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Abstract: The Internet of Things (IoT) is changing the way consumers, businesses, and governments
interact with the physical and cyber worlds. More often than not, IoT devices are designed for specific
functional requirements or use cases without paying too much attention to security. Consequently,
attackers usually compromise IoT devices with lax security to retrieve sensitive information such as
encryption keys, user passwords, and sensitive URLs. Moreover, expanding IoT use cases and the
exponential growth in connected smart devices significantly widen the attack surface. Despite efforts
to deal with security problems, the security of IoT devices and the privacy of the data they collect
and process are still areas of concern in research. Whenever vulnerabilities are discovered, device
manufacturers are expected to release patches or new firmware to fix the vulnerabilities. There is a
need to prioritize firmware attacks, because they enable the most high-impact threats that go beyond
what is possible with traditional attacks. In IoT, delivering and deploying new firmware securely
to affected devices remains a challenge. This study aims to develop a security model that employs
Blockchain and the InterPlanentary File System (IPFS) to secure firmware transmission over a low
data rate, constrained Long-Range Wide Area Network (LoRaWAN). The proposed security model
ensures integrity, confidentiality, availability, and authentication and focuses on resource-constrained
low-powered devices. To demonstrate the utility and applicability of the proposed model, a proof of
concept was implemented and evaluated using low-powered devices. The experimental results show
that the proposed model is feasible for constrained and low-powered LoRaWAN devices.

Keywords: IoT; Blockchain; firmware; LoRaWAN

1. Introduction

The Internet of Things (IoT) is a growing system of connected devices with the ability
to sense, collect, and transmit data over the internet. It is estimated that the global IoT
market will have 24.1 billion devices in 2030 [1]. IoT is fundamentally changing the way
business is conducted and is driving a profound transformation in many domains such as
agriculture, smart homes, smart cities, public health, and the military and defense indus-
try. To participate in communication networks to send and receive data, IoT devices are
usually equipped with either Short-Range or Long-Range communication technologies [2].
While Short-Range communication technologies connect devices over short distances,
Long-Range communication technologies have the capability of communicating over long
distances. Short-Range technologies include Bluetooth, ZigBee, Infrared, Wi-Fi, and others.
Communication between devices is wireless within a smaller-diameter region, for exam-
ple, Wi-Fi reaches up to 150 feet (46 m). Long-Range technologies connect devices over
long distances. Long-Range technologies include LoRa, Sigfox, NB-IoT, and so forth [3].
The aforementioned Long-Range technologies are called Low-Power Wide Area Networks
(LPWANs). LPWANs enable devices to consume less power and provide the ability to
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send data over long distances [4]. Despite bringing about a great transformation that was
not possible with most traditional technologies, the issue of privacy and security remains
unaddressed. The lack of robust security solutions in IoT is an area of concern to both
academia and industry [5].

Due to their ubiquity, vulnerable IoT devices are not only a danger to the networks
they connect to, but also to the humans that seek to derive utility from them. In addition to
other vulnerabilities, the collateral damage potential can range from none to catastrophic.
Looking at the threat and vulnerability landscape, it is clear that the firmware attack
surface is evolving into one of the most critical areas of security and needs prioritization [6].
IoT device firmware has become an active part of the attack surface that organizations can
no longer afford to ignore. There has been a rise in the number of cases where ransomware
and malware have targeted firmware vulnerabilities to cause harm, steal credentials, or
even disable critical infrastructure. The Microsoft Security Team conducted a study and
released a report in March 2021 [7] that shows how the rise in firmware attacks affects
organizations, as per Figure 1.
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This study shows that 83% of businesses have experienced a firmware attack in
the past two years. Moreover, it should be noted that firmware sits beneath the kernel,
therefore controlling the firmware provides opportunities for escalating privileges on the
device to the highest level. Consequently, attackers could bypass security mechanisms
that run in subsequent layers, such as the operating system, allowing them virtually
unfettered access to the device. For example, a study conducted on cyber-attacks on medical
implants demonstrated the effects of firmware and communication protocol vulnerabilities
on pacemakers [8]. The inability to provide authentication and confidentiality on the
remote management channels resulted in successful attacks. It was demonstrated that
attackers could control the vulnerable pacemaker to run the battery flat, control the patient’s
heartbeat, and modify its behavior. From this example, it is clear that the security of smart
devices cannot be ignored, because it can have detrimental effects not only on the affected
systems but also on human lives. Therefore, taking due diligence, as far as security is
concerned, will go a long way in improving the adoption of such technologies.

LoRa is a robust ISO/OSI Layer 1 wireless technique that can transmit and receive
radio waves over long distances and is suitable for applications that transmit small chunks
of data with low bit rates [9]. LoRa is also suitable for sensors and actuators that oper-
ate in low power mode and at low cost. LoRaWAN is a Media Access Control (MAC)
layer protocol built on top of LoRa to tell devices how to use the Lora hardware [10].
Even though LoRaWAN is generally secure by design, the security result depends on
how it is implemented. LoRaWAN provides security mainly through symmetric cryp-
tography [11]. The messages sent over the network are encrypted using the Advanced
Encryption Standard (AES) for confidentiality and the Message Integrity Code (MIC) for
authenticity together with integrity. Despite the built-in security, LoRaWAN is susceptible
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to security attacks [12]. Just like any security technology that uses encryption, key manage-
ment and the encryption processes are some of the fundamental challenges, more so with
LoRaWAN because of its resource-constrained nature. Hence, there is a need for solutions
that enhance security by addressing these problems.

One of the most-used of the technologies that enhance the security of IoT systems is
Blockchain technology. Blockchain is an emerging technology that can also be incorporated
in LoRaWAN to enhance security. Blockchain is a decentralized peer-to-peer network not
managed by a third party [13]. The data stored on the Blockchain is mined or verified by
multiple nodes on the network. Blockchain security is based on asymmetric cryptography
and hashing, making it immutable and tamper-proof. Moreover, Blockchain consists of
the immutable and tamper-proof smart contract which is a logic that enforces the rules of
the Blockchain. Recently, some studies incorporated Blockchain to strengthen the security
of LoRaWAN. For example, ref. [14] proposed a security model based on Blockchain and
asymmetric cryptography to provide non-repudiation in LoRaWAN. The authors in [15]
proposed a secure architecture for key management utilizing permissioned Blockchain to
enhance security and availability in LoRaWAN. These studies add an extra layer of security
to mitigate possible attacks and eliminate vulnerabilities. The additional layers of security
are mandatory in the IoT, to ensure that the devices are secured since most are being
manufactured and deployed and are expected to stay active on the Internet for an extended
period. Vulnerabilities are inevitably going to be discovered when these devices are already
operating in the field. Fixing these vulnerabilities will require device manufacturers to
release new firmware versions that will mitigate the vulnerability and keep the device up
to date. However, coming up with a secure firmware update mechanism for IoT devices is
a challenge, especially when it comes to constrained devices. The nature of the IoT makes
it hard to deliver firmware updates due to the existence of a large number of devices that
are geographically separated and at times deployed in difficult-to-reach areas. This makes
it impracticable to provide manual updates since one has to remember all the physical
locations of thousands of IoT devices that need to be updated. There is, therefore, a need
for automated over-the-air (OTA) ways to convey firmware updates to the thousands of
deployed devices.

The traditional client–server-based architecture, which is the de facto firmware update
mechanism, is not suitable for IoT, because it exhibits several shortcomings including a
single point of failure. Concomitantly, there is a need to explore other ways of conveying
firmware updates, especially distributed approaches. This study presents a security model
that utilizes Blockchain and InterPlanentary File (IPFS) to secure firmware updates in
LoRaWAN. The proposed security model focuses on low-powered devices in LoRaWAN,
intending to provide integrity, confidentiality, availability, and authentication during the
firmware updates. The main contributions of this study are as follows:

• It presents the design and implementation of a Blockchain-based security model
suitable for LoRaWAN using public permissionless Blockchain to secure firmware
updates in LoRaWAN.

• The proposed work introduces the Firmware Update Service (FUS) that is responsible
for the complete orchestration of firmware updates. The FUS manages the entire
firmware update process of low-powered devices, performs the fragmentation, and
maintains the end-to-end encryption.

• Finally, this work evaluates the impact of the security measures taken to secure the
firmware and the overall cost involved in LoRa transmission.

This paper contains the following sections: Section 2 explains the concepts used in the
proposed model; Section 3 outlines the recent studies that focus on the security of firmware
updates in constrained networks; Section 4 presents the Blockchain-based security model
in detail; Section 5 presents the implementation of the security model and the experiment
architecture; Section 6 provides the results and analysis of the proposed security model and
compares the proposed model and other firmware update mechanisms; Section 7 provides
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the application scenario which demonstrates the utility of the proposed model; and, finally,
the conclusion and the future work are discussed in Section 8.

