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Abstract: Human activity event recognition (HAER) within a residence is a topic of significant
interest in the field of ambient assisted living (AAL). Commonly, various sensors are installed within
a residence to enable the monitoring of people. This work presents a new approach for human
activity event recognition (HAER) within a residence by (re-)using measurements from commercial
smart water meters. Our approach is based on the assumption that changes in water flow within a
residence, specifically the transition from no flow to flow above a certain threshold, indicate human
activity. Using a separate, labeled evaluation data set from three households that was collected under
controlled/laboratory-like conditions, we assess the performance of our HAER method. Our results
showed that the approach has a high precision (0.86) and recall (1.00). Within this work, we further
recorded a new open data set of water consumption data in 17 German households with a median
sample rate of 0.083̄ Hz to demonstrate that water flow data are sufficient to detect activity events
within a regular daily routine. Overall, this article demonstrates that smart water meter data can be
effectively used for HAER within a residence.

Keywords: water monitoring; human activity event recognition (HAER); human activity recognition
(HAR); smart meter; ambient assisted living (AAL); water consumption; internet of things (IoT)

1. Introduction

Human activity recognition (HAR) is a field that has garnered significant research at-
tention, as the automated detection of human activities has numerous practical applications,
including surveillance, health monitoring, human–machine interaction, entertainment, and
intelligent environments [1,2]. Current approaches for human activity recognition (HAR)
are either vision-based or sensor-based [2]. Vision-based approaches offer high accuracy but
have several drawbacks, such as privacy issues, limited monitoring range, and high cost.
Sensor-based approaches, on the other hand, are more diverse. They can be further divided
into three categories, wearable sensing, object-tagged sensing, and dense/infrastructure-
mediated sensing, each with its advantages and disadvantages.

However, it is usually expensive and time-consuming to fully equip residences with
suitable sensors. Furthermore, a disadvantage of most existing systems is that their compo-
nents cannot be completely inconspicuously integrated into the home environment, often
making residents feel monitored [3].

The objective of our work is to identify human activities on a more general level. We
would rather not distinguish between the individual activities but determine the occurrence
of any activity within a residence. Thus, instead of HAR, we consider the broader human
activity event recognition (HAER) problem in this work. The information about activity
events in the household shall later be used for emergency detection, especially in the
context of ambient assisted living (AAL) systems, for example, by detecting atypically long
periods of inactivity, which potentially indicate an emergency [4,5].

To address the HAER problem, we propose a novel dense sensing approach that
exploits data from smart water meters instead of introducing additional sensors into the
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households. Smart water meters are already present in many German households and
provide detailed information in particular on cumulative water consumption, which can
be used to infer human activity. Using smart water meter data has several advantages,
including the fact that water consumption is vital to human survival and can be easily
measured in almost all households [6]. It is easy to access and prepare the data without
major effort and cost. Further, the water meter measurements contain only a low level of
noise. Possible causes of noise in a water sensor are dripping taps, leaking pipes, and/or
quantization noise.

The literature describes that smart water meter data are used to optimize water
supply systems [7–9] or provide residents with accurate information about their water
consumption [7,8,10–15]. Using smart water meter data for HAR/HAER or in the AAL
domain has not been widely explored. When using water meter measurements in the
context of an AAL system, it is crucial to optimize the precision of the HAER because
the precision affects the ability to detect potential emergencies. In contrast to the HAER
problem, a single false positive classification for the water supply optimization problem is
acceptable. Optimizing the recall is of subordinate importance for emergency detection
using an inactivity profile since emergency detection only considers the absence of activ-
ities; false negative (FN) classifications, therefore, do not influence the general ability of
emergency detection, as long as there are still some regular true positive (TP) classifications.
FN classifications only affect the granularity of how quickly emergencies can be detected.

We aim to develop a methodology for HAER that can run on an edge system in real
time directly inside the residential environment (e.g., on a single-board computer). Thus,
the water consumption data do not need to be sent to third parties, improving privacy.
Additionally, the system does not require a continuously active internet connection, which
increases the system’s availability. Only in the case of an emergency would an external
communication be required.

The main contribution of this article is to present a new approach for human activity
event recognition (HAER) within a residence using smart water meter measurements. By
using smart water meter measurements, non-intrusive monitoring of human activity can
be performed using existing data sources. Our method is designed for (near-)real-time
activity detection in a streaming setting using edge computing. Further, this article presents
a new publicly available data set of water consumption measurements from 17 German
households, which we collected using commercially available smart water meters.

The remaining paper is structured as follows: we review the literature on analyzing
water consumption in private households in Section 2 and provide an overview of the
different features used for water consumption analysis and the purposes for which wa-
ter consumption is analyzed. Since we could not identify suitable data sets with water
consumption data measured using a smart water meter in the literature, we collected a
new data set in 17 German households as part of this work. We present the method of
collection, as well as the gathered data set itself, in Section 3. Subsequently, in Section 4, we
address the necessary data pre-processing steps before introducing a novel approach for
HAER based on measurements from smart water meters in Section 5. We then evaluate
this approach in Section 6. The paper ends with a discussion in Section 7 and a conclusion
and outlook in Section 8.

2. Related Work

One of the earliest works in household water consumption analysis can be traced to
Bennett and Linstedt [16]. In 1975, the authors investigated wastewater treatment and
disposal systems and extensively analyzed household water consumption. The authors
collected water consumption data in five households using analog flow meter recorders
on wax discs and manual activity records. Based on these records, Bennett and Linstedt
then analyzed the water use of individual appliances and inferred various household
water-use characteristics to understand wastewater generation better [16]. For example,
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the authors examined the typical water consumption within a day and the average daily
water consumption per person [16].

Later, De Oreo et al. [10] presented in 1996 one of the first modern approaches to
disaggregate water consumption data using digital data loggers. In their work, the authors
spotted specific water flow patterns that could be assigned to activities or individual
appliances (toilet, dishwasher, washing machine) [10].

