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Abstract: In this paper we present a unied comparison of the perforreanf four
detection techniques for centralized data-fusion codperapectrum sensing in cognitive
radio networks under impulsive noise, namely, the eigem#lased generalized likelihood
ratio test (GLRT), the maximum-minimum eigenvalue detatt{MMED), the maximum
eigenvalue detection (MED), and the energy detection (B&¥9. consider two system
models: an implementation-oriented model that includeshtbst relevant signal processing
tasks realized by a real cognitive radio receiver, and teertttical model conventionally
adopted in the literature. We show that under the implentient@riented model, GLRT
and MMED are quite robust under impulsive noise, whereapér®rmance of MED and
ED is drastically degraded. We also show that performanceeutihe conventional model
can be too pessimistic if impulsive noise is present, wieiteean be too optimistic in the
absence of this impairment. We also discuss the fact thatlsiye noise is not such a severe
problem when we take into account the more realistic implgaten-oriented model.

Keywords: cognitive radio; direct down-conversion receiver; eigdne-based cooperative
spectrum sensing; energy detection; generalized liketlhmatio test; impulsive noise;
maximum-minimum eigenvalue detection
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1. Introduction

Spectrum scarcity in the xed allocation policy is one of timain obstacles to the deployment of
existing wireless communication systems and services,taridbe development of new ones. With
the advent of the cognitive radio (CR) paradighj, [cognition-inspired dynamic spectrum acce2p |
techniques come into action by exploring the underutiligedions of the spectrum in time and space,
while causing no or minimum harm in the system that pays fangughat portion of the spectrum.
Among the many cognitive tasks that a CR can perform, spacsensing is the task of detecting
holes in frequency bands licensed to primary wireless nesvéor opportunistic use by secondary
cognitive radios. Although sensing can be performed by saclondary receiver in a non-cooperative
fashion, cooperative spectrum sensing has been consid@@skible solution for problems experienced
by CR networks in a non-cooperative sensing situation, téeeiver uncertainty, multipath fading,
hidden terminals, and correlated shadowing. Among thetiegispectrum sensing techniqued, [
eigenvalue-based schemes are receiving a lot of attentie}, [mainly because they do not require
prior information on the transmitted signal, and, unlikesimergy-detection, in some eigenvalue-based
schemes the knowledge of noise variance is not needed giher

Cooperative spectrum sensing can be classi ed as cergdatind distributed, with the possibility of
being relay-assisted] in both situations. In centralized cooperative sensirgjactollected by each
cooperating CR (e.g., received samples) are sent via atiegpaontrol channel to a fusion center (FC),
in a process called data-fusion. After the FC processes dhe fdom the CRs, it decides upon the
occupancy of the sensed channel. Centralized cooperainsarg) can also be performed based on the
hard decisions made by all cooperating CRs, in a processdcd#cision-fusion. In this case, these
decisions are combined at the FC using binary arithmetiorbethe nal decision is arrived at. In
both centralized schemes, the nal decision is reporteklbache CRs via a control channel, and an
access algorithm takes place in the sequel. In distribuiegerative sensing, no FC exists and the nal
decision is iteratively reached by the cooperating CRsabatmunicate among themselves. In the case
of relay-assisted cooperative sensing, a given CR may ssragelay to forward the sensing information
from one CR to another, for centralized or distributed opena

It is worth mentioning that the role of an FC in a centralizedperative spectrum sensing can be
assigned to a cluster-head in the context of clustered mkttapologies Y], which is the case of
most wireless sensor networks (WSN). This clustering aggracan be of particular value in large
area networks, where the adoption of a single FC could isergaohibitively the control channel
traf c and lead to inef cient spectrum utilization. This @ficiency can be caused by the distinctive
spectrum occupancy in different regions of the network,clvhgould be misled by large-area-based
centralized decisions.

1.1. The Realistic Implementation-Oriented Model

Conventionally, the well-known memoryless linear disergtme multiple-input multiple-output
(MIMO) fading channel model has been indistinctively agmptor modeling the received samples for
single-receiver, multi-sensor and for multiple-recejv@ngle-sensor cognitive devices in data-fusion
cooperative spectrum sensing. However, this model, hertbetalled conventional modeC¢mode),
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is not well suited to the case of multiple CR receivers coapeg, at least not without appropriate
modi cations in the receiver model. These modi cations aeded because, in the conventional model,
the samples collected by each CR are considered forwarddtet&C exactly as they are, as if no
signal processing task is performed in advance. Here, stggpby the results ing], we consider a
more realistic implementation-oriented MIM®&{mode] approach in which typical signal processing
operations realized within a direct-conversion CR reaearehitecture are taken into account, such as
Itering, automatic gain control (AGC) and quantization.

1.2. Eigenvalue-based Sensing Schemes

Moreover, we investigate the performance of four eigereddased sensing schemes under impulsive
noise (IN) circumstances using the conventional MIMO cleknmodel and the implementation-oriented
model. Speci cally, we assess the performance of the egeervbased generalized likelihood ratio
test (GLRT); the maximum-minimum eigenvalue detection (KIY), also known as the eigenvalue
ratio detection (ERD); the maximum eigenvalue detectioE[W, also known as Roy's largest root
test (RLRT); and the energy detection (E®] punder several IN conditions and system parameters.
Although ED is not an exclusively eigenvalue-based detedi&chnique, it can be implemented using
eigenvalue information. It has been included in the analysthis paper for the sake of completeness,
also giving support to a broader pool of comparisons.