2. Background
2.1. Firmware Updates

Firmware updates are necessary in every system, not only in IoT. Attacks against de-
vices stand as some of the highest impact threats facing modern organizations. This shows
that firmware attacks are on the rise, and businesses are not paying close enough attention
to securing systems.

IT Governance discovered 266 security incidents between July and September 2021,
which accounted for 185,721,284 breaches [16]. Figure 2 shows that the healthcare and
health sciences sectors accounted for the highest numbers of security incidents followed
by the public sector, which was the leading sector with the most security incidents in the
previous report. Several companies have been affected by security breaches in June 2021.
One example is an incident that occurred with Electronic Arts, which is one of the world’s
biggest video game publishers. Attackers broke into the systems and stole the source
code for FIFA 21, as well as the code for its matchmaking server [17]. Another breach
that occurred involved attackers exposing private information, such as the emails, phone
numbers, and addresses of McDonald’s customers and employees located in South Korea
and Taiwan [18]. These attacks have highlighted the need for a solid mechanism to secure
systems and eliminate vulnerabilities.
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2.2. InterPlanentary File System

IPFS is defined as a protocol and a peer-to-peer distributed file system that seeks to
connect all computing devices with the same systems of files [19]. Before IPFS, content was
only accessed via protocols such as the Hypertext Transfer Protocol (HTTP), where content
is accessed based on its location using the address on the server. HTTP is based on the client–
server model, and the availability of the content relies on the central authority. If servers
are offline, the content cannot be retrieved; whereas IPFS is based on the decentralized peer-
to-peer model, where the content is copied and accessed from multiple nodes eliminating a
single point of failure. IPFS uses content addressing to identify content instead of using the
content’s location. IPFS integrates many of the best ideas from the most successful systems.
The InterPlanetary File System is derived from the following technologies:
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• Distributed Hash Tables (DHTs): IPFS utilizes distributed hash tables to find which
peers are hosting the file. A hash table is a data structure based on the key–value pair.
The DHT is distributed and updated across all the peers in the network [18]. The file
can be found by asking the peers in the network since they all have the DHT.

• Block Exchanges (Bitswap): The core module that handles the exchange of blocks is
the Bitswap protocol. Bitswap is a message-based protocol where all messages contain
want-lists or blocks. It handles the requesting and sending of blocks to and from other
peers in the network. The Bitswap protocol performs two main operations: it obtains
the requested blocks and sends the blocks to other peers in the network [20].

• InterPlanetary Version Control Systems (IPVC): IPVC utilizes the version control
system to provide version capabilities. This version control is suitable for large files
and any type of content [21].

• Self-Certified Filesystems (SFS): SFS is a distributed file system that does not need any
permissions for data exchange. It is a self-certifying filesystem, meaning that when
the data is served to a peer, it is authenticated by the unique filename [22]. Each peer
on the IPFS network is identified by the node ID that is produced from the node’s
public key. It also holds a private key that is stored in the configuration file used for
signing data. The peer also has the public key that is used for node identification in
a network. During the communication, the public keys are exchanged so that when
the peer communicates with other peers it can authenticate them. Authentication is
achieved by computing the hash of the public key and matching it against the node
ID, and, if the computed hash matches the node ID, the node can be trusted.

IPFS works very well with Blockchain technology. The combination of the two is
considered to be a “great marriage” and the future of the peer-to-peer network. This hap-
pens because IPFS provides a good solution when it comes to storage, since the Blockchain
network has limitations on how much data can be stored on the network. For example,
the Bitcoin Blockchain network is limited to only storing data up to 1 MB in a block [23].
The data stored on the IPFS is tamper-proof and cannot be accessed by an illegitimate node,
since every node is required to have an identity.

2.3. Blockchain and Smart Contract

Blockchain is defined as a decentralized, distributed ledger that stores the data securely.
Blockchain maintains a list of records called blocks. A block consists of more than one
transaction where computers verify each transaction using computers with high processing
capabilities called miners. Miners validate new transactions and record them on the ledger
and earn an amount of money for the validation and verification of transactions. There are
a couple of terminologies related to the execution of transactions. These include:

• Gas: A unit of measurement that refers to the computational effort required to execute
specific operations. The different kinds of operations will have different amounts
of gas.

• Gas limit: Before the transaction is executed, the owner of the transaction is required to
specify the maximum number of units of gas they are willing to pay for a transaction
to be carried out. This number is called the gas limit.

• Gas used by transaction: This is the actual amount of gas that is used during execution.
If the transaction owner specified an excessive amount of gas before the execution, the
remaining gas will be returned to the owner.

• Gas price: The transaction owner also needs to specify the gas price before the transac-
tion is carried out. This is the amount the owner is prepared to pay for each unit of
gas. This can also be measured as a small fraction (gwei).

• Gas fee/transaction fee: This is the actual amount of fees the transaction owner will
pay. It is usually measured in small fractions of the cryptocurrency, Ether (ETH),
commonly referred to as gwei. The gas fee is the product of the gas used by the
transaction and the gas price.
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An example will be used to have a better understanding of how the transaction is
executed successfully. The transaction includes the following information:

a. Gas price (GP)
b. Gas limit (GL)
c. Nonce (N), the transaction sequence number for the sending account; this number

increases for each transaction made by the sender
d. To (AR), this field represents the destination address; it can be the recipient account or

the smart contract address
e. Data (TD), this field contains the code to execute a transaction in the Ethereum Virtual

Machine (EVM), for example, in the case of contract deployment, this field will have
the byte code of the contract along with the parameters to call the constructor (if any);
this field may also contain the method signature along with the parameters

f. Value (TV), this represents the amount of Ether that is transferred between sender and
recipient

g. {v, r, s}, the signature is represented by 3 variables: v, r, and s

Now, suppose Alice wants to make a transaction to pay Bob 2 amounts of Ether (TV).
Alice will have to first specify the amount of gas (e.g., 25,000) she is willing to pay for the
transaction (GL) and also provide the price for each unit of gas–gas price (e.g., 200 gwei)
(GP). After specifying the gas, Alice signs the transaction and sends it to Bob.

The signing mechanism is based on the Elliptic Curve Digital Signatures Algorithm
(ECDSA):

(r, s) = ECDSA_Signing (Keccak256 (N, GP, GL, AR, TD, TV)) (1)

The signing algorithm takes the data generated by the sender and produces the Elliptic
Curve Digital Signature Algorithm (ECDSA) signature represented by (r, s):

Public key = ECDSA_Verifing (Keccak256 (N, GP, GL, AR, TD, TV)), v, r, s) (2)

The transaction will be validated and verified by miners via the ECDSA_Verifing
algorithm which takes the original data produced by the sender and matches it against the
signature (r, s) produced during the signing process. If the private key produced is that of
the sender, the transaction continues. The transaction will use a certain amount of gas from
the provided gas (gas used by the transaction, e.g., 21,000 gas) and, if the provided gas is
sufficient, the transaction will execute successfully and the remaining unused gas will be
sent back to Alice which is 25,000 − 21,000 = 4000 gas. The total cost for the transaction
(gas fee) will be 21,000 ∗ 200 gwei = 4,200,000 gwei, which is equivalent to 0.0042 Ether, and
this is the amount the miner will receive. Therefore, Alice pays 2 + 0.0042 = 2.0042 Ether
in total.

From the aforementioned example, the transaction is achieved or authenticated via the
ECDSA algorithm. Blockchain security is strengthened by the hashing technique, where
each block contains the hash of the previous block to enable the immutability of data stored
in blocks. Blockchain technology is known for the following key characteristics:

1. Decentralization: As mentioned, it is a peer-to-peer platform that does not depend on
a single entity or a third party but is controlled by multiple nodes in the network.

2. Openness: Blockchain relies on multiple nodes to maintain the ledger. Hence, anyone
can join, make transactions, and be part of verifying the transactions.

3. Auditability: It is auditable because all transactions can be traced back from the time
they were created.

4. Persistency: It is impossible to delete or alter the transaction once it has been verified
and stored in the block.

Blockchain was initially applied in cryptocurrency; however, in later stages, it was
applicable in many areas such as finance, public service, IoT, software-defined networks,
and so forth [24]. Blockchain is an independent network and can interact with other
networks such as IoT. For it to interact with the outside world, Blockchain needs to expose
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some interfaces so that external entities can interact with the network. This is usually
achieved by the Blockchain feature called the smart contract. The smart contract is a
logic that is stored and runs on the Blockchain network, hence it inherits the Blockchain
characteristics described above. Blockchain data can be accessed by connecting via the
node that is synced with the network. Several nodes can be used for this:

1. Ganache–CLI: This is a tool that acts as a Blockchain node, usually used to create a
local Blockchain network for testing and local development [25].

