choose a certain behavior model from a library.

Figure 5 shows the generic BDI model for individual agent behavior design. The beliefs are modeled
as a set of Bayesian networks to represent the relationships among random variables of the environment,
user and agents. The belief updating function can recursively update the conditional probability functions
of random variables according to up-to-date evidence. The option generation function can map the user’s
goals to a set of feasible goals through existing beliefs. This is equivalent to adding constraints to a set of

J. Sens. Actuator Netw. 2013, 2 564

objective functions. The feasibility filtering function can generate an action sequence through dynamic
programming of the constrained objective functions. Based on the possible action sequence, one of the
behavior models from the behavior model library will be selected.

Figure 5. BDI model based individual agent behavior design.

User Input

Environment / agents

Event input

Belief updating function

beliefs

desires

intentions

Option generation function

Feasibility filtering function

Behavior selection function
Behavior

behaviors

Situation

 Perception

Table 2. belief, desire and intention (BDI) model-based sensing agent individual behavior
for lighting control.

User input Illumination Control

Belief

location: living room
time: night
number of humans: two subjects
energy: moderate

Desire
Set up proper illumination conditions for each human activity
with the goal of reducing power consumption

Intention

(1) use thermal sensor to identify human activity
(2) use light sensor to detect the current illumination level
(3) adjust illumination conditions to a proper level for that activity
(4) choose the energy-efficient behavior mode

Behavior

(1) Sensor agent: (low resolution) sensing→ (simple) processing→
(low data throughput) transmission→ (parameter) configuration

(2) Action agent: (less frequent) communication→ (parameter) configuration→
(less frequent) command

J. Sens. Actuator Netw. 2013, 2 565

Table 2 gives an example to illustrate the procedure of generating the behavior model. The user
input is illumination control. The environmental beliefs include time, location, number of humans and
energy conditions. Based on the beliefs, the desire is to setup proper illumination conditions with the
goal of reducing power consumption. The intention plan includes four actions: (1) use thermal sensors
to identify the subjects’ activities; (2) use light sensors to detect the current illumination conditions;
(3) change the illumination conditions to accommodate the current activity; and (4) choose an agent
behavior model that saves energy. As a result, energy-efficient behavior models for sensing and decision
agents are selected to perform this illumination control task.

4.2. Regulation Policy-Based Multi-Agent Group Behavior

When a group of agents work together, three major issues need to be addressed: (1) communication
protocol; (2) collaboration scheme; and (3) resource management. A group of collaborative agents
exchange various types of information, including service requests, service reports and the states of
each agent. Therefore, a communication protocol should be formulated to ensure high efficiency in
information exchange among agents. The collaborative activities of a group of agents may result
in conflicts on schedule, resource and causality. Deadlocks, oscillation, unreachable tasks should be
avoided for group behaviors of agents.

Figure 6 shows the process of generating a multi-agent interaction protocol. Each interaction
protocol defines a group behavior. Given a user regulation policy, the multi-agent platform configuration
function can generate a set of feasible communication protocols and collaboration schemes based on
resource conditions and individual agent behavior models. Each regulation policy contains: (1) priority;
(2) a task list; (3) a resource list; and (4) power consumption restrictions. Given a group behavior of
multiple agents, possible conflicts can be checked and evaluated by using Petri-net methods. Among
those protocols without any operational conflicts, the one with the highest perform-to-cost ratio will be
chosen. A corresponding resource management policy will be adopted by the multi-agent platform.

Figure 6. Regulation policy-based multi-agent group behavior design.

Multi-agent platform configuration function

User

Regulation

Policy

Resource

conditions

Agent individual

behavior

Multi-agent

communication protocol

Multi-agent

collaboration scheme

Conflict checking & resolving

Resource

management policy

System performance-to-cost analysis

Multi-agent

Interaction

Protocol

J. Sens. Actuator Netw. 2013, 2 566

Table 3 shows three typical regulation policies with different priorities: (1) response time; (2) quality
of service (QoS); and (3) energy efficiency. For response time-oriented regulation policies, fast sensing
agents will be chosen, and no database agent will be used; decision agents will use simple algorithms to
make fast decisions. For QoS-oriented regulation policies, high resolution sensing agents will be chosen,
and a database agent will be used to enhance the situation/context awareness of the sensing process,
which can improve the information fidelity; more complicated action planning will be used for action
agents to achieve better control quality. For energy efficiency-oriented regulation policies, low resolution
sensing agents will be chosen, and a database agent will be used to enrich the information content of the
sparse measurements; more computations will be performed within each agent to reduce communication
throughput; more planning activity within the decision agents will be performed to improve the efficiency
of action agents.

Table 3. Regulation policies and agent interaction protocol designs. QoS, quality of service.

Regulation Policy Priority Interaction Protocol

policy 1: response time high-speed sensing→ database agent→ action agent
policy 2: QoS high-resolution sensing→ decision agent→ database agent→ decision

agent→ action agent
policy 3: energy efficiency low-resolution sensing→ decision agent→ action agent

4.3. Agent Behavior Model and Petri-Net-Based Analysis

Both individual and group behaviors can be modeled as finite-state machines (FSM). A finite state
machine consists of a number of states. For an agent, each state represents the status of an agent
and is associated with certain functions. The transitions among states are also associated with certain
operations. For example, as shown in Figure 7, the database agent has three states: waiting, query,
done. When the database agent receives a request from the decision agent, it will change from the first
state to the second state, and after the query is done, it will change to the third state and send the result
to the decision agent. At the same time, after the decision agent sent a request to the database agent,
the decision agent will change to the waiting state. When the decision agent receives a reply from the
database agent, it will change to the computing state. Once finished computing, it will change to another
state for making the decision. The final decision will be sent to the action agent.

