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Abstract: Fog–cloud-based hierarchical task-scheduling methods are embracing significant chal-
lenges to support e-Health applications due to the large number of users, high task diversity, and
harsher service-level requirements. Addressing the challenges of fog–cloud integration, this paper
proposes a new service/network-aware fog–cloud hierarchical resource-mapping scheme, which
achieves optimized resource utilization efficiency and minimized latency for service-level critical
tasks in e-Health applications. Concretely, we develop a service/network-aware task classification
algorithm. We adopt support vector machine as a backbone with fast computational speed to sup-
port real-time task scheduling, and we develop a new kernel, fusing convolution, cross-correlation,
and auto-correlation, to gain enhanced specificity and sensitivity. Based on task classification, we
propose task priority assignment and resource-mapping algorithms, which aim to achieve mini-
mized overall latency for critical tasks and improve resource utilization efficiency. Simulation results
showcase that the proposed algorithm is able to achieve average execution times for critical/non-
critical tasks of 0.23/0.50 ms in diverse networking setups, which surpass the benchmark scheme by
73.88%/52.01%, respectively.

Keywords: fog–cloud computing; task scheduling; service aware; support vector machine; network
optimization; e-Health

1. Introduction

e-Health is becoming the backbone for upgrading the conventional healthcare system
by validating remote services, which are specifically important under pandemic conditions
(e.g., COVID-19) to release the pressure of lack of trained healthcare professionals [1,2].

Predicted to process 92% of the overall workload within 5 years, cloud computing has
proved its high centralized computational and storage capacity in e-Health, e.g., developing
health information technology (HIT) systems [3]. Additionally, to prevent inefficient
massive data aggregation to centralized cloud computing in the conceived ultra-large-
scale e-Health system with the rapid increase in the number of users, fog computing has
emerged, since it is located physically closer to users [4]. To integrate the aforementioned
strengths of cloud and fog computing, the fog–cloud hierarchical structure, as well as
efficient fog–cloud resource management, has provided a glimmer of hope to support
high portability and automatic provisioning for future e-Health development [5]. There
are plenty of efforts for resource management among fog and cloud nodes, e.g., resource
mapping [6] and task scheduling [4], where task classification is essential to identifying the
features of both computing nodes (e.g., computational capacity, potential latency, etc.) [7]
and tasks (e.g., payload, etc.) [8].
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Despite the foreseen advantages, the fog–cloud hierarchical structure for e-Health
is a significantly complicated system, as a cross-layer optimization problem, with new
challenges. To start, the cross-layer task scheduling of the fog–cloud hierarchical structure
for e-Health gains an irregular solution space due to the quantitatively large difference
between features of fog and cloud nodes. Therefore, it requires higher complexity of model-
ing and solving, which might fail to support critical/latency-sensitive tasks due to tedious
computation. To the best of the authors’ knowledge, there is still a lack of research efforts for
the real-time task scheduling of fog–cloud hierarchical structures for e-Health services. Ad-
ditionally, task classification also encounters serious computational complexity, particularly
for the foreseen ultra-large-scale e-Health systems. Improper task classification directly
results in inefficient resource utilization regarding diverse demands for task scheduling,
optimization of QoS, and latency. Moreover, due to the uniqueness of e-Health services,
critical tasks are defined with very low latency tolerance margin, which is determined by
services/patients’ information, e.g., medical records/real-time symptoms [9]. Therefore,
task scheduling in e-Health should fuse features at the service level and network level
simultaneously, which directly complicates the computational process.

Targeting the aforementioned challenges, we propose an e-Health infrastructure for
real-time fog–cloud hierarchical task scheduling by dynamically considering the real-time
requirements of tasks with the modeling of both networking and computation simultane-
ously. The contributions in the paper can be summarized as follows:

1. We propose a task classification algorithm, fusing features at the network level and ser-
vice level for e-Health, which is efficient in achieving user-centric QoS maximization,
with latency minimized for critical tasks. Support vector machine (SVM)-based task
classification which is efficient in handling the defined latency-sensitive critical tasks is
proposed. It is necessary to note that although deep learning algorithms increasingly
gain markets, shallow machine learning (e.g., SVM) with low computational costs still
presents strengths for latency-sensitive e-Health applications [5].

2. A new kernel type is proposed for comprehensively classifying network-level and
service-level features, fusing convolution, cross-correlation, and auto-correlation, which
gains high overall classification accuracy for specificity and sensitivity enhancement.

3. We propose a task priority assignment algorithm and a resource-mapping algorithm,
which achieve sufficient overall latency for the defined critical tasks while improving
the overall resource utilization efficiency.

The rest of the paper is organized as follows: Section 2 presents a survey of related
efforts. Section 3 introduces the system modeling with the formulation of communication
and computational processes. Section 4 proposes optimization modeling and the SVM-
based task-scheduling algorithm, with a newly developed kernel type to optimize resource
utilization efficiency and communication latency. Section 5 explores three key algorithms.
These algorithms collaboratively prioritize tasks, classify resources, and effectively allocate
tasks to suitable fog and cloud nodes. Section 6 showcases the result analysis of the
proposed scheme. Section 7 concludes the paper.

2. Related Work

Task scheduling for fog–cloudcomputing is highly demanded due to uneven distri-
bution of workload and heterogeneous computing capacity. Conventionally, task schedul-
ing is performed among cloud nodes to improve computational efficiency. For instance,
tasks are prioritized according to their payload, which is further scheduled based on
the cloud’s MIPS, ensuring processing reliability for tasks with high priority [10]. Com-
pared with cloud computing, the popularity of fog computing increases demand for
task scheduling, resulting from the limited computational capacity of individual fog
nodes (FNs) when dealing with heterogeneous data densification for e-Health. Depend-
ing on criteria such as user-preference-oriented features of FNs [11], energy efficiency
maximization [12], and overall latency minimization [13], fog-based task scheduling is
modeled and solved. As illustrated in Table 1, critical network- and service-level fac-
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tors that comprehensively cover the typical demands and indicators to achieve optimal
service-aware fog–cloud resource mapping for e-Health are selected and considered in this
paper. Concretely, FN capacity relates to the number of fog nodes available, influencing
performance and task offloading decisions. Task features, encompassing computational
complexity, data size, and latency requirements, are the essential criteria to be considered
when achieving service-level task scheduling in the network layer. Task priority is a critical
indicator to guide scheduling based on service-level urgency. Latency, i.e., delay in task
completion, impacts the quality of service, particularly in e-Health scenarios. In addition,
execution time is specifically considered, besides overall latency, to further highlight the im-
pact of task complexity and fog node resources simultaneously. Network and computation
modeling are responsible for ensuring accurate latency and execution time predictions in
service-aware task scheduling, respectively. Offloading decisions to the cloud, in contrast
to fog-level offloading, should be considered a key criterion in fog–cloud resource mapping,
with the cloud providing centralized computational/storage power to data-intensive tasks
for a trade-off among network latency, balancing proximity, and computational power.