2. Geth: This is the Blockchain node that can run on the local computer and sync with
the private or public Blockchain network [26].

3. Infura Node: This node is a service node on the public network and is controlled by a
third party that uses an Application Programming Interface (API) to access the node
to interact with the network [27].

2.4. IoT Security

To secure the network and end devices, cryptographic techniques are required. Us-
ing the existing proven techniques to secure the network and every entity that forms
the part of the network is recommended. Due to the resource-constrained nature of the
IoT, traditional security techniques are not directly applicable and compatible with IoT
devices [28]. The constraints include a shortage of Random-Access Memory (RAM), inade-
quate flash memory, limited processing power, limited energy power supply, restrictions
of communication protocols used by the devices, etc. Some of the IoT devices may use
traditional security techniques, but it may become difficult to incorporate them in other
devices. Symmetric cryptography and asymmetric cryptography are commonly used to
secure devices. Symmetric cryptography is based on a shared secret key between two
entities, while asymmetric cryptography uses mathematically linked public and private
keys for encryption and decryption.

IoT devices are categorized into three categories: low-end, medium-end, and high-
end devices. The Internet Engineering Task Force (IETF) further categorizes the low-end
devices into three categories: Class 0, Class 1, and Class 2, as shown in Table 1. Class 0
devices consist of limited memory devices with approximately 10 kB and 100 kB of RAM
and flash memory, respectively. These devices have severe constraints to communicating
securely over the network, which are, usually, are pre-configured and connected to the
internet via gateways or servers. Class 1 devices are less constrained compared with class
0 and can run IoT stacks, such as User Datagram Protocol (UDP), Constrained Applica-
tion Protocol (CoAP), and lightweight security protocols, such as Datagram Transport
Layer Security (DTLS), which are based on symmetric cryptography. Class 2 devices can
make use of traditional protocols and perform heavy operations compared to Class 0 and
Class 1. Middle-end devices also have constrained resources but are better than low-end
IoT devices. This means more features can be incorporated into these devices. For example,
more than one communication technology can be incorporated. High-end devices can
run traditional operating systems (OS) such as Linux and Windows and perform heavy
operations. Moreover, they can incorporate traditional cryptographic techniques, such as
asymmetric cryptography without worrying about computing resources.

Table 1. Classes of Constrained IoT devices [29].

Name RAM Flash

Class 0 <<10 kB <<100 kB
Class 1 ~10 kB ~100 kB
Class 2 ~50 kB ~250 kB

IoT devices need to be kept updated to ensure their security on the network. Firmware
updates need to be executed in a way that ensures authentication, integrity, and confi-
dentiality. It is necessary to prove that the firmware has not been modified both at rest
and in transit. Furthermore, it must be proven that it comes from a legitimate source
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(authentication). The end device needs to perform integrity and authentication before the
firmware is installed. Integrity and authenticity can be achieved either using symmetric
or asymmetric cryptography. Symmetric cryptography is lightweight and can be incorpo-
rated into constrained devices, for example, a LoRa stack uses symmetric cryptography to
provide end-to-end encryption between the network server and the IoT devices.

3. Related Work

Even though a firmware update is a critical component of cyber hygiene in IoT,
the existing tools, processes, and controls are mostly insufficient to rapidly mitigate the
associated risks. As highlighted before, applying firmware updates in constraint networks
such as LoRaWAN is a challenge because, besides the resource-constrained nature of
the devices, the network data rates are also much lower than the traditional networks.
For instance, the LoRaWAN data rate varies from 300 bps to 37.5 kbps, depending on
the spreading factor and the bandwidth of the communication channel [28]. Moreover,
most of these networks operate in the unlicensed spectrum (ISM band), therefore, the
low-powered devices have to respect the duty cycle of transmission, where the device has
to wait for the next available opportunity to send the data. The LoRa Alliance put some
standards in place to minimize the cost involved when performing firmware updates in
LoRaWAN [30]. The standards include firmware fragmentation, clock synchronization,
and multicast. The authors of [31] present the requirements and recommendations that
firmware update mechanisms should consider when delivering the firmware updates to
low-powered devices in LPWANs. The provided requirements and recommendations
include sending the firmware to multiple devices at the same time (multicast), sending
large binary packets over a lossy network, and verifying the authenticity and integrity of
the firmware.

Recently, the authors of [32] used the LoRa Alliance specifications to demonstrate
how firmware updates can be applied in LoRaWAN. The Firmware Update Over the Air
Simulator (FUOTASim) was implemented and evaluated to demonstrate the effects of the
different FUOTA parameters. The study did not consider security in the firmware update
process. The authors of [33] demonstrate the firmware update mechanism that targets
LoRa end devices. Two communication technologies, LoRa and Wi-Fi, are being used.
The mechanism uses Wi-Fi to retrieve the firmware from the servers. The main reason for
using Wi-Fi instead of LoRa is the fact that LoRa has limitations. These limitations make it
hard to obtain the firmware image quickly to update the devices; therefore, the mechanism
switches from LoRa to Wi-Fi to access the firmware image without delay. However, this
approach requires that the end device be equipped with Wi-Fi, which other devices may
have. Moreover, the mechanism is good for devices that are not battery-powered and
otherwise using traditional technologies may consume the battery of the end device.

The authors of [34] proposed the firmware update scheme that targets embedded
devices in IoT. The proposed scheme utilizes Blockchain to check the firmware version and
the correctness of the firmware image. The proposed scheme treats every IoT device as a
node that holds the ledger in the Blockchain network. Most IoT devices have low processing
capabilities and not much memory to hold the Blockchain ledger. Therefore, it may be
difficult for resource-constrained device to implement. The authors of [35] proposed using
Blockchain technology to update the software and firmware of the IoT devices securely.
The firmware update solution focused on the resource-constrained IoT. This study only
provides integrity verification of the firmware. Therefore, more security is needed beyond
integrity, such as determining whether the firmware was coming from a legitimate source,
and beyond confidentiality, non-repudiation, and data freshness.

The authors of [36] proposed two techniques that deliver firmware updates. The first
technique is a direct firmware update where the IoT devices download the update from
the manufacturer’s server through the gateways, and IoT gateways can share the down-
loaded firmware updates from the manufacturer’s server. IoT gateways load off the work
for servers by doing the integrity check and validity of the update for the Blockchain
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network. The second technique is where the firmware is distributed on peer-to-peer net-
works. The proposed techniques utilize smart contracts to check the firmware update.
The evaluation results show that the peer-to-peer firmware update technique has better
time performance than the direct firmware update technique. The provided techniques
are good for IoT devices with sufficient resources but not for constrained devices with
limited storage. IoT devices need to hold firmware and share the latest updates through
IoT gateways. Recently, the authors of [37] proposed a Blockchain-based framework to
securely update the firmware of the IoT devices using the LoRa. The work is based on the
simulation tool developed by [32] to perform the evaluations. The work is not clear about
the cryptographic algorithms used to secure the end device and what kind of devices the
proposed framework targets. The authors of [38] proposed a Blockchain-based approach
where the IPFS was used to store the software file to achieve the high availability of the
software. The proposed mechanism ensures the integrity of the software file and targets
the devices with enough resources to carry cryptographic operations. The benefits and the
limitations of the related work are summarized in Table 2.

Table 2. Benefits and Limitations of the Firmware Update Models.

References Benefit(s) Limitation(s)

[32]
Illustrated how Long-Range (LoRa) alliance firmware

can be utilized to provide the firmware update to a
large number of devices.

The work does not cover the security on how firmware
can be protected during transmission.

[33]

Focus to deliver firmware updates to low-powered
LoRa devices using both LoRa and Wi-Fi and the

firmware image may be delivered fast in
low-powered devices.

The approach requires that the end device must be
equipped with Wi-Fi and, since Wi-Fi is a traditional

technology, may consume more power of the
end devices.

[34]
Illustrated and discussed the Blockchain-based

scheme that provides high availability, integrity, and
authentication in depth.

The proposed scheme may be difficult to incorporate
in constrained IoT devices because of

limited resources.

[35]

Demonstrated a Blockchain-based approach that
shows how the integrity of firmware can be achieved.

Provides a comparison between the proposed
firmware update framework and existing frameworks.

The limited literature on firmware updates.
The mechanism only ensures the integrity of the

firmware image.
No implementation and evaluation, only proposed

the mechanism.