1.3. Impulsive Noise

Impulsive noise in wireless systems may arise from sevadfdrent sources, such as lightning,
electrical switches, motors, vehicle ignition circuitsidare ections from sea waves, and it is known
that it can severely degrade the performance of commuaitatiystemsd,10].

In [11], for instance, the performance of energy detection witecd®n combining and equal gain
combining is investigated, and it is shown that the senseropmance can be affected by impulsive
noise. Also in L1] a non-linear method based on GLRT was proposed. Howevert éiom this
work, little effort has been put in the investigations on theience of impulsive noise in cognitive
radio receivers in the context of spectrum sensing. In @aer no analysis has been previously made
considering the different eigenvalue based methods, amddh-realistic conventional model has been
applied in the literature.

1.4. Our Contribution

Motivated by the above issues, this paper aims at contnigutith investigations on the performance
of eigenvalue-based spectrum sensing algorithms in viemwo@fimportant issues, namely, the effect of
impulsive noise and the behavior in a realistic implemeotedriented model.

Although it is known that IN can severely degrade the pereoroe of communication receivers, little
effort has been put into investigations about the in uenc®an cognitive radio receivers in the context
of spectrum sensing. This paper also aims to contribute suith investigations.



J. Sens. Actuator Net®#013 2 49

This paper presents a uni ed analysis about the in uencéNahlfour important detection techniques
for data-fusion cooperative spectrum sensing, namely, GMMED, MED, and ED, not only regarding
the conventional model that is often adopted in the litegtlbut also considering a more realistic
approach in which an implementation-oriented CR receivedehis taken into account.

We show that GLRT and MMED are quite robust in the IN environtevhile MED and ED
performance is drastically affected. We also show that émsisig performance under the conventional
model can be rather pessimistic if IN is present, while it tenoptimistic in the absence of such
impairment. We further show that the implementation-aeermodel is intrinsically able to combat IN.

Given the large differences in performance attained byethreedels in some situations, our main
conclusion is that the implementation-oriented model &hbe preferred for spectrum sensing design
and assessment, as it more closely re ects the reality.hEuriore, this model shows that sensing can
be more robust than expected with the conventional modetrintpulsive noise circumstances. To the
best of our knowledge, no publication so far has considewetd a uni ed approach.

Many papers in the literature, such as2f14], deal with the detection of samples affected by
impulsive noise. Supposing that these samples can be figrigenti ed, we also investigate some
simple techniques to mitigate the impact of IN in spectrumsggy. These techniques consist in simply
ignoring the affected samples or the affected receiverswpeeforming detection algorithms. We show
that these simple procedures can help improving the sepsirigrmance.

The rest of the paper is organized as follows. Sec®opresents the system model for the
eigenvalue-based sensing techniques and for IN gener&emtior3 describes the simulation setup, and
Section4 presents simulation results and discussions concerneigthence of the system parameters
on spectrum sensing performance. Sectiodoes the same as sectidn but now considering the
in uence of IN. The effect of some countermeasures addedisiadly to combat IN is also analyzed in
section5. Finally, Sectior6 concludes the paper.

2. Model

2.1. Centralized Eigenvalue-based Spectrum Sensing

In what concerns the baseband memoryless linear dis¢cneéaMIMO fading channel model, assume
that there aren sensors (e.g., antennas) in a CRirosingle-sensor CRs, each one collectmgamples
of the received signal fromp primary transmitters during the sensing period. Considatrthese samples
are arranged in a matriX 2 C™ ". Similarly, consider that the transmitted signal samptemfthe
p primary transmitters are arranged in a makix2 CP ". LetH 2 C™ P be the channel matrix with
elementshjg, i = 1;2::;;mandj = 1;2;:::;p, representing the channel gain between jtih
primary transmitter and thieth sensor (antenna or receiver). Finally,\etandV y 2 C™ " be the
matrices containing thermal noise and IN samples that pothe received signal, respectively. The
matrix of collected samples is then

Y = HX +V + V (1)

In eigenvalue-based sensing, spectral holes are detesitggltest statistics based on the eigenvalues
of the sample covariance matrix of the received signal matrif a multi-sensor device is used to decide
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upon the occupation of a given channel in a non-cooperast@dn, or even in a centralized cooperative
scheme with data-fusion (see SectignmatrixY is formed, and the sample covariance matrix

1
R= =YY/ (2)
n
is estimated, wherg)y means complex conjugate and transpose. The eigenvalyes m0
of R are then computed, and assuming a single primary transrpttel ), the test statistics for GLRT,
MMED, MED, and ED are respectively calculated accordinggio [

ToLrr = L= P 3)
%tr(R) % inll i
_ 1
Tvumvep = — (4)
m
_ 1
Tvep = — (5)
P
kY k|2: 'nll .
TED:mn2= rlnz : (6)

where ? is the thermal noise power that is assumed to be known ancthe & each sensor input, and
tr( ) andk kg are the trace and the Frobenius norm of the underlying ma&spectively.

All the eigenvalue based methods rely on the fact that thartavce matrix in the presence of noise
only is a diagonal matrix with all its elements equal t§ and, hence, has a single eigenvalue also
equal to 2. In the presence of a primary user, this is no longer true,these methods try to identify
this situation. As we can see in Equatid),(with GLRT we calculate the ratio between the largest
eigenvalue and the average of all the remaining eigenvalneIMED we consider the ratio between
the largest and the smallest eigenvalues. In MED we assuatéhid noise variance? is known, and
compare the largest eigenvalue with In all these methods, the test statistic should be equaiégin
case only Gaussian noise is present.

