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Abstract: Sensor networks for various event detection applications cannot function
effectively if they are vulnerable to attacks. Malicious nodes can generate incorrect readings
and misleading reports in such a way that event detection accuracy and false alarm rates are
unacceptably low and high, respectively. In this paper, we present a malicious node detection
scheme for wireless sensor networks. Unlike others using a single threshold, the proposed
scheme employs two thresholds to cope with the strong trade-off between event detection
accuracy and false alarm rate, resulting in improved malicious node detection performance.
In addition, each sensor node maintains the trust values of its neighboring nodes to reflect
their behavior in decision-making. Computer simulation shows that the proposed scheme
achieves high malicious node detection accuracy without sacrificing normal sensor nodes
and outperforms the scheme using a single threshold.
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1. Introduction

Wireless sensor networks consist of a large number of tiny low-power sensor nodes, each with sensing,
computation and wireless communication capabilities [1,2]. Since sensor nodes are often deployed in
open and unattended environments, they are vulnerable to a wide variety of attacks. Compromised sensor
nodes may report data opposite to their own readings to their neighbors or the base station, and thus, any
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decision based on the reports might be wrong. Such malicious nodes behaving arbitrarily might cause
significant damage or shorten the network lifetime. Hence, it is necessary to detect malicious nodes in
the presence of noise, faults and events and to isolate them from the rest of the network.

Various fault or anomaly detection schemes have been proposed in the literature [3–6] to enhance
the reliability of wireless sensor networks. Due to the communication overhead, most schemes are
developed based on either distributed or hierarchical models. As the fault or error models for detection,
noise, transient and permanent faults are typically used. Sensor readings that appear to be inconsistent
with the remainder of the data set are the main target of the detection.

Event detection in the presence of faults in wireless sensor networks has also been investigated
in [7–12]. In [7], Bayesian fault recognition algorithms are presented, exploiting the notion that sensor
errors due to faulty equipment are likely to be uncorrelated, while environmental conditions are spatially
correlated. Ding et al. [8] proposed a localized fault-tolerant event boundary detection algorithm
for sensor networks based on statistics. A clustering technique using the maximum spanning trees
is presented in [10] to achieve fault-tolerance in event boundary detection. The importance of the
discrimination between events and measurement errors in sensor networks has been emphasized in [12].

In fault, event or anomaly detection in wireless sensor networks, malicious nodes are often ignored
or lightly treated, although they are likely to appear in the networks. In the case where malicious nodes
generate arbitrary readings that do not conform to the defined fault model, the resulting performance
might be much poorer than the estimated one. Moreover, if they behave intelligently, it would be more
difficult to detect events in the face of misleading reports or to distinguish events from false alarms due
to the malicious nodes.

Several schemes have been presented to detect malicious nodes in wireless sensor networks [13–17].
Curiac et al. [13] proposed a detection scheme using the autoregression technique. Signal strength is
used to detect malicious nodes in [14], where a message transmission is considered suspicious if the
strength is incompatible with the originator’s geographical position. Xiao et al. developed a mechanism
for rating sensors in terms of correlation by exploring the Markov Chain [15]. A network voting
algorithm is introduced to determine faulty sensor readings. Atakli et al. [16] proposed a malicious
node detection scheme using weighted trust evaluation for a three-layer hierarchical sensor network.
Trust values are employed and updated to identify malicious nodes behaving opposite to the sensor
readings. Based on the same model, a weight recovery mechanism is introduced in [17]. Another
intrusion detection scheme based on similar weighted trust evaluation was proposed in [18]. The
mistaken ratio of each individual sensor node is used in updating the trust values. Trust management
schemes have been proposed in routing and communications [19]. Some efforts are also being made
to combine communication and data trusts [20]. However, malicious node detection in the presence
of various types of misleading sensor readings due to the compromised nodes have not been deeply
investigated. In addition, the problem of distinguishing malicious nodes from events has not sufficiently
been taken into account.

In this paper, we present a malicious node detection scheme for fault-prone wireless sensor networks.
Malicious nodes are detected in the presence of noise, sensor faults and events. Two thresholds
are used to minimize false alarms while maintaining high malicious node detection accuracy. Trust
values of sensor nodes are employed to reflect their past behavior in decision-making. Besides, the
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scheme achieves an improved event region detection accuracy, resulting in more accurate malicious
node detection performance.