Many current research efforts focused on either fog-based or cloud-based task schedul-
ing, where nodes share similar features. For example, FNs normally gain a similar compu-
tational capacity level (i.e., much lower than cloud nodes), leading to a relatively regularly
shaped optimization solution space for task classification [4]. For instance, a deep learning-
based fog-computing architecture was proposed in order to diagnose heart diseases, which
offloaded tasks based on the CPU load of FNs as a metric [14]. Similarly, greedy algorithm-
based resource allocation and classification for FNs based on the availability of CPU and
bandwidth were proposed [15].

The fog–cloud-based hierarchical structure has drawn significant research attention
in recent 5G development and research on next-generation communications thanks to its
benefits of enhanced connectivity between sensors/devices/users and computing nodes
while reducing transmission and computational latency with high QoS. In fact, fog–cloud
hierarchical task scheduling has been foreseen to be dominant for future heterogeneous
network (HetNet) deployment, requiring systemic optimization regarding service-centric
and user-centric performance, e.g., energy efficiency, QoS, overall latency, etc. [16]. How-
ever, complicated features with multi-layer modeling cannot be tackled with the above-
mentioned homogeneousfog–cloud-only task scheduling. There have been attempts to con-
struct hierarchies among cloud nodes (e.g., cloudlet [1]) or FNs (e.g., multi-layer FNs [17]),
aiming to increase utilization efficiency while reducing latency, as these are still not re-
placeable in fog–cloud hierarchical task scheduling with more diverse features. The most
adopted strategies for fog–cloud task scheduling generally follow the principle that latency-
tolerant and large-size tasks are assigned to cloud nodes, and latency-sensitive tasks, to
FNs [9], based on which minimizing the overall makespan, maximizing resource utilization
efficiency, or load balancing is targeted [16,18–21].

To facilitate task scheduling in fog–cloud hierarchical e-Health systems, task classifica-
tion is essential, with tasks being normally categorized/prioritized (e.g., critical, moderate,
normal [18]). Concretely, the priority of tasks is mostly determined with reference to the
overall latency requirement [19], deadline and available resources in FNs [22], payload [23],
makespan constraints with available resources [20], or task length [24]. For instance, a
mobility-aware scheduling scheme to dynamically distribute tasks to the fog or the cloud
was proposed for e-Health [25] by prioritizing tasks based on data size, response time, and
complexity. A static scheduling method in a fog–cloud heterogeneous environment was
also proposed to reduce CPU execution time and network usage [26]; it classifies tasks
according to the required MIPS and the trade-off between CPU execution time and alloca-
tion memory of FNs. Task offloading to cloud nodes is still based on the aforementioned
“latency-tolerant and large-size tasks to cloud nodes” principle.
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Table 1. Literature review.

Ref. FN
Capacity

Task
Features

Task
Priority

Latency Execution
Time

Network
Modeling

Computation
Modeling

Offloading
to Cloud

[10] ✘ ✔ ✔ ✘ ✔ ✘ ✘ ✘

[11] ✘ ✘ ✘ ✔ ✔ ✘ ✘ ✘

[12] ✔ ✔ ✘ ✔ ✔ ✘ ✘ ✘

[16] ✔ ✘ ✘ ✔ ✔ ✔ ✔ ✘

[18] ✔ ✔ ✔ ✘ ✔ ✘ ✘ ✔

[19] ✔ ✘ ✔ ✘ ✔ ✔ ✘ ✔

[20] ✔ ✘ ✔ ✔ ✔ ✔ ✘ ✔

[21] ✔ ✘ ✘ ✔ ✔ ✔ ✔ ✘

[23] ✘ ✔ ✔ ✔ ✘ ✘ ✘ ✘

Proposed ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔

However, due to the nature of e-Health, besides network-level requirements, tasks
should be further classified based on service-level demands, e.g., patients’ profile, etc.,
which should play a vital role in minimizing critical tasks (e.g., time-sensitive tasks, emer-
gencies, etc.). For instance, detection of abnormal cardiovascular conditions might be
much more serious for patients with related EHR than for normal users, which cannot be
reflected by network-level features. Some attempts were made to reduce the computational
process for mobile patients based on offloading high-priority tasks to the core with higher
computational power based on the predefined priority of tasks in the application layer [27].
Comprehensive determination of task priority is still missing for e-Health regarding both
network-level requirements and service-level demands. Therefore, we propose a task-
scheduling scheme, comprehensively considering network-level and service-level features
for task classification.

3. Fog–Cloud Hierarchical Infrastructure and Modeling for e-Health

This section outlines an innovative task-scheduling framework in a fog–cloud hierar-
chy specifically designed to enhance e-Health services by optimizing task allocation and
reducing latency.