In the conventional model, when a centralized cooperatgresisg with single-sensor (e.g., single
antenna) CRs is considered, matkxis presumed to be available at the fusion center as if no kigna
processing is needed before each row dé forwarded to the FC by each CR. A more realistic model
was originally proposed in8] and called themplementation-oriented modelt considers the main
signal processing tasks performed by each CR before thectetl sample values are sent to the FC.
The diagram shown in Figure which adopts a direct-conversion receiver (DCR) architec[15], was
the main reference for constructing such a model. The chafitkis architecture was made based on
the consensus that DCR is the one that is promised to be afifgpteognitive radio applications in the
majority of situations19].

The analog radiofrequency front-end is made up of a widelaawtehna, a wideband band-pass Iter
(BPF), a low-noise ampli er (LNA), and quadrature local dstors (LO) and mixers responsible for
non-coherent direct conversion of the target channel fwhimse and quadrature (1&Q) baseband signals.
These signals are ampli ed using an AGC, which is respoerditnl maintaining its output signal within
the dynamic range of the analog-to-digital converters (ADCthe 1&Q signal paths. 1&Q channel
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low-pass lIters (LPF) select the desired bandwidth to beachand avoid aliasing. A noise-whitening
process takes place to guarantee that noise componentsgrericorrelated when the received signal
matrix is built at the fusion center. This is done becauselétection techniques considered here assume,
for optimum operation, that the noise samples are unceeckla

Figure 1. CR receiver diagram (adapted fro8j)|
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Remembering that the samples are quantized at the ADCNyjitfuantization levels, thieg, N bits
per sample at both | and Q after whitening can then be forvebtadl¢he fusion center by a given digital
modulation scheme. At this stage, bit errors in the transimmsmay cause further impairments at the
available samples. This is however not the subject of thidyst

It is well known that the DC offset is one of the most relevarmlpems in a direct-conversion
receiver L6-18]. It corresponds to a DC value at the mixer output producetthbgelf-mixing of the LO
signal, which is originated from the non-ideal isolatioriviaeen the mixer ports and substrate leakage
in integrated receivers. DC offset can also be generated siyoag in-band interferer, second-order
distortion in the signal path, and LO reradiation. This D@lewhich can be constant or time-varying,
can saturate subsequent ampli ers or reduce the ADC dynaamge, causing severe performance
degradation. DC-blocking via capacitive coupling is tham@iest way of cancelling the DC offset, but
can produce performance degradation due to the time-glad&ure of the spectrum sensing process:
higher capacitances produces low signal distortion, beregses the sensing settling time and hinder
receiver integration; lower capacitances reduces thénggtime, but causes more signal distortion.
Additionally, DC blocking works only if the DC offset is cotat. For these reasons, capacitive DC
blocking is not well suited for DC offset cancellation in Cé&eivers with spectrum sensing capabilities.
Fortunately, a number of DC offset compensation technityage been proposed, some of them capable
of almost eliminating the DC offset, maintaining low settjitime, see19,20] and references therein.
In this paper we do not consider the DC offset problem, assgirtiat it was completely removed by
some appropriate technique at the receiver.8lnwhere the model considered here was proposed, the
in uence of imperfect DC offset removal on the spectrum segpgerformance is addressed.

2.2. IN Model

Impulsive noise can be (i) generated from the electricahsiar by direct induction on the receiver; or
(i) captured by the receiver antenna. In the rst categtitg, main noise sources are the ignition system
of ovens, the control system of dishwasher machines, th&tatwof heaters, and switches of uorescent
and incandescent lamps. In the second category, typicate®are lightning and the ignition system
of cars.
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Several models are available in the literature for chareatg IN [21-23]. Here we adopt the one
discussed in32], in which the IN waveform is generated by properly gating laite noise signal, as
illustrated in Figure2. The main parameters that govern the IN waveform are alsershothis gure.
They are con gured according to the noise source type, asritbes! in detail in 2].

Figure 2. Gating waveform (top) and impulsive noise waveform (boftom
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To adhere the above parameters to the context of spectrusingewe translated them into ve other
parametersK is the ratio between the time-series average IN power an@vtbege thermal noise
power;pn denotes the probability of occurrence of IN during a givamssgg period, an@cr represents
the fraction of CRs hit by IN, when it occurs. As a result, tmelqability of the occurrence of IN is a
Bernoulli random variable with probability of succgsg, and the number of CRs independently hit by
IN, when it occurs, is a binomial random variable with pargem@m andpcg. A con gurable numbeNy
of IN bursts occurs during a sensing period, each burst gason gurable lengtiNg, i.e., each IN burst
corruptsNs consecutive samples collected by a given CR. The sepallagioveen consecutive bursts is
uniformly distributed in the discrete-time interj@n N,  Ng].

3. Simulation Setup

3.1. Conventional Model (C-Model)

The simulation setup under the conventional discrete-tinggnoryless MIMO model G-mode)

just considers thaY, the matrix with received signal samples in Equati@) (s available to the FC
as if no signal processing is performed by each CR before dngpke values are forwarded to the
FC. MatricesX, H, V, andV y under theC-modelare generated as follows: To simulate a Gaussian
distributed noise-like transmitted sign&l,is formed by unitary variance (unitary power), independent
and identically distributed (i.i.d.) zero mean complex €san samples. The Gaussian distribution
for the entries oiX is adopted because it accurately models several modulggeals, for instance the
amplitude of a multicarrier signal, such as orthogonal desgry-division multiplexing (OFDM), with
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a large number of subcarriers, which is the preferred maidmdechnique in most modern wireless
technologies, including several digital television stams$. The elements in the channel matiare
zero mean i.i.d. complex Gaussian variables that simulaaeRayleigh fading channel between each
primary transmitter and sensor (CR), assumed to be cordtmimy a sensing period and independent
from one period to another. The entries\inandV |y are complex Gaussian variables that represent,
respectively, the additive thermal and the impulse noiseupting the received samples. The desired
received signal-to-noise ratio (SNR), in dB, and the delsineerage IN power are guaranteed by making
the variance of the noise samples equall®SNR=10 and the variance of the IN samples equal to
K 10 SNR=10) for an average IN poweK times the thermal noise power. Moreover, matkxis
normalized so thatl=mpkH k2 = (L=mp)tr(HYH) = 1.