2. Background

Prior to presenting our malicious node detection scheme, we briefly define the models for the network,
events and faults to be used throughout the paper.

2.1. Network Model and Event Model

In malicious node detection, we assume that n sensor nodes, {v1, v2, ...., vn}, are randomly deployed
in the monitored area and have the same transmission range rc. Each sensor node has as its neighbors all
the sensor nodes within the transmission range. To represent indirectly the density of a sensor network,
we use the average node degree, d, where d =

∑n
i=1 di
n

and di is the degree of node vi.
Events may occur anywhere in the monitored area. The event region is assumed to be a circle with

radius re. When an event occurs, the sensor nodes in the event region report an alarm to their neighbors.
Each sensor node then makes a decision on an event based on its own reading and those of its neighbors.
Sensed data in this paper are assumed to be binary, 0(normal) or 1(unusual). In the case of an event,
normal sensor nodes in an event region are expected to report ”1”.

2.2. Fault Model

Faults, including malicious nodes, are assumed to occur randomly and independently in any nodes in
the network. Three types of faults, transient, permanent and malicious, are considered in this paper.
All the sensor nodes are assumed to have a permanent fault with the same probability pp. Both
stuck-at-0(normal) and stuck-at-1(unusual) faults are assumed to be equally likely to occur. In addition,
normal nodes are assumed to generate incorrect sensor readings due to transient faults with the same
probability pt. All the sensor nodes are also assumed to be malicious, with the same probability pm.
In the case of malicious nodes, they may report to their neighbors against the actual readings with a
probability of pma. If pma = 0.8, for example, each malicious node reports 1(0) with a probability of
0.8 when the actual reading is 0(1). As pma approaches 0, it becomes more difficult to identify them
due to the similarity in behavior of normal and malicious nodes, and it might also take a longer time to
distinguish between them.

3. Malicious Node Detection Using a Dual Threshold

In this section, we present a malicious node detection scheme for wireless sensor networks, where
two thresholds, θ1 and θ2, along with trust values, are used to achieve high malicious node detection
performance without sacrificing normal nodes.
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3.1. Representation of Node Trusts Using a Digraph

Each sensor node vi maintains a list of its neighbors, N(vi), and their trust values from the viewpoint
of vi. Trust values are updated each time a local decision on an event is made to reflect the correctness of
their reports. Two nodes, vi and vj , are neighbors of each other if their distance is less than or equal to rc.
To represent the trust values we use a weighted directed graph, where the weight wij , ranging between
0 and 1, represents the trust value of node vj from the viewpoint of vi. If wij = 1, for example, node
vi totally trusts vj . On the other hand, if wij = 0, it does not trust vj at all. In addition, vi also has its
own trust value, wii, ranging from 0 to 1. Once wii reaches 0, a flag Fi is set to 1, indicating that node
vi is faulty (including malicious). An illustration is given in Figure 1, where node v3 in the center has
six neighboring nodes. The number in the node v3 denotes w33. The numbers associated with the six
edges represent the trust values of the neighboring nodes at v3 (i.e., w3j). In the figure, v3 totally trusts
v2, while it does not give high trust to the node v7.

Figure 1. A representation of trust values using a digraph.

3.2. Modeling Event Detection Problem

The event detection problem is modeled as a hypothesis test problem [9], as shown in Figure 2, where
each sensor node determines whether an unknown binary hypothesis is H0 or H1, based on its own
reading and those of its neighbors. Each sensor node vi makes its own binary decision bi based on the
sensor reading xi. These decisions from k neighboring sensor nodes are combined for the final decision.
If majority voting is used, for example, v0 in the figure will decide H1 if

∑k
i=0 bi > d

k
2
e. Our malicious

node detection scheme is based on two threshold tests where trust values of the sensor nodes are reflected
in the tests.
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3.3. Event Detection Using a Dual Threshold

In event detection, each sensor node makes a local decision based on the sensor readings of itself
and its neighboring nodes. Two thresholds, θ1 and θ2 (θ1 ≥ θ2), along with trust values (as weights) of
neighboring nodes, are used to make a final decision on an event. The results are used in updating trust
values of the associated sensor nodes and identifying malicious nodes.

