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Abstract: This paper presents an innovative incentive model that utilizes graph and game theories to
address the issue of node incentives in decentralized blockchain networks such as EVM blockchains.
The lack of incentives for nodes within EVM networks gives rise to potential weaknesses that might
be used for various purposes, such as broadcasting fake transactions or withholding blocks. This
affects the overall trust and integrity of the network. To address this issue, the current study offers a
network model that incorporates the concepts of graph theory and utilizes a matrix representation
for reward and trust optimization. Furthermore, this study presents a game-theoretic framework that
encourages cooperative conduct and discourages malicious actions, ultimately producing a state of
equilibrium according to the Nash equilibrium. The simulations validated the model’s efficacy in
addressing fraudulent transactions and emphasized its scalability, security, and fairness benefits. This
study makes a valuable contribution to the field of blockchain technology by presenting an incentive
model that effectively encourages the development of secure and trusted decentralized systems.

Keywords: incentive model; decentralized blockchain networks; node incentives; graph theory; game
theory; EVM networks; reward optimization; Nash’s equilibrium

1. Introduction

Blockchain technology has permeated various sectors [1] and has been lauded for its
potential to instill immutability, transparency, and decentralization in systems, thereby
revolutionizing traditional systems. At the core of these decentralized networks, nodes are
imperative for executing and validating transactions, thereby safeguarding the integrity
of the blockchain. Within this ecosystem, nodes, particularly those executing transactions
encompassing native currency transfers and function executions, are pivotal yet often lack
adequate incentives, in contrast to mining nodes.

The motivation for this research stems from a critical gap in current blockchain
models—the need for more incentivization of nodes, especially non-mining ones, within
EVM blockchains. This disparity not only compromises network security and efficiency
but also poses a significant threat to the integrity and robustness of the blockchain. Our
objective is to develop an incentive model that ensures node cooperation and network
integrity and addresses scalability and security challenges, thereby reinforcing the overall
trust within the network.

Despite extensive research on blockchain technology, a notable gap still exists in
understanding how to effectively incentivize nodes to align individual gains with the
network’s overall health. This study seeks to address this gap by asking the following
research questions:

1. How can we integrate graph and game theories to create a robust incentive model for
nodes within EVM blockchains?

2. How can a trust matrix influence node behavior to enhance network security and efficiency?
3. How does the proposed model ensure fairness and scalability and discourage fraudu-

lent activities within blockchain networks?
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To elaborate on this approach, imagine a scenario in which individual nodes driven by
self-interest might prioritize transactions that offer higher financial incentives, which aligns
with the principles encapsulated in the concept of maximum extractable value (MEV) [2].
However, by synergizing this self-interest with group interests, the framework ensures that
the nodes consider the overall health and security of the network when making decisions.
This balance ensures that, while nodes act to maximize their gains, they do not compromise
the interests of the network, leading to a more resilient and robust blockchain system.

Therefore, our research endeavors to develop an intricately designed framework to
navigate this problem. The framework posits a dual-faceted approach: incentivizing nodes
via financial gains from honest actions and broadcasting to numerous nodes while enabling
decision making based on node trust. The “trust matrix” is central to this approach. It
is a novel construct wherein nodes store and dynamically adjust trust coefficients based
on peer actions, thereby perpetually recalibrating their interactions and decisions within
the network.

This matrix functions using the algorithms discussed in further chapters, which adjust
coefficients based on observed behaviors, reinforce honest actions, and penalize malicious
activities. This continuous recalibration of trust coefficients serves as a feedback mechanism,
ensuring that the nodes remain aligned with the broader objectives of the network. If a node
behaves in a way that benefits solely itself but is detrimental to the group, its trust coefficient
may decrease, potentially leading to disadvantages in future interactions. Consequently,
the framework naturally encourages actions advantageous to the individual node and
the group. This leads to a state of Pareto Optimality [3], in which no node’s situation
can improve without adversely affecting another, thereby achieving an efficient balance
between individual and collective benefits.

The methodology adopted in this study involved three pivotal steps. First, a model of
the blockchain network was crafted using graph theory, representing each executor as a
node within the graph. Subsequently, each node maintains a trust matrix, where the trust
coefficients for the peer nodes are stored and adjusted based on their actions. Finally, nodes
seek to optimize their gains via continuous adjustments and modifications within this
matrix, ensuring alignment with individual and group interests. The specific algorithms
and mechanisms employed in this process are described in detail in the following sections.

This paper is structured as follows: Section 2 elucidates fundamental concepts in
blockchain and game theory, laying a foundation for comprehending the ensuing frame-
work. Section 3 explores the challenges of incentivizing nodes and examines related studies
in this domain. Section 4 describes the modeling of the blockchain network using a prob-
abilistic matrix and defines our game characteristics; Section 5 unveils our framework,
discussing node communication and trust matrix updates. Section 6 articulates the reward
system, elucidates how nodes are rewarded based on their actions, and subsequently
explores the various actions a node can undertake to optimize its gain. Section 7 delves
into how nodes, driven by maximizing rewards, engage in strategic actions influenced
by a trust matrix. It discusses the optimization problem nodes face to balance individual
gains with collective network benefits. Section 8 provides a detailed overview of our
comprehensive simulations, highlighting our model’s network typologies and scalability
diversity. It elaborates on how the simulations demonstrate the framework’s efficacy in
various network environments. Finally, Section 9 describes the essence of our research.
This section summarizes the contributions of our study to the blockchain field, reflecting
the implications of our innovative incentive model for network integrity and participation.
It also outlines potential future research directions, emphasizing blockchain technology’s
continuous evolution and dynamic nature.

2. Background

The following section examines the blockchain network’s primary constituents and
game theory concepts. While numerous other components cannot be elaborated upon
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within the scope of this discussion, the ensuing components are primarily associated with
the dissemination of transactions and the incentivization problem among nodes.

2.1. Blocks

Blocks are fundamental components of a blockchain database and serve as data
structures that permanently store transaction data in a blockchain [4]. A block stores a
subset of all the latest transactions the network still needs to validate. After validating the
data, the block is stored in a ledger. Subsequently, a new block is generated to accommodate
the inclusion and verification of recent transactions. A block is a repository of data that,
once written, is immutable and cannot be modified or deleted. Figure 1 illustrates the
general format of chained blocks, highlighting the following elements of information within
a block.

− The term “magic number” refers to a numerical figure encompassing distinct charac-
teristics and serving as an identifier for a single block inside the network.

− The block size parameter establishes a predetermined restriction on the size of a block,
which restricts the amount of data that may be inputted.

− The block header is a component that contains pertinent information on the block.
− The transaction counter is a numerical value that indicates the total number of trans-

actions in a given block.
− Transactions refer to a comprehensive batch of all recorded transactions in a particular

block [4].
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2.2. Transactions

Blockchain transactions refer to transmitting data via a network of computers within a
blockchain system. In a blockchain, interconnected nodes form a network that collectively
maintains transactional data as replicated copies, often known as a digital ledger [5].
Figure 2 presents an example of a Bitcoin transaction, illustrating how data transmission is
facilitated within such a network.

2.3. Nodes

Blockchain nodes are integral components within a network, authorized to maintain
a distributed ledger and act as communication hubs for various network responsibilities.
While sharing foundational purposes, these nodes can be categorized into specific roles
based on their functionalities.

One of the critical categories is the transaction-executing nodes. These nodes are
primarily tasked with the validation and verification of the transactions. The core role of a
blockchain node within this category involves ensuring the legitimacy of each sequential
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set of transactions, known as blocks. Among these, full nodes represent a significant subset.
They retain and record all transactions within the blockchain in their storage and perform
the critical function of validating blocks and transactions. In contrast, lightweight nodes,
another form of transaction-executing node, have reduced storage requirements. They
primarily focus on retrieving block headers for transaction verification and minimizing
their data storage requirements.
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Another pivotal category is the mining nodes. These nodes engage in the generation
and integration of new blocks into the blockchain. The process begins when a miner at-
tempts to add a new block of transactions to the blockchain and broadcasts this information
across the network. It is important to note that the allocation of a block reward varies
and is not a consistent feature of any blockchain network. Table 1 presents a comparison
between transaction-executing nodes and mining nodes, highlighting the distinct roles and
functionalities of these two key categories within a blockchain network.