The received matri¥ = HX +V + V y in the conventional model is then assumed to be available at
the FC, from which the covariance matRds computed, and then the eigenvalbiegy,i = 1;2;:::;m.
The test statistics for GLRT, MMED, MED, and ED are respegttincomputed from Equation8)-(6).
In each detection technique, the corresponding test ttasscompared with a threshold computed
from the desired false alarm probability, and a nal deamsigon the occupancy of the sensed channel
is reached.

3.2. Implementation-Oriented Model (R-Model)

The simulation setup under the realistic implementatioarted model R-mode) has been built to
mimic the system diagram shown in Figutein which the direct conversion to baseband is assumed
ideal, as also implicitly assumed in the conventional model

Matrices X, H, V, andV y under theR-modelare generated as follows: To simulate a Gaussian
distributed noise-like transmitted signal with contrbliantime correlation at the receiver sids, is
formed by lItering i.i.d. zero mean complex Gaussian sarapléth a lengthk moving average (MA)
Iter with no quantization (using oating-point computatns). This type of Iter was chosen for reasons
of simplicity; any other low-pass lter could be adopted asllwThe memory elements in the structure
of this and subsequent MA ltering processes are assumedue kero initial value before the rstvalid
sample is applied to their inputs. As a result, the (ist 1) samples resulting from the MA ltering, out
of(n+ L 1), are discarded before subsequent operations. As in thetdseC-mode] the Gaussian
distribution for the entries oX is adopted because it accurately models several modulgieals. The
time correlation introduced by the lter models the limitedndwidth of the transmitted signal, which is
proportional to the symbol rate.

The elements in the channel matkixare zero mean i.i.d. complex Gaussian variables that steala
at Rayleigh fading channel between each primary transmeind sensor (CR), assumed to be constant
during a sensing period and independent from one perioddthan

To take into account the effect of the CR receive lters on thermal and impulsive noises the
entries inV andV |y are MA- Itered complex Gaussian variables that represespectively, the colored
additive thermal and the impulse noise at the output of theive lters.

A normalization of Itered samples was done to guaranteeditgired received signal-to-noise ratio
(SNR), in dB, and the desired average IN power. Speci caly, X= Py for unitary average received
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_ S .
signal poweryV \6:p Py 10 SNR=I0 for an SNR-dependent average thermal noise power, and
VN Vin= Py, K10 SNR=10 for an average IN powdf times the thermal noise power, where
the symbol “ ” represents the normalization proces&s, Py, andPy, are the average time-series

powers inX,V, andV y before normalization, respectively. Moreover, to guagarthe desired received
SNR, matrixH is normalized so thatl=mpkH k2 = (1=mp)tr(HYH) = 1.
The effect of the LNA and the AGC on the samples processed éy-tih CR,i = 1;2;:::;m, is
given by the gain p_ p__
o LodD 2 _ deD 2n
Gi 6\4 m 6ky K,
wherey; is thei-th row of Y, i.e., the set oh samples collected by theh CR, andy;k; is the Euclidean
norm ofy;. The reasoning behind proposing these gains is explainéallaws: The combined gains
of the LNA and the AGC are those that maintain the signal anngd at the inputs of the in-phase and
quadrature ADCs within their dynamic ranges By dividing the sample values by the square root of
yi’yi=n, which is the average power gf, one obtains a sequence with unitary average power. Singe
Gaussiant y;g have Gaussian distributed sample values, conditionedeocaitiesponding channel gain.
If 2is the variance of these (complex) samples after the effettteo NA and the AGC, to guarantee
that six standard deviations (practically the whole signalursion 099.73%of the sample values) of
the 1&Q signals will be withinl D=2; D=2], we shall havéé ~2=2 = D, which means that the signal
power at the output of the AGC will be? = 2D?=36. This justi es the factoD P 2=6 in Equation 7).
Finally, as the name indicates, the overdrive fadtgr is included as a multiplier in Equatio)(
to simulate different levels of signal clipping caused bl r&DCs, i.e., it produces signal amplitudes
greater than or equal to 6 . For example,fgn= 1:2 means that the dynamic ranges of the signals at
the input of the 1&Q ADCs will be20%larger than the dynamic ranges of the ADC's inputs. The 1&Q
clippings act on each sample value s applied to their inpedsrding tos  sign(s)min(jsj; D=2).
From above one can see that the AGC will affect not only theetevel that corrupts the received
samples in the-th CR, but will also change the statistical behavior of thph ed samples ofy;. Based
on this we conjecture that ED as well as other detection igades that demand knowledge of the noise
variance information, such as MED (or RLRT), must take thega Equation 7) into account in both
the noise variance estimate and in the derivation of newstasistics different from Equation§)(and
(6). Further investigations on this issue are beyond the sobfies paper, representing an opportunity
for future contributions.
Back to the description of the implementation-oriented eldihsed on Figurd, the whitening
lter matrix W [24] that multiplies the MA- Itered, ampli ed and perhaps clyed versions of y;g
is computed with oating point according t&/ = UC !, whereU is the orthogonal matrix from
Q = UK T, the singular-value decomposition of the covariance mddi The elements of) are
Qi = a; jj, with facg representing the discrete autocorrelation function of Nt# Iter impulse
response,e.,a = (1 k=L),fork L, andax =0 otherwise, foii;j;k =0;1;:::;(n 1). MatrixC
is the lower triangular matrix from the Cholesky decomposibf Q. The effect of the analog to digital
conversion of the processed sample values that will be sethiet FC is modeled by a quantizer with
con gurable numbeN, of quantization levels.