3.1. Fog–Cloud Hierarchical Infrastructure for e-Health

We propose an optimal cross-layer task-scheduling scheme based on a generic fog–
cloud hierarchical infrastructure for e-Health, as shown in Figure 1. e-Health devices in
the IoT layer are connected to base stations (BSs), which further relay the aggregated data
to the task orchestrator (also known as fog-layer broker), centralized for task schedul-
ing. Allocation between e-Health devices and BSs can be achieved using our previously
published schemes, achieving optimal link quality with interference mitigation [6]. Conven-
tionally, task-scheduling methods either schedule tasks among fog nodes (FNs) or forward
latency-insensitive tasks to cloud nodes, which results in inefficient resource utilization
of the fog–cloud hierarchical infrastructure while potentially failing to support critical
tasks in e-Health according to service-level demands. Therefore, we focus on cross-layer
task scheduling by embedding a support vector machine (SVM)-based task classification
algorithm at the orchestrator, the output of which guides real-time task scheduling to
fog–cloud nodes. Compared with the conventional methods, the proposed algorithm
is capable of achieving real-time fog–cloud cross-layer task scheduling with minimized
overall latency for critical tasks in e-Health while ensuring efficient computation for all
users. The proposed task classification and task-scheduling algorithm will be discussed in
Sections 4 and 5, respectively.
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Figure 1. Generic cloud–fog hierarchical architecture for e-Health.

Suppose that there are M cloud nodes and N FNs in the infrastructure designed with
heterogeneous computational capacities as

Ac
M = {ac

1, ac
2, . . . , ac

M}
A f

N = {a f
1 , a f

2 , . . . , a f
N}

(1)

where M + N fog–cloud nodes support UIoT e-Health devices, with each device u generat-
ing xu

1 , xu
2 , . . . , xu

Ku
tasks in unit time period t. To model this random generation, we have

employed a Poisson distribution, which is commonly considered [28] and well proved to
reflect the scenarios in our paper, i.e., events happening independently, at a steady rate,
whose exact occurrence is random. Concretely, Dxu

ku
and Lxu

ku
, with ku ≤ Ku, u ≤ U, are

the latency and the payload of the kth task generated by device u, respectively, which are
well recognized for task classification, especially for emergent and critical e-Health applica-
tions [9]. However, specifically in e-Health, critical tasks should be defined according to
service-level demands. For instance, it is intuitive that tasks related to acute diseases should
gain higher critical level than chronic diseases, with much higher probability of leading to
serious drawbacks.

To correlate tasks according to service-level demands, we consider the type of tasks
according to their service-level functionality, θ, which holds four different values, defined as

θu
x = {inquiry, backup, noti f ication, alarm} (2)

where:

1. Inquiry: triggered for storing information in medical records;
2. Backup: generated periodically to update medical records;
3. Notification: set as reminders, e.g., pill time and therapy appointment for patients,

medical status alert to medical workers, etc.;
4. Alarm: generated based on the diagnosis results, which are also affected/referenced

by the proposed orchestrator, regarding task classification.

The final value of θu
x is set by the scheduler, after examining all indicated parameters

in Algorithm 1.
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Algorithm 1 Task priority determination algorithm.

1: /* 1.0 for each task (xu
ku
) check (βu

xku
), (µu

xku
) fields */

2: if (βu
xku

) == (µ
βu

x
l ) then

3: SVM_weight(xu
ku
) == High

4: else if (βu
xku

)! = (µ
βu

x
l ) then

5: SVM_weight(xu
ku
) == Medium

6: else
7: SVM_weight(xu

ku
) == Low

8: end if
9: /* 2.0 assign the priority to the task */

10: priority(xu
ku
) = SVMweight(xu

k ) +weight(PL(xu
k ))

11: /* 2.1 label the task, assign the value (type of task) */
12: θu

xku
= {inquiry, backup, noti f ication, alarm}

13: /* 2.2 order tasks descending based on priority */
14: P(xu

k (p)) =
{

xu
k (p), xu

k−1(p − 1), · · · , xu
0 (0)

}
15: /* 3.0 send the prioritized tasks from the fog nodes */
16: P(xu

k (p)) ⇒ Orchestrator
{[

X(p)U
K
][

AN
F
]}

Additionally, patients’ medical records, βu
x , are considered, in task scheduling, a key

feature reflecting service-level demands and are generalized as acute and chronic diseases
(x ∈ {xu

1 , . . . , xu
Ku
}, u ∈ {1, . . . , UIoT}):

βu
x = {Acute, Chronic} (3)

Similar to θ, tasks related to acute diseases should be considered critical tasks, com-
pared with chronic diseases. To model βu

x numerically, we define µ as preliminary symp-
toms of diseases, according to patients’ medical records:

µu =


µ

βu
1

1 . . . µ
βu

1
L

...
. . .

...

µ
βu

Ku
1 . . . µ

βu
Ku

L

 (4)

where ∀u ∈ {1, . . . , UIoT , µu ∈ {0, 1}, with µu = 1 indicating that patient u has correspond-
ing symptoms of acute or chronic diseases and µu = 0 indicating that no symptoms have
been detected.

3.2. Network Modeling

Since θ is considered a key parameter set for task scheduling, network modeling
should be formulated to reflect the stringent latency and QoS requirements, which are
modeled in a cross-layer fashion.

As illustrated in Figure 1, UIoT devices are connected to FNs through a wireless
network, with distance δ

f
u,n between device u and FN n. Similarly, with the conceived large

throughput in the next generation of communications, the connection between fog and
cloud layers is also assumed to be wireless, with distance being represented by δc

n,m.
For each task xu

ku
, ku ∈ {1, . . . , Ku}, u ∈ {1, . . . , UIoT}, the overall end-to-end transmis-

sion latency can be constrained as

Du
xku

< τcomm,xu
ku
+ τwait,xu

ku
+ τproc,xu

ku
(5)

where τcomm,xu
ku

, τwait,xu
ku

, and τproc,xu
ku

refer to latency of propagation, waiting, and process-
ing for task xu

ku
, respectively.
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τcomm,xu
ku

is affected by the transmission delay (ttrans,xu
ku

), estimated as

ttrans,xu
ku

=
J f
u

R f ,u
n

+
Ic
u

Rc,u
m

(6)

where J f
u = ∑ xu

ku
and Ic

u = ∑ xu
ku

represent the number of bits of task xu
ku

from device u to

FNs and cloud nodes, respectively. R f ,u
n and Rc,u

m refer to the data rates for transmitting the
bits of xu

ku
to FN n and cloud nodes m, respectively, as [6]

R f ,u
n = (W f

n ) ∗ log(1 + SINR f ,u
n ) (7)