The threshold, θ1, is used to detect an event while maintaining low false alarm rates. Event nodes on
or near the boundary of an event region are likely to fail the test if it has more neighbors outside the event
region than inside. The threshold, θ2, helps them pass the test, resulting in more accurate event region
detection accuracy.

Figure 2. Distributed event detection.

After receiving the readings of all its neighbors, each sensor node computes the sum of weights of
nodes reporting 1, U1 and that of weights of nodes reporting 0, U0. It then applies the high and low
thresholds, θ1 and θ2, to U1

U0+U1
to determine which group it belongs to. The results divide all the sensor

nodes into three groups: R1, R2 and R3, where R1 and R2 are groups of nodes that pass θ1 and θ2 (but
fail to pass θ1), respectively. All the remaining nodes are in the group R3. Each sensor node in R2 is
reconsidered and indirectly determined to be an event node if it has a neighbor in R1.

An illustration is given in Figure 3, where there is an event region and sensor nodes are divided into
three groups (R1, R2, R3) based on the threshold tests. Some event-nodes are in R2. Most of them are
on or near the boundary of the event region, although some of them are surrounded by sensor nodes in
R1. Non-event-nodes in the right upper corner form a group and pass the test with θ2. They, however,
will be determined to be non-event nodes, since they do not have a neighbor in R1. Sensor nodes in R2

inside the event region are likely to be determined to be event nodes with the aid of nodes in R1. Some
non-event nodes (e.g., va) near, but outside, the event region, however, might also be determined to be
event nodes if they pass θ2 and have a neighbor in R1. An event-node, such as vb in Figure 3, on the
other hand, can be determined to be a non-event node if it fails both tests.
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Figure 3. Dividing sensor nodes into three groups, R1,R2 and R3, using two thresholds.

The role of the threshold θ1 is to minimize the false alarm rate. In most cases, a weighted majority
voting (i.e., θ1 = 0.5) will achieve high performance. The threshold, however, needs to be higher,
especially when the average node degree is low or fault probabilities are relatively high. An optimal
value of θ2 can be determined based on the values of re and rc. If re >> rc, a sensor node at the event
boundary is likely to have the same number of event and non-event nodes within its sensing range. If
re = rc, on the other hand, only about 39% of the nodes within the sensing range are event nodes. Hence,
θ2 = 0.4 will be used in the simulation later.

3.4. Updating Trust Values to Detect Malicious Nodes

Two trust values (weights), w0
ij and w1

ij , are used to represent the trustworthiness of node vj from
the viewpoint of vi. Here, w0

ij denotes the trust value of vj in the case of no-event, while w1
ij denotes

the trust value of vj in the case of an event. Employing two weights eliminates the cancellation effect
due to transitions between event and no-event states. In the threshold tests of the previous subsection,
min(w0

ij, w
1
ij) needs to be used as the weight wij . Depending on the results of the tests, the following

updates are performed to reflect the correctness of the current reports in the weights.
In the case of no-event, sensor nodes which are faulty or report a 1 lose their weights as follows:

w0
ij =

 max (0, w0
ij − α) for bj = 1 or Fj = 1

min (1, w0
ij + β) for bj = 0

(1)

Similarly, the weight of node vi itself is also updated as follows:

w0
ii =

 max (0, w0
ii − α) for bi = 1

min (1, w0
ii + β) for bi = 0

(2)

The above updates lower the weights of sensor nodes reporting a 1 by α. Sensor nodes with correct
readings, on the other hand, recover their weights by β. During this process, nodes with a transient or
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stuck-at-1 fault and malicious nodes reporting 1 intentionally lose their weights. Nodes with a stuck-at-0
fault gain more weights, although their trust values are bounded above by 1.

In the case of an event, nodes in an event region are expected to report 1. Malicious nodes in an event
region reporting 0 intentionally to lead to an incorrect decision, along with the nodes with a stuck-at-0
fault, are now the target of the updates. Since the exact boundary of an event region is not easy to figure
out, relatively conservative updates are performed not to sacrifice normal nodes near the event boundary,
unless some recovery measures are taken.