For a group of agents, each state represents the status of agent collaboration. Figure 7 shows a
composite FSM model of a multi-agent system consisting of four agents. The FSM models of multi-agent
behaviors enable a mathematical analysis of their feasibility and stability. One reason is that FSM is a
mathematical model of computation, and it can be used in distributed systems to implement system
automation. The other reason is that we proposed to use Petri-net as the mathematical evaluation tool
to analyze and test our multi-agent model. Moreover, the Petri-net is generated based on the FSM in
our design.

The biggest challenge for agent collaboration is resolving possible conflicts in scheduling and
resource allocation. Petri-net (PN) models have emerged as very promising performance modeling tools

J. Sens. Actuator Netw. 2013, 2 567

for systems that exhibit concurrency, synchronization and randomness. Petri-nets have been used as one
of the mathematical models to describe the execution process of distributed systems. In this work, we
utilize Petri-net approaches to study the reachability, consistency of the multi-agent system and evaluate
its group behavior.

Figure 7. The architecture of a multi-agent system and the finite states of each agent.

��������

����	

�������

����	

	
�
��

����	

��	���

����	��
�� ��

��������� ��
�

��
����	

�� ��
����	

�������

��
�� ��

���� ������	

�����

��
�����	�

�
�
�
�
�
��

�������

���������

��	 ��
��

�������

��
���

���� ��
��

Figure 8 shows Petri-net graphs of three collaborative agents. Each PN consists of positions,
transitions and input and output functions. A PN is said to be safe for an initial state if all states are
reachable. Figure 8a shows a reachable PN model. The states of a PN evolve by the firing of transitions.
A transition is alive for an initial state if there exists a firing sequence for that initial state to reach the next
state. Figure 8b shows a state reachability graph of the valid model in (a). When certain transitions are
no longer available or when all or part of the PN no longer functions, there will be mistakes in the system
design. Figure 8c shows an unreachable PN model. A PN is alive for an initial state if all transitions
are live for that initial state. A deadlock is a state in which no transition can be fired. Liveness of a PN
implies the degree of absence of potential deadlock states. Based on these concepts, the feasibility and
performance of multi-agent collaboration can be evaluated [34].

To check the security and reachability of a multi-agent collaboration scheme using Petri-net methods,
we define a PN as a four-tuple combination, {P, T, IN,OUT}, where:

P = {P1, P2, P3, · · ·Pn} (1)

is a set of states, and:
T = {T1, T2, T3, · · ·Tn} (2)

is a set of transitions subject to:
P ∪ T 6= 0, P ∩ T = 0 (3)

J. Sens. Actuator Netw. 2013, 2 568

Figure 8. Collaboration scheme design using a Petri-net (PN) graph for three agents. (a) a
reachable PN model; (b) the state reachability graph of a valid collaboration model; (c) an
unreachable PN model.

���
���
���

��

��

��

��

�	

�

�� ��

��

����

(a)

�� ��

�� ��

��

��

��

��

��

(b)

P0

P2

P6

P1

P3

P4

P7

P5

P8

T1
T4

T2

T3 T5

(c)

J. Sens. Actuator Netw. 2013, 2 569

Assume IN is an input function that defines directed arcs from states to transitions, and OUT is an
output function that defines directed arcs from transitions to states. The process of testing security and
reachability of our proposed collaboration model is demonstrated by the following algorithm:

Algorithm 1: Security and reachability test algorithm.
Input: positions: P , transitions: T , position to transition function: IN , transition to position

function: OUT

Output: state transition matrix: M
i← 0;1

M0 ← initial state;2

W ← OUT − IN ;3

s← sizeof(T);4

while i < s do5

i← i+ 1;6

Mi ←M0 + Ti ∗W ;7

if the value of each element in Mi is not larger than 1 then8

Mi is reachable;9

continue;10

else11

Mi is unreachable;12

break;13

end14

end15

return M16

Example I: We use an example to verify the safety and reachability of multi-agent collaboration
schemes. For the model shown in Figure 8a, the input function is given by:

IN =



T \ P P0 P1 P2 P3 P4 P5 P6 P7 P8

T1 1 0 1 0 0 0 0 0 0

T2 0 0 1 0 0 0 1 0 0

T3 0 0 0 0 1 0 0 1 0

T4 0 1 0 1 0 0 0 0 0

T5 0 0 0 0 0 1 0 0 1


The output function is given by:

OUT =



T \ P P0 P1 P2 P3 P4 P5 P6 P7 P8

T1 0 1 0 1 0 0 0 0 0

T2 0 0 0 0 1 0 0 1 0

T3 0 0 0 0 0 1 0 0 1

T4 1 0 1 0 0 0 0 0 0

T5 0 0 1 0 0 0 1 0 0



J. Sens. Actuator Netw. 2013, 2 570

According to the definition, an incidence matrix is given by:

W = OUT − IN (4)

We then obtain:

W =



T \ P P0 P1 P2 P3 P4 P5 P6 P7 P8

T1 −1 1 −1 1 0 0 0 0 0

T2 0 0 −1 0 1 0 −1 1 0

T3 0 0 0 0 −1 1 0 −1 1

T4 1 −1 1 −1 0 0 0 0 0

T5 0 0 1 0 0 −1 1 0 −1


The incidence matrix is used to find out the changes in a Petri-net upon firing a given transition. The
characteristic equation of a state transition is given by:

Mi = M0 + Ti ×W (5)

where M0 is the initial state of the state transition equation.
For this collaboration model, the initial state, M0, should be:

M0 =

[
P0 P1 P2 P3 P4 P5 P6 P7 P8

1 0 1 0 0 0 1 0 0

]

The points in P0, P4, P6 are tokens, which represent the current state of the agent. We choose to fire
transition 1; we can get the result of the next state:

M1 =

[
P0 P1 P2 P3 P4 P5 P6 P7 P8

0 1 0 1 0 0 1 0 0

]

We then continue to trigger all the transitions along the path shown in Figure 8. The transition matrix is
obtained as:

T =


1 0 0 0 0

1 0 0 1 0

1 1 0 1 0

1 1 1 1 0

1 1 1 1 1


The complete state transition matrix will be:

M =


P0 P1 P2 P3 P4 P5 P6 P7 P8

1 0 1 0 0 0 1 0 0

0 1 0 1 0 0 1 0 0

1 0 0 0 1 0 0 1 0

1 0 0 0 0 1 0 0 1



J. Sens. Actuator Netw. 2013, 2 571

It can be seen that in the state transition matrix, the number of tokens in any state is not larger than one.
This means that there are no conflicts. In other words, the proposed collaboration model is safe and
reachable. The state reachability graph is shown in Figure 8b.

Example II: In contrast, for the PN model shown in Figure 8c, the incidence matrix, W , is:

W =



T \ P P0 P1 P2 P3 P4 P5 P6 P7 P8

T1 −1 1 −1 1 1 0 0 0 0

T2 0 0 0 −1 1 0 −1 1 0

T3 0 0 0 0 −1 1 0 −1 1

T4 1 −1 0 0 0 0 0 0 0

T5 0 0 1 0 0 −1 1 0 −1


The transition matrix, T , is the same, and the state matrix is:

M =



P0 P1 P2 P3 P4 P5 P6 P7 P8

1 0 1 0 0 0 1 0 0

0 1 0 1 1 0 1 0 0

1 0 0 1 1 0 1 0 0

1 0 0 0 2 0 0 1 0

1 0 0 0 1 1 0 0 1

1 0 1 0 1 0 1 0 0



Figure 9. Java Agent Development Environment (JADE) multi-agent implementation.

SunSPOTJ2EEJ2SE

Container Container Container

Runtime

environment

Decision Agent

Sensing Agent

Action Agent

Database Agent
Application

layer

Internet WSN

The Petri-net analysis method is based on the FSM model. In an FSM, any agent only can stay in one
state at each moment. When the state transition matrix of Figure 8c has a value of two, this means that

J. Sens. Actuator Netw. 2013, 2 572

at a certain moment, an agent needs to stay in two states. Obviously, such a status is hardly reachable
during a collaboration. According to [35], such a state transition matrix does not satisfy the safeness
metric. Therefore, there is a conflict in the collaboration design shown in Figure 8c, that is, such a
collaboration is neither safe nor reachable.

5. JADE Implementation

The proposed multi-agent system is implemented using the Java Agent Development Environment
(JADE). JADE is a Java-based open source software framework for developing multi-agent systems.
The JADE architecture is built on peer-to-peer modality. Intelligence, initiative, information, resources
and control can be fully distributed across a group of heterogeneous hosts, including mobile terminals
and devices, through wireless or wired networks. Each agent can communicate and negotiate with its
peers to reach mutually acceptable agreements for cooperative problem solving.

5.1. JADE Framework

In our system implementation, we have chosen a three-layer architecture, as shown in Figure 9.
The lowest layer is the runtime environment, such as j2se/j2ee on local computing devices or Squawk
VM on SunSPOT mobile sensor nodes. The middle layer is the JADE platform, which consists of
a number of containers, which provide services for multi-agent operations. The upper one is the
application layer in which agents (sensing, decision, database and action) perform collaborations to
accomplish required tasks. Figure 10 shows a snapshot of the JADE IDE.

Figure 10. Snapshot of the JADE development environment.

5.2. Multi-Agent Implementation

Each JADE application consists of a set of agents with unique names and IDs. Agents execute tasks
and interact with each other by exchanging messages and beliefs. Agents run on a platform that provides
services, such as message delivery, agent migration and resource management. A platform is composed
of one or multiple containers, which can be implemented among distributed hosts, such as mobile
devices, the base station and sensor/actuator nodes. Each container can host multiple agents. A typical

J. Sens. Actuator Netw. 2013, 2 573

agent program has three components: (1) behavior; (2) communication protocol; and (3) graphical user
interface (GUI).

Each agent has a set of active behaviors; each behavior should achieve a single task or sub-task.
The behavior can be defined as one-shot, cyclical or conditional. For each behavior, the execution
method needs to be implemented. Multiple behaviors in each agent have to be scheduled properly.
Each communication protocol contains four components: (1) definition of the message structure;
(2) discovery of agents for communication; (3) message sending and reception mechanism; and
(4) message filtering function. Each agent GUI has three components: (1) a standard graphical user
interface for user interaction; (2) a jFrame interface containing visual components (e.g., textbox, button,
checkbox); (3) a set of events, events handlers and event listeners.

In our study, there are four types of agents: sensing, action, decision and database. The detailed
behavior of each agent can be summarized as the following algorithms. Algorithm 2 gives an example
of a simple behavior for sensing agents. n sensor nodes can fuse their sensory data, based on context
information, to form a set of scenario data. Algorithm 3 gives an example of a simple behavior for
decision agents. The input for the decision agents is scenario data from sensing agents. Decision agents
will interact with database agents to access the knowledge database and inference rules.