Rc,u
m = (Wc

m) ∗ log(1 + SINRc,u
m ) (8)

where Wz
i , i ∈ {m, n}, z ∈ {c, f }, is the bandwidth assigned to node i and SINRz,u

i repre-
sents the signal-to-interference-plus-noise ratio for node i regarding device u. In the case of
i = n, the SINR is calculated as

SINR f ,u
n =

Pwuhu(δ
f
u,n)

−αpl

σ2 + I f
n

(9)

where Pwu refers to the transmission power of device u (uplink considered). hu is the channel
power coefficient. Path loss is defined according to δu with path loss coefficient αpl. σ2 and I f

n
are the noise variance and the residual interference power for FN n, respectively [29]. Similarly,
for the connection between device u and cloud node m, the SINR is calculated as

SINRc,u
m =

Pwuhu(δc
u,m)

−αpl

σ2 + Ic
m

(10)

Together with the propagation delay related to multi-hopping, ϕz,u
i , i ∈ {m, n}, z ∈

{c, f }, has a proportional relationship with δ
f
u,n and δc

n,m; τcomm,xu
ku

is derived as

τcomm,xu
ku

= ttrans,xu
ku
+ ϕz,u

i i ∈ {m, n}, z ∈ {c, f } (11)

τwait,xu
ku

is derived as the summation of the delay for task xu
ku

requesting network
access (γxu

ku
) and the server response time (νi,xz,u

ku
) required for computing nodes to respond

to the task:
τwait,xu

ku
= γxu

ku
+ νi,xz,u

ku
i ∈ {m, n}, z ∈ {c, f } (12)

τproc,xu
ku

is affected by the payload of task xu
ku

and the computing capacity of the
associated computing nodes, i ∈ {m, n}, z ∈ {c, f }, and is calculated as

τproc,xu
ku

=
Lu

xku

az
i

, i ∈ {m, n}, z ∈ {c, f } (13)

3.3. Computation Modeling

Both cloud and fog nodes share basic features, e.g., computing capacity, including
virtual central processing unit (vCPU) cores, MIPS, RAM, and storage, regarding A f

n and
Ac

m defined in (1):

Az
i = ∑ {vCPU + MIPS + RAM + storage}, i ∈ {m, n}, z ∈ {c, f } (14)
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We suppose that Tz
u,i, i ∈ {m, n}, z ∈ {c, f }, refers to the total number of time slots in

the computing node, where

Tz
u,i =

T

∑
t=1

∆τz
u,i(t), Z = c, f . (15)

where T is the total processing time. ∆τz
u,i(t) is the available time of computing node i in

time slot t.
The required computing resource for task xu

ku
is defined as rqu

xu
ku
(t) in a given time

slot t. It is highlighted that rqu
xu

ku
(t) is heterogeneous for diverse devices, which compli-

cates task scheduling, with user/service-centric QoS and latency optimization. rqu
xu

ku
(t) is

constrained as

∀u ∈ {1, . . . , UIoT} :
Ku

∑
k=1

T

∑
t=1

rqu
xu

ku
(t) ≤

N

∑
i=1

a f
i +

M

∑
j=1

ac
j (16)

4. Support Vector Machine-Based Multi-Layer Task Classification

This section addresses the proposed SVM-based multi-class algorithm for weighting
each task. The result of this stage is used together with Algorithm 1 to determine the
priority of the tasks. The proposed SVM-based algorithm determines the weight of the task
into three categories, “high”, “med”, and “norm”, according to two features, where the
first one is the patient profile, which represents the medical history of the patient, and the
second one is the symptom, which is related to the sensor’s response to an action. Figure 2
shows the transitions between states of the weights for the three classes.

1. High: This state indicates that the notification from one of the sensors has one of the
symptoms labeled risky, in addition to the fact that the patient has an illness history
within their profile; additionally, the received symptom is directly connected to the
patient’s medical case.

2. Medium: This state includes two cases: The first one implies that the notification
has one of the risky symptoms but the patient’s medical profile is marked as healthy
and has no illness history; this case is represented by (01). The second case is when
the patient is labeled as having one of the chronic diseases which requires constant
surveillance and the patient has no symptoms at the moment; this case is represented
by (10).

3. Normal: This state refers to the situation where all incoming notifications are within
safe limits, such as periodic readings, with a clear illness history for the patient.

Figure 2. State diagram for task weight determination.
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It is worth to highlight here that three classes are sufficient and efficient in targeting
low latency for the high class and offering sufficient coverage and connectivity for the
normal class. The medium class is classified as the transitional class; it is distinguished from
the normal class and is potentially classified as high class once the extracted features tend
to be more ”critical”, e.g., more severe symptoms are detected. To increase classification
accuracy among the three classes, three classifiers are required for classifying high/med,
med/norm, and high/norm [30].

Highly nonlinear and heterogeneous features lead the task priority determination in
this paper to require machine learning-based algorithms [19]. Given the need for machine
learning algorithms, SVM, well known for its capability of handling classification in nonlin-
ear solution spaces with fast computation [30], is adopted as the backbone algorithm for
task priority determination. Regarding the heterogeneous features considered in task prior-
ity determination, new kernel fusing cross-correlation, convolution, and auto-correlation
are developed.

In the same manner as in Algorithm 1, the machine learning algorithm SVM is used
in Algorithm 2 to classify FNs into three levels (high, medium, and low) based on three
aspects: the first one is the physical characteristics of the FNs, which include MIPS, RAM,
storage, and the number of CPUs; the second aspect reflects network communication
features up/downlink between the FNs and the physical layer; and finally, the third aspect
refers to the availability of the resources in each FN and their ability to receive and process
new tasks. This procedure is periodically employed to scan the FNs in the service area
and update the SVM value in Algorithm 2 to classify the FNs into three levels to meet the
latency limits for critical tasks.

Task priority determination, together with fog/cloud computing ranking, which will
be described in Section 5, contributes to Algorithm 3, i.e., resource mapping, for efficiently
supporting critical tasks in e-Health with low latency and high QoS while ensuring effective
connectivity and computation for normal tasks (e.g., monitoring). The resource-mapping
algorithm is further illustrated in detail in Section 5.3.