Table 1. Comparison: transaction-executing nodes vs. mining nodes.

Aspect Transaction-Executing Nodes Mining Nodes

Purpose Validate and relay transactions across
the network. Add new blocks to the blockchain.

Primary Responsibility Ensure transactions comply with
network rules.

Collect, verify, and process transactions
into blocks.

Reward System Do not typically receive
cryptocurrency rewards.

Receive rewards in the form of
minted cryptocurrency.

Hardware Requirements Do not require significant
computational power. Requires high computational power.

Storage It may or may not store the entire
blockchain history.

Store blockchain as the whole history and
validation transactions.

Incentive Maintain network integrity for
their applications.

Monetary rewards for adding
successful blocks.

Nodes have the discretion to accept or reject a block based on their authenticity, which
is determined by the validity of their signature and transaction [6]. When a node receives a
new block of transactions, it saves and stores its highest position within the current chain
of blocks. In summary, nodes perform the following functions.

1. Nodes play a crucial role in the validation process of determining the legitimacy of a
block of transactions because they have the authority to accept or reject it.
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2. The nodes are responsible for preserving and retaining transaction blocks, including
the entire transaction record in the blockchain.

3. The transaction history is distributed and propagated by nodes to other nodes, which
may require synchronization with the blockchain [4].

It is important to note that our research specifically addresses the challenges and
dynamics associated with executor nodes within a blockchain network. In particular,
executor nodes execute transaction requests and append new blocks to the blockchain.
Focusing on these nodes, we aim to solve distinct issues pertinent to their operations, such
as incentivization, trust management, and decision-making processes in validating and
storing transactions. This specification narrows the scope of our study, allowing for a more
in-depth and targeted exploration of solutions that enhance the functionality and reliability
of executor nodes in decentralized blockchain systems.

2.4. Game Theory

Game theory, a pivotal theoretical framework in disciplines such as economics and
computer science, rigorously examines interactions characterized by formalized incentives
and outcomes [7]. This mathematical framework facilitates the analytical exploration of
strategic interactions among rational entities, particularly in scenarios in which an agent’s
payoff depends on the actions undertaken by other agents [8].

Strategic decision making is especially salient within the blockchain domain. Blockchain
networks can be conceptualized as intricate ecosystems of nodes (or agents) continuously
engaging in decisions, such as validating a transaction or selecting transactions for block
inclusion. These decisions are not autonomous but interdependent and influenced by
other network participants’ potential actions and determinations. In this context, game
theory provides the tools for modeling these multifaceted decisions, encompassing all
network entities’ potential strategies and actions [9]. This is crucial for anticipating node
behavior when confronted with choices that can invariably impact rewards or overarching
network security.

In a blockchain ecosystem, the application of game theory is invaluable for modeling
and analyzing the strategic interactions of nodes. This includes decision making, strategies,
and payoffs, particularly in an environment with adversarial nodes. The incorporation of
game theory into blockchain networks requires a thorough assessment of node strategies,
the extent of information accessible, and the ensuing payoffs. It is noteworthy that peers’
strategies and actions often modulate these payoffs. The game-theoretic approach pro-
vides a mathematical framework for modeling and analyzing strategic interactions among
rational entities.

In the context of the proposed framework, nodes aim to optimize their rewards by
adjusting the values within their trust matrices. However, these adjustments are not
arbitrary. They are guided by rules and strategies that consider the actions of the other
nodes. The application of game theory ensures that no single method dominates, preventing
any node from accruing excessive rewards unfairly. Furthermore, nodes that consistently
exhibit cooperative behavior or uphold the integrity of the network are more likely to be
rewarded, thereby ensuring fairness in the reward distribution.

A theoretical game model is constructed, wherein the executors within a blockchain
network are conceptualized as players. This model inherently aligns with the characteristics
of cooperative games. Such an alignment is predicated on the rationale that nodes that
function as collaborative agents are incentivized to maximize their reward outcomes
collectively. Furthermore, this game is classified as a non-zero-sum game. This classification
stems from the principle that rewards accrued by any individual node do not preclude the
distribution of the gains among the other participating nodes. The non-zero-sum nature of
the game intrinsically fosters a cooperative dynamic among the nodes as they endeavor to
optimize their collective earnings while facilitating transaction execution and broadcast.

Moreover, the game is delineated as perfect information. This delineation is based
on the premise that each node possesses comprehensive knowledge of the actions under-
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taken by its counterparts. Such transparency is achieved via a truth matrix serving as a
repository of all player actions, enabling informed decision-making processes. Given that
this decision-making process and strategic evolution occur over multiple rounds, the game
can be conceptualized as infinite. A detailed exposition and formalization of the game’s
characteristics, including its strategic dimensions and implications for blockchain network
operations, will be elaborated upon in subsequent chapters of this paper.

2.5. Nash Equilibrium

The Nash Equilibrium, a foundational concept in game theory introduced by John
Nash, represents a state in a strategic interaction where no player can unilaterally change
their strategy to achieve a better outcome, given the other players’ strategies. In more
formal terms, a strategy set constitutes a Nash Equilibrium [10] if no player can obtain a
higher payoff by deviating from their strategy, whereas other players keep their strategies
unchanged. In blockchain networks, Nash Equilibrium can provide insightful perspectives
regarding the stability of the strategy adopted by nodes. For instance, in a scenario where
nodes decide whether to validate and broadcast transactions or act maliciously or honestly,
a Nash Equilibrium would occur if no single node could unilaterally change its strategy
(e.g., from honest to malicious or vice versa) to achieve a higher payoff, given the strategy
adopted by the other nodes.

Thus, analyzing and ensuring scenarios in which honest behavior and cooperation
among nodes form a Nash Equilibrium becomes pivotal, ensuring the robustness and
security of the blockchain network among rational self-interested nodes. The proposed
framework’s primary objective is to engineer systemic convergence where all participating
nodes within the blockchain network attain a Nash Equilibrium state. This desired equi-
librium state underscores a strategic orientation wherein the actions and behaviors of the
nodes collectively gravitate towards optimizing the gains for the entire network. Underpin-
ning this strategic alignment is the principle that engaging in cooperative behavior is each
node’s most advantageous course of action. This cooperative dynamic was facilitated and
reinforced by a meticulously designed system of rewards and penalties.

The game’s rules are structured to guide the nodes towards this equilibrium. The
system is designed to incentivize collaborative efforts and discourage actions detrimental to
the network’s collective interests. An in-depth exploration and analysis of the mechanisms
underlying this reward/punishment system, along with a comprehensive discussion of
how these elements synergistically contribute to achieving Nash Equilibrium within the
blockchain network, will be presented in subsequent chapters of this paper.

3. Related Works

The establishment and implementation of robust incentive mechanisms is paramount
in the intricate landscape of network systems, particularly those that are decentralized,
such as blockchain networks. Several research endeavors have navigated various facets of
incentive mechanisms, each presenting unique approaches and methodologies that could
be insightful for developing and enhancing incentive models in blockchain networks.

3.1. Current Advances in Incentivizing Network Nodes

Li and Shen (2011) explored the application of game theory for analyzing cooperative
incentive strategies in network systems [11]. They provide strategies whereby nodes
determine their peers’ trustworthiness, which can be adapted to blockchain networks
to ensure that nodes can validate the reliability of peer transactions and blocks, thereby
maintaining trust and reliability within the network.

Following this, Mahmoud and Shen (2012) introduced FESCIM [12], an incentive
mechanism for multi-hop cellular networks that stimulated nodes to cooperate in packet
forwarding by providing them with suitable incentives and ensuring fairness by preventing
selfish nodes from depleting the network. When applied in a different network context, this
approach could offer valuable insights into developing incentive mechanisms that ensure
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fair resource utilization in blockchain networks, particularly in scenarios where nodes may
be required to forward transactions or data to peers.