Algorithm 2: Sensing agent behavior.
Input: number of sensing agents: n; context message: m
Output: scenario data (a data set of human subjects, light, temperature, etc.): s
i← 1;1

while i ≤ n do2

check state;3

if ni is not suspended then4

receive m;5

s← observation signal;6

else7

check next one;8

end9

i← i+ 1;10

end11

return s12

Algorithm 4 gives an example of a simple behavior for database agents. The input for database
agents is a request message. Database agents can provide inference rules based on context variables.
Algorithm 5 gives an example of a simple behavior for action agents. Action agents perform some
actions according to commands from decision agents. The detailed behaviors of these agents under
different policies are also provided in the FSMs shown in Figures 11–13.

J. Sens. Actuator Netw. 2013, 2 574

Algorithm 3: Decision agent behavior.
Input: scenario data from all working sensing agents: s; number of sensing agents: n
Output: decision
data← 0; B the fusion of scenario data1

for i← 1 to n do2

data← data+ si3

end4

process data;5

refer decision rules : dr;6

if dr == null then7

create request message : rMessage;8

send rMessage to database agent;9

receive response;10

make decision;11

else12

make decision13

end14

send decision to action agent;15

Algorithm 4: Database agent behavior.
Input: request message from decision agent: rMessage

Output: reference: r
while rMessage do1

search related rules;2

if rules found then3

r ← rules4

else5

r ← null6

end7

end8

return r9

Algorithm 5: Action agent behavior.
Input: decision command from decision agent: cmd

Output: feedback message: fMessage

while cmd do1

act;2

generatefMessage;3

if act then4

fMessage← success5

else6

fMessage← failure7

end8

end9

return fMessage10

J. Sens. Actuator Netw. 2013, 2 575

Figure 11. The finite state machines for each agent under the response-time-oriented policy.

���������	

���
����

�	�����

��
��������	
��	�����	
����
�

�����������	

�
����

�	
������
��������������	
�

��	��������	
����
�

���������	
���

	������	
���

���
����

��������
���
�����������	�

������	
����
�

�	
������

������
�	
��� ���������

��	�����
�

Figure 12. The finite state machines for each agent under the energy-efficient-
oriented policy.

���������	

���
��

�	
������
���������������

��	��������������
�

����������	�
�

����

��	�
�

��
�����������������������	�����	
����
�

���
��

���������������

������
��������	

�������������

��	����
��
�����
�

�����
��

��������

���
�����������	�������������
�

�	
������

��
��
	��	�
�

J. Sens. Actuator Netw. 2013, 2 576

Figure 13. The finite state machines for each agent under the QoS oriented policy.

���������	

�������� �����
��

���
�����������	�

������	
����
�

�	
������

������ �	
������
��������������	
�

��	��������	
����
�

������������	

�	����������	

�
	��������	

��
�����������������������	�������	
����
�

������ �����������������

���	���

����������������

��	��������	
����
�

���������

��	�����
�

�������� �����������	�����	��

������������
�
�����������	

��
������������	
��	�����	
����
�

�
����������	
�	�����

6. Evaluation Metrics

A number of metrics can be used for performance evaluation of multi-agent systems. These evaluation
metrics can fall into two categories: logic and quantitative evaluation metrics. Logic evaluation metrics
validate logic functions and conflicts of a multi-agent system. Quantitative evaluation metrics measure
the quality of service, power consumption, computing complexity and communication throughput of
the system.

6.1. Logic Evaluation Metrics

We develop logic evaluation metrics based on Petri-net models. For a Petri-net, reachability,
boundedness and liveness are common metrics for evaluation. Reachability refers to all Petri-net
states having the ability to be transformed from an initial state through a sequence of transition firing.
Boundedness refers to the possibility of all the states being reached in a finite sequence. Liveness refers
to the degree of absence of deadlocks. Multi-agent collaboration is based on hierarchical finite state
machines. Given environmental and system uncertainties, deadlocks and large bounds are inevitable
in collaboration schemes. Besides, the evaluation of liveness and boundedness of a Petri-net involves
higher computational complexity. Therefore, in this paper, we only choose state reachability (SR) as the
logic metric to validate a MAS design.

J. Sens. Actuator Netw. 2013, 2 577

6.2. Quantitative Evaluation Metrics

Quantitative evaluation metrics can be used to measure the QoS of a multi-agent system, as well as
the resource consumption. In the context of MAS, QoS refers to a ratio between real performance and
ideal performance of the system. It is a real number between zero and one. Resource consumption
indexes include communication throughput, memory occupancy, computation complexity and power
consumption. We can use above indexes normalized by the power consumption to evaluate the
effectiveness of a multi-agent system.

7. Results and Discussions

7.1. Individual Agent Behavior Evaluation

The individual agent behavior design is based on BDI models. For a given user goal and existing
beliefs, a set of feasible desires and intentions (i.e., action plan) will be generated to select suitable
agent behaviors. Low complexity intentions correspond to simple agent behaviors (e.g., low sensing
resolution, low complexity estimation and control algorithms). High complexity intentions correspond to
complicated agent behaviors (e.g., interaction with database agents for estimation, control and decision).
We use the computational complexity of intentions to represent the overall intention complexity.
Figure 14 illustrates the behavior design result.

Figure 14. BDI models for four types of agents.