The focus of most related work is to analyze water consumption measurements either
to manage and optimize water supply networks [7–9], to help residents and planners
conserve water by obtaining insight into the households’ water consumption [7,8,10–15],
for leak detection [9], or for HAR or activity of daily living (ADL) detection [6,17–19]. The
papers by Salomons et al. [20] and Cardell-Oliver et al. [21] critically address the disaggre-
gation of water measurements or smart water metering by noting privacy issues [20,21].

In the literature review, we identified no related work that exploits water consumption
data to detect activity events in the sense of a binary classification problem. We can assume
that HAER is a sub-problem of the HAR problem. In other words, if we can perform HAR
based on water consumption data, this implies HAER. However, the reverse is not true
in general.

Several publications on the analysis of water consumption data are attributed to
the research group of the Australian professor Cardell-Oliver. The authors use various
analytical methods on a data set of smart meter readings from Western Australia to conclude
residents’ routine behavior to motivate them to conserve water. The researchers also raise
privacy concerns arising from smart meters [9,14,21,22].

Instead of analyzing water flow rates, the works by Froehlich et al. [17,23] and
Thomaz et al. [13] analyze water pressure. Froehlich et al. addressed water data dis-
aggregation for HAR. They developed a method called “HydroSense” that aims to detect
the unique pressure waves that occur when fixtures (e.g., a tap) are opened or closed.
Using a dynamic Bayesian approach, the authors combined template matching, grammar,
and prior probabilities to determine the probability of a specific event. They achieved an
overall accuracy between 76% and 96% for households [17,23]. Thomaz et al. attempted
to identify human activities, especially in bathrooms and kitchens. For this, they used a
vector space model (VSM)-based method on water pressure measurements. The evaluation
with 23 participants achieved an overall accuracy of 70% in recognizing eleven high-level
activities in the kitchen and bathroom [13].

Chen et al. investigated activity disaggregation on high-resolution synthetic water
flow data (and additional medium-resolution smart-meter measurements). The study
aimed to provide residents with a more in-depth insight into their water use. Chen et al.
focused on detecting toilets, showers, and washing machines. The authors used different
approaches: HMM, kNN-GMM, ANN-GMM, and SVM-GMM. For shower recognition,
they achieved a precision of around 95% with a recall between 77–81%. For the washing
machine, they achieved a precision between 78 and 86% with a recall between 89–96% [11].
Using a combination of hidden Markov model (HMM), artificial neural networks (ANN),
and dynamic time wrapping (DTW) algorithms, Nguyen et al. tried to detect event patterns
in water consumption and thus achieve CO2 savings in the water network (especially at
the pumps) by providing optimizations in households, such as determining when to water
the garden [8].

Koketsu et al. used water consumption data to identify the rhythm of the daily life of
elderly people, determine deviations, and contact relatives if necessary. They concluded that
although regularities in daily water consumption can be identified, more research is needed
to implement comprehensive monitoring of the elderly [6]. The design of a similar system
of a “daily-use water monitoring platform for the elderly” is also described by the authors
Yanyan et al. However, the paper omitted a discussion of the actual implementation [19].

Hu et al. presented another approach for monitoring the daily activities of the elderly
based on data from a three-axis accelerometer mounted on the surface of the main water
pipe in the house. They describe the detection of different ADLs (wash, cook, flush, bath)
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using a support vector machine (SVM) or fusion model. However, the precision and
recall of the detection vary widely based on the individual ADLs [18]. Moreover, based
on vibration data, Kim et al. presented a “Nonintrusive Autonomous Water Monitoring
System” [12].

The existing approaches for analyzing water consumption measurements differ pri-
marily in the data (sensor types, features, temporal resolution, and measurement resolution)
on which the analysis or disaggregation is conducted. A comprehensive overview of the
water consumption data used in related studies, their particular features and resolution,
and the respective collection method is presented in Table 1.

The majority of studies use flow rate sensors [6,8–11,16,19,21,22,24,25]. However, there
are also studies using other features, such as water pressure [13,17] or measurements of a
three-axis accelerometer mounted on the surface of the main water pipe in the house [12,18].

Another essential point of differentiation for studies based on water flow is the tem-
poral resolution of the measured values. Here, the literature distinguishes among high,
medium, and low resolutions. There is no final specification for the distinction between
high, medium, and low resolutions. Following Clifford et al. [7] and Cardell-Oliver [22], a
high resolution means values measured within seconds (≤1 min), a medium resolution
means values measured up to once a day (>1 min; ≤1 day), and a low resolution means
lower resolutions than once a day (>1 day). Research on water disaggregation mainly
uses medium- [6,9,11,14,19,22] or high-resolution [8,10,11,24] data. Low-resolution data
are mainly used for general flow analysis, seasonal changes, or billing purposes.

A further point to note is that none of the approaches with the goal of HAR or ADL
detection uses measurements from commercial smart meters as the data basis; the authors
either used special flow meters [6,19] or even used different features than water flow [17,18].
An extensive discussion of the various resolutions of smart meter water measurements can
be found in Clifford et al. [7].

Table 1. Overview of aggregated water consumption data used in related work.