Subsequently, Dias et al. (2014) evaluated a cooperative reputation system for vehicular
delay-tolerant networks and showed how reputation mechanisms can punish malicious
nodes and reward well-behaved nodes [13]. This approach can be adapted to blockchain
networks to ensure that nodes propagating valid transactions are rewarded. In contrast,
those propagating invalid transactions are penalized, thereby maintaining a balance and
ensuring that nodes are incentivized to act in the network’s best interests.

Later, Yang et al. (2017) explored a social incentive mechanism to promote cooperation
in mobile crowdsensing by leveraging social ties among participants [14]. This mechanism
could be particularly innovative in blockchain environments where network participants
have established social or economic ties, utilizing these pre-existing relationships to enhance
network cooperation and integrity.

Finally, building on trust and reliability, He et al. (2018) proposed a blockchain-
based truthful incentive mechanism for distributed P2P applications, demonstrating its
effectiveness in stimulating nodes to share their unused resources using game analysis and
evaluation [15]. This approach could be insightful in incentivizing nodes in blockchain
networks to actively participate in transaction validation and block propagation, thereby
ensuring that the network remains active and secure.

In conclusion, while varying in their application and context, these studies present a
rich tapestry of approaches toward incentivizing node cooperation and participation in
various network systems.

3.2. Incentive Models in Decentralized Blockchain Networks

In the context of a decentralized blockchain network such as Ethereum, the process-
ing and validation of transactions rely on the active participation of nodes [16]. Nodes,
whether people or organizations, donate computing resources, time, and energy to carry
out transaction-processing responsibilities. Nevertheless, the guaranteeing of active and
sincere engagement from the nodes is a significant obstacle. With suitable incentives,
nodes may be willing to participate actively in transaction-processing endeavors. The lack
of incentives may give rise to several challenges, such as decreased efficiency in trans-
action processing, compromised network security, and the dissemination of fraudulent
transactions by malicious entities.

The provision of incentives to nodes in a blockchain network has distinct issues com-
pared with conventional centralized systems [17]. In centralized systems, it is possible for
a central authority to implement incentives and penalties effectively. In a decentralized
blockchain setting, the lack of a central governing body requires the establishment of incen-
tive frameworks that harmonize individual nodes’ motivations with the network’s overall
well-being. This alignment is paramount to guarantee the nodes’ intended functionality
and preserve the network’s integrity. Furthermore, it is essential for the incentive model to
effectively tackle the difficulties associated with fairness, scalability, and security, as these
factors significantly affect the efficient operation of blockchain networks. The preservation
of a robust and secure blockchain network requires active and sincere engagement with
the nodes.

This section explores the need for incentivizing the nodes to maintain their ongoing
participation in transaction processing and network maintenance. By offering suitable
incentives, nodes can be motivated to allocate their computing resources, time, and energy
to maintain the blockchain network. The incentivization process is of utmost importance
in pursuing consensus, enhancing transaction processing speed, bolstering network se-
curity, and promoting the general resilience of the blockchain ecosystem. This section
examines the incentive mechanisms currently used in blockchain systems, with a specific
emphasis on two critical methodologies: Proof of Work (PoW) [4] and Proof of Stake
(PoS) [16]. However, this analysis acknowledges that such incentivization predominantly
targets miner nodes rather than executor nodes, which are the primary focus of our re-
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search study. Consequently, our exploration delves into the implications and outcomes of
these incentive mechanisms specifically as they pertain to the executor nodes within the
blockchain network.

3.2.1. Proof of Work (PoW)

The proof of work (PoW) is a cryptographic puzzle-solving system in which miners
compete to solve complex mathematical problems. The first miner to solve the crypto-
graphic challenge may recommend a second block of transactions to the blockchain. Despite
its high resource requirements, this technique validates transactions, improves network
security, and encourages participation [18]. Miners are motivated to solve cryptographic
problems using the possibility of a block reward. A payout generally includes newly
created cryptocurrency tokens and transaction fees from the block transactions. Currency
generation and transaction fee collection create a dynamic environment where miners are
financially incentivized to validate transactions and secure the network. The validation
process involves miners from many backgrounds and regions, preventing one entity from
dominating the network and creating a more democratic and healthy ecosystem. Figure 3
illustrates a high-level overview of the workflow involved in the Proof of Work system,
providing a visual representation of the process described above.
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3.2.2. Proof of Stake (PoS)

The proof of stake (PoS) operates on a different premise than the proof of work (PoW).
Proof of stake (PoS) uses computational puzzle-solving to choose block validators based
on the number of tokens they stake as collateral [19]. Token ownership and other factors
affect validator selection, which involves proposing and confirming new blocks. Node
incentivization is essential for the proof of stake (PoS). Block validators are motivated
by transactions and block rewards. This incentive structure aligns with network security
because validators invest financially in blockchain integrity.

3.2.3. Alternative Approaches in Reputation-Based Blockchain Consensus

Alzahrani and Bulusu [20], in 2018, introduced a groundbreaking blockchain consen-
sus protocol that merged game theory with randomness to achieve true decentralization,
steering clear of traditional Proof of Work (PoW) methods. Their innovative protocol, de-
signed to select varying validator sets randomly for each block, employs game-theoretical
models to encourage honest behavior among participants. This novel approach signifi-
cantly bolsters security, particularly against attacks like DDoS and eclipse attacks, marking
a substantial leap in blockchain technology, particularly in enhancing security and efficiency
in a more dynamic and secure blockchain environment.

In 2019, Yun, Goh, and Chung [21] proposed the Trust-Based Shard Distribution
(TBSD) scheme, focusing on elevating the security of blockchain systems within sharded
networks. TBSD effectively allocates nodes across shards based on trust assessments,
thereby curtailing the likelihood of malicious node concentrations. The scheme aims
to achieve fairness and reduce discrepancies in shard distribution by incorporating a
genetic algorithm. The effectiveness of TBSD in preserving blockchain network integrity,
particularly against potential attacks, underscores its emphasis on equitable and secure
shard distribution.
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Then, in 2020, Huang et al. introduced RepChain [22], a sharding-based blockchain
system that harnessed reputation scores to overcome limitations in existing sharding
frameworks. RepChain’s unique double-chain architecture, which includes transaction
and reputation chains, aims to boost throughput and security and incentivize node co-
operation. The system employs Raft-based synchronous consensus for transactions and
Byzantine fault tolerance for reputation management, ensuring effective processing and
heightened security. Theoretical analyses and evaluations on Amazon Web Service plat-
forms demonstrate RepChain’s capacity to enhance throughput and security in sharding-
based blockchain systems.

In 2022, Qiu et al. presented a dynamic reputation-based consensus mechanism
for blockchain [23], addressing centralization issues inherent in Proof-of-Authority (PoA)
systems. Their mechanism introduces a reputation evaluation algorithm for selecting high-
reputation nodes as validators, thereby deterring malicious behavior. Monitoring nodes
are utilized to oversee validators and safeguard the network. The proposed mechanism
notably improves fault tolerance, expedites consensus time, and bolsters system security.
However, the paper calls for further research in node evaluation optimization due to the
potential impact of malicious credit evaluations on node credibility.

Moving forward to 2023, several significant contributions were made in the field.
Xiang Li et al. proposed the GTI mechanism [24], aligned with the Practical Byzantine
Fault Tolerance (PBFT) consensus algorithm, that incentivized honest behavior among
validators via auditing and penalized lazy nodes via deposit loss, addressing challenges in
non-cryptocurrency blockchains.

Furthermore, Xiao Liu et al. introduced a method leveraging evolutionary game
theory [25] to mitigate block withholding attacks in blockchain systems. Their dynamic
game model adapts to the system’s degree of supervision and punishment, offering insights
into optimal strategies for mining pools under various attack scenarios.

Also, in 2023, Jauzak Hussaini et al. introduced the Proof of Intelligent Reputation
(PoIR) consensus mechanism [26]. PoIR combines BiLSTM with the Network Entity Repu-
tation Database to generate reputation scores, selecting authoritative nodes for blockchain
consensus. This mechanism shows enhanced resistance to centralization and efficiency in
transaction times.