Algorithm 2 Resource classification algorithm.

1: /* Scan for the available fog node A f
N */

2: for n = 0, 1, 2 . . . , N do
3: /* 1.0 SVM classify computational capacity (CC) */

4: SVM


MIPS
RAM
CPUs

Storage

 ⇒ (CC(A f
n))

5:
6: /* 1.1 SVM classify connection features (CF) */

7: SVM
{

uplink
distance

}
⇒ (CF(A f

n))

8:
9: /* 1.2 The Availability of the fog node (A) */

10: Availabl
{

Task spots
available resources

}
⇒ (A(A f

n))

11:
12: end for
13: /* 2.0 Classify and order fog nodes using SVM */

14: SVM


(CC(A f

n))

(CF(A f
n))

(A(A f
n))

 ⇒

15:
{
(A f

n)High, (A f
n)Medium, . . . , (A f

n)Low

}
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Algorithm 3 Resource-mapping algorithm.

1: /* 1.0 Receiving prioritized fog nodes for Algorithm 2 */
2:

{
(A f

n)High, (A f
n)Medium, . . . , (A f

n)Low

}
3: /* 2.0 Receiving prioritized tasks for Algorithm 1 */
4: prioritized task=

{
(x fn

high), (x fn
med), (x fn

low)
}

5: /* checking task’s parameters */
6: /* 2.1 checking the value of task’s Payload */
7: if PL(xu

ku
) >= PL(high) then

8: weight(PL(xu
ku
)) == high

9: else if PL(medium) =< PL(xu
ku
) =< PL(high) then

10: weight(PL(xu
ku
)) == medium

11: else
12: weight(PL(xu

ku
)) == low

13: end if
14: /* 3.0 The Orchestrator maps & offloads tasks to FNs or CNs */

15:



(A f
1)

(A f
2)

(A f
n)

...
(A f

N)
...

(Ac
m)

(Ac
M)


⇐



(x f1
1 )

(x f1
1 )

(x fn
k )
...
...

(x fN−n
K−k )

...
(x fN

K )


16: /* 4.0 The connection capacity */
17: if D(u

xku
) < τ(comm)(xu

ku
) + τ(wait)(xu

ku
) + τ(proc)(xu

ku
) then

18: (θu
xku

) = alarm
19: Forward xu

ku
⇒ Cloud node

20: end if

4.1. Feature and Database Determination

The data used for SVM classification algorithms are real open-source data for scientific
research purposes; here, a dataset of heart attack data from [31,32] is used for the SVM
algorithm as a critical application, taking into account many parameters, such as the type of
chest pain, blood pressure, and cholesterol levels. Using the dataset, the parameters were
identified as symptoms for each of the diseases, which helped determine the thresholds for
SVM in Algorithm 1 to prioritize tasks.

On the other hand, the datasets used in Algorithm 2 are obtained through our experi-
ments. The used parameters are extracted from the tests in the iFogSim simulator and input
into SVM (Algorithm 2). The used parameters include MIPS, RAM, storage, the number of
CPUs, connection features, and the available resources. These parameters are used to train
the data to classify the FNs.

Both algorithms incorporate these carefully selected features to ensure accurate task
classification. We employed five-fold cross-validation for robust model validation and to
confirm the effectiveness of these features in practical scenarios.

4.2. New Kernel Design and Margin Maximization

It is commonly recognized that conventional kernels (e.g., linear, quadratic, etc.)
cannot effectively be applied to ubiquitous applications [30]. Therefore, in this section, we
develop a new type of kernel for enhancing classification accuracy. Conventional kernels
and cross-correlation kernels are fused, reflecting symmetric features and anti-symmetric
features, respectively, to enhance classification accuracy.
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As mentioned previously, three classes, normal, medium, high, represented by C0, C1, C2,
respectively, are developed. For each class, qmax tasks are considered for the supervision of
each class, derived as XCi = {x1,Ci , . . . , xqmax,Ci}, i = {0, 1, 2}. Suppose that L features are

considered for each task; then, the similarity between tasks xq,Ci and xq′,Cj
, i, j = 0, 1, 2, S

xq′ ,Cj
xq,Ci

,
is defined as a cross-correlation [30]:

S
xq′ ,Cj
xq,Ci

(l) =
+∞

∑
n=−∞

xq,Ci (n) · xq′ ,Cj
(n − l) (17)

In general, tasks classified in the same class should gain higher value of S
xq′ ,Cj
xq,Ci

, with higher
similarity compared with tasks in different classes.

Similarly, convolution and auto-correlation (auto-correlation only for tasks in the same
class) [30], representing reversed similarity and self-similarity, respectively, are derived as

R
xq′ ,Cj
xq,Ci

(l) =
L

∑
n=1

xq,Ci (l) · xq′ ,Cj
(l − n) (18)

SS
xq′ ,Ci
xq,Ci

(l) =
L

∑
n=1

xq,Ci (n) · xq′ ,Ci
(n − l) (19)

By nature, cross-correlation reflects the similarity of two tasks, while convolution
enhances the accuracy of similarity determination, reversely. Auto-correlation is also
adopted, further improving classification performance in sensitivity and specificity.

In this paper, the information obtained by S
xq′ ,Cj
xq,Ci

, R
xq′ ,Cj
xq,Ci

, and SS
xq′ ,Ci
xq,Ci

is used to model
the kernels of task classification, which are derived based on the kernel matrix:

KS
q,q′ =


KS

1,1 . . . KS
1,3qmax

...
. . .

...
KS

3qmax ,1 . . . KS
3qmax ,3qmax

 (20)

KR
q,q′ =


KR

1,1 . . . KR
1,3qmax

...
. . .

...
KR

3qmax ,1 . . . KR
3qmax ,3qmax

 (21)

Ki,SS
q,q′ =


Ki,SS

1,1 . . . Ki,SS
1,qmax

...
. . .

