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Abstract: In this paper we present a unified comparison of the perfocamart four
detection techniques for centralized data-fusion codperapectrum sensing in cognitive
radio networks under impulsive noise, namely, the eigem#lased generalized likelihood
ratio test (GLRT), the maximum-minimum eigenvalue detactfMMED), the maximum
eigenvalue detection (MED), and the energy detection (B&¥9. consider two system
models: an implementation-oriented model that includeshibst relevant signal processing
tasks realized by a real cognitive radio receiver, and tieertttical model conventionally
adopted in the literature. We show that under the implentient@riented model, GLRT
and MMED are quite robust under impulsive noise, whereapén®rmance of MED and
ED is drastically degraded. We also show that performanceutihe conventional model
can be too pessimistic if impulsive noise is present, wheiteean be too optimistic in the
absence of this impairment. We also discuss the fact thailsiye noise is not such a severe
problem when we take into account the more realistic implgaten-oriented model.

Keywords: cognitive radio; direct down-conversion receiver; eiggne-based cooperative
spectrum sensing; energy detection; generalized liketlhmtio test; impulsive noise;
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1. Introduction

Spectrum scarcity in the fixed allocation policy is one of thain obstacles to the deployment of
existing wireless communication systems and services,taride development of new ones. With
the advent of the cognitive radio (CR) paradighj, [cognition-inspired dynamic spectrum acce2p |
techniques come into action by exploring the underutiligedions of the spectrum in time and space,
while causing no or minimum harm in the system that pays fangughat portion of the spectrum.
Among the many cognitive tasks that a CR can perform, spacsensing is the task of detecting
holes in frequency bands licensed to primary wireless nedsvéor opportunistic use by secondary
cognitive radios. Although sensing can be performed by saclondary receiver in a non-cooperative
fashion, cooperative spectrum sensing has been consid@@skible solution for problems experienced
by CR networks in a non-cooperative sensing situation, téeeiver uncertainty, multipath fading,
hidden terminals, and correlated shadowing. Among thetiegispectrum sensing techniqued, [
eigenvalue-based schemes are receiving a lot of attentie}, [mainly because they do not require
prior information on the transmitted signal, and, unlikesimergy-detection, in some eigenvalue-based
schemes the knowledge of noise variance is not needed Eiher

Cooperative spectrum sensing can be classified as ceattaim distributed, with the possibility of
being relay-assisted] in both situations. In centralized cooperative sensirggactollected by each
cooperating CR (e.g., received samples) are sent via atmegpaoontrol channel to a fusion center (FC),
in a process called data-fusion. After the FC processes dhe fdom the CRs, it decides upon the
occupancy of the sensed channel. Centralized coopera&insag can also be performed based on the
hard decisions made by all cooperating CRs, in a processdcdkcision-fusion. In this case, these
decisions are combined at the FC using binary arithmetiorbethe final decision is arrived at. In
both centralized schemes, the final decision is reportell trathe CRs via a control channel, and an
access algorithm takes place in the sequel. In distribudegerative sensing, no FC exists and the final
decision is iteratively reached by the cooperating CRsdbatmunicate among themselves. In the case
of relay-assisted cooperative sensing, a given CR may ssragelay to forward the sensing information
from one CR to another, for centralized or distributed opena

It is worth mentioning that the role of an FC in a centralizedperative spectrum sensing can be
assigned to a cluster-head in the context of clustered mktvapologies Y], which is the case of
most wireless sensor networks (WSN). This clustering aggracan be of particular value in large
area networks, where the adoption of a single FC could isergaohibitively the control channel
traffic and lead to inefficient spectrum utilization. Thisefficiency can be caused by the distinctive
spectrum occupancy in different regions of the network,clvhsould be misled by large-area-based
centralized decisions.

1.1. The Realistic Implementation-Oriented Model

Conventionally, the well-known memoryless linear disergime multiple-input multiple-output
(MIMO) fading channel model has been indistinctively agmptor modeling the received samples for
single-receiver, multi-sensor and for multiple-recejv@ngle-sensor cognitive devices in data-fusion
cooperative spectrum sensing. However, this model, hertbetalled conventional modeC¢mode),
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is not well suited to the case of multiple CR receivers coapeg, at least not without appropriate
modifications in the receiver model. These modificationswaetled because, in the conventional model,
the samples collected by each CR are considered forwarddtet6C exactly as they are, as if no
signal processing task is performed in advance. Here, stgupby the results ing], we consider a
more realistic implementation-oriented MIM®&{mode] approach in which typical signal processing
operations realized within a direct-conversion CR reaearehitecture are taken into account, such as
filtering, automatic gain control (AGC) and quantization.

1.2. Eigenvalue-based Sensing Schemes

Moreover, we investigate the performance of four eigeresdlased sensing schemes under impulsive
noise (IN) circumstances using the conventional MIMO clekinmodel and the implementation-oriented
model. Specifically, we assess the performance of the eafieenbased generalized likelihood ratio
test (GLRT); the maximum-minimum eigenvalue detection (KIY), also known as the eigenvalue
ratio detection (ERD); the maximum eigenvalue detectioieW, also known as Roy’s largest root
test (RLRT); and the energy detection (E®] punder several IN conditions and system parameters.
Although ED is not an exclusively eigenvalue-based detadi&chnique, it can be implemented using
eigenvalue information. It has been included in the analysthis paper for the sake of completeness,
also giving support to a broader pool of comparisons.