In conclusion, from 2018 to 2023, as summarized comprehensively in Table 2, these
studies collectively present various approaches encompassing performance-based and
reputation-based blockchain consensus algorithms. From game theory and randomness to
advanced reputation-based methods, each contributes uniquely to advancing blockchain
consensus mechanisms, reflecting a significant evolution in the field.
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Table 2. Overview of recent research in performance-based and reputation-based blockchain consensus algorithms.

Consensus
Type
and
Selection

Players Reward
System

Dynamic
Punishment
Coefficient

MPC
Compatible

51%
Attack
Resistant

Sybil
Attack
Resistant

BWH
Resistant Decentralized

Our Proposed Consensus (2024)
Reputation-based
Deterministic assessment of
node reputation

Executors
Validators Miners

Dynamic
rewards based
on contribution

√ √ √ √ √ √

Game theory-based compatible
incentive mechanism design for
non-cryptocurrency blockchain
systems (2023) [24]

Reputation-based
Probabilistic assessment of
node reputation

Validators
Equitably
distributed across
participants

- - √ - - √

An evolutionary game
theory-based method to mitigate
block withholding attack in
blockchain system (2023) [25]

Incentive game theory
Deterministic pool incentives Miners

Equitably
distributed across
participants

- - √ - √ -

PoIR: A Node selection mechanism
in reputation-based blockchain
consensus using bidirectional
LSTM regression model (2023) [26]

Reputation-based
Probabilistic assessment of
node reputation

Validators - - - - - - √

A dynamic reputation-based
consensus mechanism for
blockchain (2022) [23]

Reputation-based
Primary election in PBFT Validators

Favors
personal over
collective
incentives

- - - - √ -

RepChain: A reputation-based,
secure, fast, and high Incentive
blockchain system via sharding
(2020) [22]

Reputation-based
via sharding
Probabilistic assessment of
node reputation

Validators Static value - √ - - - -

Trust-based shard distribution
scheme for fault-tolerant shard
blockchain networks (2019) [21]

Reputation-based
Node trust assessment via
genetic algorithm

Miners - - - √ - - -

Proof of stake (2019) [19]
Reputation-based with
collaterals
Cumulative stake amount

Validators Accrues
transaction fees - - √ - - -

Towards true decentralization: A
blockchain consensus protocol
based on game theory and
randomness (2018) [20]

Reputation-based with
random selection
Probabilistic assessment of
node reputation

Validators Static value - - - - √ √

Proof of work (2008) [18] Performance-based
Cryptographic puzzle Miners Accrues

transaction fees - - - - - √
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4. Graph Modeling of Blockchain Nodes and Our Game Framework

Blockchain networks consist of several nodes engaging in interactions and reaching
choices guided by self-interests. In the initial phase of developing our framework, it is
essential to construct a mathematical model to facilitate a deeper understanding of the in-
teractions among nodes within the blockchain network. We chose to represent the network
using a graph-based model owing to graphs’ versatile properties and structural intricacies.
Specifically, we opted for an undirected graph to illustrate node communication dynamics
effectively. Furthermore, the representation of the graph in a matrix form simplifies its
depiction and enhances its integration into our algorithmic constructs. Subsequent stages
involve incorporating this matrix into the strategic game, meticulously formalized in the
forthcoming chapter. This integration enables nodes to make informed decisions in each
round and adjust their trust matrices accordingly. The final step involves the implementa-
tion of an incentive mechanism designed to reward nodes proportionally based on their
honest contributions and overall participation in the network. Figure 4 provides a high-
level overview of this entire process, illustrating the key stages and how they interconnect
within our framework.
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This chapter uses graph theory [27] to represent the node graph in a blockchain
network while also integrating the consideration of node behavior probabilities. Each node
is a vertex in the graph, with the edges representing communication between nodes. In
addition, we used the concept of probabilities to denote the probability of a node being
malicious or honest.

4.1. Modeling Nodes Graph with Probabilistic Behavior

In the context of a blockchain network, it is essential to consider the potential of
nodes to exhibit malicious behavior. The network representation of each node remains
the same, and each node is represented as a vertex. However, the edges in the graph
indicate the chance of communication between the nodes. The probabilities mentioned
may be interpreted as the probability of a transaction being communicated between nodes,
considering the possibility of malicious activity. By integrating probabilistic behavior,
we can effectively model the dynamics and inherent uncertainties that arise from the
interactions between nodes in a network. Figure 5 illustrates an example of such a graph
network in a blockchain, depicting a network with six nodes.

Using a matrix to represent each node’s strategy is grounded in the need to systemati-
cally model and analyze complex probabilistic interactions in a blockchain network. The
matrix format allows for a clear and organized representation of the intricate dynamics at
play, where each element captures the probability of interaction between two nodes. This
provides a structured overview of the network’s inter-node communication patterns and
sets the stage for applying game-theoretic techniques.

In game theory, matrices are often employed as payoff matrices that define the rewards
or costs associated with the different strategic interactions between players. By representing
blockchain node strategies and interactions in a matrix, we pave the way for applying
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similar game-theory analyses. The goal is to predict and influence node behaviors in the
network, particularly in the presence of potential adversarial actions. Thus, the matrix is
foundational for studying and optimizing strategic interactions in a blockchain context.
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In the above example, the graph can be represented using the following adjacency matrix.

0 0 1 0 0 1
0 0 0 0 1 1
1 0 0 1 0 0
0 0 1 0 0 0
1 1 1 0 0 1
1 1 0 0 1 0

 (1)

For a 6 × 6 matrix representing a graph, the diagonal elements of the matrix are
consistently zero. This is because of the assumption that a node inside the network is
unable to interact with itself. Moreover, it lacks any motivation to engage in fraudulent
transactions with itself.

Probabilistic graph representation must be transformed into a matrix format to ex-
amine and manipulate the probabilistic characteristics of the nodes in the graph. Like the
matrix structure, every node is associated with the matrix’s columns and rows. Never-
theless, in contrast to using binary values (0 or 1) to denote the presence or absence of
communication, the matrix includes probabilities ranging from 0 to 1, which signifies the
likelihood or possibility of communication. The matrix offers succinct and organized depic-
tions of the probabilistic communication patterns in the blockchain network. This modeling
methodology allows the assessment of a network’s resilience and robustness in the face of
malicious actions. Furthermore, the integration of probabilities enables the examination
of tactics aimed at reducing the consequences of malicious acts and encouraging truthful
engagement, thus cultivating a blockchain network that is more robust and dependable.
The last graph can be represented using updated values.

0 0 0.4 0 0 1
0 0 0 0 0.3 1
1 0 0 0.9 0 0
0 0 1 0 0 0
1 0.5 1 0 0 1

0.7 0.4 0 0 0.1 0

. (2)
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Each node has its matrix, called the trust matrix, which is determined by the strategy
it aims to apply. The starting values of the matrix are established accordingly. The ultimate
objective is implementing a sequence of operations on the matrix to maximize the individ-
ual’s node benefits. One possible solution is introducing a node that consistently employs
a cooperative approach [28], resulting in a specific matrix configuration.

0 1 . . 1 1
1 . . . . 1
. . . . . .
. . . . . .
1 . . . . 1
1 1 . . 1 0

 (3)

An additional node may be included to initiate a cooperative approach and modify
its values in response to the round outcome. The node can use either a pure or a mixed
strategy [29]. This analysis examines each strategy and assesses its applicability in a
specific situation.

4.2. Game Framework and Rules

In the initial phase of our research, we focused on conceptualizing interactions within
a blockchain network using graph theory and matrix representations. This section aims to
construct a strategic game, facilitating nodes to adjust their trust matrix and make strategic
decisions over successive rounds. These decisions include creating or removing connections
with other nodes based on evolving strategies. We begin by defining the critical elements
of the framework as follows.