Author Feature/Resolution Collection Method

Bennett and Linstedt [16] water flow/n.a. recording on wax discs
Cardell-Oliver [14] water flow/1 h smart meter
Cardell-Oliver [22] water flow/1 h smart meter
Cardell-Oliver and Carter-Turner [21] water flow/1 h+ smart meter

water flow/10 s synthesized
Chen et al. [11] water flow/15 min+ smart meter

water flow/10 s data logger
De Oreo et al. [10] water flow/10 s data logger
Froehlich et al. [17] water pressure/500 Hz pressure sensor (in pipe)
Hu et al. [18] three-axis accelerometer/85 Hz three-axis accelerometer (on pipe)
Kim et al. [12] three-axis accelerometer/100 Hz three-axis accelerometer (on pipe)
Koketsu et al. [6] water flow/5 min flow meter
Nguyen et al. [8] water flow/5 s smart meter
Srinivasen et al. [24] water flow/0.5 s flow meter
Thomaz et al. [13] water pressure/200 Hz pressure sensor (in pipe)
Wang et al. [9] water flow/1 h smart meter
Willis et al. [25] water flow/10 s data logger
Yanyan et al. [19] water flow/2 h flow meter

Another aspect highlighted in our literature review is the absence of commonly used
benchmark datasets for water use in the scientific literature. Instead, researchers generally
collect their own data sets (except for a group led by Cardell-Oliver [9,14,21,22]), making it
difficult to compare results across studies. Furthermore, the primary data sets are typically
not available as open data. This is in contrast to the disaggregation of electrical power
consumption data, where publicly available datasets (e.g., REDD [26] or UK-DALE [27])
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are common. Notably, the scientific literature pays less attention to the disaggregation of
water consumption data compared to the disaggregation of power consumption data.

3. Data Recording

As described in Section 2, there are no publicly available open data sets on water
consumption that have been collected using commercial smart meters. Therefore, as part of
this work, we recorded a new data set from 17 German households. The new data set is
available as open data on Zenodo at https://doi.org/10.5281/zenodo.7506076.

In the following, the data set’s collection, the data set’s structure, and the collected
data’s quality are described in detail.

3.1. Methodology of Data Collection
3.1.1. Measuring Instruments

We recorded the cumulative household water consumption over time using the com-
mercially available smart meters Hydrus 1.3, DN 20,00 from Diehl Metering. The installation
of the water meters was carried out by the local water utility. These smart meters feature a
wireless M-Bus communication interface and periodically transmit the current cumulative
meter reading in an interval of at least 8 s via the open metering system (OMS) protocol on
868 MHz.

The discretization accuracy of the readings is 1 liter. Further technical information
can be found in the datasheet (see: https://www.diehl.com/cms/files/HYDRUS-1.3.pdf
(accessed on 5 January 2023)).

3.1.2. Data Transmission and Storage

The data from the smart meters can be received in the local vicinity of the water
meter, depending on the signal strength of the wireless M-Bus. To continuously monitor
the cumulative water consumption of each household, we installed a Raspberry Pi with
an appropriate antenna capable of receiving the OMS signals at 868 MHz in each of the
test households. These signals were decoded and decrypted directly on the Raspberry Pi.
We annotated the sample with the current timestamp from an NTP-synchronized clock
source. The measurements were temporarily stored on the Raspberry Pi. Using a secure
VPN connection, the measured values were regularly transferred to a central database on a
server in a data center.

Figure 1 shows the software architecture and data flow for acquisition and transmission.

SQL DB

water_total_dbwater_total_sync

water_total_sync WireGuard
VPN

W-MBus

RaspberryPi

household server

Figure 1. Software architecture for acquiring and transmitting cumulative water flow measurements
from private households.

3.1.3. Ethics and Privacy Considerations

Privacy and ethics are a focus of the project, as sensitive data relating to subjects’
daily lives will be collected and processed. To follow ethical norms and values and be
as transparent as possible, a reflection on the project, especially on how the data were
collected and processed, was conducted in advance based on a guideline from the Ethics
Commission DGP e.V. [28].

To ensure data security, all data in our project are stored on internal servers. All
measured data were stored pseudonymized by default. Furthermore, we implemented
data privacy management according to Jakob et al. [29].

https://doi.org/10.5281/zenodo.7506076
https://www.diehl.com/cms/files/HYDRUS-1.3.pdf
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3.2. Data Set Description

In the period from September 2020 to September 2022, the following data were col-
lected in a total of 17 households in Germany:

household =(location, #residents)

measurementtotal =(household, timestamp, total)

where:

location = German postcode of the location of the household

#residents = Number of residents usually living in the household

timestamp = NTP-synchronized UNIX timestamp (in ms)

total = Cumulative water consumption (in m3)

The #residents parameters are based on information provided by the residents at the
beginning of the collection. There was no change in the statistical #residents parameters
during the collection period.

The timestamp parameter describes the NTP-synchronized timestamp generated on
the Raspberry Pi when receiving the measured values. Since (1) the Raspberry Pi does not
have a real-time clock and (2) transmission delays and processing delays are not considered,
minor time shifts may occur.

In the following, the time series of the value total is denoted as V(t), where [V] = m3.
To ensure that no household can be de-identified by the #residents parameter, we

k-anonymized this parameter [30]. Therefore, we divided up the information about the
number of residents living in the household into pairs of four groups (1, 2, 3, and ≥4).
This results in a 3-anonymous data set. In addition, we performed a vertical shift of the
measured value time series V(t) in a household-specific range between 0 and 100 m3 by
adding a constant value to each measurement.

The root folder of the Zenodo archive contains the documents readme.md, info.txt,
and info.json, as well as the 17 folders for the individual households. The readme.md
provides basic information on the data set and its use. The documents main.txt and
main.json contain the metadata for the measurements of all households in both human-
and machine-readable format.

For each test household, there is a separate folder with the documents info.txt and
info.json. These contain household-specific metadata. The total water consumption
measurements are stored in smartmeter.csv.

The statistical characteristics of each test household are shown in Table 2.

3.3. Data Quality Reflection

In the following, we consider the quality of the gathered data set.

3.3.1. Recording Gaps

First, it can be noted that there are long recording gaps (several days/weeks) in the
measurements. The gaps are mainly caused by technical failures, especially the failure of
the Raspberry Pi or the receiving antennas. Furthermore, measurement gaps may have
been caused by unstable radio signals or interference signals on the transmission frequency
of the smart meters.

Due to household access restrictions, access to the test hardware was limited during
the survey period, so technical problems could only be solved late in some cases. Therefore,
long gaps must be expected when using the data set. The longest continuous timespans
without recording gaps are shown in Table 3, split by test household and by the expected
measurement frequency.
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Table 2. Statistical characteristics of the test households.