1.3. Impulsive Noise

Impulsive noise in wireless systems may arise from sevadf@drent sources, such as lightning,
electrical switches, motors, vehicle ignition circuiteidareflections from sea waves, and it is known
that it can severely degrade the performance of commuaitaystemsd,10].

In [11], for instance, the performance of energy detection witad®n combining and equal gain
combining is investigated, and it is shown that the senserfppmance can be affected by impulsive
noise. Also in L1] a non-linear method based on GLRT was proposed. Howevart éfom this
work, little effort has been put in the investigations on thiBuence of impulsive noise in cognitive
radio receivers in the context of spectrum sensing. In @aer no analysis has been previously made
considering the different eigenvalue based methods, anddh-realistic conventional model has been
applied in the literature.

1.4. Our Contribution

Motivated by the above issues, this paper aims at contnigutith investigations on the performance
of eigenvalue-based spectrum sensing algorithms in viesmwwo@important issues, namely, the effect of
impulsive noise and the behavior in a realistic implemeotedriented model.

Although it is known that IN can severely degrade the perforoe of communication receivers, little
effort has been put into investigations about the influeri¢l @ cognitive radio receivers in the context
of spectrum sensing. This paper also aims to contribute suith investigations.
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This paper presents a unified analysis about the influendé¢ inffour important detection techniques
for data-fusion cooperative spectrum sensing, namely, GMMED, MED, and ED, not only regarding
the conventional model that is often adopted in the litegtlbut also considering a more realistic
approach in which an implementation-oriented CR receivedehis taken into account.

We show that GLRT and MMED are quite robust in the IN environtmevhile MED and ED
performance is drastically affected. We also show that émsisig performance under the conventional
model can be rather pessimistic if IN is present, while it t@noptimistic in the absence of such
impairment. We further show that the implementation-aeermodel is intrinsically able to combat IN.

Given the large differences in performance attained byetlreedels in some situations, our main
conclusion is that the implementation-oriented model &hbe preferred for spectrum sensing design
and assessment, as it more closely reflects the realityhémnbre, this model shows that sensing can
be more robust than expected with the conventional modetnintpulsive noise circumstances. To the
best of our knowledge, no publication so far has considene a unified approach.

Many papers in the literature, such as2f14], deal with the detection of samples affected by
impulsive noise. Supposing that these samples can be fgrigentified, we also investigate some
simple techniques to mitigate the impact of IN in spectrumss®y. These techniques consist in simply
ignoring the affected samples or the affected receiverswpeeforming detection algorithms. We show
that these simple procedures can help improving the sepsirigrmance.

The rest of the paper is organized as follows. Sec®opresents the system model for the
eigenvalue-based sensing techniques and for IN gener&emion3 describes the simulation setup, and
Sectiond presents simulation results and discussions concernengptluence of the system parameters
on spectrum sensing performance. Sectodoes the same as sectidn but now considering the
influence of IN. The effect of some countermeasures addedifiadly to combat IN is also analyzed in
section5. Finally, Sectior6 concludes the paper.

2. Model

2.1. Centralized Eigenvalue-based Spectrum Sensing

In what concerns the baseband memoryless linear disecne¢éaMIMO fading channel model, assume
that there aren sensors (e.g., antennas) in a CRyosingle-sensor CRs, each one collectingamples
of the received signal from primary transmitters during the sensing period. Considarthese samples
are arranged in a matrix € C™*". Similarly, consider that the transmitted signal sampiemfthe
p primary transmitters are arranged in a maXixe CP*". LetH € C™*? be the channel matrix with
elements{h;;}, i = 1,2,...,mandj = 1,2,...,p, representing the channel gain between jtkg
primary transmitter and theth sensor (antenna or receiver). Finally, ¥etandV,y € C™*™ be the
matrices containing thermal noise and IN samples that pothe received signal, respectively. The
matrix of collected samples is then

Y =HX+V + Vy (1)

In eigenvalue-based sensing, spectral holes are detesitggltest statistics based on the eigenvalues
of the sample covariance matrix of the received signal matrif a multi-sensor device is used to decide
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upon the occupation of a given channel in a non-cooperast@dn, or even in a centralized cooperative
scheme with data-fusion (see SectignmatrixY is formed, and the sample covariance matrix

1
R=-YY' ()
n
is estimated, wherg)T means complex conjugate and transpose. The eigenvglyes \, > ---\,,.}
of R are then computed, and assuming a single primary transrgitte 1), the test statistics for GLRT,
MMED, MED, and ED are respectively calculated accordinggio [
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wheres? is the thermal noise power that is assumed to be known anchthe & each sensor input, and
tr(-) and| - || are the trace and the Frobenius norm of the underlying maaspectively.

All the eigenvalue based methods rely on the fact that tharzawvce matrix in the presence of noise
only is a diagonal matrix with all its elements equaldty and, hence, has a single eigenvalue also
equal too?. In the presence of a primary user, this is no longer true these methods try to identify
this situation. As we can see in Equatid),(with GLRT we calculate the ratio between the largest
eigenvalue and the average of all the remaining eigenvalne§IMED we consider the ratio between
the largest and the smallest eigenvalues. In MED we assuanéhi# noise variance? is known, and
compare the largest eigenvalue with In all these methods, the test statistic should be equaié¢pin
case only Gaussian noise is present.