■ Set of Players: This is represented by a finite set of nodes within the graph, denoted
as N = {1, 2, . . . , n}, where each node is a player in the game. These players can
exhibit malicious or honest behaviors depending on their chosen strategies. To capture
the dynamic nature of the network and align with real-world scenarios, a node is
permitted to switch strategies across rounds, thus enabling both cooperative and
non-cooperative behaviors.

■ Actions/Strategies: Nodes have two fundamental types of actions. The first relates
to handling transactions or messages, where a node decides to either forward it to
the next node or refrain from doing so, essentially choosing to cooperate. This can be
represented by a binary sequence, such as {00011 . . . 00}. For simplicity, we initially
assume that a node applies the same action uniformly across all nodes, although the
model retains the flexibility to account for varying actions in future iterations. The
second action concerns modifying relationships with other nodes, influenced by their
strategy and the trust matrix. This could entail removing connections with nodes that
fall below a specific reputation score, as determined by the trust matrix.

■ Payoffs: Each node’s actions result in a reward or a penalty. Actively participating in
transaction broadcasting yields rewards proportionate to the node’s contribution to
the network’s connectivity and transaction throughput. In contrast, non-cooperative
behavior reduces the node’s reputation, potentially leading to isolation within the
network. For this process to be fair, a node will be rewarded based on his weight and
contribution to the network, meaning that a node that broadcasted to three nodes will
not be rewarded the same as one that broadcasted to ten nodes; having this logic will
incentivize nodes to prefer to be hubs in the network. The Reward System chapter
provides a detailed exposition of this mechanism.

■ Order of Play: The first player in each round is determined by the initiator of the trans-
action, essentially chosen using a pseudo-random process based on transaction initia-
tion. The selected node then propagates the transaction to other nodes, akin to a token
being passed in a ring topology. The game possesses several distinct characteristics:
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■ Cooperative Nature: The framework views nodes as components of potential coali-
tions, with an ideal scenario being a single unified coalition. Represented as (N, v),
the game promotes common interests by focusing on a network’s well-being and
security. The power set 2n encapsulates all possible coalitions, for example, for a
graph of three nodes.

23 = {∅, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}} (4)

The Characteristic function v(C) is defined below.(
∀C ∈ 2N/∅

)
v(C) = R (5)

where R is the fixed total reward for each stage, and C is an element of 2N . At first
sight, it appears that the most optimal strategy for a node is to be alone in its coalition.
However, because the game is repetitive, acting with this strategy may be better
because it does not encourage nodes to participate in the group’s gain. The design
incentivizes stable and fair coalitions, where no subset of players is incentivized to
form a smaller coalition, and each player’s payoff is proportional to their contribution.

■ Repetitive Game Structure: Denoted as GT , the game is repetitive, with players
selecting strategies at each stage of the game iteration. The cumulative payoff is the
sum of the rewards obtained across all stages, and strategies are adapted based on the
history of the play, allowing dynamic responses to the outcomes of previous rounds.

■ Non-Zero-Sum Nature: The game is designed as a non-zero-sum game. If ui(si)
denotes the payoff for choosing a strategy, then no combination of strategies results in
a total payoff sum of zero.

n

∑
i=1

ui(s1, s2, . . . , sn) ̸= 0 (6)

Thus, our model offers a nuanced approach to understanding and guiding node be-
havior in blockchain networks by considering individual strategies and collective network
dynamics. Figure 6 provides an example of a graph network in a blockchain with three
nodes, illustrating a simplified version of such a network and the possible connections
between nodes. Note that this framework has the following constraints.
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1. We should avoid selfish mining [30] and withholding attacks [31]. Selfish mining
and withholding attacks are strategies miners use in blockchain networks to gain an
unfair advantage and potentially disrupt network functioning. In selfish mining, a
miner or group of miners secretly mines blocks but withholds broadcasting them to
the network. They continue to mine the next block, creating a longer private chain
than the public one. When another miner solves a block and threatens to catch up, the
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selfish miner releases their previously hidden blocks, making their chain the longest
and most accepted one, rendering the honest miners’ efforts useless. This wastes the
computational resources of other miners and can lead to increased centralization and
reduced network security [32]. Both attacks undermine the fundamental principles of
fair and decentralized mining inherent to blockchain technology.

2. The network should be dynamic, meaning that the nodes should constantly create or
remove new connections; this mechanism is explained in chapter 7. Actions Based on
The Trust Matrix.

3. The network should contain N nodes that verify the following constraint N ≥ 3f + 1
and f is the number of faulty nodes, an inherited constraint owing to the use of the
PBFT algorithm [33].

5. Our Innovative Framework for Node Incentivization and Trust Optimization in
Blockchain Networks

Each node will have its trust matrix; we can represent the matrix by the following
denotation SgenNum

nodeID where nodeID is the id of the node in the graph and the genNum is
the functional power of the application f that the node will apply each generation/round;
therefore, if we are noting S3

1, we are referring to the matrix of the node 1 in round 3, and
the way it is generated is the following.

S3
1 = f

(
S2

1

)
= fof(S 1

1

)
= fofof

(
S0

1

)
= f3

(
S0

1

)
(7)

In general, we have the following formula.

SgenNum
nodeID = fgenNum

(
S0

nodeID

)
(8)

We will also note ai,j elements of the SgenNum
nodeID matrix.

The strategy starts by generating a matrix with the number of nodes in the network,
which can be reduced to a non-zero-sum game using the following steps:

1. In the first round, the node generates a matrix in order of the number of nodes in
the network.

2. The node broadcasts its matrix to other nodes using a Practical Byzantine Fault
Tolerance (PBFT) algorithm (PBFT (Practical Byzantine Fault Tolerance): An algorithm
used in computer systems to reach agreement (consensus) in a network of unreliable
processors. In the context of blockchain, PBFT is often utilized to achieve consensus in
a decentralized environment, ensuring that nodes agree on the validity of transactions
even in the presence of malicious nodes).

3. In the second round, the node generates another matrix with new values based on the
old matrix and the rewards generated in the last round to maximize the rewards.

4. Node can also remove other nodes and alter the values based on the matrix of the
other nodes.

In that case, we will have the following trust matrix.

S0
0 =


0 a0

01 a0
02

a0
10 0 a0

12

a0
20 a0

21 0

 S0
1 =


0 b0

01 b0
02

b0
10 0 b0

12

b0
20 b0

21 0

 S0
2 =


0 c0

01 c0
02

c0
10 0 c0

12

c0
20 c0

21 0

 (9)
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We can imagine that the three nodes will start with these matrices, having the first
node trusting everyone, and from the start will place every element at 1, the second node
will have a probability of 0.5, and the third node will not trust anyone.

S0
0 =

0 1 1
1 0 1
1 1 0

 S0
1 =

 0 0.5 0.5
0.5 0 0.5
0.5 0.5 0

 S0
2 =

0 0 0
0 0 0
0 0 0

 (10)

For transactions received from node 0 and because he is trusting everyone, he will
broadcast the transaction to the entire network; if all nodes are not malicious, each node
will broadcast the same transaction and store it, the three nodes will sign the transaction,
and the rewards will be divided among the three nodes. The truth matrix is expressed
as follows: 0 1 1

1 0 1
1 1 0

 (11)

Each node applies the following transformation to increase the reputation score of
another node. (

∀ai,j ∈ S
)

f
(
ai,j

)
=

ai,j + 1
2

(12)

Therefore, the matrix of the next generation will be

S1
0 =

0 1 1
1 0 1
1 1 0

 S1
1 =

 0 0.75 0.75
0.75 0 0.75
0.75 0.75 0

 S1
2 =

 0 0.5 0.5
0.5 0 0.5
0.5 0.5 0

 (13)

The same logic applies to all future generations.

S2
0 =

0 1 1
1 0 1
1 1 0

 S2
1 =

 0 0.875 0.875
0.875 0 0.875
0.875 0.875 0

 S2
2 =

 0 0.75 0.75
0.75 0 0.75
0.75 0.75 0

 (14)

And we can generalize for a n generation.