Location #Residents #Samples First Date Last Date

WM-A-01 GER-94151 Mauth 2 1,388,374 2020-12-15 2021-06-24
WM-A-02 GER-94151 Mauth 3 1,314,504 2021-03-02 2022-03-05
WM-A-03 GER-94151 Mauth 3 926,611 2021-03-02 2021-10-22
WM-A-04 GER-94151 Mauth 2 145,515 2021-03-11 2022-08-25
WM-A-05 GER-94151 Mauth 3 2,861,708 2021-02-09 2022-06-01
WM-A-06 GER-94151 Mauth 2 1,484,185 2021-02-25 2021-10-26
WM-A-07 GER-94151 Mauth 2 1,341,377 2021-02-09 2021-08-13
WM-A-08 GER-94151 Mauth ≥4 3,896,681 2020-09-04 2022-09-30
WM-A-09 GER-94151 Mauth ≥4 944,727 2020-10-21 2022-04-22
WM-A-10 GER-94151 Mauth 2 1,956,478 2021-02-09 2021-12-26
WM-A-11 GER-94151 Mauth 3 4,658,361 2020-09-23 2022-09-30
WM-A-12 GER-94151 Mauth 1 1,952,055 2021-03-02 2022-01-18
WM-A-13 GER-94151 Mauth 1 643,652 2021-05-03 2021-08-13
WM-A-14 GER-94151 Mauth 1 428,090 2021-03-02 2022-08-05
WM-A-15 GER-94151 Mauth ≥4 2,103,119 2021-03-02 2022-09-01
WM-A-16 GER-94151 Mauth ≥4 480,232 2021-03-02 2021-08-13
WM-A-17 GER-94151 Mauth 3 1,988,162 2021-02-20 2022-07-15

Table 3. Maximum continuous timespans without recording gaps per household, with at least one
measured value per 10 s, per 1 min, per 1 h, and per 1 day.

Periods without Measuring Gaps with at Least
10 s 1 min 1 h 1 Day

WM-A-01 0 d 00:00:25 105 d 22:59:09 189 d 10:24:08 191d 03:54:11
WM-A-02 0 d 00:12:19 34 d 22:17:03 60 d 08:29:20 60 d 08:29:20
WM-A-03 0 d 00:03:11 8 d 00:15:09 37 d 13:39:33 93 d 02:14:56
WM-A-04 0 d 00:00:24 2 d 10:35:21 14 d 01:51:08 16 d 00:48:39
WM-A-05 0 d 00:02:38 220 d 05:14:59 292 d 10:09:52 354 d 09:25:47
WM-A-06 0 d 00:14:15 56 d 15:33:10 59 d 06:16:03 59 d 06:16:03
WM-A-07 0 d 00:04:52 101 d 23:59:00 184 d 20:59:15 184 d 20:59:15
WM-A-08 0 d 00:16:41 24 d 11:13:08 90 d 20:51:10 239 d 09:09:18
WM-A-09 0 d 00:02:22 7 d 10:01:01 19 d 11:29:28 76 d 23:11:07
WM-A-10 0 d 00:02:28 96 d 21:43:07 96 d 21:43:07 97 d 12:45:10
WM-A-11 0 d 00:15:14 90 d 06:29:56 112 d 22:06:01 217 d 21:30:35
WM-A-12 0 d 00:08:48 91 d 23:10:27 111 d 01:39:03 111 d 01:39:03
WM-A-13 0 d 00:00:17 29 d 18:26:06 29 d 18:56:09 29 d 18:56:09
WM-A-14 0 d 00:04:00 9 d 00:54:31 16 d 00:59:35 71 d 17:46:06
WM-A-15 0 d 00:01:32 41 d 09:00:42 45 d 09:25:08 80 d 10:49:11
WM-A-16 0 d 00:04:07 17 d 21:50:31 35 d 17:41:13 35 d 17:41:13
WM-A-17 0 d 00:01:56 7 d 16:34:20 48 d 07:47:18 149 d 00:28:20

3.3.2. Faulty Timestamps

From the smart meter’s perspective, a private household is always a water consumer
and not a water producer. Thus, by definition, the time series of measured values of
cumulative consumption must be monotonically increasing. However, we find this is not
the case when analyzing the data records. The reason for this may be out-of-order samples
with obviously faulty timestamps. Two examples of faults are shown in Figure 2.

On the one hand, it can be seen that the last sample before a gap sometimes has
an obviously incorrect timestamp (e.g., in Figure 2a). On the other hand, as shown in
Figure 2b, some out-of-order samples occur even in gap-free sequences.

Another point to be considered in the context of the reflection on the data quality
is the temporal resolution of the measured values. Theoretically, this should be at least
0.125 Hz–i.e., at least one sample every 8 s. However, if we look at the data from the
recordings, we can observe that the temporal resolution is subject to major variation and is
less than 0.125 Hz. In the entire data set, we obtain a median sample rate of 0.083̄ Hz (one
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sample every 12 s). Figure 3 shows the time intervals between two consecutive samples for
an example period of two days.
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(a) Faulty timestamp
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(b) Out-of-order samples
Figure 2. Examples of faulty timestamps and out-of-order samples in the raw measurements. (House-
hold: WM-A-08).

2021-10-01 00:00

2021-10-01 12:00

2021-10-02 00:00
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2021-10-03 00:00
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0
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(in
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Figure 3. Time intervals between two consecutive samples in an example period of two days.
(Household: WM-A-08).

4. Data Pre-Processing

We must first perform pre-processing steps to detect human activity from the smart wa-
ter meter data. These steps include removing faulty samples from the raw data (Section 4.1),
resampling the data (Section 4.2), and interpolating gaps (Section 4.3). With smoothing, we
finish the data pre-processing in Section 4.4.