In the conventional model, when a centralized cooperatvesisag with single-sensor (e.g., single
antenna) CRs is considered, matkxis presumed to be available at the fusion center as if no kigna
processing is needed before each row dé forwarded to the FC by each CR. A more realistic model
was originally proposed in8] and called themplementation-oriented modelt considers the main
signal processing tasks performed by each CR before thectell sample values are sent to the FC.
The diagram shown in Figure which adopts a direct-conversion receiver (DCR) architec[15], was
the main reference for constructing such a model. The chafitkis architecture was made based on
the consensus that DCR is the one that is promised to be afifgpteognitive radio applications in the
majority of situations19].

The analog radiofrequency front-end is made up of a widelaawtehna, a wideband band-pass filter
(BPF), a low-noise amplifier (LNA), and quadrature localibators (LO) and mixers responsible for
non-coherent direct conversion of the target channel fwhimse and quadrature (1&Q) baseband signals.
These signals are amplified using an AGC, which is respam$iibimaintaining its output signal within
the dynamic range of the analog-to-digital converters (ADCthe 1&Q signal paths. 1&Q channel
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low-pass filters (LPF) select the desired bandwidth to bepéaarand avoid aliasing. A noise-whitening
process takes place to guarantee that noise componentsgrericorrelated when the received signal
matrix is built at the fusion center. This is done becauselétection techniques considered here assume,
for optimum operation, that the noise samples are uncoectla

Figure 1. CR receiver diagram (adapted fro8j)[

ADC
Lag o ?‘@r et
0

Wideband Channel
BPF LPF

Remembering that the samples are quantized at the ADC\itfuantization levels, thieg, /N, bits
per sample at both | and Q after whitening can then be forvebtal¢he fusion center by a given digital
modulation scheme. At this stage, bit errors in the transimismay cause further impairments at the
available samples. This is however not the subject of thidyst

It is well known that the DC offset is one of the most relevarmilppems in a direct-conversion
receiver L6-18]. It corresponds to a DC value at the mixer output producetthbgelf-mixing of the LO
signal, which is originated from the non-ideal isolatioriviaeen the mixer ports and substrate leakage
in integrated receivers. DC offset can also be generated diyoag in-band interferer, second-order
distortion in the signal path, and LO reradiation. This D@lewhich can be constant or time-varying,
can saturate subsequent amplifiers or reduce the ADC dynan@e, causing severe performance
degradation. DC-blocking via capacitive coupling is tha@iest way of cancelling the DC offset, but
can produce performance degradation due to the time-glat&ure of the spectrum sensing process:
higher capacitances produces low signal distortion, buiesses the sensing settling time and hinder
receiver integration; lower capacitances reduces théngetime, but causes more signal distortion.
Additionally, DC blocking works only if the DC offset is cotat. For these reasons, capacitive DC
blocking is not well suited for DC offset cancellation in C&eivers with spectrum sensing capabilities.
Fortunately, a number of DC offset compensation technitage been proposed, some of them capable
of almost eliminating the DC offset, maintaining low settjitime, see19,20] and references therein.
In this paper we do not consider the DC offset problem, assgirtat it was completely removed by
some appropriate technique at the receiver.8lnwhere the model considered here was proposed, the
influence of imperfect DC offset removal on the spectrum isgngerformance is addressed.

2.2. IN Model

Impulsive noise can be (i) generated from the electricahsiar by direct induction on the receiver; or
(i) captured by the receiver antenna. In the first categbsmain noise sources are the ignition system
of ovens, the control system of dishwasher machines, th&tatwof heaters, and switches of fluorescent
and incandescent lamps. In the second category, typicate®are lightning and the ignition system
of cars.
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Several models are available in the literature for charetg IN [21-23]. Here we adopt the one
discussed in32], in which the IN waveform is generated by properly gating laite noise signal, as
illustrated in Figur€2. The main parameters that govern the IN waveform are alsershothis figure.
They are configured according to the noise source type, asibled in detail in 2].

Figure 2. Gating waveform (top) and impulsive noise waveform (boftom
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To adhere the above parameters to the context of spectruisimgewe translated them into five other
parameters:K is the ratio between the time-series average IN power an@vtbege thermal noise
power;pn denotes the probability of occurrence of IN during a givamssag period, angcr represents
the fraction of CRs hit by IN, when it occurs. As a result, tmelqability of the occurrence of IN is a
Bernoulli random variable with probability of succesg, and the number of CRs independently hit by
IN, when it occurs, is a binomial random variable with parger@n andpcg. A configurable numbei,
of IN bursts occurs during a sensing period, each burst gasonfigurable lengtiv, i.e., each IN burst
corrupts/Ns consecutive samples collected by a given CR. The sepallagioveen consecutive bursts is
uniformly distributed in the discrete-time intenj@l n — Ny, x Ng.