Sn
0 =

0 1 1
1 0 1
1 1 0

 Sn
1 =

 0 0.5+2n−1
2n

0.5+2n−1
2n

0.5+2n−1
2n 0 0.5+2n−1

2n
0.5+2n−1

2n
0.5+2n−1

2n 0



Sn
2 =

 0 0+2n−1
2n

0+2n−1
2n

0+2n−1
2n 0 0+2n−1

2n
0+2n−1

2n
0+2n−1

2n 0


(15)

Sn
0 =

0 1 1
1 0 1
1 1 0

 Sn
1 =

 0 −0.5
2n + 1 −0.5

2n + 1
−0.5

2n + 1 0 −0.5
2n + 1

−0.5
2n + 1 −0.5

2n + 1 0



Sn
2 =

 0 1 − 1
2n 1 − 1

2n

1 − 1
2n 0 1 − 1

2n

1 − 1
2n 1 − 1

2n 0


(16)

lim
n→+∞

Sn
0 =

0 1 1
1 0 1
1 1 0

 lim
n→+∞

Sn
1 =

0 1 1
1 0 1
1 1 0

 lim
n→+∞

Sn
2 =

0 1 1
1 0 1
1 1 0

 (17)

lim
n→+∞

Sn
0 = lim

n→+∞
Sn

1 = lim
n→+∞

Sn
2 (18)
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If two nodes are malicious (Nodes 1 and 2, for example), the truth matrix will be
the following.  0 −1 −1

−1 0 −1
−1 −1 0

 (19)

Malicious nodes were detected using the PBFT algorithm. Each node applies the
following transformation if it wants to decrease the score reputation of another node:

(
∀ai,j ∈ S/i ̸= j

)
f
(
ai,j

)
=

ai,j

2
(20)

Therefore, the matrix of the next generation will be:

S1
0 =

 0 0.5 0.5
0.5 0 0.5
0.5 0.5 0

 S1
1 =

 0 0.25 0.25
025 0 0.25
0.25 0.25 0

 S1
2 =

0 0 0
0 0 0
0 0 0

 (21)

The same logic applies to all future generations:

S2
0 =

 0 0.25 0.25
0.25 0 0.25
0.25 0.25 0

 S2
1 =

 0 0.125 0.125
0.125 0 0.125
0.125 0.125 0

 S2
2 =

0 0 0
0 0 0
0 0 0

 (22)

And we can generalize for an N generation.

Sn
0 =

 0 1
2n

1
2n

1
2n 0 1

2n
1

2n
1

2n 0

 Sn
1 =

 0 0.5
2n

0.5
2n

0.5
2n 0 0.5

2n
0.5
2n

0.5
2n 0

 Sn
2 =

0 0 0
0 0 0
0 0 0

 (23)

lim
n→+∞

Sn
0 =

0 0 0
0 0 0
0 0 0

 lim
n→+∞

Sn
1 =

0 0 0
0 0 0
0 0 0

 lim
n→+∞

Sn
2 =

0 0 0
0 0 0
0 0 0

 (24)

lim
n→+∞

Sn
0 = lim

n→+∞
Sn

1 = lim
n→+∞

Sn
2 (25)

If two nodes are malicious (Node 2, for example): The truth matrix will be the following. 0 1 −1
1 0 1
−1 1 0

 (26)

Each node applies the following transformation, a combination of Equations (12) and (20),
where si,j represents the coefficients of the truth matrix.

f
(
ai,j

)
=


ai,j
2 si,j = −1

ai,j+1
2 si,j = 1

=
ai,j +

si,j+1
2

2
=

2ai,j + si,j + 1
4

(27)

Therefore, the matrix of the next generation will be

S1
0 =

 0 1 0.5
1 0 1

0.5 1 0

 S1
1 =

 0 0.75 0.25
075 0 0.75
0.25 0.75 0

 S1
2 =

 0 0.5 0
0.5 0 0.5
0 0.5 0

 (28)
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The same logic applies to all future generations.

S2
0 =

 0 1 0.25
1 0 1

0.25 1 0

 S2
1 =

 0 0.875 0.125
0.875 0 0.875
0.125 0.875 0

S2
2 =

 0 0.75 0
0.75 0 0.75

0 0.75 0

 (29)

And we can generalize for a n generation.

Sn
0 =

 0 1 1
2n

1 0 1
1

2n 1 0

 Sn
1 =

 0 0.5+2n−1
2n

0.5
2n

0.5+2n−1
2n 0 0.5+2n−1

2n
0.5
2n

0.5+2n−1
2n 0



Sn
2 =

 0 0.5+2n−1
2n 0

0.5+2n−1
2n 0 0.5+2n−1

2n

0 0.5+2n−1
2n 0


(30)

lim
n→+∞

Sn
0 =

0 1 0
1 0 1
0 1 0

 lim
n→+∞

Sn
1 =

0 1 0
1 0 1
0 1 0

 lim
n→+∞

Sn
2 =

0 1 0
1 0 1
0 1 0

 (31)

lim
n→+∞

Sn
0 = lim

n→+∞
Sn

1 = lim
n→+∞

Sn
2 (32)

In this example, the trust matrix is a simpler version; if you are among the nodes that
contribute to the broadcast operation, you will get a trust bonus of 1, and if you do not
cooperate, you will be punished by −1. However, the matrix can be adjusted and has two
different coefficients: the coefficient of reward and the coefficient of punishment. Therefore,
we can generalize the application as follows, where cp is the coefficient of punishment, cr is
the coefficient of reward, and si,j are the elements of the truth matrix:

(
∀ai,j ∈ S/i ̸= j

)(
cp ∈ [1;+∞[)(cr ∈]0; 1]

)
f
(
ai,j

)
=

{ ai,j

2cp si,j = −1
ai,j+cr

2 si,j = 1
(33)

Each node can have its trust matrix based on the risk tolerance. If we can extend the
formula for N-generation, we have:

fn(ai,j
)
=


ai,j

2n*cp si,j = −1
ai,j+(2n−1)cr

2n si,j = 1
(34)

Therefore:

lim
n→+∞

fn(ai,j
)
=

{
0 si,j = −1
cr si,j = 1

(35)

Proposition 1. We should have, if all nodes are not malicious and use the same reward coefficient:

∀ i ∈ [0, |V| − 1] lim
n→+∞

Sn
i = lim

n→+∞
Sn

i+1 (36)

Proof 1. Let us have two nodes, i and i + 1; their matrices are Sn
i and Sn

i+1 for n round.
If ai,j, bi,j are the coefficients of their respective matrices, we will have the following.

Sn
i =


0 · · · a1,d+(2n−1)cr

2n

...
. . .

...
ad,1+(2n−1)cr

2n · · · 0

 (37)
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Sn
i+1=


0 · · · b1,d+(2n−1)cr

2n

...
. . .

...
bd,1+(2n−1)cr

2n · · · 0

 (38)

lim
n→+∞

Sn
i = lim

n→+∞


0 · · · a1,d+(2n−1)cr

2n

...
. . .

...
ad,1+(2n−1)cr

2n · · · 0

=

 0 · · · cr
...

. . .
...

cr · · · 0

 (39)

lim
n→+∞

Sn
i+1 = lim

n→+∞


0 · · · b1,d+(2n−1)cr

2n

...
. . .

...
bd,1+(2n−1)cr

2n · · · 0

=

 0 · · · cr
...

. . .
...

cr · · · 0

 (40)

Therefore, lim
n→+∞

Sn
i = lim

n→+∞
Sn

i+1 (41)
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Proposition 1. We should have, if all nodes are not malicious and use the same reward coefficient: 

∀ 𝑖 ∈ [0, |𝑉| − 1] 𝑙𝑖𝑚
𝑛→+∞

𝑆𝑖
𝑛 = 𝑙𝑖𝑚

𝑛→+∞
𝑆𝑖+1
𝑛  (36) 

Proof 1. Let us have two nodes, 𝑖 and i+1; their matrices are Si
n and Si+1

n  for n round.  

If 𝑎𝑖,𝑗, 𝑏𝑖,𝑗 are the coefficients of their respective matrices, we will have the following. 