Belief 1 Belief 2 Belief 3
0

5

10

15

20

25

In
te

nt
io

n
co

m
pl

ex
ity

 (
p*

n*
lo

g(
n)

)

Sensing Agent
Decision Agent
Action Agent
Database Agent

Generally, in a BDI model-based multi-agent system, beliefs include an understanding of the
condition of agents, the situation of the environment and the demands of users. In order to reduce
the cost of the whole sensing system and to give an intuitive description of agent behaviors, in this
part, we simplify the beliefs to be only about the illumination condition in a room (the situation of the
environment). In Figure 14, belief1, belief2 and belief3 represent varying, high and low light intensity,
respectively. The coefficient, p, represents the computation complexity for one operation, the coefficient,
n, stands for the size of agent states. The coefficient, n, can be obtained from the specific agent FSM

J. Sens. Actuator Netw. 2013, 2 578

design. The factor, log n, which represents a certain degree of parallelism in the computing, is introduced
in this paper to calculate the intention complexity motivated by the complexity analysis of multi-agent
system [36].

7.2. Multi-Agent Group Behavior Evaluation

Multi-agent group behavior design is based on a regulation policy and Petri-net analysis. For a
given user’s regulation policy of tasks and resources, a set of agent collaboration protocols is generated
based on individual agent behaviors and resource conditions. Petri-net analysis methods are then used
to validate and analyze candidates for group behaviors. For each valid group behavior, quality of
service performance and related computing/communication/energy costs are used to select the final
group collaboration protocol. Figure 15 shows the successful rate of multi-agent collaboration for
three regulation policies (response-time-oriented, QoS-oriented, and energy-efficiency-oriented) under
different scenarios (complex, medium and simple).

Figure 15. Performance of multi-agent collaborations under three different policies.

Scenario 1 Scenario 2 Scenario 3
0

0.2

0.4

0.6

0.8

1

1.2

In
te

ra
ct

io
n

su
cc

es
sf

ul
 r

at
e

Response time oriented policy
QoS oriented policy
Energy efficient oriented policy

In Figure 15, scenario 1, scenario 2 and scenario 3 correspond to complex, medium and simple
scenarios, respectively. More specifically, the complex scenario includes the light intensity of the
environment, the power condition of agents and the demands from the user. The medium scenario
includes the light intensity of the environment and the power condition of agents. The simple scenario
includes the user demands only. Because the complex scenario contains three constraints, the agents need
to perform more analysis to meet the demands. Obviously, the high-speed sensing and low-resolution
sensing operation (defined in Table 3), under the response-time-oriented and energy-efficiency-oriented
policies, will lead to poorer analysis/decision results than the QoS-oriented policy does. Therefore,
the QoS-oriented policy has the highest successful interaction rate. Likewise, for the simple scenario,
only the fast response requirement is considered. Under the imposed time constraint, obviously the
response-time-oriented policy will yield the highest successful interaction rate.

J. Sens. Actuator Netw. 2013, 2 579

7.3. System Performance Evaluation

We have investigated three system designs to test the proposed multi-agent-based sensor-actuator
system for the house illumination control problem. The design priorities are (1) response time,
(2) quality of service (QoS) and (3) power consumption. As shown in Table 3, the first design utilizes
high-speed sensing, simple decision algorithms, large control signals and the least database information
to achieve fast system response to the changing environment and situations. The second design utilizes
high-resolution sensing, complicated decision algorithms, large control signals and a lot of database
information to achieve a QoS to meet users’ expectation. The third design utilizes low-resolution sensing,
complicated decision algorithms, small control signals and a large amount of contextual and situational
information from the database to minimize power consumption. The detailed operation procedure of
these designed policies and the FSMs are given by Figures 11–13.

Figure 16 shows changing environment conditions, number of users and available energy storage,
which is supplied by energy harvesting devices. Figure 17 shows a comparison of QoS among
three regulation policies. Figures 18–20 illustrate the histograms of the QoS performance under
three policies given high-power and low-power storage levels, correspondingly. It can be seen
that: (1) the energy-efficiency-oriented policy yields unstable QoS and, sometimes, makes wrong
decisions; (2) when the power storage is sufficient, there is not much difference in the QoS
performance between the response-time-oriented policy and the quality of service-oriented policy;
(3) when the power storage level is low, there is not much difference in the expected QoS
performance between the response-time-oriented policy and the energy-efficiency-oriented policy, but
the energy-efficiency-oriented policy’s performance yields the largest deviation.

Figure 16. Environment, user and system information: (first row) light intensity; (second
row) number of humans; (third row) power condition.

0 50 100 150 200
0

500

Li
gh

t i
nt

en
si

ty

0 50 100 150 200
0

2

4

N
um

be
r

of
 h

um
an

s

0 50 100 150 200
0

2

4

Time

P
ow

er
 c

on
di

tio
n

J. Sens. Actuator Netw. 2013, 2 580

Figure 17. Comparison of the quality of service (QoS).

������������	
����	

��	��
������	

20 40 60 80 100 120 140 160 180 200
0

0.5

1
Q

ua
lit

y
of

 s
er

vi
ce

Response time oriented policy
Quality of service oriented policy

20 40 60 80 100 120 140 160 180 200
0

0.5

1

Samples

Q
ua

lit
y

of
 s

er
vi

ce

Quality of service oriented policy
Power consumption oriented policy

Figure 18. Histogram of the QoS performance under the response-time-oriented policy for
(left) high and (right) low power storage levels.

0.7 0.8 0.9 1
0

5

10

15

20

25

30

QoS

C
o

u
n

t

0 0.5 1
0

5

10

15

20

25

30
high−power condition low−power condition

mean = 0.9295

deviation = 0.0637
mean = 0.7506

deviation = 0.0962

J. Sens. Actuator Netw. 2013, 2 581

Figure 19. Histogram of the QoS performance under the quality of service-oriented policy
for (left) high and (right) low power storage levels.