4.1. Data Cleaning

In Section 3.3, we showed that the raw data contain faulty samples. In particular,
faulty time stamps or out-of-order samples occur in a few cases. To clean these faulty
out-of-order samples, we use the monotonic property of the cumulative water consumption
series and the property that the water supply of a private household is limited.

4.1.1. Monotonic Increasing

Some measurement samples contain a faulty timestamp and arrive out of order,
resulting in transient spikes in the cumulative water consumption time series, as shown in
Figure 4a. These samples violate the monotonic constraint and should be removed.

A naive method for handling these samples is to replace the time series with the
cumulative maximum of the time series; however, this also modifies all correct samples
after a spike, as shown in Figure 4b.

To address this issue, we propose a different approach. First, we reverse the time
series, then compute the cumulative minimum, and reverse the result again. Finally, we
remove the sample at the spike location, depicted with an × in Figure 4c. This method
effectively removes the faulty samples without affecting the correct samples.
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(a) Faulty raw data containing
out-of-order sample
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(b) Naive approach using
CumMax(y)
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(c) Adjusted approach using
Rev(CumMin(Rev(y)))

Figure 4. Approach for removing out-of-order samples that violate the monotonic constraint.

4.1.2. Filter Unrealistic High Water Flow Rates

During the data cleaning process, we use the physical constraints of the household
water supply system to filter out unrealistic, high-consumption samples that are likely
to be faulty data. Specifically, we remove all samples where the flow rate is higher than
30 L per minute.

Over the entire data set, we notice 0.011 % of faulty samples that violate the plausibility
constraints, monotonicity, and maximum flow rate.

4.2. Resampling

As shown in Section 3.3, the measurement frequency is not constant at 0.125 Hz. To
standardize the frequency, we perform downsampling using the max resampling rule
because V(t) is a cumulative series.

For this work, we use a measurement resolution of 0.06̄ Hz, i.e., one measurement per
15 s. By using a resolution slightly smaller than the median sample rate of the entire data
set (0.083̄ Hz), minor variations in the time axis can be well-compensated for and there are
fewer gaps.

4.3. Gap Interpolation

The resampled data may contain gaps due to measurement gaps or removed samples
from the pre-processing steps from Section 4.1. Some of these gaps can be interpolated to
improve the data continuity. However, to ensure that the interpolation does not influence
the subsequent activity-recognition steps, we only interpolate gaps where there have been
no changes in the cumulative consumption between time points.

To determine which gaps can be interpolated, we use the following criterion: if
V(t f − 1) = V(tl + 1) for a gap in the interval [t f , tl ], we interpolate the values for the
gap by setting V(t) = V(t f − 1) for all t ∈ [t f , tl ]. This gap criterion ensures that the
interpolated values accurately reflect the underlying consumption.

We limited interpolation to gaps of no more than 1 h.

4.4. Smoothing

The water meter outputs the measured values with quantization errors. A constant
flow rate of 0.1 liter per timestep produces the following sequence of volume readings:
[0.9, 1.0, 1.1] liter. The quantization to 1.0-liter precision transforms the readings to the
sequence [0.0, 1.0, 1.0] liter. To compute the flow rate, we perform the first derivative of this
sequence. The result is the faulty sequence [0.0, 1.0, 0.0] liter per timestep, instead of the
correct sequence [0.1, 0.1, 0.1].

To remove the transient spikes of flow rates caused by the quantization error, we
smooth the time series of flow rates with a rolling median filter. We choose the rolling
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median filter because the median filter preserves the location and shape of edges, whereas
a rolling mean filter would smear the edges.

We use a rolling median with a window size of 3 samples. The result of the rolling
median filter is a majority vote for each sliding window. A negative consequence of the
filter is the removal of short water consumption activities, such as filling a glass of water.

5. Detecting Human Actions Using Smart Water Meter Measurements

The main objective of our work is to use smart water meter measurements for HAER
within a residence. Previous research has shown that it is possible to identify human actions
by observing their interactions with specific objects or devices [31–33]. We are considering
the interaction with household water tapping points (e.g., taps, showers, toilet flushes,
washing machines). Therefore, we have to consider different types of water consumption
in private households:

Type I Direct water usage, where the resident actively starts and stops water use (e.g.,
tap, shower).

Type II Water consumption that is partially autonomous but requires prior direct user
interaction (e.g., washing machine, dishwasher).

Type III Water consumption that does not require user interaction (e.g., automated
garden watering).

When inferring human actions from household water consumption, it must be ensured
that only the start and stop of water consumption for Type I consumption and only the start
of water consumption for Type II consumption are interpreted as human action. Type III
consumption must not be interpreted as a human activity at all. Since Type III consump-
tion is rare in Germany, we ignore this category. Moreover, automatically controlled or
programmable Type II consumers are not considered in this article.

To quantify the intensity of human water usage of Type I and Type II consumption,
we convert the pre-processed cumulative water consumption time series V(t) into a time
series of volume flow rates q(t). The conversion process computes the difference between
consecutive samples regarding the timespans between the consecutive samples.

Figure 5 shows, for an exemplary data extract over one day, both the cumulative measured
values V(t) and the volume flow rates time series q(t) derived from the measurements.
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Figure 5. A sample extract of the series of measured values after pre-processing V(t) over one
day (blue), as well as the derived volume flow rates series q(t) (red). (Household: WM-A-08; Day:
2022-02-14).

If we assume that when the pipe system in the household is completely sealed, the
incoming volume flow rate at time t is equal to the sum of the individual outgoing volume
flow rates of all water tapping points in the residence at time t. The following applies:

q(t) = ∑
p∈P

qp(t) (1)
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where P is the set of all water tapping points in the residence and qp(t) is the individual
volume flow rate of the tapping point p ∈ P at time t, with the same temporal and
quantitative resolution as q(t). From this definition, it follows that:

q(t) 6= 0 =⇒ ∃p ∈ P : qp(t) > 0 (2)

This means that at any time t where water is being used throughout the house, water must
be used at least at one tapping point p ∈ P.