[36]

The work provides two ways of updating the IoT
devices, the client–server and the

distributed approaches.
Discuss the implementation and analysis of these

two techniques.

The proposed techniques are sufficient for IoT devices
with good resources but not for devices that are

limited in resources.

[37] Discuss how low-powered devices can be updated
based on the simulation tool developed by [14].

The work performs firmware updates utilizing
Blockchain, but it is not clear how the Blockchain was
implemented and incorporated in the simulation tool
developed by [14]. The mechanism claims to provide
authenticity and integrity but does not specify which
algorithms that were utilized to achieve these aims.

Moreover, no security analysis was performed.

[38]
The work focuses on IoT networks and delivers

updates to IoT devices using Ethereum Blockchain
and IPFS.

The solution provided is not suitable for constrained
networks and focuses on the IoT devices that have

good processing power. Additionally, It provides only
one security property, which is integrity.

Each aforementioned study covers certain security properties. Some target low-end
devices and others high-end devices. In Table 3, some mechanisms take a distributed
approach, specifically the Blockchain, while others take the client–server-based model
to distribute the firmware. It was observed that most of the proposed Blockchain-based
schemes do not focus on constrained networks, such as LoRaWAN which consists of
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devices that are too constrained in resources, specifically low-end IoT devices. Therefore,
this study presents a Blockchain-based security model that suits resource-constrained
devices in LoRaWAN.

Table 3. The Comparison Between the Firmware Update Mechanisms.

Features and Properties [32] [33] [34] [35] [36] [37] [38]

Target Low-End Devices 3 3 3

Target High-End Devices 7 7 3 3 3 3

Availability 7 7 3 3 3 3 3

Confidentiality 7 7 7 7 7 - 7

Integrity 7 3 3 3 3 - 3

Authentication 7 7 3 3 3 - 7

Data Freshness 7 7 7 7 7 7 7

Constrained-Network 3 3 7 7 7 3 7

Performance Evaluation 3 7 7 7 3 3 3

Distributed/P2P 7 7 3 3 3 3 3

3: Covered, 7: Uncovered, (blank): Not clear.

4. Proposed Security Model

This section describes the proposed security model in detail. Before the proposed
model is presented, the security model’s assumptions and requirements are explained,
followed by the system architecture demonstrated in Figure 3. The proposed smart contract
operations available for firmware are also described in Figure 4, and finally, the security
measures taken to secure firmware updates in LoRaWAN are described.

J. Sens. Actuator Netw. 2022, 10, x FOR PEER REVIEW 11 of 42 
 

 

• One component must manage updates of multiple microcontrollers that compose IoT 
devices. 

• The firmware update must be designed to be deployed over the air, and the update 
strategy should be adapted to the bandwidth constraints. 

• Updates should be authenticated and integrity protected from end-to-end 
o Authentication: The model should identify the firmware source, e.g., the 

manufacturer, so that the right firmware is stored on the end device. 
o Integrity: The model should be able to check if the firmware image has not been 

modified both at rest and in transit. 
o Confidentiality: The process of updating firmware involves sensitive 

information which may be required to be transmitted between different entities 
in the process. Hence, the information must only be be seen by the intended 
entity; therefore, it must be encrypted for confidentiality.  

 
Figure 3. The System Architecture of the Security Model. 

• Availability: End devices must be updated regardless of whether the manufacturer’s 
repository is off the network. Therefore, the model must eliminate the single point of 
failure. 

• Replay Attack: The sensitive messages such as session keys can be eavesdropped on 
by the attacker during firmware updates; therefore, the model must make sure that 
no old messages are sent. 

• Low-power consumption: The model must be suitable for low-powered (battery-
powered) and constrained devices since most of the devices in LoRaWAN operate 
on battery and most are low-end devices without many resources.  

• Heterogeneous devices: The IoT network consists of devices from different vendors, 
therefore the model must take into account the hardware heterogeneity of the IoT by 
not considering a single vendor. 
The proposed security model has the following assumptions: 

• Encryption and decryption keys are on the secure hardware module. 
• The firmware image is stored in public storage where anyone can have access.  
• The firmware updates are applied on constrained devices with low processing capa-

bilities and memory limitations. 

  

Figure 3. The System Architecture of the Security Model.

4.1. System Requirements and Assumptions

In this section, we state the requirements for secure firmware updates and the as-
sumptions made in this work. We also provide the reasons for the given assumptions.
The following conditions need to be met in order to install a new firmware image securely
to the low-powered device. These requirements are based on the studies presented in
the literature and are also influenced by the recommendations made in publications such
as Cloud Security Alliance (CSA) and other recommendations on performing updates in
LPWAN networks [39].
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• System design should allow administrators to schedule updates to their devices to
avoid network saturation and limit unintended downtime.

• One component must manage updates of multiple microcontrollers that compose
IoT devices.

• The firmware update must be designed to be deployed over the air, and the update
strategy should be adapted to the bandwidth constraints.

• Updates should be authenticated and integrity protected from end-to-end

# Authentication: The model should identify the firmware source, e.g., the manu-
facturer, so that the right firmware is stored on the end device.

# Integrity: The model should be able to check if the firmware image has not been
modified both at rest and in transit.

# Confidentiality: The process of updating firmware involves sensitive information
which may be required to be transmitted between different entities in the process.
Hence, the information must only be be seen by the intended entity; therefore, it
must be encrypted for confidentiality.

• Availability: End devices must be updated regardless of whether the manufacturer’s
repository is off the network. Therefore, the model must eliminate the single point
of failure.

• Replay Attack: The sensitive messages such as session keys can be eavesdropped on
by the attacker during firmware updates; therefore, the model must make sure that no
old messages are sent.

• Low-power consumption: The model must be suitable for low-powered (battery-
powered) and constrained devices since most of the devices in LoRaWAN operate on
battery and most are low-end devices without many resources.

• Heterogeneous devices: The IoT network consists of devices from different vendors,
therefore the model must take into account the hardware heterogeneity of the IoT by
not considering a single vendor.

The proposed security model has the following assumptions:

• Encryption and decryption keys are on the secure hardware module.
• The firmware image is stored in public storage where anyone can have access.
• The firmware updates are applied on constrained devices with low processing capabil-

ities and memory limitations.

4.2. System Architecture

The system architecture involves eight entities: low-powered devices, LoRa gateway,
LoRaWAN servers (gateway, network, join, application, and identity server), firmware
update service (FUS), Blockchain, IPFS, device owner, and the manufacturer. This section
explains each component, together with its functionalities and a rationale for the choice.
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• Manufacturers: Are responsible for the creation of the new firmware to make sure
that the manufactured devices are up to date with the latest specifications, etc. They
constantly push the firmware image and metadata to the IPFS and Blockchain net-
work, respectively.

• Low-powered/LoRa devices: Firmware updates need to be delivered to IoT devices,
and, since we are dealing with a constrained network, the device equipped with LoRa
interface is required. This entity exchanges messages with other devices in the network
via the LoRa gateway.

• Device Owners: The low-powered devices need to be configured and managed for
firmware updates. The device owners are responsible for that.

• LoRa Gateway: Since the focus is on constrained devices, most cannot connect directly
to the Internet to communicate with other devices. Moreover, most are not equipped
with the LoRa interface; therefore, the gateway must establish communication among
the devices. The gateway is equipped with LoRa and other interfaces that can connect
low-powered devices with the outside world. The gateway receives and transmits
data from the multiple low-powered devices and sends data to the LoRaWAN servers
for further manipulation.

• LoRaWAN servers: The gateway does not process any messages received from the
low-powered devices; therefore, there must be a place where messages can be pro-
cessed. There is a number of LoRaWAN servers available to choose from, but this
study considers The Things Network (TTN) stack V3 which is comprised servers that
handle LoRa packets. The stack is open source, and it was chosen since it supports
all LoRaWAN versions. Different modes of operation (Class A, B, and C) make it
easy to manage users, gateways, applications, and end devices. The TTN stack V3
servers include:

• The Identity Server: Stores the applications, registered end devices, gateways,
users, organizations, Open Authentication (OAuth) clients, API keys, and collabo-
rators and acts as an OAuth 2.0 server with login and consent screens. Moreover,
it provides different ways of integration.

• The Gateway Server: Maintains connections with gateways that support the
UDP, Message Queuing Telemetry Transport MQTT, Google Remote Procedure
Call gRPC, and Basic Station protocols. It forwards uplink messages to network
servers and schedules downlink messages to the end devices via a LoRa gateway.