0 0.5 1
0

5

10

15

20

25

30
high−power condition

C
ou

nt

0 0.5 1
0

5

10

15

20

25

30
low−power condition

QoS

mean = 0.9638
deviation = 0.0406

mean = 0.7864
deviation = 0.077

Figure 20. Histogram of the QoS performance under the energy-efficiency-oriented policy
for (left) high and (right) low power storage levels.

0 0.5 1
0

5

10

15

20

25

30
high−power condition

C
ou

nt

0 0.5 1
0

5

10

15

20

25

30
low−power condition

QoS

mean = 0.8370
deviation = 0.1567

mean = 0.7226
deviation = 0.1983

Figure 21 shows the comparison of computational time for these three system designs.
Figures 22–24 illustrate the histograms of the computation time under three policies given high-power
and low-power storage levels, correspondingly. It can be seen that (1) QoS-oriented policies lead to

J. Sens. Actuator Netw. 2013, 2 582

the highest computational costs, because they involve the use of databases and complicated decision
algorithms; (2) there is not much difference in computational time under response-time-oriented policies
for both power storage levels; (3) when the power storage level is low, all the policies will reduce both
the data volume and algorithm complexity, resulting in lower computation costs.

Figure 21. Comparison of computation (response) time.

0 50 100 150 200
0

50

100

C
om

pu
ta

tio
n

tim
e

0 50 100 150 200
0

5

10

15

Samples

C
om

pu
ta

tio
n

tim
e Response time oriented policy

Power consumption oriented policy

Response time oriented policy
Quality of service oriented policy

Figure 22. Histogram of the computation time under the response-time-oriented policy for
(left) high and (right) low power storage levels.

0 5 10 15
0

10

20

30

40

50

60

70
high−power condition

C
ou

nt

0 5 10 15
0

10

20

30

40

50

60

70
low−power condition

Computation (s)

mean = 2.21
deviation = 0.9518

mean = 1.68
deviation = 1.3775

J. Sens. Actuator Netw. 2013, 2 583

Figure 23. Histogram of the computation time under the quality of service-oriented policy
for (left) high and (right) low power storage levels.

0 20 40 60 80
0

5

10

15

20

25

30

35

40

45

50
high−power condition

C
ou

nt

0 20 40 60 80
0

5

10

15

20

25

30

35

40

45

50
low−power condition

Computation (s)

mean = 13.63
deviation = 8.9013

mean = 12.61
deviation = 10.1231

Figure 24. Histogram of the computation time under the energy-efficiency-oriented policy
for (left) high and (right) low power storage levels.

0 5 10 15
0

10

20

30

40

50

60

70
high−power condition

C
ou

nt

0 5 10 15
0

10

20

30

40

50

60

70
low−power condition

Computation (s)

mean = 4.86
deviation =
1.5939

mean = 4.53
deviation =
0.9323

If we have a weighted sum of computation complexity, sensing usage, control usage and
communication throughput, we can roughly estimate the system cost, which is equivalent to the
power consumption, for each system. Figure 25 shows a comparison of the system cost for the three
systems. The normalized system performance can be calculated as the performance-to-system cost ratio.
Then, we can use the normalized system performance to evaluate three system designs, as shown in

J. Sens. Actuator Netw. 2013, 2 584

Figure 26. It can be seen that: (1) the QoS-oriented system provides the best service, performs the most
computations, has the highest communication throughput and yields the least decision errors; (2) the
power consumption-oriented system yields the most decision errors and provides the poorest service. In
real applications, these three system operation modes can be interchanged to adapt to changing situations.

Figure 25. Comparison of system cost.

0 50 100 150 200
0

10

20

30

40

50

60

70

80

90

100

Samples

S
ys

te
m

 c
os

t

Response time oriented policy
Quality of service oriented policy
Power consumption oriented policy

Figure 26. Performance of multi-agent systems under three different policies.

QoS Computation Communication Error rate
0

0.2

0.4

0.6

0.8

1

N
or

m
al

iz
ed

 p
er

fo
rm

an
ce

Response time oriented design
Quality of service oriented design
Power consumption oriented design

7.4. Testbed Setup and Implementation Plan

Figure 27 illustrates the experimental setup of a multi-agent system testbed for smart house
applications. The testbed consists of thermal, pressure, laser and photonic sensor arrays based on
reconfigurable hardware platforms. With this testbed, human subject activities can be measured through
a multi-agent distributed sensor network. We have chosen SunSPOT as the wireless sensor network

J. Sens. Actuator Netw. 2013, 2 585

platform. Each SPOTmote includes a CPU, memory and a wireless radio. SunSPOTs run a native
small-footprint Java virtual machine that can host multiple applications concurrently. SunSPOTs offer
a fully capable Java ME (JME) environment that supports CLDC1.1, and MIDP1.0. stackable boards
can be used to expand the abilities of a SPOT and can include application-specific sensors and actuators.
Our future work includes the development of a multi-agent-based smart home sensor-actuator network
on the SunSPOT platform by using an improved version of JADE-LEAP.

Figure 27. A testbed for MAS-based smart house technology.