For vi ∈ R1 ∪R2 and vj ∈ R1,

w1
ij =

 max (0, w1
ij − α) for bj = 0 or Fj = 1

min (1, w1
ij + β) for bj = 1

(3)

Similarly, the weight of node vi itself is also updated as follows:
For vi ∈ R1

w1
ii =

 max (0, w1
ii − α) for bi = 0

min (1, w1
ii + β) for bi = 1

(4)

In updating the weights, two parameters α and β play an important role. It affects the detection rate
and detection time of malicious nodes. Some normal nodes can be sacrificed if α becomes larger. For
given pt and pma, the conditional probability that a malicious node reports data opposite to the ground
truth, Pinv, can be written as:

Pinv = pt(1− pma) + (1− pt)pma (5)

Let Nd denote the average number of no-event cycles required for detecting malicious nodes. Then,
for given α and β, the response time, Nd, can be derived as follows:

Nd(Pinv(−α) + (1− Pinv)β) = −1 (6)

where no false alarms are assumed to occur for simplicity. At each no-event cycle, a malicious node
loses its weight by α with probability Pinv or gains its weight by β with probability 1-Pinv. The node
will be determined to be malicious at the time the weight wij , initialized to 1, reaches 0.

Hence, Nd can be given by:

Nd =
1

Pinv · α− (1− Pinv)β
(7)

If α = 0.1, β = 0.02, pt = 0.1, pma = 0.2, for example, Pinv = 0.26 and Nd = 1
0.26×0.1−0.74×0.02 ≈89.

That is, malicious nodes are expected to be detected in about 90 cycles on average. As pma increases,
Nd decreases accordingly. Doubling the values of α and β will reduce Nd in half, while normal nodes
are more likely to be determined to be faulty. In addition, the ratio α

β
plays an important role in filtering

transient faults and widening the range of pma to be covered.
Our malicious node detection scheme consists of five steps as follows. Without loss of generality,

sensor reading, xj , is assumed to be the binary decision bj made at the sensor node vj . In Step 1, each
sensor node receives the readings of all its neighbors. Each node then computes the sum of the weights
of nodes reporting 1, U1 =

∑d
j=1wij× bj and that of the weights of nodes reporting 0, U0 =

∑d
j=1wij×
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(1− bj), in Step 2. Step 3 applies the two thresholds, θ1 and θ2, to U1

U0+U1
, to divide the nodes into three

groups: R1,R2 andR3, whereR3 includes all the nodes that failed both tests. In Step 4, each sensor node
inR2 is reconsidered and determined to be an event-node if it has a neighbor inR1. That is, sensor nodes
in R1 help sensor nodes in R2 make a final decision indirectly. In Step 5, each sensor node updates the
weights of its neighboring nodes according to the given updating policies. It also updates its own weight.
Sensor nodes with the trust value of 0 (i.e., a predefined lower bound) are treated as faulty or malicious.
They are logically isolated from the rest of the network, unless some recovery actions are taken.

——————————————————————————————————-
Malicious Node Detection Scheme

1. Obtain the sensor readings b′js of neighbors of vi
2. Compute U1

U0+U1
at each node vi

3. Divide the n nodes into three groups R1,R2 and R3

vi ∈ R1 if U1

U0+U1
> θ1

vi ∈ R2 if θ2 < U1

U0+U1
≤ θ1

vi ∈ R3 otherwise
4. If |R1| 6=0, then H = 1 (i.e., an event)

Determine that vi is an event node if (vi ∈ R1) or (vi ∈ R2, vj ∈ R1, vj ∈ N(vi))
If |R1| =0, then H = 0 (i.e., no-event)

5. Update weights, wii and wij , accordingly
——————————————————————————————————-

4. Performance Evaluation

4.1. Simulation Setup

Computer simulation is conducted to evaluate the performance of the proposed malicious node
detection scheme. It is carried out in a sensor network, where sensor nodes are randomly deployed
in a square region. The transmission range rc is chosen for the sensor network to have the average node
degree d = 12. Event regions are assumed to be a circle with radius re.