• The Network Server: Is responsible for keeping the state of all low-powered
devices, performing cryptographic MIC checks, detecting replay attacks by per-
forming frame counter checks, maping LoRa packets to the correct application
server, and managing usage of LoRa gateways.

• The Application Server: Decrypts the data received from the LoRa end devices
and encrypts the data sent to the low-powered device. The received data can
be integrated into other IoT platforms via different protocols such as MQTT
and HTTP.

• The Join Server: It is connected to the network server and is responsible for
storing end device root keys and handling the Over The Air Authentication OTAA
process. It also generates session keys and sends them to the network server and
application server to enable the secure transmission of LoRaWAN messages.

• Blockchain: This consists of Blockchain nodes that store firmware, sync firmware
metadata, and validate firmware update transactions. It also consists of a smart
contract that enforces the rules during the firmware update. This work uses the public
Blockchain network, because the metadata is usually shared by the manufacturers
publicly, usually via the manufacturer’s website, or to the public repository, such as
GitHub. In addition, Blockchain will also ensure that the metadata is stored securely
and is tamper-proof.

• IPFS: This is a decentralized peer-to-peer network that consists of nodes that store
and sync the firmware image. In the same way that the firmware metadata must be
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stored publicly, the image must also be stored publicly. Once the metadata is added to
the IPFS network, it cannot be changed without altering the content identifier (CID),
which enables the storage of data that does not need to change. Moreover, IPFS is
chosen since it ensures the availability of the firmware.

• FUS: This study introduces the FUS, which is a component that is connected with the
application server to manage firmware updates in LoRaWAN. As mentioned, most of
the low-powered devices cannot connect directly to the internet, but they connect via
the gateway. The FUS component connects the low-powered devices to the Blockchain
network and establishes the end-to-end encryption to communicate securely with
low-powered devices during the update process. FUS is responsible for the tasks
explained in Table 4.

Table 4. FUS Tasks.

Tasks Description

Firmware requests Handles and manages firmware requests by listening to Message Queuing Telemetry
Transport (MQTT) topics.

Connects to decentralized networks

The Firmware Update Service (FUS) is connected to the InterPlanetary File System
(IPFS) and Blockchain network via HyperText Transport Protocol Secure (HTTPS) and

the WebSocket.
Performs the firmware image requests and runs a daemon that listens for new

firmware updates in the Blockchain network.
It connects to both manufacturer’s smart contract and the FUS smart contract address.

State update Continues updating the state of the device during the firmware update.

Firmware fragmentation Performs firmware fragmentation using the device’s spreading factor (SF).

Cryptographic operations
Encrypts and decrypts sensitive data.

Generates session keys to be used for that session of the firmware update. Performs
authentication and integrity checks of the firmware image.

4.3. Smart Contract in the Proposed Security Model

This section discusses the proposed smart contract operations involved during the
firmware update process. The FUS is connected to two smart contracts in the Blockchain
network: the manufacturer’s smart contract and the FUS smart contract. The FUS smart
contract stores the data related to low-powered devices such as the device ID, the device
manufacturer’s smart-contract address, the device model, the device current firmware,
and the device update status. The manufacturer’s smart contract enables any entity to
retrieve information such as metadata and enables entities to check the availability of new
firmware. Each smart contract has a set of operations shown in Figure 4. These operations
are explained below.

• Deploy: The manufacturer and the FUS owner must first deploy the smart contract
to the Blockchain network before any firmware update process can occur. When the
smart contract is deployed, this function assigns the manufacturer’s smart contract
address or the FUS smart contract address as the smart contract owner on the network.
This enables knowing who created and deployed the smart contract on the network in
the future.

• Add New Firmware: The manufacturer calls this function to add new metadata to the
Blockchain. This is a crucial function and must not be called by anyone other than the
manufacturer. Therefore, this function first checks who has called it before accepting
the metadata into the Blockchain network.

• Register Device: The FUS calls this method to register a new low-powered device to
the Blockchain. This is also a crucial function and must not be called by anyone other
than the FUS owner. Therefore, this function first checks who has called it before it
accepts the metadata into the Blockchain network.
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• Check Update: The FUS calls this function on the manufacturer’s smart contract to
check if there is any new firmware update available for the provided device model.
If the firmware update is available, it returns true or else false.

• Retrieve Devices by Model: This function retrieves a set of devices by the model’s name.
• Retrieve Device Information: This is a decentralized peer-to-peer network that consists

of nodes.
• Retrieve Manifest: This is a decentralized peer-to-peer network that consists of nodes.
• Get Device Status: This function obtains the current state of the device.

The components of the proposed model have been explained, and the proposed
Blockchain smart contract operation has been presented. Now, the security model’s spec-
ifications are provided. The security of the model is specified by explaining the phases
involved during the firmware update process and, from there, by illustrating how security
had been achieved in each phase. These phases include the deployment of the manufac-
turer’s smart contract, firmware distribution, low-powered-device registration, firmware
initiation process, firmware download, and firmware distribution to the low-powered
device. Each phase is explained in a separate section. The acronyms of the proposed model
are presented in Table 5.

Table 5. Acronyms Used in the Security Model.

Symbol Meaning

KFUS Firmware Update Service key
KM Master Key or a shared secret key

KMW Manufacturer’s wallet key
KS Session keys

F(N) Nonce update function
KPR The private key of the manufacturer

4.4. Deployment of the Manufacturer’s Smart-Contract and Update Service Smart Contract

Before any firmware update takes place, the manufacturer’s smart contract and the
FUS smart contract must be deployed to the Blockchain network. The deployment stage is
where the authorization is enforced. The manufacturer consists of the wallet key or address
(KMW) which is the hash of the public key. During the deployment process the wallet
address of the smart contract deployer, i.e., the manufacturer is stored on the Blockchain
and is later used to control access to the critical operations on the Blockchain network.
These operations include distributing firmware metadata to the Blockchain, adding new
LoRa end devices, registering a low-powered device, checking firmware updates, and so
forth, as shown in Figure 4. The deployment phase results in knowing who the owner of
the smart contract is.

4.5. Firmware Distribution

Once these smart contracts are deployed, the manufacturer can distribute the firmware
to the Blockchain and IPFS. Figure 5 demonstrates how the model works when the manu-
facturer distributes the firmware to the Blockchain and IPFS. In this section, we specify the
security involved in the deployment:

• Integrity: The firmware image could be modified during transmission. Therefore, the
manufacturer hashes the firmware image using the SHA-256 algorithm to prevent any
alteration that could take place during the update process. The calculated SHA-256
hash forms part of the metadata.

• Authentication: The manufacturer needs to sign the firmware to prove the ownership
digitally. The manufacturer uses the private key to sign the metadata. The ECDSA
signature is produced and appended to the firmware metadata. By appending the
signature to the metadata, it will be easy to verify the authenticity of the firmware
image. Moreover, this enables metadata to be immutable and tamper-proof since it is
on the Blockchain network.
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• Firmware Availability: The firmware image is deployed on the manufacturer’s IPFS
node that syncs with the IPFS network. The other IPFS nodes on the network will sync
the uploaded firmware, this ensures the high availability of the firmware image even
if the manufacturer’s node is unavailable on the network.

• Authorization: The firmware metadata describes the firmware images. It consists of
the integrity hash, the manufacturer’s digital signature, the firmware’s size, firmware
version, location of the firmware, etc. Firmware metadata plays a considerable role
during the verification process; therefore, not every entity is allowed to deploy the
firmware metadata in addition to the manufacturer. The Blockchain smart contract
enforces authorization only, allowing the manufacturer to be the only entity on the
network to upload firmware metadata.
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4.6. Device Registration

The FUS manages the entire update process; therefore, it needs to know about the
LoRa-end devices that need to be updated over LoRaWAN. The end device owner pro-
vides device details to the FUS, as shown in Figure 6. These details include the manufac-
turer’s smart contract, manufacturer’s smart-contract address, device model, device ID,
etc. The FUS manages the information of these devices through Blockchain and ensures the
confidentiality of the data through the Advanced Encryption Standard (AES).
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The encryption of the data is conducted utilizing The Counter Mode (CTR) as a mode
of operation. Even though the Blockchain provides immutability and is tamper-proof, it is
required that FUS encrypts the device’s data before it is stored in the Blockchain. FUS uses
the KFUS of 128-bit for both encryption and decryption of the Blockchain data. The device
owner has the shared secret key, also known as the master key (KM), of 128 bits that the
FUS produces. The KM is used in AES to provide confidentiality of messages between the
FUS and the end device. This key should be kept secret between these entities.