3. Simulation Setup

3.1. Conventional Model (C-Model)

The simulation setup under the conventional discrete-tingnoryless MIMO model G-mode)

just considers thaY, the matrix with received signal samples in Equati@) {s available to the FC
as if no signal processing is performed by each CR before dngpke values are forwarded to the
FC. MatricesX, H, V, andVy under theC-modelare generated as follows: To simulate a Gaussian
distributed noise-like transmitted sign&l,is formed by unitary variance (unitary power), independent
and identically distributed (i.i.d.) zero mean complex €aan samples. The Gaussian distribution
for the entries oiX is adopted because it accurately models several modulgpeals, for instance the
amplitude of a multicarrier signal, such as orthogonal desgy-division multiplexing (OFDM), with
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a large number of subcarriers, which is the preferred maidmdechnique in most modern wireless
technologies, including several digital television stams$. The elements in the channel matiare
zero mean i.i.d. complex Gaussian variables that simuléitg ayleigh fading channel between each
primary transmitter and sensor (CR), assumed to be cordtimy a sensing period and independent
from one period to another. The entries\inand V,y are complex Gaussian variables that represent,
respectively, the additive thermal and the impulse noiseupting the received samples. The desired
received signal-to-noise ratio (SNR), in dB, and the desireerage IN power are guaranteed by making
the variance of the noise samples equall®0>N?/1° and the variance of the IN samples equal to
K107SNR/10 for an average IN powek times the thermal noise power. Moreover, matkxis
normalized so thatl /mp)||H||% = (1/mp)tr(H'H) = 1.

The received matriyY = HX +V +V |y in the conventional model is then assumed to be available at
the FC, from which the covariance matRxis computed, and then the eigenvaldes}, i = 1,2,...,m.
The test statistics for GLRT, MMED, MED, and ED are respegitincomputed from Equation8)-(6).
In each detection technique, the corresponding test titasscompared with a threshold computed
from the desired false alarm probability, and a final decisipon the occupancy of the sensed channel
is reached.

3.2. Implementation-Oriented Model (R-Model)

The simulation setup under the realistic implementatioarted model R-mode) has been built to
mimic the system diagram shown in Figutein which the direct conversion to baseband is assumed
ideal, as also implicitly assumed in the conventional model

Matrices X, H, V, andV)y under theR-modelare generated as follows: To simulate a Gaussian
distributed noise-like transmitted signal with contrblieatime correlation at the receiver sid, is
formed by filtering i.i.d. zero mean complex Gaussian sampli¢h a lengthf. moving average (MA)
filter with no quantization (using floating-point computats). This type of filter was chosen for reasons
of simplicity; any other low-pass filter could be adopted adlwlrhe memory elements in the structure
of this and subsequent MA filtering processes are assumeaveozero initial value before the first valid
sample is applied to their inputs. As a result, the fifst- 1) samples resulting from the MA filtering, out
of (n+ L — 1), are discarded before subsequent operations. As in thetds=C-mode] the Gaussian
distribution for the entries oX is adopted because it accurately models several modulgieals. The
time correlation introduced by the filter models the limibsthdwidth of the transmitted signal, which is
proportional to the symbol rate.

The elements in the channel matkixare zero mean i.i.d. complex Gaussian variables that stenala
flat Rayleigh fading channel between each primary transnaitd sensor (CR), assumed to be constant
during a sensing period and independent from one perioddthan

To take into account the effect of the CR receive filters ontttegmal and impulsive noises the
entries invV andV y are MA-filtered complex Gaussian variables that represespectively, the colored
additive thermal and the impulse noise at the output of theive filters.

A normalization of filtered samples was done to guaranteeléis&ed received signal-to-noise ratio
(SNR), in dB, and the desired average IN power. SpecificXlly;- X /1/Px for unitary average received
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signal power,V <« (V/\/P_V) V10-SNR/10 for an SNR-dependent average thermal noise power, and
Vin & (V|N/\/W.N) Vv K10~-SNR/10 for an average IN powek™ times the thermal noise power, where
the symbol %" represents the normalization proces%, P,, and R, are the average time-series
powers inX, V, andV,y before normalization, respectively. Moreover, to guagarthe desired received
SNR, matrixH is normalized so thatl /mp)||H||% = (1/mp)tr(HH) = 1.
The effect of the LNA and the AGC on the samples processed dy-tth CR,: = 1,2,...,m, IS

given by the gain

JoaDV2  foaDV2n

g’i: —=
6 /iyiy,  Olvill

wherey; is thei-th row of Y, i.e., the set ofs samples collected by thieh CR, and|y;||» is the Euclidean
norm ofy;. The reasoning behind proposing these gains is explainéalla's: The combined gains
of the LNA and the AGC are those that maintain the signal anngd at the inputs of the in-phase and
quadrature ADCs within their dynamic rangPs By dividing the sample values by the square root of
yi'yi/n, which is the average power 9f, one obtains a sequence with unitary average power. Singe
Gaussian{y; } have Gaussian distributed sample values, conditionedeocatitesponding channel gain.
If o2 is the variance of these (complex) samples after the effeitteol NA and the AGC, to guarantee
that six standard deviations (practically the whole signalursion 0199.73% of the sample values) of
the 1&Q signals will be withinl—D/2, D/2], we shall haves,/o2/2 = D, which means that the signal
power at the output of the AGC will be? = 2D?/36. This justifies the factoP+/2/6 in Equation 7).
Finally, as the name indicates, the overdrive factgr > is included as a multiplier in Equatio)(
to simulate different levels of signal clipping caused bl r&DCs, i.e., it produces signal amplitudes
greater than or equal to 6 . For example,fgfn= 1.2 means that the dynamic ranges of the signals at
the input of the 1&Q ADCs will be20% larger than the dynamic ranges of the ADC's inputs. The 1&Q
clippings act on each sample value s applied to their inpdsraing tos < sign(s)min(|s|, D/2).