Si
n = (

0 ⋯
a1,d+(2

n−1)cr

2n

⋮ ⋱ ⋮
ad,1+(2

n−1)cr

2n
⋯ 0

)  (37) 

Si+1
n  = (

0 ⋯
b1,d+(2

n−1)cr

2n

⋮ ⋱ ⋮
bd,1+(2

n−1)cr

2n
⋯ 0

) (38) 

lim
n→+∞

Si
n =  lim

n→+∞
(

0 ⋯
a1,d+(2

n−1)cr

2n

⋮ ⋱ ⋮
ad,1+(2

n−1)cr

2n
⋯ 0

)  = (
0 ⋯ cr
⋮ ⋱ ⋮
cr ⋯ 0

) (39) 

lim
n→+∞

Si+1
n =  lim

n→+∞
(

0 ⋯
b1,d+(2

n−1)cr

2n

⋮ ⋱ ⋮
bd,1+(2

n−1)cr

2n
⋯ 0

)  = (
0 ⋯ cr
⋮ ⋱ ⋮
cr ⋯ 0

) (40) 

Therefore, lim
n→+∞

Si
n = lim

n→+∞
Si+1
n  (41) 

◻ 

6. Reward System

The goal is to create a reward system that provides incentive rewards to the nodes and
encourages nodes to broadcast to more nodes. The simple version of sharing rewards is
to divide the rewards among the contributors’ nodes equally; in that case, we will have
Ri =

Rt
N where Ri is the reward for the Node(i), Rt is the total reward, and N is the number

of contributor nodes. However, if we use this reward system in the following network,
the nodes will fail to share with other nodes and the node will forward traffic to only one
node. In this case, node 0 can broadcast only to node 1 and receives the same rewards as
broadcasting to nodes 0 and 1; therefore, the optimal strategy is to broadcast to only one
node, which is not the case we aim for. Figure 7 illustrates a graph network of a blockchain
with eight nodes, showing a potential network configuration where such reward dynamics
might occur. Each topology has its specificity, and different reward mechanisms should be
applied for each topology. We can deduce that the reward graph is a subgraph from the
initial network where nodes are the contributor nodes; it is a directed graph starting from
the first node that broadcasts the transaction, and the graph represents the transaction flow
in the graph. Figure 8 presents an example of a reward tree represented as a subgraph of
the network, illustrating how rewards can be distributed among the contributor nodes.
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Figure 8. Example of a reward tree represented as a subgraph of the network.

In this example, the reward graph is the subgraph {3,2,4,5,7,6}. The goal is to present
a fair reward system for all the nodes. That is, the number of nodes is not the only factor
in the distribution, but also how the reward graph is structured; the more connections a
node has, the more rewards it will have. Furthermore, if a node has a lower rank in the
graph, the reward will be higher because it is among the first broadcasters of the transaction.
Figure 9 depicts an example of a reward tree graph composed of six nodes, demonstrating
how different nodes, based on their position and connections within the network, receive
varying rewards.
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Figure 9. Example of a reward tree graph composed of 6 nodes.

The following graphs have the same degree; however, their structures differ. The logic
we will apply is that each node will have a weight based on its contribution. For example,
in all graphs in Figure 10, if node 0 does not broadcast the transaction, no node receives
it. Therefore, node 0 makes a significant contribution to the network. To apply this logic,
we counted the weight as the number of children and sub-children of that node using the
depth-first search [34] algorithm (DFS) (Depth First Search (DFS): A fundamental graph
traversal algorithm that explores as far as possible along each branch before backtracking.
It allows for comprehensive exploration of all vertices and edges, making it effective in
determining child and sub-child nodes for a given node in the context of the described
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weighting logic). When we obtain that value, we normalize it by dividing it by the sum of
all other weights. The following is a simple example of a graph with eight nodes.
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Figure 10. Different topologies with the same number of nodes.

The following calculation reward is for the graph in Figure 11.

Weight(Node 0
)
= 7 → WeightN(Node 0

)
=

7
7 + 2 + 3 + 1

=
7

13
(42)

Weight(Node 1) = 2 → WeightN(Node 1) =
2

7 + 2 + 3 + 1
=

2
13

(43)

Weight(Node 2) = 3 → WeightN(Node 2) =
3

7 + 2 + 3 + 1
=

3
13

(44)

Weight(Node 6
)
= 1 → WeightN(Node 6

)
=

1
7 + 2 + 3 + 1

=
1

13
(45)

Weight(Node 3
)
= Weight(Node 4) = Weight(Node 5

)
= Weight(Node 7) = 0 (46)
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In general, for each node, we have the following formulas:

WeightN(Nodei) =
Weight(Nodei)

∑N
j=0 Weight

(
Nodej

) (47)
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where the Weight(Nodei) can be calculated using the following recursive formula with Ci,j
is the coefficient of the graph matrix, meaning Ci,j will be equal to 0 if Nodei and Nodej do
not have any connection.

Weight(Nodei) =
N

∑
j=0

Ci,j
(
Weight

(
Nodej

)
+ 1

)
(48)

For example, if we want to calculate the Weight(Node 1) using our formula:

Weight(Node1) =
N
∑

j=0
C1,j

(
Weight

(
Nodej

)
+ 1

)
Since Node1 has communication only with Node3 and Node4,we will have:
C1,0 = C1,1 = C1,2 = C1,5 = C1,6 = C1,7 = 0andC1,3 = C1,4 = 1
Thus, Weight(Node1) = (Weight(Node3) + 1) + (Weight(Node4) + 1)
And, sin ce Node3 and Node4 do not have any connection/sub-children for any j,
we will have C3,j = C4,j = 0,therefore:
Weight(Node1) = (0 + 1) + (0 + 1) = 2

The reward system design considers the potential of nodes to try to game the system.
While nodes may attempt to increase their connections or manipulate their rank artificially,
the system relies on a combination of the trust matrix and application of depth-first search
(DFS) for weight calculation. This ensures that the connections’ quantity, quality, and
authenticity are considered. Nodes with superficial connections that do not genuinely con-
tribute to network health may receive insignificant rewards. Additionally, the continuous
recalibration of the trust coefficients serves as a check against nodes that may attempt to
manipulate their standing. Malicious or manipulative actions can lead to a decrease in the
trust coefficients, rendering such strategies counterproductive.

7. Actions Based on The Trust Matrix

Each node will have an objective to maximize its rewards; therefore, it aims to optimize
the function maxWeightN(Nodei) because the sum of all weights is fixed. The node is
looking more to optimize its weight, thereby maximizing connections with nodes that have
larger weights. To avoid greedy nodes and conflicts between nodes, in this model, a node
should also consider maximizing the collective gain of the group because we have the same
reward for each transaction, and we can focus more on increasing the depth of the reward
tree. Therefore, the node should solve the following optimization problem.

maxWeight(Nodei)

max
i=N
∑

i=0
min(cos(2πWeight(Nodei)), Weight(Nodei))

(49)

The second constraint involves simply calculating the number of nodes with a weight
different than zero; the larger this number, the larger the depth of the reward tree. To
have a formal equation to count the number of non-zero weight nodes, the first thing is
to omit the difference between weights that are different than 0; the function cos(2πx) for
all integers has this property. Therefore, any integer number will result as an output of 1,
however, cos(2πx) is not sufficient since we will have cos(0) = 1. Therefore, the trick is to
calculate the min(x, cos(2πx)); by having this function, we extract all the weights different
than 0 and sum them up. Each node, as mentioned previously, has its trust matrix and can
decide based on that, by either removing the connection or trying to add a connection. We
can define two coefficients, coefficient of lost and coefficient of trust. If the value in that
matrix is below the coefficient of lost, the node can remove its connection from that node; if
the value is greater than the coefficient of trust, it can try to reach that node and make a
connection with it. These values can affect the matrix’s convergence speed in addition to
the two coefficients of reward and punishment.
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Coefficient of Lost: This coefficient is crucial for penalizing malicious or non-cooperative
behavior in the network. A higher value would mean that trust is lost rapidly after a few
malicious actions, making the network more stringent but potentially more volatile, as
nodes might be penalized too harshly for occasional non-malicious lapses. A lower value
would make the network more forgiving and expose it to risks if malicious nodes are not
adequately penalized.