4.7. Firmware Initiation Process

In this section, we look at the security involved when initializing the firmware update
process. The initialization phase includes the session key exchange and the prevention of
the replay attack that could occur during the session key exchange. Figure 7 depicts the
session key steps and shows how the replay attack is eliminated. In the case of the low-
powered device, the owner can initiate the firmware update, or the firmware update can
be automatically started depending on the FUS configuration setting. When the firmware
update is initiated by the low-powered device, the idea is to update only a single device
instead of a set of devices in this kind of initialization. The owner can perform a push
request to update a specific device or a set of devices (multicast), this is completed via
the FUS command-line interface (CLI) script which communicates with the FUS. Before
the session key exchange occurs, both the low-powered device and the FUS must have
shared the secret key in advance. This shared secret key is a KM which was shared earlier
in the registration phase explained in the previous phase. After a successful OTAA process,
the low-powered devices send the initialization uplink message with a nonce (N) value.
The nonce value is randomly generated to prevent replay attacks and must only be used
once during the firmware update session. The FUS then generates the Ks which are two
keys used to determine the confidentiality, integrity, and authentication of the messages.
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It is recommended that the encryption keys be changed over time. Therefore, we
generate these session keys instead of using the KM for both encryption and decryption.
One of the session keys is the AES session key used to provide confidentiality of sensitive
messages such as MIC tags and nonce values. The second key is the MIC session key
used for providing the integrity and authentication of the message. The two keys are
based on symmetric cryptography. The Hash-based Message Authentication Code (HMAC)
provides the integrity, authentication and Cipher-based Message Authentication Code
(CMAC) which are MIC algorithms. The nonce value sent by the end devices is received by
the FUS which remains known between the two. The FUS then checks for new firmware,
and, if the new firmware is available, FUS randomly generates both the AES session key and
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the MIC session key, updating the nonce value received using a function that increments
the nonce and finally generates its nonce value N2.

All these are encrypted using the KM to the end device. The end device decrypts the
received data using the shared secret key, KM, then checks if the data has not been replayed
by checking the nonce value N1 received. As a response to the session keys, the end device
sends the encrypted current version of its firmware image together with the updated N1
and N2. The FUS receives the message and decrypts it to obtain the firmware version of
the end device. The firmware update process can be initiated by the end device and by
the Blockchain event triggered by the manufacturer by adding new firmware metadata to
the Blockchain.

The firmware event initialization may work very well when updating a set on the
end device, because it enables FUS to look for all devices that match this new metadata.
The session key exchange process is still the same as shown in Figure 7.

4.8. Firmware Download

This phase of the firmware update demonstrates the security measures taken when
downloading the firmware image demonstrated in Figure 8. After successfully exchanging
the session keys, the FUS requests firmware metadata on the Blockchain network and the
firmware image on the IPFS network. The FUS is connected via a secure channel on both
the IPFS node and Blockchain node. Firmware authenticity must be achieved. This ensures
that the right firmware is sent and updated by the end devices. The following explains the
authentication process and integrity verification involved:

• Authentication: In the previous phase of firmware distribution, the manufacturer
signed the firmware metadata and uploaded the metadata to the Blockchain network.
In this phase, the manufacturer’s digital signature is used to prove the authenticity of
the metadata. The manufacturer has three important keys on the Blockchain network:
the private key, the public key, and the KMW. As demonstrated, the private key’s job
is to sign the firmware and be kept secret. The wallet address is a hashed public key
and is allowed to be shared with other entities on the Blockchain network. The wallet
address plays a huge role in determining the authenticity of the firmware in the update
process. The model uses a function that takes the ECDSA digital signature together
with the metadata to produce the wallet address that signed the firmware metadata.
The wallet address produced is matched against the wallet address registered earlier
in the registration phase by the device owner. If the addresses are the same, this means
the metadata comes from the authentic source and can then be used to download the
firmware image.

• Integrity: Regardless of the secure channel between the IPFS and the FUS, firmware
integrity must be achieved. The FUS obtains the firmware image and recomputes the
SHA-256 hash which is then compared with the SHA-256 hash of the metadata. If both
hashes are the same, it will be an indication that the firmware image has not been
altered during its transmission.

4.9. End Device Firmware Distribution and Verification

After successful firmware verification, the firmware image is ready to be sent over
the LoRaWAN. This section describes how the security model secures the firmware image
and explains the verification process, as shown in Figure 9, which is performed by the end
device. The FUS performs fragmentation based on the spreading factor (SF) and the end
device’s region. The MIC of the firmware is first calculated using the HMAC-256/CMAC
algorithm and sent over the LoRaWAN, so that the end device can verify both the integrity
and the authenticity of the firmware. Usually, the digital signatures based on the public and
private keys are used to verify the authenticity and the integrity of the firmware image on
the end device; however, since these devices are limited in storage, some cannot incorporate
digital signatures, since they require more processing power to complete the verification.
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Most of the constrained device’s symmetric cryptography is considered lightweight;
even LoRaWAN is based on symmetric-key cryptography to determine the authenticity and
integrity of the data. Therefore, the security model adheres to the current cryptographic
technique provided by LoRaWAN to deliver firmware updates to the end device via
cryptographic technique. Note that asymmetric cryptography is used at the application
layer to ensure the firmware’s authenticity and integrity before sending it over LoRa.

• Confidentiality: The MIC needs to be encrypted when sent over the channel; hence,
the MIC is encrypted with the session shared secret key KS. The end device receives
the MIC and decrypts it with a similar AES session key. The end device uses the CTR
mode when decrypting the MIC, as the data was encrypted using the same mode
of operation.
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• Authentication and Integrity: After the device has received all the firmware fragments
including the missing ones, it must determine whether the firmware comes from
the authentic source and has not been altered during the transmission. Figure 9
demonstrates this process of verification. Authentication is achieved by recomputing
the MIC of the firmware using the HMAC-256/CMAC algorithm. The MIC product
is then matched against the one received earlier. If the re-computed MIC and the
received one are the same, it proves that the firmware image comes from the right
source and has not been altered in transit.

4.10. Activity Diagram

An activity diagram is used to visually present the data flow behind the proposed
model as illustrated in Figure 10.
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Firstly, the user starts with firmware and metadata as an input into the system, which
are deployed on the IPFS network and Blockchain network, respectively. Firmware meta-
data is validated to ensure it consists of the necessary information required to determine its
origin and integrity. The ECDSA and integrity hash are checked, and, once successfully
checked, the validated metadata is produced, which is then sent to the Blockchain. The FUS
then checks updates or is notified via an event as mentioned in Section 5.4. After a success-
ful update, necessary session keys, signature validation, integrity check, and replay attack
checks are performed between the FUS and the low-powered device.

5. Security Model Implementation

This section describes the different hardware and software used in experiments.
Figure 11 shows the experiment architecture and the equipment used in the experiments
in this work. Table 6 provides the summary of the equipment and the libraries utilized to
form the model.
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5.1. Computer

A laptop computer running Windows 10 with Ubuntu 20.04.1 LTS as a virtual machine
was utilized. Table 7 shows the specifications of the utilized computer.
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Table 6. Development Environment and Libraries.

Component Environment and Libraries

Manufacturer Decentralized App JavaScript, ReactJS, web3js, IPFS JavaScript
API, MetaMask

Blockchain Smart Contract for Manufacturer
and FUS Solidity v 0.4.21, Truffle

LoRa Gateway Raspberry pi + RAK831
LoRaWAN Servers TTN Stack v.3.12.3

Blockchain Network Ganache-cli, Infura Node
IPFS Network Public Network: Infura Node

FUS Web3py, paho-mqtt, IPFS–API

The computer serves multiple purposes in the proposed model. It runs a decentralized
web application (Dapp), shown in Figure 12, that is used by the manufacturers to upload
the metadata and firmware image to the Blockchain and IPFS networks, respectively. The
Dapp was created using ReactJS, which is the JavaScript library for creating web-user
interfaces. The Dapp connects to the public IPFS network via HTTPS with a third-party
service node called the Infura node. The firmware image is uploaded to this service
node which is then synced with the rest of the peers in the network to ensure the high
availability of the firmware image. The connection between the Dapp and the Blockchain
is achieved via the Web3js library. The Web3js library requires the provider to connect
directly with the Blockchain network. The provider being utilized is MetaMask. MetaMask
is injected into the web browser to manage the manufacturer’s Blockchain keys, which are
the wallet address, the private key, and the public key. It is also responsible for signing
every transaction being made by the manufacturer to the Blockchain.
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Table 7. Computer Specifications.