From above one can see that the AGC will affect not only theetgvel that corrupts the received
samples in the-th CR, but will also change the statistical behavior of thmphfied samples of;. Based
on this we conjecture that ED as well as other detection igdes that demand knowledge of the noise
variance information, such as MED (or RLRT), must take thega Equation 7) into account in both
the noise variance estimate and in the derivation of newstasistics different from Equation§)(and
(6). Further investigations on this issue are beyond the sobfies paper, representing an opportunity
for future contributions.

Back to the description of the implementation-oriented elduhsed on Figurd, the whitening
filter matrix W [24] that multiplies the MA-filtered, amplified and perhaps piga versions ofy;}
is computed with floating point according W = UC™', whereU is the orthogonal matrix from
Q = UZK', the singular-value decomposition of the covariance mdi The elements of) are
Qi; = aji—;, with {a;} representing the discrete autocorrelation function of i filter impulse
responseie., ar, = (1 —k/L), for k < L, anda;, = 0 otherwise, fori, j,k =0,1,...,(n—1). MatrixC
is the lower triangular matrix from the Cholesky decomposibf Q. The effect of the analog to digital
conversion of the processed sample values that will be sethiet FC is modeled by a quantizer with
configurable numbeN, of quantization levels.

(7)
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Assuming no bit errors in the reporting channels, the matliiéeeived matriyk = HX + V 4+ V)
in the implementation-oriented model is then formed at tke ffom which the covariance matrix
R is computed, and then the eigenvalugs}, ¢ = 1,2,...,m. The test statistics for GLRT,
MMED, MED, and ED are respectively computed from Equati@)s(@). In each detection technique,
the corresponding test statistic is compared with a thidsbemputed from the desired false alarm
probability, and a final decision upon the occupancy of timsed channel is reached.

4. Influence of the System Parameters

In this section we present simulation results and discasstoncerning the influence of the system
parameters under thiR-modelon the spectrum sensing performance for GLRT, MMED, MED, and
ED (the simulation file used in our simulations is availaldedownload as a supplementary material).
Curves for theC-modelare also included for purposes of comparison. It is worthtioamg that the
receiver operating characteristic (ROC) curves for alldeeection techniques under tRemode] for
m = 6, n = 50, and SNR= —10 dB, are in perfect agreement with those reported]nThe results in
this section were reported iB][and were included here so that this paper becomes sel&io@ak

The ROC curves shown hereafter were obtained with a minimtm @O0 runs in Monte Carlo
simulations implemented according to the setup describ&ection3. System parameters are those in
Table 1, unless otherwise indicated. Shaded areas in the grapresesy positions of ROC curves for
Ny = 8, and for f,q and L ranging from 1 to 2, and 1 to 20, respectively. They are meaneflect
parameter variations within empirical limits of practisanificance.

Table 1. Reference System Parameters.

C-Model andR-Model

Signal-to-noise ratio SNR: —10dB
Number of primary transmitters p=1
Number of CRs m =6

Number of samples collected by each CR = 50, 100
Impulsive to thermal noise power ratio K =0

Signal-to-noise ratio SNR- —10
MA-filter length L =1-20
ADC dynamic range D=2

ADC overdrive factor Jod = 1-2
Number of quantization levels Ny = 4,8,256

4.1. GLRT

Figure 3 shows the ROC curves relating the probability of false aléfiy) and the probability of
detection £y) for GLRT. It can be seen that the performance of the sensingrse under thR-models
poor for Ny = 4, changing slightly fromV, = 8 to Ny = 256. Following [8], this suggests that 3 bits per
sample are enough for the transmission of the sample vatliested by each CR to the FC, a result that
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can be useful to the analysis of the necessary bandwidthrafiid bver the reporting control channel.
Still referring to Figure3, one can observe that, for a given false alarm probabihyGLRT detection
probability under th&C-modelis slightly overestimated if compared with the results praetl under the
R-model In other words, ignoring the signal processing tasks glpigoerformed in digital receivers
may lead us to optimistic results. FiguBealso shows that the ROC curves under Ryvenodelsuffer
little or no influence of variations af and f,q. These results support the choice of the following system
parameters to mimic a real CR using the GLRT strategy: (i) memof quantization leveld/; = 8§,
which corresponds to a 3-bit quantization of the sampleesl(i) low-pass MA receive filter length
was chosen by assumption &s= 0.2n; and (iii) AGC overdrive factorf,q = 1.2, which corresponds to
a value that will produce a signal clipping in approximateB/% of the time for un-quantized Gaussian-
distributed sample values, and arouwd for Ny = 8. This value of3% was obtained experimentally.

Figure 3. ROC curves for GLRT under parameter variations.
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Since the influence of increasing the numbeof collected samples per CR is a performance
improvement, considering as fixed the remaining systemnpetiers, from this point on we present
simulation results only forn = 50. This is to avoid polluting unnecessarily the graphs (€rssof curves
for n = 50 andn = 100 are not necessarily separated from each other in the casgbesfdetection
techniques, as they are in the case of GLRT in Fig)re

In what concerns the effect of increasing the SNR, we alsavkiinat it has no influence oR,
although it produces an increasefy pushing up the positions of the ROC curves. This motivdtes t
presentation of results with a fixed value of SNR, which wasseln to be small{10 dB) to represent
a more degrading, but yet realistic, situation from the pecsve of spectrum sensing performance.
For instance, IEEE 802.22 requires that the presence dhtigV transmissions should be sensed with
0.9 detection probability with a sensitivity 6f114dBm, which may be translated into very low SNR
levels R5].
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4.2. MMED (or ERD)

Figure 4 shows the ROC curves for MMED (or ERD), also considering tystesn parameters in
Tablel, but only forn = 50. Most observations drawn from FiguBexpply to Figured, but, as expected,
MMED performs worse than GLRT, because the former has lovatisical power §]. Furthermore,
the differences between the results obtained withGhand with theR-modelare less pronounced for

MMED than for GLRT.