For Type I consumption, per the definition, at least the start and end of any con-
sumption is the result of human activity. For Type II consumption, at least the start of
consumption must result from human action. In summary, we can consider a human
activity at any time t if the following conditions are fulfilled:

(i) q(t) > 0 and
(ii) q(t− 1) = 0

This means that we consider those times t with human activity at which a water flow
(q(t) > 0) takes place and at the previous time t− 1 there was no water flow (q(t− 1) = 0).
This assumption is because, for example, a constantly running water tap does not imply
constant human activity, but only turning on the tap requires human action.

In practice, however, it cannot be assumed that water pipes and water tapping points
are completely sealed and that measurements are always accurate. Furthermore, minor
leaks, such as a dripping tap, cannot be measured since the 1-liter quantization resolution
of the series V(t) is smaller than the leaking volume. Consequently, we have to further
adjust Equation (1) by adding a noise term n(t) that describes the leaks or measurement
deviations at time t:

q(t) = n(t) + ∑
p∈P

qp(t) (3)

On this assumption, the following now applies:

q(t) > n(t) =⇒ ∃p ∈ P : qp(t) > 0 (4)

If n(t) > 0, the implication in Equation (2) does not apply anymore without restrictions.
Therefore, to determine when water is consumed, at least one tapping point, q(t) > n(t),
must apply. Since the term n(t) depends on multiple factors (e.g., the pipe system, leaking
tapping points) and is not constant, it cannot be specified clearly. Therefore, we define a
global fixed threshold value thres, for which thres > max(n(t)) holds.

Further, we assume that we consider only such times t as human actions for which
both of the following apply :

(i) q(t) ≥ thres and
(ii) q(t− 1) = 0

In Figure 6, the times for which the two conditions mentioned above are fulfilled using
a sampling frequency of 0.06̄ Hz with thres = 1 l are plotted with orange lines. At each of
these time points, human activity can be assumed.
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Figure 6. From the series of measured values, V(t)-derived times of human activity events (orange
lines) in the analogous time slot to Figure 5.
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6. Evaluation

In Section 5, we introduced a novel approach to infer human activities based on smart
water meter data. In the following section, we evaluate this approach.

The evaluation is divided into three parts: First, in Section 6.1, we utilize a separately
collected evaluation data set to perform a threshold sweep. The result is a precision–recall
Curve over the threshold sweep. Then, in Section 6.2, also for a separate evaluation data
set, we consider only those periods when the residents were out of the house and focus
on possible false positive (FP) classifications. FP classifications are the most severe errors
for the use-case of emergency detection. With Section 6.3, we conclude the evaluation by
detecting activity/inactivity periods as a cross-check to the absence evaluation based on
the overall data set.

6.1. Precision–Recall Curve of Activity Detection

The first evaluation step is to investigate the precision and recall of activity detection.
We compute the precision–recall curve over a threshold sweep to make the evaluation
independent of the hyperparameter thresh. Since the data set collected in Section 3 does not
contain any labels, we first collected a separate evaluation data set in which the individual
activities are annotated.

6.1.1. Evaluation Data Collection

To evaluate the activity detection’s precision and recall, we collected a separate evalu-
ation data set in three test households (households WM-A-01, WM-A-08, and WM-A-11).
During defined timespans Lp, we performed two typical household activities associated
with water consumption and recorded the time at which they were performed. Specifically,
we turned on various taps for 30 s and flushed the toilets. We avoided concurrent water
consumption and always waited for at least 5 min between two activities. In addition to
the cumulative water consumption V(t), we thus obtain an additional annotation data set
L for the timespans [lb : le] ∈ Lp containing:

timestamp = UNIX timestamp (in ms) of an activity/water consumption

note = Note/category of an activity/water consumption

It can be assumed that for all t ∈ Lp, if t /∈ L, then there was no activity/water consumption
because we ensured that no residents were present during data recording.

The activity label data set is available as a supplement to this article on Zenodo at
https://doi.org/10.5281/zenodo.7585347.

6.1.2. Evaluation Metric

For calculating the precision–recall curve of activity detection, we consider the anno-
tated timespans Lp. For t ∈ Lp and thres ∈ R+ we can define any classification as:

true positive (TP), if: t ∈ L and q(t) ≥ thres and q(t− 1) = 0
true negative (TN), if: t /∈ L and q(t) < thres or q(t− 1) > 0
false positive (FP), if: t /∈ L and q(t) ≥ thres and q(t− 1) = 0
false negative (FN), if: t ∈ L and q(t) < thres or q(t− 1) > 0

The annotated time stamps contain a temporal inaccuracy caused by the manual
annotation and caused by the time delay of some water consumers’ mechanisms, such
as flushing the toilet and the subsequent refilling. We introduce a temporal tolerance for
the activity-detection timestamps to accommodate the temporal uncertainty. We define
the parameter tol as a tolerance timespan that allows some flexibility in the timing of the
detected action relative to the annotated timestamps. With this assumption, we classify any
time point t ∈ Lt as

TP, if: t ∈ L : ∃t′ ∈ [t− tol : t + tol] : q(t′) ≥ thres and q(t′ − 1) = 0
TN, if: t /∈ L : ∃t′ ∈ [t− tol : t + tol] : q(t′) < thres or q(t′ − 1) > 0

https://doi.org/10.5281/zenodo.7585347
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FP, if: t /∈ L : ∃t′ ∈ [t− tol : t + tol] : q(t′) ≥ thres and q(t′ − 1) = 0
FN, if: t ∈ L : ∃t′ ∈ [t− tol : t + tol] : q(t′) < thres or q(t′ − 1) > 0

For the precision–recall curve, we sweep over the value thres and calculate the precision
and recall for each thres separately.