(7)
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Assuming no bit errors in the reporting channels, the matireceived matrixy = HX + V + V
in the implementation-oriented model is then formed at tke ffom which the covariance matrix
R is computed, and then the eigenvaldesg, i = 1;2;:::;m. The test statistics for GLRT,
MMED, MED, and ED are respectively computed from Equati®)s(@). In each detection technique,
the corresponding test statistic is compared with a thidsbemputed from the desired false alarm
probability, and a nal decision upon the occupancy of thessel channel is reached.

4. In uence of the System Parameters

In this section we present simulation results and discasstoncerning the in uence of the system
parameters under thiR-modelon the spectrum sensing performance for GLRT, MMED, MED, and
ED (the simulation le used in our simulations is availabte iownload as a supplementary material).
Curves for theC-modelare also included for purposes of comparison. It is worthtioamg that the
receiver operating characteristic (ROC) curves for alldeeection techniques under tRemode] for
m =6,n =50, and SNR= 10dB, are in perfect agreement with those reporte®]nThe results in
this section were reported iB][and were included here so that this paper becomes sel&ioc@ak

The ROC curves shown hereafter were obtained with a minimtu® @00 runs in Monte Carlo
simulations implemented according to the setup describ&ection3. System parameters are those in
Table 1, unless otherwise indicated. Shaded areas in the grapresesy positions of ROC curves for
Ny = 8, and forf,q andL ranging from 1 to 2, and 1 to 20, respectively. They are meané ect
parameter variations within empirical limits of practisayni cance.

Table 1. Reference System Parameters.

C-ModelandR-Model

Signal-to-noise ratio SNR 10dB
Number of primary transmitters p=1
Number of CRs m=26

Number of samples collected by each CR = 50; 100
Impulsive to thermal noise power ratio K =0

Signal-to-noise ratio SNR 10
MA- Iter length L=1-20
ADC dynamic range D=2

ADC overdrive factor fog=1-2
Number of quantization levels Ng =4;8;256

4.1. GLRT

Figure 3 shows the ROC curves relating the probability of false aléPy) and the probability of
detection Py) for GLRT. It can be seen that the performance of the sensingrse under thR-models
poor forNy = 4, changing slightly froniN, = 8 to Ny = 256. Following [8], this suggests that 3 bits per
sample are enough for the transmission of the sample vatliested by each CR to the FC, a result that
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can be useful to the analysis of the necessary bandwidthrahd aver the reporting control channel.
Still referring to Figure3, one can observe that, for a given false alarm probabihy GLRT detection
probability under th&C-modelis slightly overestimated if compared with the results praetl under the
R-model In other words, ignoring the signal processing tasks glpigerformed in digital receivers
may lead us to optimistic results. FiguBealso shows that the ROC curves under Brenodelsuffer
little or no in uence of variations of. andf ,q. These results support the choice of the following system
parameters to mimic a real CR using the GLRT strategy: (i) memof quantization levelsly = 8,
which corresponds to a 3-bit quantization of the sampleesl(ii) low-pass MA receive lter length
was chosen by assumptionlas: 0:2n; and (iii) AGC overdrive factof . = 1:2, which corresponds to
a value that will produce a signal clipping in approximat&B2so of the time for un-quantized Gaussian-
distributed sample values, and arowtdfor Nq = 8. This value 0f3%was obtained experimentally.

Figure 3. ROC curves for GLRT under parameter variations.

Since the in uence of increasing the numberof collected samples per CR is a performance
improvement, considering as xed the remaining system patars, from this point on we present
simulation results only fon = 50. This is to avoid polluting unnecessarily the graphs (erssof curves
for n = 50 andn = 100 are not necessarily separated from each other in the casgkerfdetection
techniques, as they are in the case of GLRT in Fi)re

In what concerns the effect of increasing the SNR, we alsavkiinat it has no in uence orPg,,
although it produces an increaseHgy pushing up the positions of the ROC curves. This motivdtes t
presentation of results with a xed value of SNR, which wass#n to be small (10 dB) to represent
a more degrading, but yet realistic, situation from the pecsve of spectrum sensing performance.
For instance, IEEE 802.22 requires that the presence dhtigV transmissions should be sensed with
0:9 detection probability with a sensitivity of 114dBm, which may be translated into very low SNR
levels R5].
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4.2. MMED (or ERD)

Figure 4 shows the ROC curves for MMED (or ERD), also considering ty&tesn parameters in
Tablel, but only forn = 50. Most observations drawn from FiguBepply to Figure4, but, as expected,
MMED performs worse than GLRT, because the former has lovatisical power §]. Furthermore,
the differences between the results obtained withGhand with theR-modelare less pronounced for
MMED than for GLRT.

Figure 4. ROC curves for MMED (or ERD) under parameter variations.