Figure 4. ROC curves for MMED (or ERD) under parameter variations.
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From the results in Figure3 and4 one can notice the small variation in performance due to the
variation inL, the length of the impulse response of the MA filter adopteéd@iR-model This is credited
to the inherent ability of eigenvalue detection strategreslealing with correlated samples, whose
correlation information is somewhat transferred to theac@ance matrix from where the eigenvalues
are computed.

4.3. MED (or RLRT) and ED

We now turn our attention to MED (or RLRT) and ED. In both caitesnoise variance is assumed to
be known. Figuré shows the ROC curves for both detection strategies, agaiptiag) the parameters
in Tablel, but only forn = 50. Although severely degraded in performance, MED still véprknveiling
a behavior similar to GLRT and MMED (see Figu&and4) concerning the way it is influenced by the
variations of the system parameters. Again one can notesgrittall susceptibility of an eigenvalue-based
detection to the variations on the temporal signal cor@tatwhich are produced in the-modelby
varying L, the impulse response length of the MA filters. The situatarED in Figure5, however, is
quite dramatic: it produces useless value$gf= Fy for the whole range of variations of the decision
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threshold and system parameters. This poor performanc®atmains unchanged for as large as
500. An explanation for this can be found on the presence®®™BC at the receiver, which makes
the received sampled noise and signal power vary dynamidaiis should be taken into account when
the detection thresholds are set or, equivalently, whem&ugsion statistic is computed. This was not
considered in this paper.

Figure 5. ROC curves for MED (or RLRT) and ED under parameter variaion
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5. Influence of IN

5.1. Influence on the Entries of the Covariance Matrix

The first big difference between ti@modeland theR-modelunder IN appears when observing the
three-dimensional (3D) representation of the matri¢eendR. Since no signal processing is assumed
in the C-mode] IN samples appear added to the thermal-noise-only veddi¥n(Figure6, left) and are
clearly noticed as pronounced peaks in the sample covariaratrix R, plotted in the right-hand side
of Figure6. On the other hand, one can notice from Figatdat IN peaks were practically eliminated
when theR-modelis considered. This shows the intrinsic ability of the immpéntation-oriented model
(R-mode) to combat IN,i.e., IN has been reduced by the inherent signal-processikg fzrformed
by each CR in thdR-mode| particularly by the low-pass receiver filtering, the harditation at the
ADC and the whitening filtering. It is worth mentioning that oountermeasure specifically designed to
combat IN was added to tie-modeht this point. Figure$ and7 were obtained considering the system
parameters listed in Tabfe
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Figure 6. 3D plots of matrice¥ (left) andR (right) under theC-model
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Table 2. System Parameters for IN Analysis.

C-model andR-mode

Matrices plots ROC curves

Moderate IN  Strong IN
Signal-to-noise ratio (SNR) in dB —10 —10 —10
Number of primary transmitterg) 1 1 1
Number of CRs /) 50 6 6
Samples collected by each CR)( 50 50 50
Impulsive to thermal noise power rati&{ 2 1 10
Probability of impulsive noisep) 1 1 0.2
Fraction of CRs hit by impulsive noisedg) 0.1 0.5 0.5
Samples affected by impulsive nois¥gj 3 10 10

Number of impulsive noise bursta/f) 1 1 1
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Table 2. Cont
R-model
MA-filter length L =10
AGC dynamic range D=2
AGC overdrive factor fod =8

Number of quantization levels Ny = 8

5.2. Influence of IN on ROC Curves

We now analyze the spectrum sensing performance under INhéig that the low influence of this
noise onY andR in the case of th&k-model as graphically illustrated in the previous subsection, is
translated into a robustness Bf and Py, when compared with th€-model We consider three IN
conditions for all results presented in this subsectiorseabe, moderate IN, and strong concentrated
IN. The system parameters are also in Tahlewhen moderate IN is considered, we are simulating
a situation in which IN is generated during all sensing wvaés (py = 1), but it is not very strong
(not concentrated’ = 1), affecting on averagg0% of the cooperating CRs. Under strong IN we are
simulating a situation in which IN is not very frequeniy( = 0.2), but is very strong (concentrated,
K = 10), also affectings0% of the CRs, on average.

The ROC curves referred to in this subsection were insertegerction5.3, closer to other results
related to IN countermeasures.

5.2.1. GLRT

Figure8 shows the ROC curves for GLRT. It can be noticed, again, beatletection performance can
be too optimistic if the conventional modé&{mode) is adopted in the absence of IN. On the other hand,
the performance can be pessimistic if tieénodelis adopted with IN present. Moreover, one can notice
from Figure8 that the detection performance under the more realsticodelsuffers less influence of
IN, as previously inferred visually in the shape of the reediand covariance matrices (see Fighrdt
is also worth mentioning that the ranges of decision thrielshaesed for plotting the ROC curves under
the R-modelwere the same for the scenarios with and without IN. This igvgyortant result, because
new decision thresholds need not be computed under IN cstamoesi.e., IN need not be detected.
New decision thresholds must be determined for@aeodelunder IN, since the corresponding ROC
curves in Figure, with and without IN, were plotted using very different dgon threshold ranges.