8. Conclusions

In this paper, we have presented a multi-agent design framework for smart house and home
automation applications. A set of techniques have been proposed to develop multi-agent-based
distributed sensor/actuator networks. A BDI model is developed for agent individual behavior design.
A regulation policy-based method is developed for multi-agent group behavior design. A Petri-net based
method is developed for system evaluation and analysis. A testbed has been constructed for further
experimental verification. The initial results have demonstrated that the proposed methods can be used
for multi-agent system design and performance evaluation. Our future work includes implementing the
multi-agent software in the developed sensor/actuator network and performing extensive experiments on
the testbed.

Acknowledgements

Partial support of this research was provided by the U.S. National Science Foundation (NSF)
CNS-1059212. All results presented do not necessarily reflect the opinions of NSF.

Conflict of Interest

The authors declare no conflict of interest.

References

1. Wang, M.; Wang, H. Intelligent agent supported flexible workflow monitoring system. Adv. Inf.
Syst. Eng. 2006, 787–791.

J. Sens. Actuator Netw. 2013, 2 586

2. Olfati-Saber, R.; Fax, J.A.; Murray, R.M. Consensus and cooperation in networked multi-agent
systems. Proc. IEEE 2007, 95, 215–233.

3. Qela, B.; Mouftah, H.T. Observe, Learn, and Adapt (OLA)—An Algorithm for Energy
Management in Smart Homes Using Wireless Sensors and Artificial Intelligence. IEEE Trans.
Smart Grid 2012, 3, 2262–2272.

4. Duong, T.V.; Phung, D.Q.; Bui, H.H.; Venkatesh, S. Efficient Coxian Duration Modelling for
Activity Recognition in Smart Environments with the Hidden Semi-Markov Model. In Proceedings
of 2005 Intelligent Sensors, Sensor Networks and Information Processing Conference, Melbourne,
Australia, 5–8 December 2005; pp. 2262–2272.

5. Gaddam, A.; Mukhopadhyay, S.C.; Gupta, G.S. Trial & Experimentation of a Smart Home
Monitoring System for Elderly. In Proceedings of IEEE Instrumentation and Measurement
Technology Conference (I2MTC), Hangzhou, China, 10–12 May 2011; pp. 1–6.

6. Sun, Q.; Wu P.; Wu Y. Unsupervised Multi-Level Non-Negative Matrix Factorization Model:
Binary Data Case. J. Information Security 2012, 3, 245–250.

7. Gaddam, A.; Mukhopadhyay, S.C.; Gupta, G.S. Elder care based on cognitive sensor network.
IEEE Sens. J. 2011, 11, 574–581.

8. Stefanov, D.H; Bien, Z.; Bang, W.-C. The smart house for older persons and persons with physical
disabilities: Structure, technology arrangements, and perspectives. IEEE Trans. Neural Syst.
Rehabil. Eng. 2004, 12, 228–250.

9. Sun, Q.; Hu F.; Hao Q. Human Activity Modelling and Situation Perception Based on Fiber-optic
Sensing System. IEEE Trans. Human Mach. Syst. 2013, in press.

10. Zhong, D.; Ji, W.; Liu, Y.; Han, J.; Li, S. An improved routing algorithm of Zigbee wireless
sensor network for smart home system. In Proceedings of 2011 5th International Conference on
Automation, Robotics and Applications (ICARA), Wellington, New Zealand, 6–8 December 2011;
pp. 346–350.

11. Tsou, Y.-P.; Hsieh, J.-W.; Lin, C.-T.; Chen, C.-Y. Building a remote supervisory control network
system for smart home applications. In Proceedings of 2006 IEEE International Conference
on Systems, Man and Cybernetics, SMC’06, Taipei, Taiwai, 8–11 October 2006; Volume 3,
pp. 1826–1830.

12. Zhang, L.; Leung, H.; Chan, K. Information fusion based smart home control system and its
application. IEEE Trans. Consum. Electron. 2008, 54, 1157–1165.

13. Madden, S.R.; Franklin, M.J.; Hellerstein, J.M.; Hong, W. TinyDB: An acquisitional query
processing system for sensor networks, ACM Trans. Database Syst. 2005, 30, 122–173.

14. Mueller, R.; Alonso, G.; Kossmann, D. SwissQM: Next generation data processing in sensor
networks. CIDR 2007, 7, 1–9.

15. Fortino, G.; Guerrieri, A.; O’Hare, G.; Ruzzelli, A. A flexible building management framework
based on wireless sensor and actuator networks. J. Netw. Comput. Appl. 2012, 35, 1934–1952.

16. Knishiyama, T.; Sawaragi, T. A decision-making modeling for home ambient intelligent system
and its extension to multi-agent modeling. In Proceedings of 2011 IEEE/SICE International
Symposium on System Integration (SII), Kyoto, Japan, 20–22 December 2011; pp. 354–357.

J. Sens. Actuator Netw. 2013, 2 587

17. Cervantes, L.; Lee, Y.-S.; Yang, H.; Ko, S.-H.; Lee, J. Agent-Based Intelligent Decision Support
for the Home Healthcare Environment. In Advances in Hybrid Information Technology; Springer:
Berlin/Heidelberg, Germany, 2007; pp. 414–424.

18. Cook, D.J.; Youngblood, M.; Heierman, E.O. III; Gopalratnam, K.; Rao, S.; Litvin, A.; Khawaja, F.
MavHome: An Agent-Based Smart Home. In Proceedings of the First IEEE International
Conference on Pervasive Computing and Communications, Fort Worth, TX, USA, 23–26 March
2003; pp. 521–524.

19. Hannon, C.; Burnell, L. A distributed multi-agent framework for intelligent environments. J. Syst.
Cybern. Inform. 2005, 3, 1–6.