From the results in Figure3 and4 one can notice the small variation in performance due to the
variation inL, the length of the impulse response of the MA Iter adopteth@R-model This is credited
to the inherent ability of eigenvalue detection strategreslealing with correlated samples, whose
correlation information is somewhat transferred to theac@ance matrix from where the eigenvalues
are computed.

4.3. MED (or RLRT) and ED

We now turn our attention to MED (or RLRT) and ED. In both caitesnoise variance is assumed to
be known. Figuré shows the ROC curves for both detection strategies, agaiptiag) the parameters
in Tablel, but only forn = 50. Although severely degraded in performance, MED still vgprknveiling
a behavior similar to GLRT and MMED (see Figu2and4) concerning the way it is in uenced by the
variations of the system parameters. Again one can notsgrittall susceptibility of an eigenvalue-based
detection to the variations on the temporal signal cori@tatwhich are produced in the-modelby
varyingL, the impulse response length of the MA lters. The situationED in Figure5, however, is
quite dramatic: it produces useless value®gf= P4 for the whole range of variations of the decision
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threshold and system parameters. This poor performanc®atmains unchanged for as large as
500. An explanation for this can be found on the presence ®™BC at the receiver, which makes
the received sampled noise and signal power vary dynamidaiis should be taken into account when
the detection thresholds are set or, equivalently, wheml#ugsion statistic is computed. This was not
considered in this paper.

Figure 5. ROC curves for MED (or RLRT) and ED under parameter variaion

5. In uence of IN

5.1. In uence on the Entries of the Covariance Matrix

The rst big difference between th€é-modeland theR-modelunder IN appears when observing the
three-dimensional (3D) representation of the matriceandR. Since no signal processing is assumed
in the C-mode] IN samples appear added to the thermal-noise-only vediyn(Figure6, left) and are
clearly noticed as pronounced peaks in the sample covariaratrix R, plotted in the right-hand side
of Figure6. On the other hand, one can notice from Figatdat IN peaks were practically eliminated
when theR-modelis considered. This shows the intrinsic ability of the immpéntation-oriented model
(R-mode) to combat IN,i.e., IN has been reduced by the inherent signal-processikg fzrformed
by each CR in thdR-mode| particularly by the low-pass receiver ltering, the harthitation at the
ADC and the whitening ltering. It is worth mentioning thabrtountermeasure speci cally designed to
combat IN was added to tie-modeht this point. Figure$ and7 were obtained considering the system
parameters listed in Tabke
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Figure 6. 3D plots of matrice¥ (left) andR (right) under theC-model
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Table 2. System Parameters for IN Analysis.

C-modelandR-model

Matrices plots

ROC curves

Moderate IN  Strong IN

Signal-to-noise ratio (SNR) in dB
Number of primary transmitterg)
Number of CRs )

Samples collected by each CR)(
Impulsive to thermal noise power ratif |
Probability of impulsive noisepx(y)
Fraction of CRs hit by impulsive noisedr)
Samples affected by impulsive noidegj
Number of impulsive noise bursthl()

10

1
50
50

10
1

6
50
1

1
05
10
1

10
1

6
50
10

Qa2

05
10
1

59
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Table 2. Cont
R-model
MA- Iter length L =10
AGC dynamic range D=2
AGC overdrive factor fog=8

Number of quantization levelsNgy = 8

5.2. In uence of IN on ROC Curves

We now analyze the spectrum sensing performance under INhake that the low in uence of this
noise onY andR in the case of th&k-mode| as graphically illustrated in the previous subsection, is
translated into a robustness Bf and Py, when compared with th€-model We consider three IN
conditions for all results presented in this subsectiorseabe, moderate IN, and strong concentrated
IN. The system parameters are also in Tahlewhen moderate IN is considered, we are simulating
a situation in which IN is generated during all sensing weés (o = 1), but it is not very strong
(not concentratedK = 1), affecting on averagb0%of the cooperating CRs. Under strong IN we are
simulating a situation in which IN is not very frequemiy( = 0:2), but is very strong (concentrated,
K = 10), also affectingg0%of the CRs, on average.

The ROC curves referred to in this subsection were insertegection5.3, closer to other results
related to IN countermeasures.

5.2.1. GLRT

Figure8 shows the ROC curves for GLRT. It can be noticed, again, beatletection performance can
be too optimistic if the conventional modé&{mode) is adopted in the absence of IN. On the other hand,
the performance can be pessimistic if tieénodelis adopted with IN present. Moreover, one can notice
from Figure8 that the detection performance under the more real&toodelsuffers less in uence of
IN, as previously inferred visually in the shape of the reediand covariance matrices (see Figrdt
is also worth mentioning that the ranges of decision thrielshesed for plotting the ROC curves under
the R-modelwere the same for the scenarios with and without IN. This igygvortant result, because
new decision thresholds need not be computed under IN cstamoesi.e., IN need not be detected.
New decision thresholds must be determined for@aeodelunder IN, since the corresponding ROC
curves in Figure, with and without IN, were plotted using very different dgon threshold ranges.