...
Ki,SS

qmax ,1 . . . Ki,SS
qmax ,qmax

, i = {0, 1, 2} (22)

where

KS
q,q′ =

L

∑
n=1

ωS(n) · S
xq′ ,Cj
xq,Ci

(n) (23)

KR
q,q′ =

L

∑
n=1

ωR(n) · R
xq′ ,Cj
xq,Ci

(n) (24)

Ki,SS
q,q′ =

L

∑
n=1

ωSS(n) · SS
xq′ ,Ci
xq,Ci

(n), i = {0, 1, 2} (25)

The weighting of features, i.e., {ωS(n), ωR(n), ωSS(n)}, should be determined ac-
cording to the demand of applications. For instance, weighting for the feature related to
“patients’ medical record” should be designed as relatively higher, to potentially increase
the specificity of defined critical tasks classified with high priority.
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Mercer kernels (i.e., inner product kernels, KS
q,q′ , KR

q,q′ , KSS
q,q′ ) obey the Mercer theorem,

which satisfies the symmetric and positive semi-definite requirements [30]. Therefore, the
kernel for task classification is defined as the sum of the inner product kernels:

Ko
q,q′ = µS · KS

q,q′ + µR · KR
q,q′ +

2

∑
i=0

νi,SS · Ki,SS
q,q′ (26)

where {µS, µR, µSS, νi,SS}, i = {0, 1, 2}, are weights for the defined inner product kernels.
Ko

q,q′ , as the sum of Mercer kernels, is also a Mercer kernel, which fuses the strengths of cross-
correlation, convolution, and auto-correlation for enhancements in overall classification
accuracy. The maximum margin function of Ko

q,q′ is derived as

max M̃(α) =
qmax

∑
q=1

αq +
1
2

qmax

∑
q=1

qmax

∑
q′=1

αqαq′yqyq′K
o
q,q′ (27)

subject to

∀q ∈ [1, qmax], αq ≥ 0 (28a)
qmax

∑
q=1

αqyq = 0 (28b)

where α is the Lagrange multiplier and y ∈ {0, 1} is the output of classification, with 0 and 1
representing the binary side of each classifier. M̃(α) is developed for all the classifiers and
its maximization optimizes overall accuracy in task classification.

Figure 3 clarifies the margins to detect one of the classified (high, medium, and low)
cases, when a new notification is generated. The “high” case is highlighted in the middle of
the figure with blue color; it represents the matching between high-risk symptoms which
are connected to the patient’s medical history (patient profile). On the other hand, the other
two cases, “medium” and “low”, highlighted in red color on either side of the blue zone,
reflect either that the present symptoms are not dangerous under normal limits or that the
following notifications are normal for those without a previous history of diseases.

Figure 3. Training dataset and margins for the SVM-based task-scheduling algorithm.
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5. Task Scheduling Based on Resource Mapping

In this section, we delve into the intricate process of task scheduling through resource
mapping. We introduce three pivotal algorithms that collaborate to ensure efficient task
prioritization, resource classification, and the effective mapping of tasks to the most suitable
resources. Algorithm 1 focuses on determining the priority of tasks based on various factors,
including patient profiles and symptoms. Algorithm 2 classifies fog nodes (FNs) based
on their capacity and availability, setting the stage for optimal task allocation. Finally,
Algorithm 3 oversees the mapping and offloading of tasks to the appropriate fog or cloud
nodes, ensuring that each task is handled by the most fitting resources. Figure 4 shows
the collaborative execution and compatibility of these algorithms to serve the proposed
priority-based task-scheduling and resource allocation framework.

Start

SVM Task weight

computational capabilities

Patient Profile

Prioritized tasks

Start

SVM fog node
classification

Availability

MIPS RAM CPU Storage

connection feature

num of
tasks

Percentage
 %

Offload tasks
to fog nodes

UL DLDistance
Source of Sense

Type of task

Orderd fog nodes

Orchestrator

Task Payload

medium lowhigh

Offload tasks
to Cloud

Algorithm 3: Resource Mapping

Algorithm 2: Resource ClassificationAlgorithm 1: Task Priority Determination

fog nodes
statusConnection

capacity

Figure 4. Flowchart showing collaborative execution of the three algorithms.

5.1. Task Priority Determination Algorithm

The task priority determination algorithm (Algorithm 1) contains the following steps,
where the orchestrator is responsible for extracting the information from each incoming task:

1. Algorithm 1 checks the values of two fields (patient profile and symptom) in addition
to other parameters, such as the payload of the task. If the two values of patient profile
and symptom are equal, the SVM_weight of the task is high. On the contrary, if the
values of patient profile and symptom are not equal, the SVM_weight of the task is
medium. The case of SVM_weight equal to low is when the patient’s health record is
labeled healthy and the symptom field contains vital indicators in the normal limits.

2. The task’s priority value is assigned based on the previously mentioned values.
3. The value of the field type of task is assigned based on the task’s priority value.
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4. The tasks are ordered in descending order based on their priority.
5. The prioritized-labeled tasks are sent to the orchestrator to be distributed to the proper FNs.

5.2. Resource Classification Algorithm

The resource classification algorithm (Algorithm 2) is a recursive procedure responsible for
classifying FNs based on their capacity and availability and includes the following steps:

1. The FN computational capacity, which includes MIPS, RAM, storage, and the number
of CPUs and their capacity, is extracted.

2. The topology of the service area is scanned to determine the characteristics of the
connection, including the uplink/downlink bandwidth and the distance between the
FNs and the devices that should connect to them; this distance is divided into three
levels (near, medium, and far) based on the area where the device is located.

3. The FN sends the processing occupancy percentage, i.e., the volume of resources
occupied in favor of processing tasks and the percentage of resources available to
process new tasks.

4. According to the previous parameters, using the SVM algorithm, the FNs are classified
and ordered in descending order into three levels: high, medium, and low.

5. The order of the classified FNs is sent to the orchestrator.

The output of Algorithm 2 is a set of FNs classified and ordered based on their capacity
and availability. The capacity is considered a fixed attribute related to an FN’s physical
characteristics. In contrast, availability is treated as a dynamic attribute, reflecting the
current resource usage within each FN. Algorithm 2 performs periodic assessments of
the FNs, considering not only their computational capacity and connectivity features
but also the processing occupancy percentage. The resulting order of these classified
FNs is then communicated to the orchestrator for further task distribution and resource
mapping processes.