Faults and malicious nodes are generated randomly and independently in accordance with predefined
probabilities, pt (transient fault), pp (permanent fault) and pm (malicious node). If pt = 0.1, for example,
normal nodes are expected to report incorrect readings with a probability of 0.1. In the case of permanent
faults, both stuck-at-0 and stuck-at-1 are assumed to occur with the same probability. If pp = 0.1, for
example, both stuck-at-1 and stuck-at-0 occur with a probability of 0.05 each. In addition, pp is increased
by 0.02 every 20 cycles up to 0.1, to reflect the gradual increase in the number of nodes with a permanent
fault. Malicious nodes are generated with probability pm. They are assumed to report opposite to their
readings with probability pma.

Six metrics, malicious node detection rate (MDR), misdetection rate (MR), false alarm rate (FAR),
event detection accuracy (EDA), event region detection rate (ERDR) and boundary false alarm rate
(BFAR), are used to show the effectiveness of our scheme. MDR is defined to be the ratio between the
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number of detected malicious nodes and the total number of malicious nodes. MR is defined to be the
ratio between the number of normal nodes determined to be faulty and the total number of normal nodes.
FAR is defined as the ratio of the number of false alarm nodes to the total number of nodes. EDA is the
ratio of the number of events correctly detected to the total number of events generated. ERDR, the ratio
of the number of event nodes correctly identified to the total number of sensor nodes in the event region,
is defined to evaluate the event region detection accuracy. Finally, BFAR is used here to estimate the
false alarms very close to the event region. It is defined as the ratio of the number of false alarm nodes
one hop away from the event region to the total number of nodes one hop away from the event region.

4.2. Experimental Results

Malicious node detection schemes have to achieve high MDR while maintaining low MR. They also
need to maintain high EDA while keeping FAR extremely low. In addition, ERDR and BFAR that help
identify malicious nodes in an event region also need to be high and low, respectively.

To show the effectiveness of the proposed scheme, we first performed a simulation to estimate MDR,
MR and FAR for various values of pma when d = 12, pt = 0.1, pp = 0.1, pm = 0.1, α = 0.1 and β = 0.02.
The results after 100 cycles of operation are shown in Figure 4, where three different values of (θ1,θ2),
(0.5,0.4), (0.5,0.5) and (0.6,0.4) are chosen for comparison purposes.

MDR for pma >0.2 are very close to 1 for all the three cases under comparison, as shown in
Figure 4(a) since α

β
= 5. For the chosen values of α and β, even the nodes reporting a 1 every five cycles

on average lose their weights to be eventually detected. As pma approaches 0, malicious nodes behave
similar to normal nodes. Hence, it is not easy to detect them, although they do not cause any significant
harm. Further improvements in MDR, as long as Pinv > pt, can be made by decreasing the value of β
accordingly. MDR for α = 0.1 and β = 0.0125 instead is shown in Figure 5, where notable improvements
in MDR are observed for relatively small values of pma. Since α

β
≈8 in that case, sensor nodes reporting

a 1 every eight cycles still lose their weights with time to be eventually detected. If pt = 0.1 and
pma = 0.1, for example, Pinv = 0.1 × 0.9 + 0.9 × 0.1 = 0.18. Hence, malicious nodes with
pma = 0.1, when pt = 0.1, report a 1 every five cycles, approximately, and thus, they cannot remain
undetected, although it takes more time to detect them.

As far as MR is concerned, a dual threshold of 0.6 and 0.4 outperforms the other two and shows
persistent performance regardless of the value of pma, as shown in Figure 4(b).

FAR should be kept low, since frequent alarms due to incorrect decisions shorten the network lifetime
and might break the network function. FAR for a dual threshold of (0.6,0.4) is much better than that for
a single threshold of 0.5, as shown in Figure 4(c). FAR for the single threshold and the dual threshold of
(0.5,0.4) increases with pma, while FAR for (0.6,0.4) is kept extremely low for the entire range of pma.