Specifications Description

Processor model i5-4300M
Processor frequency 2.6 GHz

Processor family 4th gen Intel® Core™ i5
RAM 8 GB

Storage media SSD

The Dapp interacts with the manufacturer’s smart contract implemented in the Solidity
programming language. The smart contract was first created, compiled, and deployed on
the local Blockchain private network. The smart contract functions are demonstrated in
Algorithms 1–6. Algorithm 1 shows the algorithm for metadata upload, and Algorithm 2
shows the algorithms responsible for checking firmware availability. Algorithms 3 and 4
are responsible for handling metadata retrieval and low-powered device registration,
respectively. The algorithms for obtaining the low-powered device status and obtaining
device information are shown in Algorithms 5 and 6.

Algorithm 1: Upload a new firmware manifest

Input: firmware manifest details
Result: manifestList is updated with a new manifest
mapping (string => FirmwareManifest) manifestList;

if msg.sender == firmwareProvider then
Upload the new firmware to the manifestList;
Emit newFirmware (Firmware Details);

else
Error: Not authorized for such operation;

end

Algorithm 2: Check new firmware availability

Input: model, fv
Result: Returns true or false on the firmware availability
mapping (string => FirmwareManifest) manifestList;
String[] public modelList;
uint256 i;
for available model in modelList do

if model == modelList[i] then
manifestList[model.version] > fv then

return true;

end
return false;

end

Algorithm 3: Retrieving the firmware metadata

Input: model
Result: Retrieve latest firmware manifest of a model
mapping (string => FirmwareManifest) manifestList;
uint256 i;
for available model in modelList do

if model == modelList[i] then
return corresponding metadata

end
end
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Algorithm 4: Register a new LoRa device

Input: device details
Result: Updated device list record
mapping (string => string[]) devs;
mapping (string => Devices[]) devicesList;
string[] public deviceIDList

if msg.sender == updateServiceOwner then
for available device in deviceIDList do

if devID == deviceIDList[i] then
exist == true;

end
end

if not exist then
add a new device to the deviceList

end

else
Error: Not authorized for such operation;

end

Algorithm 5: Get device update status

Input: deviceID
Result: Returns device update status
mapping (string => Devices[]) devicesList;
function getDevStatus(string devID) do

return devicesList[deviceID].status;
end

Algorithm 6: Retrieving the LoRa device information

Input: devID
Result: Retrieve latest firmware manifest of a model
mapping (string => Devices[]) devicesList;
string[] public deviceIDList;
uint256 i;
for available model in modelList do

if devID == deviceIDList[i] then
return devicesList[devID].version,
devicesList[devID].name,
devicesList[devID].model,
devicesList[devID].ipfsHash,
devicesList[devID].integrityHash,
devicesList[devID].signature

end
end

These algorithms were tested, compiled, and built locally using Ganache-CLI and
Truffle. Ganache-CLI acts as a local Blockchain node that holds a Blockchain ledger and
the smart contract. This tool is useful for development purposes; it consists of the fake
Blockchain addresses and accounts with fake ether for testing and interacting with the
Blockchain network. Truffle is responsible for compiling and producing the smart contract’s
build version and deploying it on the Blockchain network, i.e., the local Ganache network,
a local Blockchain network. After the smart contract is successfully tested locally, it is
then deployed to the public network using Truffle. The proposed model utilizes the public
Ethereum Blockchain, since the nature of firmware updates is meant to be shared publicly.
However, the smart contract is not deployed on the main network, instead, it is deployed
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on the Ethereum test network called Rinkeby. The Rinkeby network is an Ethereum test
network, which is similar to the Ethereum main network. The Ethereum main network
uses real Ether to make transactions, while the Rinkeby test network does not. To connect
to the public Blockchain network, the node that is synced with the network is required.
In this experiment, the Infura node was utilized.

5.2. LoRaWAN Server and the FUS

The second purpose of the computer is to run the LoRaWAN server. The proposed
study utilizes TTN Stack version 3.12.3 as network servers that process LoRa packets.
There are alternatives to the TTN Stack, which can be chosen as network servers that handle
LoRa packets. One of these alternatives is Helium. Helium is considered to be a network
that connects IoT devices. This network is made possible by the device called Hotspot
which supports LoRaWAN protocol and is capable of mining the Blockchain. In other
words, it connects to the low-powered devices in a decentralized manner and at the same
time connects them to the public Helium Blockchain network. Most of these alternatives
do not have built-in features that support OTA firmware updates.

The TTN stack on the proposed model supports all the LoRaWAN frequencies, making
it possible to connect and update most of the low-powered devices that support LoRaWAN
frequencies. Helium is supported for US frequencies, and, therefore, it may not be possible
to incorporate devices with different frequencies to receive firmware updates. The TTN
stack implements the LoRa standards, such as multicast session, which can be significant in
firmware updates, since they enable the sending of a single downlink message to the set of
low-powered devices. For these reasons, the proposed model focuses on LoRaWAN servers
that support the aforementioned features, and it is useful for network servers that do not
directly incorporate Blockchain; hence, the FUS would be added to make that connection
possible, but only to update the low-powered devices. The networks such as Helium, as
mentioned, provide their Blockchain. It is possible to incorporate the FUS of the proposed
model with Helium; however, it will be considered as a duplicate, since Helium consists of
its Blockchain, but it can have a benefit for connecting Helium to the Ethereum network.

A computer is also responsible for running the FUS. The FUS is implemented in python
and works together with the TTN stack application server. The FUS uses Web3py and
IPFS python library (IPFS-API) to connect to the Blockchain and IPFS networks. The FUS
communicates over both HTTPS and WebSocket to receive new firmware in real-time.
The real-time events are made possible by a running daemon that constantly listens for
the events in Blockchain. Figure 13 shows the smart contract event method that the FUS
daemon listens to to receive newly uploaded firmware metadata. This event is triggered by
the transaction made via the call of the upload Metadata contract method.

The FUS connects over MQTT to send the firmware update LoRa packets using the
paho python MQTT library. Figure 14 shows the code snippet of how the FUS script can be
utilized by the owner to apply push updates. The owner manages the devices and initiates
the firmware update process utilizing the python script that communicates with the FUS
via MQTT topic “devices/req” as shown in the code snippet in Figure 14.

5.3. RAK831 Concentrator Module and Raspberry Pi

The proposed model uses the RAK831 concentrator module and Raspberry Pi 3 Model
B to form a gateway as depicted in Figures 15 and 16.

The RAK831 concentrator module enables robust communication between the gateway
and a number of low-powered devices spread over a wide area. It has the multi-channel
(8 channels) capabilities to receive data on different frequency channels at the same time
and performs demodulation of the signal without the knowledge of the low-powered used
data rate. The data received from the concentrator is forwarded to the LoRaWAN servers
for processing. The concentrator has no processing abilities, but it works together with
Raspberry Pi to provide the data processing. For example, the LoRaWAN server can be
installed in a gateway to handle data packets being sent by the low-powered device.
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Figure 16. RAK831 Module.

This transmission of data packets is made possible by the packet forwarder, which is a
program that runs on the gateway and enables it to send and receive packets. The installed
packet forwarder can be found in the public repository [40].

5.4. LoPy4 and the Expansion Board

The Pycom Expansion Board is a development board which acts as a shield for the
Lopy4 model. The Expansion Board provides extra hardware features for the different
modules connected to it. These features include powering the LoPy through a USB port, pro-
viding serial communication, and containing microSD card additional storage. Figure 17B
shows the Pycom Expansion. During the experiment, the LoPy was not powered via the
USB port but was battery-powered via the LiPo battery connector. The LoPy4 provided
different connection methods including Bluetooth, Wi-Fi, Sigfox, and LoRa. During the
firmware update process, the LoPy was only connected via LoRa, whereas other interfaces
were inactive. The LoPy devices were equipped with an Espressif ESP32 chipset and a
Semtech LoRa transceiver SX1276. During the firmware update, the two LoPy devices were
configured to operate in Class A and Class C mode, in the European region, and the LoRa
channels were randomly selected.
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The datasheets of the LoPy and the Expansion Board can be access via the URL
provided in Table 8 which also provides the datasheets of the aforementioned devices
which are Raspberry Pi 3 Model B and RAK831 module.

Table 8. Links to Datasheets.

Specifications Description

LoPy https://pycom.io/wp-content/uploads/2017/11/lopy4Specsheet17.pdf (accessed
date: 12 October 2021)

Pycom Expansion Board https://docs.pycom.io/gitbook/assets/expansion3-specsheet-1.pdf (accessed date:
12 October 2021)

Raspberry Pi 3 Model B https://static.raspberrypi.org/files/product-briefs/Raspberry-Pi-Model-Bplus-
Product-Brief.pdf (accessed date: 12 October 2021)

RAK831 Module https://docs.rakwireless.com/Product-Categories/WisLink/RAK831/Datasheet/
(accessed date: 12 October 2021)

Table 9 shows the experimental parameters used in the evaluation:

• Class Mode: The aim is to test the proposed model when the devices operate in Class
A mode, where the device needs to send the uplink message before it receives the
firmware fragment. The low-powered device is also equipped to operate in Class C
mode, where it is always opened to receive firmware fragments.