Coefficient of Trust: This coefficient determines how quickly trust can be gained within
a network. A higher value would allow nodes to quickly regain trust after demonstrating
cooperative behavior, making the network more adaptive and resilient to occasional honest
mistakes. However, if set too high, malicious nodes may quickly regain trust after a few
honest actions, which can be exploited later. A lower value ensures trust is gained slowly,
making the network more stable in its trust evaluations and potentially more resistant to
acknowledging reformative behavior.

The interplay between the coefficients and their values is crucial. Ideally, they should
be set such that the network is resilient to occasional lapses but stringent against consistently
malicious behavior. Too high values for both could make the network volatile, whereas too
low values might make the network sluggish and less adaptive.

8. Analysis and Evaluation of Results

In our research, we aimed to combine graph theory and game theory principles to
enhance the structure of decentralized blockchain networks. To test our theoretical ideas
and better understand the practical effects of our algorithm, we conducted a series of com-
prehensive simulations. Below, we provide a detailed overview of our simulation setup:

• Types of Networks: Our study explored various types of networks, including scale-
free, small-world, and random graph networks. By examining this range, we ensure
that our findings are relevant to multiple network models.

• Network Parameters: To probe the adaptability of the algorithm across varying scales,
our simulations spanned networks with 10, 100, 1,000, and 10,000 nodes. This stag-
gered approach offers a multi-dimensional perspective, shedding light on scalability
and performance issues.

• Simulation Environment: Python was used for our simulations because it has a wide
range of science-related tools and is very flexible. Its strong reputation in research has
helped us obtain reliable and repeatable results.

• Diverse Datasets and Parameter Tuning: Our simulations engaged varied datasets, ma-
nipulated the malicious probability of nodes, toggled cooperative and non-cooperative
strategies, and fine-tuned the reward and punishment coefficients. This dynamic
landscape enriches our results, revealing the agility of the algorithm across differ-
ent scenarios. Simulation Algorithms: We detail the algorithms employed in our
simulations below to provide a more granular perspective on our methodology.

The process of updating the trust matrix in our system is a crucial aspect of main-
taining network integrity and efficiency. The algorithm we developed for this purpose
systematically adjusts the trust scores based on the latest interactions and transaction
verifications. Algorithm 1 details the steps involved in this update process, demonstrat-
ing how the trust matrix is modified in response to the nodes’ behaviors. The algorithm
iteratively evaluates and updates the trust scores between pairs of nodes based on their
recent activities, ensuring that the matrix accurately reflects the current state of trust within
the network.

The reward system in our network is designed to incentivize nodes for their par-
ticipation and contributions. It operates by computing rewards for each node based on
specific criteria, such as the number of sub-children a node has or its role in the network.
To systematically calculate these rewards, we developed ’Algorithm 2’. This algorithm
outlines the process for determining the reward each node receives, based on its position
and function within the network. It takes into account various factors, ensuring a fair and
equitable distribution of the network rewards among all participating nodes.
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Now that we have set up the scene in more detail, let us move on to detailed and
interesting discoveries from our study.

1. Packet Loss vs. Malicious Nodes

The impact of malicious nodes on network functionality is a pressing concern in
blockchain systems. Our model demonstrates a linear relationship between the percentage
of malicious nodes and the packet loss. However, a noticeable trend was the exponential
increase in packet loss when the malicious nodes exceeded a certain threshold, which was
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linked to the inherent limitations of the PBFT algorithm. Specifically, when malicious nodes
approach a threshold, packet losses surge, highlighting the importance of maintaining
node integrity in the network. Figure 12 graphically represents this relationship, showing
the correlation between packet loss percentage and the percentage of malicious nodes in
the system.
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2. False Positive/Negative Rate Over Rounds

Consistency and accuracy are of paramount importance in decentralized systems.
Our model exhibited a declining trend in false-positive and false-negative rates as the
rounds advanced. This is attributed to our game-theoretic framework’s refined matrix
representation and evolving nature, which iteratively improves its discernment capabilities,
ensuring reduced erroneous detections in each subsequent round. Figure 13 illustrates this
trend, providing a graphical representation of how the false positive/negative rates change
over successive rounds.
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3. Resilience to Sybil Attacks Over Rounds

The mettle of a blockchain network is also judged by its resilience to Sybil attacks.
With each progressive round, the number of successful attacks decreased, emphasizing
the effectiveness of our matrix-based representation and reward mechanism. Thus, the
network exhibits enhanced defensive capabilities against adversarial strategies. Figure 14
visually demonstrates this trend, showcasing the resilience of the network to Sybil attacks
over successive rounds and highlighting the declining frequency of successful attacks as
the rounds progress.
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4. Convergence Time Over Rounds

The matrices should converge by leveraging the theoretical premise stipulating that
given non-malicious nodes operate under a unified strategy. Our simulations mirrored this
assumption. The convergence time, indicative of the disparity in trust matrices, exhibited
a decreasing trajectory over the rounds. This faster consensus achievement underscores
the network’s increasing efficiency, ensuring nodes reach an agreement more promptly
than transactions and data validation. Figure 15 graphically illustrates this trend, showing
the convergence time over successive rounds and highlighting the network’s enhanced
efficiency in reaching consensus as the rounds progress.
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In summary, the proposed incentive model’s combination of graph and game theory
offers a novel approach to fortifying blockchain security. Matrix representation, integrated
with a reward mechanism and governed by the principles of Nash Equilibrium, heralds a
new era of decentralized systems that are secure and efficient. The simulations represent a
testament to the model’s prowess in combating malicious endeavors, thus bolstering the
integrity and trustworthiness of the blockchain network.

9. Conclusions

Blockchain technology’s potential to revolutionize various sectors requires robust and
efficient incentive mechanisms to maintain network integrity and participation. This study
delved into the intricate landscape of blockchain networks, highlighting the importance
of node incentivization and trust optimization. Via a comprehensive review of existing
studies, we identify gaps and potential areas of improvement in current incentive models.

Our proposed framework, which synergizes graph and game theories, offers a novel
approach to fostering node cooperation. Simulations conducted across diverse network
typologies demonstrate the efficacy and scalability of our model. Our approach ensures a
more democratized network ecosystem and paves the way for greater decentralization and
network security.

As promising as our findings are, blockchain technology’s dynamic and evolving
nature demands continuous research and development. Therefore, we envision several
compelling directions for future research.

1. Enhancing Privacy with Zero-Knowledge Proofs: ZKP can enable nodes to verify
transactions or interactions without revealing underlying data in the trust matrix.
This approach ensures that the integrity and confidentiality of the trust matrix are
maintained even when nodes are required to share or prove certain information.
Research in this direction should focus on developing ZKP protocols tailored to the
specific requirements of our framework, ensuring that they are efficient and scalable.

2. Secure Multi-Party Computation for Decentralized Calculations: MPC allows for
the computation of trust matrix updates and decisions in a decentralized and secure
manner, where no single node can access the complete data. This method is partic-
ularly beneficial in a blockchain environment because it aligns with the principles
of decentralization and mutual distrust. Future research could explore how MPC
can be effectively integrated into the blockchain network to compute outcomes se-
curely based on the trust matrix while ensuring that the individual data of each node
remain private.

3. Cross-Chain Compatibility and Interoperability: Another vital area for future explo-
ration is the adaptability of the incentive model to different blockchain platforms.
Cross-chain compatibility and interoperability are crucial to achieving a more in-
terconnected and versatile blockchain ecosystem. This research involves creating
standardized protocols or frameworks that enable seamless interactions and integra-
tion between various blockchain networks, thus enhancing our model’s overall utility
and reach.

As blockchain continues its trajectory toward global adoption, the optimization of node
incentives remains paramount. This study contributes a significant step in this direction by
offering insights and methodologies that could shape the future of decentralized networks.
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