5.3. Resource-Mapping Algorithm

Algorithm 3 involves the orchestrator mapping tasks to the appropriate FNs based on
the classifications provided by Algorithms 1 and 2 through the following steps:

1. The orchestrator receives the classified fog nodes from Algorithm 2.
2. The orchestrator receives the prioritized tasks from Algorithm 1.
3. It checks the value of the payload field and assigns it the label high or medium based

on the SVM threshold.
4. The orchestrator maps and offloads tasks to the FNs or CNs based on priority

and classification.
5. The orchestrator checks if the network connection capacity is sufficient to serve the

incoming requests to meet the latency requirement. If not, the type of task (θu
xku

) field
is labeled with an alarm and forwarded to the cloud node.

In summary, the integrated use of these algorithms forms an effective strategy for
managing task scheduling and resource mapping in complex computing environments.
They collectively enhance resource utilization, prioritize critical tasks, and ensure optimal
task distribution, leading to improved system performance and efficiency.

5.4. Complexity Analysis

The computational complexity of the three algorithms is as follows:

• Algorithm 1 task priority determination algorithm: The complexity of this algorithm
is primarily dependent on the number of tasks. If N represents the total number of
tasks, then the complexity is O(N), as each task requires a constant amount of time
for processing.

• Algorithm 2 resource classification algorithm: The complexity is influenced by the
number of fog nodes, denoted by M. Since each node is classified independently, the
algorithm exhibits linear complexity, O(M).
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• Algorithm 3 resource-mapping algorithm: This algorithm combines aspects of both
task prioritization and resource classification. With N tasks and M fog nodes, the
worst-case complexity could be O(N × M), particularly in scenarios where each task
must be considered for every node.

5.5. Offloading Scheme

This section explains the collaborative execution of Algorithms 1–3 in order to effec-
tively offload the ordered tasks to the corresponding fog nodes and cloud nodes.

As mentioned in Section 5, the prioritized task list from Algorithm 1 and the classified
FNs from Algorithm 2 are then used as input for Algorithm 3. In this algorithm, the
orchestrator maps the highest-priority tasks to the available FNs with the highest capacity.
Tasks with medium priority are assigned to FNs classified as having medium capacity, and
low-priority tasks are offloaded to FNs with a low classification.

The task distribution process is a continuous and dynamic operation managed by
Algorithm 3. The orchestrator periodically scans all existing FNs, assessing their current
capacity and availability. After each assessment round, the FNs are reordered based on
their updated capacity and availability status, ensuring the most efficient utilization of
resources for processing the remaining tasks.

Figure 5 shows the change in the order of the FNs after each round of scanning,
where the FNs that were originally classified as high are placed at the end of the or-
dered FN list; this is due to the lack of available resources in these FNs, as these FNs
are busy handling other tasks. The other FNs that were originally labeled medium are
moved to be classified as high among the available FNs. Figure 5 is plotted to clarify the
reordering and transformation process of the FNs and the received tasks. In Figure 5,
state = 1 shows that the high-priority tasks were sent to the FNs labeled high, e.g., tasks
ID = 14, ID = 75, and ID = 1 were assigned to FNs ID = 14, ID = 2, ID = 10, respectively, and
the tasks with medium priority were sent to the FNs labeled medium. Tasks and FNs with a
low classification are handled in the same manner. In the next round, as shown in Figure 5
(state = state + 1), we can notice that FN ID-14 is placed with the low-class nodes based on
its weak availability to receive and process new tasks. In the same figure, we notice that
there is a new FN (ID-13) listed in the high class due to its capacity and availability and that
FN ID-23, which was primarily classified as a medium-capacity FN, has been reallocated in
a new spot in the high-capacity class.

Figure 5. Resource allocation recursive procedure.

6. Performance Analysis

The performance of the proposed algorithm was evaluated by simulating task schedul-
ing and resource mapping and allocating in an iFogSim simulator. In our simulations, the
results of our algorithm were compared to those of the widely used first-come, first-served
(FCFS) algorithm. FCFS has been well acknowledged in recent works, and its framework
represents a widely represented state-of-the-art method for network-level resource map-
ping and allocation [33–35]. The simulated scenarios considered modifying the number of
clusters, FNs per cluster, and their connected IoT devices. The values of the parameters
(CPU, RAM, bandwidth, etc.) of the fog devices and the tasks were selected randomly
among certain groups of simulation settings, as tabulated in Table 2. A tree-based network
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topology was used in the simulated scenarios, where the number of fog devices and related
sensors is equal in each cluster. As a starting stage, many bio-potential signals from patients
were frequently captured and analyzed. Then, we compared the analyzed data with the
database that contains the health records of the patients in order to detect any critical
bio-potential.

Table 2. Summary of experimental configuration.

Element Parameter Units Value

Cloud CPU MIPS 44,800
RAM MB 40,000

Uplink bytes/ms 20,000
Downlink bytes/ms 20,000

Fog device CPU MIPS {2048, 1024, 768, 512, 256}
RAM MB {2048, 1024, 768, 512, 256}

Uplink bytes/ms {8000, 4000, 2000}
Downlink bytes/ms {8000, 4000, 2000}

Task CPU length MIPS {2000, 1000, 700, 500, 200}
Network length bytes {4000, 2000, 1000}

6.1. Execution Time

Figure 6 presents the difference between the proposed task scheduling/resource
mapping and allocation and the built-in scheduling algorithm. We can notice that in the
case of Figure 6a, which has one cluster, the difference in execution time between the two
algorithms remains close when the number of tasks is 40 or 80, respectively; when the
number of tasks becomes large (120 tasks), the difference between the two execution times
in the case of one cluster becomes clear in favor of our proposed algorithm.