20. Jarvis, P.A.; Wolfe, S.R.; Enomoto, F.Y.; Nado, R.A.; Sierhuis, M. A Centralized Multi-Agent
Negotiation Approach to Collaborative Air Traffic Resource Management Planning. In Proceedings
of the Twenty-Second Conf. on Innovative Applications of Artificial Intelligence, Atlanta, GA,
USA, 11–15 July 2010; pp. 1787–1792.

21. Helsinger, A.; Thome, M.; Wright, T. Cougaar: A Scalable, Distributed Multi-agent Architecture.
In Proceedings of IEEE International Conference on Systems, Man and Cybernetics, The Hague,
The Netherlands, 10–13 October 2004; Volume 2, pp. 1910–1917.

22. Moreno, R.P.; Tardioli, D.; Salcedo, J. Distributed implementation of discrete event control
systems based on Petri Nets. In Proceedings of 2008 IEEE International Symposium on Industrial
Electronics, Cambridge, UK, 30 June–2 July 2008; pp. 1738–1745.

23. Bai, Q.; Zhang, M.; Zhang, H., A Colored Petri Net Based Strategy for Multi-Agent Scheduling.
In Proceedings of Rational, Robust, and Secure Negotiation Mechanisms in Multi-Agent Systems,
Amsterdam, The Netherlands, 25 July 2005; pp. 3–10.

24. Kim, Y.W.; Suzuki, T.; Narikiyo, T. FMS scheduling based on timed Petri Net model and reactive
graph search. Appl. Math. Model. 2007, 31, 955–970.

25. Huan, F. Application of property-preservation Petri net operation in Agent BDI inner architecture
modeling. Comput. Eng. Des. 2009, 30, 245–255.

26. Benta, K.-I.; Hoszu, A.; Văcariu, L.; Creţ, O. Agent Based Smart House Platform with Affective
Control. In Proceedings of the 2009 Euro American Conference on Telematics and Information
Systems: New Opportunities to increase Digital Citizenship, Prague, Czech Republic, 3–5 June
2009; Article No. 18.

27. Pipattanasomporn; M.; Feroze, H.; Rahman S. Multi-Agent Systems in a Distributed Smart Grid:
Design and Implementation. In Proceedings of IEEE Power Systems Conference and Exposition,
Seattle, WA, USA, 15–18 March 2009; pp. 1–8.

28. Baker, P.C.; Catterson, V.M.; McArthur, S.D.J. Integrating an Agent-Based Wireless Sensor
Network within an Existing Multi-Agent Condition Monitoring System. In Proceedings of IEEE
International Conference on Intelligent System Applications to Power Systems, Curitiba, Brazil,
8–12 November 2009; pp. 1–6.

29. Wang, K.I.-K.; Abdulla, W.H.; Salcic, Z. Ambient intelligence platform using multi-agent system
and mobile ubiquitous hardware. Pervasive Mob. Comput. 2009, 5, 558–573.

30. Su, C.-J.; Wu, C.-Y. A JADE implemented mobile multi-agent based, distributed information
platform for pervasive health care monitoring. Appl. Soft Comput. 2011, 11, 315–325.

J. Sens. Actuator Netw. 2013, 2 588

31. Sun, Q.; Hu, F.; Hao, Q. Mobile Targets Region-of-Interest via Distributed Pyroelectric Sensor
Network: Towards a Robust, Real-Time Context Reasoning. In Proceedins of IEEE Conference on
Sensors, Waikoloa, HI, USA, 1–4 November 2010; pp. 1832–1836.

32. Sun, Q.; Hu, F.; Hao, Q. Context Awareness Emergence for Distributed Binary Pyroelectric
Sensors. In Proceedins of 2010 IEEE Conference on Multisensor Fusion and Integration for
Intelligent Systems (MFI), Salt Lake City, UT, USA, 5–7 September 2010; pp. 150–155.

33. Sun, Q.; Hu, F.; Hao, Q. Mobile targets scenario recognition via low-cost pyroelectric sensing
system: Towards a context-enhanced accurate context identification. IEEE Trans. Man Syst.
Cybern. 2013, in press.

34. Hsieh, F.S. Developing cooperation mechanism for multi-agent systems with Petri nets. Eng. Appl.
Artif. Intell. 2009, 22, 616–627.

35. Chauhan, D. JAFMAS: A Java-Based Agent Framework for Multi-Agent Systems Development
and Implementation. M.Sc. Thesis, University of Cincinnati, Cincinnati, OH, USA, 1997.

36. Dekhtyar, M.; Dikovsky, A.; Valiev, M. Complexity of multi-agent systems behavior. Log. Artif.
Intell. 2002, 2424, 125–136.

c© 2013 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article
distributed under the terms and conditions of the Creative Commons Attribution license
(http://creativecommons.org/licenses/by/3.0/).

	Introduction
	Related Works
	System Setup and Problem Statement
	Intelligent Agents
	Multi-Agent Interactions and Collaborations
	User Interface and Event Dispatching
	Problem Statement

	Agent Behavior Design and Evaluation
	BDI Model-Based Individual Agent Behavior
	Regulation Policy-Based Multi-Agent Group Behavior
	Agent Behavior Model and Petri-Net-Based Analysis

	JADE Implementation
	JADE Framework
	Multi-Agent Implementation

	Evaluation Metrics
	Logic Evaluation Metrics
	Quantitative Evaluation Metrics

	Results and Discussions
	Individual Agent Behavior Evaluation
	Multi-Agent Group Behavior Evaluation
	System Performance Evaluation
	Testbed Setup and Implementation Plan

	Conclusions
	Acknowledgements
	Conflict of Interest