As we can see in Figur8, with the C-mode] moderate impulsive noise seriously degrades the
performance for all false alarm probability values. Howewe the case of strong concentrated IN,
an inflection is evident in the ROC curves. As the thresholthéseased in the case of concentrated
IN, the decision statistic starts to become strongly infagehby the IN. This is because the strong
concentrated IN will govern the instantaneous SNR. As a@qumsnce of the low instantaneous SNR
regime beyond a given value of the threshaly, becomes equal t@y all the way up to zero. The
performance under thBR-modelreveals that the signal processing tasks performed at e&clea@
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increase the robustness of the spectrum sensing techmdbe IN environment, as inferred from the
analysis in Sectiob.1. Moreover, it can be found that the detection performandeegwith strong
concentrated IN and without IN are very close to one anothéheé case of th&®-model The better
performance with strong concentrated IN, when compared mibderate IN, may be explained by the
hard limiter at the AGC, which clips the high amplitudes thappen with strong IN. Similar to what had
happened in the moderate IN condition, the ranges of decthiesholds for plotting the ROC curves
under theR-modelwere the same for the scenarios with and without strong cdrated IN, and very
different under th&C-model

Figure 8. ROC curves for the eigenvalue-based GLRT with and withoubwoderate or
strong, concentrated IN.
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5.2.2. MMED (or ERD)

Figure9 shows the simulation results for MMED (or ERD). The systemapgeters and IN conditions
are those mentioned at the beginning of the subsection. aihe somments concerning Fig@apply,
with the difference that MMED seems to be less sensitive GlaRT to IN, although itis in fact because
MMED's performance is worse. In other words, we can infet tha susceptibility to IN is roughly the
same for the eigenvalue-based GLRT and for MMED.

5.2.3. MED (or RLRT) and ED

Figure 10 shows the ROC curves for MED (or RLRT). Again, the system ipatars and IN
conditions are those mentioned at the beginning of the stibse We can see that MED is heavily
affected by IN under th€-mode] more than GLRT and MMED are. The inflection is present again i
the case of strong concentrated IN. The performance und&-thodelis now more severely degraded
than in GLRT and MMED, but the difference considering thesprece and the absence of IN is by far
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smaller than in the case of tliemodel The poor performance of MED under tRemodel even in the
case of no IN, is mainly due to the influence of the AGC, as el stated. A similar behavior can be
observed in Figuré&l, which shows the performance results for ED. The performaegradation under
the C-modelis around the same order of magnitude of that observed inabe af MED. However, ED
simply does not work under thie-mode| with or without IN, this behavior being also credited to the

influence of the AGC.

Figure 9. ROC curves for MMED (or ERD) with and without (w/0) moderatestrong,
concentrated IN.
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Figure 10. ROC curves for MED (or RLRT) with and without (w/0) moderatestrong,
concentrated IN.
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Figure 11. ROC curves for ED with and without (w/0) moderate or strorapaentrated IN.
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The bad performance of MED and ED under fRanode| with or without IN, confirms the need
to consider the AGC gains in determining the noise variarsgglun the test statistics, and in deriving

appropriate test statistics.

5.3. Detecting and Combating IN

Although some eigenvalue-based sensing schemes are rapastst IN, particularly with the
R-modelas shown in this paper, one might consider additional @urgasures to further reduce
IN influence.

Detecting and removing IN influence is an active researcit iopudio, image processing, and radio
communications]2-14], and is beyond the scope of this contribution. In what feove investigate
the efficacy of two simple strategies for combating IN in edgue-based spectrum sensing techniques,
assuming that IN presence perfectly known This assumption aims at decoupling IN-detection
performance from spectrum sensing performance, direttimgttention towards the latter. Furthermore,
it is particularly useful for determining the spectrum sagerformance gain under tiiemodeland
measure its intrinsic ability for combating IN. In other wisr small performance improvements brought
by the IN countermeasures are an indication of the inhef¢mtnimunity of theR-model Particularly,
we investigate the following heuristic strategies for caify IN when it is presenimuting the samples
under INandeliminating from cooperation those CRs under IN

In the second countermeasure, the effective number of catipg CRs is found as

mp = B[X|x > 2)(1 - Pr[X < 2]) + 2Pr[X < 2] (8)

where X is the random variable that models the number of GR®$ hit by IN (see details in
the Appendix).
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Figures 12-15 show the simulation results considering the above-meeatloiN countermeasure
strategies for GLRT, MMED (or ERD), MED (or RLRT), and ED. Asepiously emphasized, these
figures were inserted close to the corresponding results fabsectiorb.2 to facilitate comparisons.
The system parameters for moderate IN are those in Tabla CR elimination, the number of CRs,
m, was modified so that the effective number of cooperating, @GRs was made as close as possible to
6. We have not chosen to keep = 6, sincemg would be smaller than six, pushing the ROC curves
towardsP, = Py and approximating them from each other. This would prevetdar view of the effect
of the CR elimination countermeasure.