In the four cases (a, b, c, and d) illustrated in Figure 6, we can notice that increasing the
number of the tasks per cluster, in the case of the built-in algorithm, leads to an exponential
increase in execution time. This increase in execution time is clearly visible when there is
a large number of tasks, in contrast to the proposed algorithm, which keeps the increase
in execution time in direct proportion to the increase in the number of tasks per cluster.
The proposed algorithm is able to achieve an average execution time for critical tasks of
0.2393 ms, and for non-critical/normal task, it achieves an average execution time equal to
0.5001 ms. In the case of utilizing the FCFS algorithm with the same architecture, we can
notice that the average execution times for the critical tasks and normal tasks are 0.9162
ms and 1.0419 ms, respectively. Hence, the proposed algorithm is able to achieve better
execution time for all cases (critical/normal) compared with the FCFS algorithm, which
has almost similar average execution time values.

6.2. Latency

Latency is one of the main KPIs (key performance indicators) to be considered when
implementing a real-time healthcare system and has to be reduced to achieve the required
high efficiency. In the fog–cloud architecture, using FNs reduces latency and enhances
the overall execution time by processing tasks in the FNs locally, utilizing the available
resources and decreasing the number of tasks that should be transmitted to and handled
by the cloud. For the purpose of emphasizing the efficiency of the proposed algorithm, a
comparison of latency is evaluated in both cloud-only and fog–cloud architectures, where
the variable factor is the number of connected devices. In the cloud-only architecture, we
can notice that the increase in the number of sensors directly leads to a steady increase in
latency. Moreover, when the number of connected devices is above 45, the latency starts
increasing in a more rapid way from 224.91 ms and reaches 331.81 ms when the connected
devices are 60, as illustrated in Figure 7. Contrarily, in the fog–cloud architecture, increasing
the number of devices has a limited effect on the achieved delay. When varying the number
of connected devices from 20 to 60, the delay limit only varies between 11.4 ms and
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23.06 ms, achieving an almost 90% reduction in delay compared with the cloud-only
architecture, as highlighted in Figure 7.
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Figure 6. Total execution time in different clusters: (a) one cluster; (b) two clusters; (c) three clusters;
(d) four clusters.
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Figure 7. Comparison of latency.

6.3. Network Utilization

Regarding the network utilization efficiency aspect, which is measured in KByte
per second, Figure 8 highlights the total network usage for four different cases (one
cluster, two clusters, three clusters, four clusters). Each cluster is tested for three vari-
ous groups of tasks (40, 80, 120), applied with FCFS-based algorithms (averaged based
on [34,35], representing recent works related to machine learning-based FCFS and hierar-
chical FCFS, respectively) and the proposed algorithm. In the case of one, two, and three
clusters, network usage in both scenarios is almost convergent, and our proposal attains
lower network usage.
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Figure 8. Network usage among different clusters.

Specifically, our proposed algorithm achieves better results when the number of tasks
and clusters is high. In the last case, the FCFS algorithm results in about four times larger
network usage compared with our work.

Consequently, the increase in network usage affects the total execution time, waiting
time, and communication time. Furthermore, it also results in increased costs of network
usage and power consumption. Concretely, comparing the results achieved in [34] for
solving task scheduling with a time–cost-aware scheduling (TCaS) algorithm and the per-
formance of our proposed solution, it can be seen that when the number of tasks is more
than 100 in each cluster with five FNs, our proposed algorithm achieves better execution
time. When the number of tasks is 120, 160, or 180, our solution achieves a delay of 80 ms,
83 ms, or 105 ms, whereas TCaS produces a delay of almost 150 ms, 195 ms, or
230 ms, respectively. Additionally, authors of the work in [35] proposed a method to
reduce latency and network consumption in a remote pain-monitoring system. Comparing
the achieved results, the delay obtained with our algorithm when the number of sensors is
20, 30, 40, or 50 in a cloud-only architecture is 88 ms, 138 ms, 202 ms, or 239 ms compared
with 215 ms, 225 ms, 233 ms, or 238 ms in the cited paper, respectively. While in a fog–cloud
architecture, our solutions produce slightly better values, especially when the number of
sensors is high.

7. Conclusions

In this paper, we propose a fog–cloud hierarchical task-scheduling scheme for e-
Health applications. Different from conventional task scheduling, we formulate features of
tasks comprehensively, fusing network-level and service-level parameters simultaneously,
which are further considered in the proposed support vector machine (SVM)-based task
classification algorithm. Classified tasks are assigned priorities, giving guidance to be
allocated to proper fog/cloud nodes, for network utilization efficiency maximization and
overall latency reduction. In particular, the proposed task-scheduling scheme is capable of
effectively achieving latency minimization for critical tasks as defined based on the demand
of both networks and services. Simulation results show that the proposed algorithm was
able to minimize the total execution time for all tasks and especially for the critical ones. The
integration of SVM enhanced the latency and network usage in parallel with the increased
number of tasks.

The current use of SVM algorithms limits the model’s performance in complex datasets
with higher dimensions to comprehensively serve ubiquitous healthcare applications. Future
work will focus on integrating advanced algorithms, including deep learning and hybrid
models combining SVM with other techniques, to discuss their feasibility with comprehen-
sive consideration of computational complexity and algorithmic efficiency simultaneously.
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Abbreviations
The following abbreviations are used in this manuscript:

Ac
M Cloud node

A f
N Fog node

UIoT IoT device
xu

Ku
Task

C(xu
ku
) Cost

P(xu
ku
) Priority of a task

D(xu
ku
) Latency of a task

L(xu
ku
) Payload of a task

θ(xu
ku
) Type of task

β(xu
ku
) Patient profile

µ(xu
ku
) Patient preliminary symptoms

δ
f
u Distance between an IoT device and a fog node

δc
u Distance from a fog node to the cloud

τ(comm) Communication time of a task
τ(wait) Waiting time of a task
τ(proc) Processing time of a task
t(trans) Transmission delay
Rcloud, R f og Data rate of a fog node and that of a cloud node
Wac

M
, Wa f

N
Link bandwidth of a fog node and that of a cloud node

SINR Signal-to-interference-plus-noise ratio
rUL

u(IoT)
Uplink transmitting rate

ψ(xu
ku
) Processing time of a task

Γ(Ac
n), Γ(A f

m) Computing capacity of a fog node and that of a cloud node
Tz

u Total number of time slots in a processing node
rqu

x(t) Required resources for a task in a given slot time
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