As we can see in Figur8, with the C-mode] moderate impulsive noise seriously degrades the
performance for all false alarm probability values. Howewe the case of strong concentrated IN,
an in ection is evident in the ROC curves. As the thresholdnhsreased in the case of concentrated
IN, the decision statistic starts to become strongly in ced by the IN. This is because the strong
concentrated IN will govern the instantaneous SNR. As a@qumsnce of the low instantaneous SNR
regime beyond a given value of the threshdd, becomes equal t&4 all the way up to zero. The
performance under thR-modelreveals that the signal processing tasks performed at e&clead
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increase the robustness of the spectrum sensing techmdbe IN environment, as inferred from the
analysis in Sectiob.1. Moreover, it can be found that the detection performandeegwith strong
concentrated IN and without IN are very close to one anothéhé case of th&®-model The better
performance with strong concentrated IN, when compared mibderate IN, may be explained by the
hard limiter at the AGC, which clips the high amplitudes thappen with strong IN. Similar to what had
happened in the moderate IN condition, the ranges of decthiesholds for plotting the ROC curves
under theR-modelwere the same for the scenarios with and without strong cdrated IN, and very
different under th&C-model

Figure 8. ROC curves for the eigenvalue-based GLRT with and withoub)\moderate or
strong, concentrated IN.

5.2.2. MMED (or ERD)

Figure9 shows the simulation results for MMED (or ERD). The systemapgeters and IN conditions
are those mentioned at the beginning of the subsection. a&ihe somments concerning Fig@eapply,
with the difference that MMED seems to be less sensitive GlaRT to IN, although itis in fact because
MMED's performance is worse. In other words, we can infett tha susceptibility to IN is roughly the
same for the eigenvalue-based GLRT and for MMED.

5.2.3. MED (or RLRT) and ED

Figure 10 shows the ROC curves for MED (or RLRT). Again, the system ipatars and IN
conditions are those mentioned at the beginning of the stibse We can see that MED is heavily
affected by IN under th€-mode] more than GLRT and MMED are. The in ection is present again i
the case of strong concentrated IN. The performance und&-thodelis now more severely degraded
than in GLRT and MMED, but the difference considering thesprece and the absence of IN is by far
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smaller than in the case of tliemodel The poor performance of MED under tRemodel even in the
case of no IN, is mainly due to the in uence of the AGC, as poegly stated. A similar behavior can be
observed in Figuré&1, which shows the performance results for ED. The performaegradation under
the C-modelis around the same order of magnitude of that observed inabe af MED. However, ED
simply does not work under thie-mode| with or without IN, this behavior being also credited to the
in uence of the AGC.

Figure 9. ROC curves for MMED (or ERD) with and without (w/0) moderatestrong,
concentrated IN.

Figure 10. ROC curves for MED (or RLRT) with and without (w/0) moderatestrong,
concentrated IN.




J. Sens. Actuator Netw013 2 63

Figure 11. ROC curves for ED with and without (w/0) moderate or strorapaentrated IN.

The bad performance of MED and ED under Renode| with or without IN, con rms the need
to consider the AGC gains in determining the noise variarsgglun the test statistics, and in deriving
appropriate test statistics.

5.3. Detecting and Combating IN

Although some eigenvalue-based sensing schemes are rapastst IN, particularly with the
R-modelas shown in this paper, one might consider additional @umasures to further reduce
IN in uence.

Detecting and removing IN in uence is an active researchcopaudio, image processing, and radio
communications]2-14], and is beyond the scope of this contribution. In what feove investigate
the ef cacy of two simple strategies for combating IN in aigalue-based spectrum sensing techniques,
assuming that IN presence perfectly known This assumption aims at decoupling IN-detection
performance from spectrum sensing performance, direttimgttention towards the latter. Furthermore,
it is particularly useful for determining the spectrum sagerformance gain under tiiemodeland
measure its intrinsic ability for combating IN. In other wisr small performance improvements brought
by the IN countermeasures are an indication of the inhef¢mtnimunity of theR-model Particularly,
we investigate the following heuristic strategies for caify IN when it is presenimuting the samples
under INandeliminating from cooperation those CRs under IN

In the second countermeasure, the effective number of catipg CRs is found as

me = E[Xjx 2]J(1 PrX< 2])+2PrX < 2] (8)

where X is the random variable that models the number of GR$ hit by IN (see details in
the Appendix).
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Figures 12-15 show the simulation results considering the above-meatloiN countermeasure
strategies for GLRT, MMED (or ERD), MED (or RLRT), and ED. Asepiously emphasized, these
gures were inserted close to the corresponding results fsoibsectiorb.2 to facilitate comparisons.
The system parameters for moderate IN are those in Tabla CR elimination, the number of CRs,
m, was modi ed so that the effective number of cooperating GRs, was made as close as possible to
6. We have not chosen to keap = 6, sincemg would be smaller than six, pushing the ROC curves
towardsPs, = P4 and approximating them from each other. This would prevetgar view of the effect
of the CR elimination countermeasure.

Figure 12. Effect of muting samples and CR elimination under moderatestmong
concentrated IN on GLRT.

Figure 13. Effect of muting samples and CR elimination under moderatestmong
concentrated IN on MMED (or ERD).
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Figure 14. Effect of muting samples and CR elimination under moderatestmong
concentrated IN on MED (or RLRT).

Figure 15. Effect of muting samples and CR elimination under moderatestmong
concentrated IN on ED.