Figure 12. Effect of muting samples and CR elimination under moderatestmong
concentrated IN on GLRT.
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Figure 13. Effect of muting samples and CR elimination under moderatestmong
concentrated IN on MMED (or ERD).
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Figure 14. Effect of muting samples and CR elimination under moderatestmng
concentrated IN on MED (or RLRT).
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Figure 15. Effect of muting samples and CR elimination under moderatestmng
concentrated IN on ED.
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In what concerns GLRT, we compare all ROC curves in Figievith the corresponding curves
in Figure8. Under theC-mode] we can see that both CR elimination and sample muting sognitiy
improve performance, with an advantage of muting, whicrhpaghe ROC curve with IN towards the
neighborhood of the curve without IN. In other words, the Duotermeasures are effective under the
C-model Under theR-model however, the IN countermeasures produce only marginalaugments
for both moderate and strong concentrated IN. This indeedidence that the implementation-oriented
model has inherent IN robustness.
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The above comparisons and conclusions closely hold for MMBDERD), as can be seen by
comparing all ROC curves in Figule3 with the corresponding curves in FigudeA small improvement
can be observed for both IN countermeasures underRtmeodel in the case of moderate IN. A
small performance reduction is observed under Ramodelin the case of strong concentrated IN
and CR elimination; a marginal gain is observed for the sammplting. The improvement under
the C-mode] however, is noticeable larger in all situations. Once madnés is evidence that the
implementation-oriented model has inherent IN robustness

For MED (or RLRT), we compare all ROC curves in Figuré with the corresponding curves in
Figure10. Now we can see that the performance improvements causée by tountermeasures under
the C-mode] though evident, are not as large as in the cases of GLRT an&M{dr ERD). Under the
R-modelve observe no improvement in the case of strong concentifstint both IN countermeasures,
and a performance reduction for moderate IN and sample gulio improvement is observed under
theR-modeklso for moderate IN and CR elimination. The marginal vaia in performance under the
R-modelare, once more, evidence of the ability of the implementatidiented model in combating IN.

In the case of ED, we compare all ROC curves in Figlisewith the corresponding curves in
Figurell The performance improvement caused by the IN countermesgnder th€-modelis again
apparent, whereas ED does not work at all undeRthreodel as previously verified from other results.

6. Conclusions

From the results presented in this paper we can concludetypatal signal-processing tasks
performed at each cognitive radio before the collected $ssmre sent to the fusion center must be
taken into account when investigating soft-values fusigor@hms, as the performance results may vary
significantly between an idealized and a realistic modeftHeummore, the realistic model shows that the
impact of impulsive noise is not as negative in real life aoiild be implied from an idealized model.

We also conclude that GLRT performs better under IN circamsts, closely followed by MMED.
The performance of MED and ED is drastically degraded by ffexieof IN, with a clear advantage
of MED over ED, since the latter did not work at all in any of thienulated scenarios. The superior
performance of GLRT and MMED is attributed to the inhereniliggiof the eigenvalues of the covariance
matrix Y in reflecting the presence of IN. MED and ED, on the contrarg,\eery sensitive to IN and
suffer from the need to use the thermal noise variance thairdctice, is very difficult to estimate if
IN is present. Noise variance uncertainty can itself briorgtf severe performance degradation in MED
and ED p,26]. Additionally, the decision thresholds for all detectitmthniques investigated under the
conventional model had to be drastically modified from theagion of absence to the presence of IN for
the techniques to work. This would be a strong limitation iagtice, since it would demand detecting
the presence of IN for posterior adaptation of the threshold

Last but not least, we conjecture that the performance of MBI ED under the
implementation-oriented model can be improved if the knomwmmalization gains before the ADC are
taken into account for the design of new test statistics angifoducing the estimate of the thermal
noise power in each cognitive radio. ED has a stronger derfaarglich improvement, since it simply
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does not work based on the test statis6f: (As already stated, this remains an open problem for
future investigation.
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Appendix

From the impulsive noise model described in Secfid) let Y be a binomial random variable with
parametersn andpcg, and letU be a Bernoulli random variable with probability of succegs The
random variable that models the number of CRs not affectathpulsive noise can be defined by

X=m-YU 9)
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The number of CRs under cooperation resulting from the CRieétion IN countermeasure will be
the random variable
X, X>2
W = (10)
0, otherwise
The average number of CRs under cooperatiop, is the expected value &, which is given by
Equation 8). The reasoning behind the definition\fis the following: If the number of CRs not hit by
IN is greater than or equal to 2, this will be the number of Gfhals used for cooperation. If the number
of CRs not hit by IN is smaller than 2, a minimum of 2 CR signalsstrbe used, since we are dealing
with covariance matrix-based spectrum sensing, whosexr@tter must be greater than or equal to
two. In the simulations, if all CRs are under IN, two of thene aandomly chosen for cooperation. If
only one CR is free of IN, it is chosen for cooperation, plug ather CR hit by IN.
The values o2 [ X |z > 2] and PfX < 2] in Equation 8) can be computed from the probability mass
function (pmf) of the random variablé = YU, which is
i

pin () per® (1 — per ) z>0

(T —pn) + o (T)per*(1 —per)™ 7, 2=

and from the pmf ofX = m — Z, which is given by

Py = PN (mnjx)pCRm_m(l - pCR)ma r<<m (12)
(T=pn)+on(,")pecr™ (1 —per)”, z=m

where (‘;) is the binomial coefficient and where we have used the shudtin@tationsy. andp, for
PrZ = z] and P[X = z], respectively. Then we finally have

ElX|z > 2] = (sz) > rp (13)
Pr[X < 2| =Pr[Z >m — 2]

14
= DIN Z ( )pCR (1—pcr)" " 14)

r=
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