We then performed the same simulation after changing pm to 0.2. Similar trends are observed for
the single and dual thresholds, as shown in Figure 6. When pma is close to 1, however, MDR drops
slightly. This is due to the fact that all the malicious nodes in the extreme case act like a faulty node with
a permanent fault. Hence, doubling pm causes more false alarms as pma approaches 1. Consequently,
the trust values of some malicious nodes cannot be lowered, resulting in a small decrease in MDR.
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MR for pm = 0.2, shown in Figure 6(b), is much higher than that for pm = 0.1, although the trend
is very similar. The scheme with a dual threshold of (0.6,0.4), although the small increase in MR is
unavoidable, still maintains a relatively consistent performance.

Figure 4. Malicious node detection rate (MDR), misdetection rate (MR) and false alarm rate
(FAR) for various values of pma when α = 0.1 and β = 0.02.
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The proposed scheme is designed for malicious node detection. However, the resulting event detection
performance also needs to be maintained high. EDA strongly depends on the value of θ1, since at least
one node in an event region must pass the threshold to detect an event. As shown in Figure 7, EDA
for the single threshold of 0.5 and EDA for the dual threshold of (0.5,0.4) are better than that for the
dual threshold of (0.6,0.4) when pt = 0.1, pm = 0.2 and re = rc. As re increases, however, it is almost
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guaranteed that at least one node can pass the test with θ1. The resulting EDAs for re = 2rc are almost
perfect for all three cases under comparison.

Figure 5. MDR for various values of pma when α = 0.1 and β = 0.0125.
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Figure 6. MDR and MR for various values of pma when pt = 0.1, pm = 0.2 and pp = 0.1.
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Figure 7. EDA for re = rc, α = 0.1 and β = 0.02.
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Event region detection accuracy plays an important role in malicious node detection, since malicious
nodes reporting 0 in an event region can be identified during the event period. To estimate the
effectiveness of the scheme in detecting event regions, the simulation is extended to obtain ERDR and
BFAR for various values of pma, when pt = 0.1, pma = 0.2 and re = rc. The results are shown in Figure 8
and Figure 9, respectively.

Figure 8. event region detection rate (ERDR) for various values of pma, when re = rc.
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Figure 9. and boundary false alarm rate (BFAR) for various values of pma when re = rc.
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The scheme with a dual threshold of (0.5,0.4) performs the best among the three cases under
comparison as far as ERDR is concerned. ERDR for the scheme with a single threshold of 0.5 is
significantly lower than the other two, as shown in Figure 8. As far as BFAR is concerned, a dual
threshold of (0.6,0.4) outperforms the other two, as shown in Figure 9. Significantly higher ERDR is
observed when re = 2rc for all three cases under comparison, as shown in Figure 10. A slight increase in
BFAR is also observed for each of the three cases, as shown in Figure 11, although the trends are similar.
Consequently, we suggest to use two thresholds of 0.6 and 0.4 in event region detection to correctly
identify malicious nodes behaving against the ground truth. Finally, the thresholds can be dynamically
adjusted depending on the applications to optimize the malicious node detection performance.

In the development of the proposed detection scheme, all the nodes are treated equally. It might be
worth considering for a sensor node to place more weight on its own reading than those of its neighbors,
as far as event boundary detection is concerned. For a malicious node in the corner of the network area
or with very few neighbors, it might be easy to pass the threshold if the neighbors are faulty or malicious
almost at the same time. Even when the node claims itself to be normal, it is highly likely to be isolated
from the rest of the network, due to the surrounding normal nodes.

Figure 10. ERDR for various values of pma, when re = 2rc.
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Figure 11. BFAR for various values of pma, when re = 2rc.
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5. Conclusions

In this paper, a malicious node detection scheme using a dual threshold in wireless sensor networks
is presented. Each sensor node maintains trust values of neighboring nodes to reflect their past behavior
in decision-making. Two thresholds are used to reduce the false alarm rate and enhance the event region
detection accuracy, resulting in more accurate malicious node detection performance without sacrificing
normal nodes. Simulation results have shown that the scheme with a dual threshold outperforms that
with a single threshold. The proposed scheme employs a few parameters whose values can be properly
chosen depending on applications. They can also be dynamically adjusted, if necessary, to optimize the
performance.
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