On the time axis, analogous to the sampling frequency, we consider 15 s sections
within each interval ∈ Lt.

6.1.3. Evaluation Results

The evaluation data set contains 428 min of three households and includes
66 activities. Figure 7 shows the precision–recall curve by sweeping over the value thres in
the interval from 0 to 5 (step: 1.0) with tol = 30 s.
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Figure 7. Precision–recall curve by sweeping over the value thres in the interval from 0 to 5 (step: 1.0)
with tol = 30 s.

Since there are no TP or FP classifications in the evaluation data set for a thres ≥ 4
(#TP = 0 and #FP = 0), it is impossible to calculate a precision above this threshold.

With a precision of 0.86 and a recall of 1.00, thres = 1 liter can be identified as
the most appropriate threshold value. For a more detailed description of the quality of
the classification, Table 4 shows the recall of the recognition, categorized by individual
activities/water consumptions with thres = 1.

Table 4. Recall depending on individual activities/water consumers with thres = 1 in the evaluation
data set.

#Samples # TP # FN Recall

toilet flush 38 37 1 0.97
water tap (30 s) 28 20 8 0.71

6.2. FP Classifications during Absence Periods

In the second step of the evaluation, we focus on possible FP classifications, as these
represent the most critical errors for the use-case of emergency detection. To achieve this,
we consider periods when it is known that no human activity could have occurred because
nobody was at home. Any activity detected during these periods can be directly categorized
as an FP classification.

6.2.1. Evaluation Data Collection

A separate data set is collected in two test households (households WM-A-08 and
WM-A-11) for this evaluation. Besides the readings from the smart water meters, the
absence times of the residents were collected using a diary method.

We handed the residents a log form in which they recorded those time points when no
residents were in the house. The residents were further asked to note whether a washing
machine or a dishwasher was running during a period of absence.

In addition to the cumulative water consumption V(t), we thus obtain an additional
set A containing:
[tal : tab] = Period of absence from tal to tab as UNIX timestamp (in ms)

i = Note on active washing machine/dishwasher appliances during the period
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Data collection occurred in household WM-A-08 from 2022-11-09 to 2022-12-15 and in
household WM-A-11 from 2022-11-09 to 2022-12-03.

The data are available as a supplement on Zenodo at https://doi.org/10.5281/zenodo.
7585347.

6.2.2. Evaluation Metric

We restrict our analysis to periods when we know from the diary entries that nobody
was in the house and no washing machine/dishwasher was running. During these periods,
it is expected that no activity will be detected. Thus, by definition, it must apply for each
period [tal : tab] ∈ A:

∀t∈[tal :tab ]
: q(t) < thres or q(t− 1) > 0 (5)

Consequently, all times t ∈ [tal : tab] are to be considered as FP, for which applies:

q(t) ≥ thres and q(t− 1) > 0 (6)

6.2.3. Evaluation Results

Out of two households, a total of 3603 min could be used for the evaluation from data set
A with the above criteria (WM-A-08: 2011 min; WM-A-11: 1592 min). Within this period, no
activities were detected in both households. Thus, there was no FP classification (#FP = 0).

6.3. Maximum Periods of Inactivity

In the third step of our evaluation, we will show that the developed approach for
human action detection can detect regular activity events in a normal daily routine. To
achieve this, we utilize the data set from Section 3 and calculate an inactivity profile for
each household. Therefore, we calculate the time that elapses between two detected activity
events. We consider the maximum inactivity time (max) as well as the 99% quantile (Q0.99)
of the inactivity times to exclude any prolonged absences, such as those caused by travel.
The results are shown in Table 5, broken down by individual households.

Table 5. Maximum periods of inactivity, as well as 99% quantiles (Q0.99) of inactivity per household.

Times of Inactivity
max Q0.99

WM-A-01 12:24 9:50
WM-A-02 1 d, 0:33 5:57
WM-A-03 14:57 10:44
WM-A-04 6:11 5:36
WM-A-05 9:20 5:03
WM-A-06 2 d, 3:08 8:51
WM-A-07 2 d, 17:47 1 d, 6:30
WM-A-08 8:45 4:28
WM-A-09 7:03 5:31
WM-A-10 11:34 6:34
WM-A-11 12:40 6:48
WM-A-12 1 d, 2:45 16:52
WM-A-13 1 d, 12:41 1 d, 4:45
WM-A-14 10:51 7:52
WM-A-15 13:35 6:58
WM-A-16 8:20 5:29
WM-A-17 13:50 8:30

In Q0.99, we observe that only two of the 17 households had an inactivity time of more
than 1 day: one household had a maximum inactivity time in Q0.99 of 16:57 and one of
10:44:00. All the others (n = 13) did not have an inactivity time of more than 10 h in the
99 th quantile. The median inactivity time for all 17 households in Q0.99 is 06:58.

https://doi.org/10.5281/zenodo.7585347
https://doi.org/10.5281/zenodo.7585347
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7. Discussion

Our research focuses on HAER based on water consumption readings. We use the
flowrate feature (q(t)), which is common in the related literature [6,8–11,16,19,21,22,24,25],
but unlike many other studies [6,17–19], we consider the HAER problem as a binary classi-
fication problem. In other words, we do not distinguish between different consumption
methods or types of activity, but rather determine whether there is an activity at a given
time t or no activity. Thus, instead of HAR, the presented approach is suitable for HAER,
which is novel in the research field for using smart water meter data.

Our approach showed an increased precision (precision = 0.86) compared to previous
work on HAR, which was our main research goal. However, it should be noted that the
evaluation data set was collected in actual households but under controlled/laboratory-like
conditions, with no overlap of different activities and a limited range of activity types. As a
result, the recall (recall = 1.00) of our approach may be biased. In future work, the recall
should therefore be re-examined with a more comprehensive evaluation dataset.