In what concerns GLRT, we compare all ROC curves in Figi@evith the corresponding curves
in Figure8. Under theC-mode] we can see that both CR elimination and sample muting sogimitly
improve performance, with an advantage of muting, whicrhpaghe ROC curve with IN towards the
neighborhood of the curve without IN. In other words, the iDuotermeasures are effective under the
C-model Under theR-model however, the IN countermeasures produce only marginalaugments
for both moderate and strong concentrated IN. This indeeditence that the implementation-oriented
model has inherent IN robustness.
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The above comparisons and conclusions closely hold for MMBDERD), as can be seen by
comparing all ROC curves in Figule3 with the corresponding curves in FigleA small improvement
can be observed for both IN countermeasures underRtimeodel in the case of moderate IN. A
small performance reduction is observed under Ramodelin the case of strong concentrated IN
and CR elimination; a marginal gain is observed for the sammplting. The improvement under
the C-mode] however, is noticeable larger in all situations. Once madnés is evidence that the
implementation-oriented model has inherent IN robustness

For MED (or RLRT), we compare all ROC curves in Figuré with the corresponding curves in
Figure10. Now we can see that the performance improvements causée by tountermeasures under
the C-mode] though evident, are not as large as in the cases of GLRT an&Mdr ERD). Under the
R-modelwve observe no improvement in the case of strong concentifdtint both IN countermeasures,
and a performance reduction for moderate IN and sample gnubio improvement is observed under
theR-modehklso for moderate IN and CR elimination. The marginal vaia in performance under the
R-modelare, once more, evidence of the ability of the implementatidiented model in combating IN.

In the case of ED, we compare all ROC curves in Figlisewith the corresponding curves in
Figurell The performance improvement caused by the IN countermessnder th€-modelis again
apparent, whereas ED does not work at all undeRthreodel as previously veri ed from other results.

6. Conclusions

From the results presented in this paper we can concludetypatal signal-processing tasks
performed at each cognitive radio before the collected $ssmgre sent to the fusion center must be
taken into account when investigating soft-values fusigorhms, as the performance results may vary
signi cantly between an idealized and a realistic modelitkermore, the realistic model shows that the
impact of impulsive noise is not as negative in real life aoiild be implied from an idealized model.

We also conclude that GLRT performs better under IN circamsts, closely followed by MMED.
The performance of MED and ED is drastically degraded by ffexieof IN, with a clear advantage
of MED over ED, since the latter did not work at all in any of thienulated scenarios. The superior
performance of GLRT and MMED is attributed to the inhereriligtof the eigenvalues of the covariance
matrix Y in re ecting the presence of IN. MED and ED, on the contramg aery sensitive to IN and
suffer from the need to use the thermal noise variance thairdctice, is very dif cult to estimate if
IN is present. Noise variance uncertainty can itself brorgtf severe performance degradation in MED
and ED p,26]. Additionally, the decision thresholds for all detectitmthniques investigated under the
conventional model had to be drastically modi ed from thigtion of absence to the presence of IN for
the techniques to work. This would be a strong limitation iagtice, since it would demand detecting
the presence of IN for posterior adaptation of the threshold

Last but not least, we conjecture that the performance of MBI ED under the
implementation-oriented model can be improved if the knowwmmalization gains before the ADC are
taken into account for the design of new test statistics angifoducing the estimate of the thermal
noise power in each cognitive radio. ED has a stronger derfaarglich improvement, since it simply
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does not work based on the test statis6: (As already stated, this remains an open problem for
future investigation.
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Appendix

From the impulsive noise model described in Secfid?) let Y be a binomial random variable with
parametersn and pcr, and letU be a Bernoulli random variable with probability of succegs The
random variable that models the number of CRs not affectathpulsive noise can be de ned by

X=m YU (9)
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The number of CRs under cooperation resulting from the CRie&tion IN countermeasure will be
the random variable 8

CSX X2

W = (10)

- 0; otherwise

The average number of CRs under cooperatiog, is the expected value &, which is given by
Equation 8). The reasoning behind the de nition @ is the following: If the number of CRs not hit by
IN is greater than or equal to 2, this will be the number of Gfhals used for cooperation. If the number
of CRs not hit by IN is smaller than 2, a minimum of 2 CR signalsstrbe used, since we are dealing
with covariance matrix-based spectrum sensing, whosexr@tier must be greater than or equal to
two. In the simulations, if all CRs are under IN, two of thene aandomly chosen for cooperation. If
only one CR is free of IN, it is chosen for cooperation, plug ather CR hit by IN.

The values oE[X jx 2]and P[X < 2]in Equation 8) can be computed from the probability mass
function (pmf) of the random variablé = Y U, which is

8

_ < PiN T per’(1 per)™ % z>0 1)
(1 pn)tpn T PR peR)™ 5 z=0

and from the pmfoX = m Z, which is given by
8
< m m x X .
1 ; Xx<m
PN gy PR X( Pcr) (12)

(1 pwn)t P mmx Pcr™ *(1 Ppcr)*; x=m

where § is the binomial coef cient and where we have used the shadheotationsp, andp, for

PiZ = z] and P[X = x], respectively. Then we nally have
EXjx 2]= Px X Px (13)

PriIX< 2]=Pr[Z>m 2]

X (14)
= PN X pcr* (1 pCR)m §

x=m 1

c 2013 by the authors; licensee MDPI, Basel, Switzerland. s Hhuticle is an open access article
distributed under the terms and conditions of the Creativem@ons Attribution license
(http://creativecommons.org/licenses/by/3.0/).



	Introduction
	The Realistic Implementation-Oriented Model
	Eigenvalue-based Sensing Schemes
	Impulsive Noise
	Our Contribution

	Model
	Centralized Eigenvalue-based Spectrum Sensing
	IN Model

	Simulation Setup
	Conventional Model (C-Model)
	Implementation-Oriented Model (R-Model)

	Influence of the System Parameters
	GLRT
	MMED (or ERD)
	MED (or RLRT) and ED

	Influence of IN
	Influence on the Entries of the Covariance Matrix
	Influence of IN on ROC Curves
	. GLRT
	. MMED (or ERD)
	. MED (or RLRT) and ED

	Detecting and Combating IN 

	Conclusions