As an extension to the precision–recall curve, we have performed a further evaluation
in Section 6.2 in two households to investigate whether FP classifications occur over an
extended period of time. This evaluation again demonstrates the high precision of the
HAER with a total of zero FP classifications. However, it should be noted that periods of
absence during which a washing machine or a dishwasher was active were not included
in the evaluation. In general, it must be stated that our method for HAER is potentially
prone to errors caused by Type II or Type III consumption. This means that if, for example,
a washing machine is running, HAER performance may be impaired during this time.
In particular, it must be considered that, for example, a washing machine intakes water
several times during a washing cycle, but generally only the first intake process is directly
related/close in time to the human activity of switching on the washing machine; all other
intakes occur with a time delay. The same applies to further Type II consumers.

A further limitation is that Type II devices may be started with a timer or via a smart
home, and thus be considered equally a Type III consumer. This cannot be distinguished
from a direct human activity with the presented approach.

From a practical standpoint, one major benefit of using smart water meter data for
HAER is that it is a fully non-intrusive way of monitoring people within the household.
Since smart water meters are already common in many households, this method of HAER
does not require any additional sensors to be installed, but solely works with re-using
existing data. However, it should be noted that not all commercially available smart water
meters offer the high temporal resolution of the smart meter used in this work.

Since water consumption is vital for humans, we can show that re-using the smart
water meter data provides a fine-grained activity profile. With Section 6.3 we showed that
the median overall household Q0.99 of inactivity time was 06:58; for 13 out of 17 households,
the Q0.99 of inactivity time was less than 10 h. This finding is particularly relevant when
further work is conducted to investigate using the activity information from the smart
water meter for an AAL system in emergency detection. Using household-specific inactivity
thresholds (e.g., 10 h) it is possible, using the disaggregated HAER information from the
smart water meter, to detect potential emergencies within the household by detecting
atypically long periods of inactivity [4]. In particular, it must then be considered that
inactivity also results from the absence of residents.

One of the major benefits of the proposed approach is its ability to perform HAER
using only a short timespan of water flow data. With a sample rate of 15 s, the cumulative
water consumption of the last 60 s is sufficient to perform the pre-processing of the data
as presented in Section 4 and then to perform the classification according to Section 5.
This makes it possible to cache the measurements locally in the household (e.g., using a
ring buffer) and to perform HAER on an edge system (e.g., a single-board computer) in a
streaming mode. This edge computing eliminates the need to transmit water consumption
data to an external third party, which increases privacy. There is also no need for a constantly
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active internet connection, which can increase the system availability/reliability. Only
dedicated emergency situations require external communication to notify third parties.

8. Conclusions and Further Work

On the one hand, this article outlines the data collection of a comprehensive data set
of water consumption measurements. We used commercial smart meters in 17 German
households between September 2020 and September 2022 to record water consumption
measurements with a median sample rate of 0.083̄ Hz, which is the second-highest among
data sets collected using smart meters in the related literature [8,9,11,14,21,22]. Only
Nguyen et al. [8] describe that their system can achieve a higher sample rate. However,
our data set also contains long gaps and faulty records, which may negatively impact its
quality, as discussed in detail within Section 3.3. A further significant impediment to the
possibility of reusing the dataset is the absence of label data. The collected data set is now
publicly available on Zenodo for further research.

On the other hand, we have presented a novel approach for HAER using water
consumption measurements collected from commercial smart meters. This noninvasive
approach facilitates the monitoring of human activity events within a household with-
out the need for installing additional sensors. Given that water is a vital necessity for
humans and is regularly consumed, such as in toilet use, our findings demonstrate the
potential of utilizing smart water meter data to generate fine-grained activity profiles of
household residents.

Our approach assumes that a change in the water flow rate from no flow (q(t) = 0)
to a positive flow above a certain threshold (q(t) ≥ thres) indicates human activity. Our
method requires several data pre-processing steps before human action detection can
be performed.

By using separately collected labeled data from three households over a period of
428 minutes, we could show that our approach can detect human activity events with high
precision (precision = 0.86) and recall (recall = 1.00). In addition, we could also show that
activity events are regularly detected during a typical daily routine.

In future work, the approach should be verified with additional data sets and bench-
marked against other approaches for HAR/HAER, such as those based on water pressure
measurements. Furthermore, it should be investigated how potential errors/bias can be
compensated for, primarily caused by Type II or Type III consumption.

Using advanced algorithms, the inferred information about human activities within
the residence can later be used for intelligent AAL systems. For example, information
about human activity derived from water consumption could replace the acknowledgment
function of home emergency call systems or be used for emergency detection without
proprietary sensors.
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Glossary/Abbreviations

Edge system
A decentralized computing infrastructure that processes and analyzes
data at or near the source of data generation, reducing the latency and
enhancing real-time data processing capabilities.

Interpolation
The method of estimating or calculating intermediate values between
known data points based on mathematical algorithms.

Precision–recall curve

A graphical representation that illustrates the trade-off between precision
and recall for a binary classification model or algorithm. It aids in eval-
uating the model’s performance and determining an optimal threshold
for decision-making.

Real-time clock

A clock device that provides accurate and precise timekeeping, typically
used in systems that require synchronized timing for various operations
or data logging. It enables events and actions to be timestamped and
synchronized with other devices or processes.

Resampling

The process of changing the sampling rate of a signal or data by inter-
polating or decimating the existing samples. It allows for adjusting the
temporal resolution of data to match a desired rate or to facilitate further
analysis.

Rolling median

A statistical method that calculates the median value within a sliding
window or moving interval of data points. It helps to smooth out varia-
tions and outliers, providing a robust measure of central tendency over
time or spatial domains.

Smoothing
A technique used to reduce noise or fluctuations in data by applying
mathematical filters or algorithms.

The following abbreviations are commonly used in this manuscript:

AAL ambient assisted living
ADL activity of daily living
HAR human activity recognition
HAER human activity event recognition
FN false negative
FP false positive
NTP network time protocol
TN true negative
TP true positive
VPN virtual private network
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