• RX1, RX2, and RX delay: The low-powered device receives the fragments in two
windows, the RX1 and RX2. The RX2 window/channel has a 10% duty cycle limit,
whereas the other channels have a 1% duty cycle limit (per sub-band).

• Gateway and low-powered devices: Only one gateway and two low-powered devices
are utilized. The gateway and device respect the duty cycle parameter.

• Region and Bandwidth: The low-powered devices are equipped to operate in the
European region, this modulation operates in the radio band 863–870 MHz, with a
bandwidth of 125 kHz.

• SFs: The SF impacts the communication performance of LoRa. LoRa utilizes an SF
between 7 and 12. The model will be tested with all spreading factors to see the impact
of different SFs during the firmware update process.

https://pycom.io/wp-content/uploads/2017/11/lopy4Specsheet17.pdf
https://docs.pycom.io/gitbook/assets/expansion3-specsheet-1.pdf
https://static.raspberrypi.org/files/product-briefs/Raspberry-Pi-Model-Bplus-Product-Brief.pdf
https://static.raspberrypi.org/files/product-briefs/Raspberry-Pi-Model-Bplus-Product-Brief.pdf
https://docs.rakwireless.com/Product-Categories/WisLink/RAK831/Datasheet/
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Table 9. Experiment Parameters.

Parameter Description

RX1 Window Both downlink and uplink
RX2 window Downlink (869.525)

Region EU (channels duty cycle 1% and 10%)
Gateway 1

Low-powered devices 2
Class mode Class A and Class C

RX1 delay (class a) 5 [s]
Bandwidth LoRa.BW_125KHZ

SFs 7–12

6. Results and Discussion

In this section, the Blockchain operation costs involved during the update process
are examined. In Section 6.2 the cost of updating low-powered devices in the LoRaWAN
network and Cryptographic Techniques is analyzed. Section 6.3 shows the comparison
between the proposed model and other firmware update mechanisms and explains how
the properties provided in Table 3 are fulfilled.

6.1. Evaluating Blockchain Operation Costs and Algorithm Complexity

The Blockchain evaluation results are presented in terms of the following metrics:

• Gas Used which indicates the actual amount of gas used by a transaction. In this case,
this the actual amount of gas used by a smart contract operation.

• Gas fee, which indicates the total amount of Ether charged during the transaction of
an operation.

The Blockchain cost of the involved proposed operations for the proposed model
will first be examined, followed by the costs of the firmware update in the constrained
LoRaWAN network, and finally the effect of cryptographic operation used in the update
process. In addition to the aforementioned metrics, the impact of different firmware sizes
in combination with the aforementioned metrics is measured. The firmware sizes used
are 1 kB, 2 kB, 3 kB, 4 kB, and 5 kB. Table 10 and Figure 18 depict some of the FUSs,
the manufacturer’s smart-contract operations, and the gas costs involved when these
operations are executed in the Blockchain network. Firmware metadata size may vary
from time to time. Table 10 shows that gas costs also increase as the firmware metadata
increases from 1 kB to 5 kB. Figure 18 also demonstrates that, when adding more metadata,
the gas cost increases. Adding the new firmware metadata is considered a transaction on
the Blockchain network; the gas limit must be provided, which must be enough to cover a
successful transaction.

Table 10. Gas Costs.

Methods Gas Cost Execution [gas]

uploadMetadata(1 kB) 378,328
uploadMetadata(2 kB) 689,116
uploadMetadata(3 kB) 1,089,466
uploadMetadata(4 kB) 1,176,024
uploadMetadata(5 kB) 1,282,079

registerDevice(devInfo) 49,418
updateDevInfo(devInfo) 28,852

retrieveMetadata() 0
retrieveDevsInfo() 0
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The increasing relationship between firmware metadata and gas consumption/fees
is caused by the fact that, when adding more data to the Blockchain, the fee required to
execute the transaction is directly proportional to the amount of data being added. Hence,
operations such as registering the low-powered device, adding new firmware metadata,
and updating the device information may require more fees when providing more data
on these operations. Operations such as obtaining firmware metadata, obtaining device
information, and obtaining device information using a model may require no gas since they
do not involve transactions. The gas consumption may vary from time to time depending
on the cost of gas at that particular moment on the Blockchain network.

The operations or algorithm complexity for the algorithms presented in Section 5 can
be measured using the Big-O Notation method. The complexity of the algorithms using the
Big-O Notation method is presented in Table 11 below.

Table 11. Algorithm Complexity.

Algorithm Complexity

Algorithm 1 O (1)
Algorithm 2 O (N)
Algorithm 3 O (N)
Algorithm 4 O (N)
Algorithm 5 O (1)
Algorithm 6 O (N)

Algorithm 1 is responsible for uploading metadata to the network and it takes manifest
or metadata as an input. The algorithm performs a comparison operation which is a
constant operation taking O (1). If the comparison passes, then the metadata is inserted into
a mapping structure. Mapping is essentially a kind of hash table where values are mapped
to keys. Since the metadata is being inserted into the mapping, the operation will show a
constant O (1). The last part will be to emit the event, which is a constant operation resulting
in the time complexity of T(N) = 1 + 1 + 1 = 3. Hence, the total complexity is constantly
at O (1). For checking firmware availability in Algorithm 2, the algorithm first checks if
the model is in the model list using the for-loop which executes N times, together with
the operation inside its body. Therefore T(N) = N (for-loop) + 2N (2 times N comparison
inside the loop) = 3N = N; hence, the order of growth is O (N). The order of growth for
Algorithms 3, 4, and 6 is affected by the for-loop which takes N steps O (N). Algorithm 5
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consists of the instruction that retrieves the device status from the mapping, which makes
the order of growth O (1).

The efficient way of measuring the complexity of the algorithms is through the gas.
The gas price affects the execution time of the operation. Lowering the amount of gas price
paid will lower the total cost of a given operation, it will also ensure that it takes longer.
Paying a higher gas price will ensure a transaction is prioritized in the Blockchain, while,
in most cases, paying a lower gas price will essentially ensure that a transaction will not
take place for at least a few minutes. Higher gas prices generally mean that transactions
will be completed faster, while lower gas prices mean they will take more time. The gas
costs are shown in Table 10.

6.2. Evaluating the Cost of the LoRaWAN Updates and Cryptographic Techniques

We evaluated the model’s performance using a low-powered device operating in
Class A mode and Class C mode. The evaluation results are presented in terms of the
following metrics:

• Update Time which is the time taken from when the firmware update is initiated until
the firmware image is verified.

• Energy Consumption, which indicates the energy consumed by the low-powered
device, the gateway, and cryptography techniques used for signature verification.

• Memory Consumption, which indicates the memory usage of cryptography techniques.

Figure 19 demonstrates the relationship among airtime, firmware size, fragment size,
and SF. It shows that sending fragments at a higher SF increases the airtime of the firmware
fragment. Increasing the SF by one step, e.g., from SF11 to SF12, doubles the airtime, which
is demonstrated in Figure 19B.
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Figure 19 also shows that the lower the SF, the lower the airtime even for the same
fragment size. For example, the fragment sizes at SF11 and SF12 are the same, but the
airtime at SF12 is different from the airtime at SF11. Figure 19A shows that the number
of fragments produced depends on the SF. Higher SF values produce a greater number
of fragments, e.g., if sending 5 kB of firmware with SF12, the number of fragments is 108,
whereas with SF7, the fragments produced are 24. This is due to the regional restrictions
of LoRaWAN. Since the end devices operate in the European region, a maximum number
of payloads must not be exceeded. For instance, when the end device is operates with
SF12, SF11, and SF10, the fragment size must be less than 51 bytes. For SF9 the fragment
size must not exceed 115 bytes, and for SF8 and SF7 the fragment size must be less than
222 bytes for efficient transmission. Figure 19B depicts the chosen number of fragment
sizes for each spreading factor corresponding to the EU region.



J. Sens. Actuator Netw. 2022, 11, 5 31 of 39

Looking at the time it takes to update low-powered devices, Figures 20 and 21A
show the updated time, which starts from when the firmware update is initiated until the
firmware image is verified. The two modes of low-powered devices examined were Class A
and Class C. The update time, firmware size, and the SF show a directly proportional rela-
tionship. For example, updating which operates in the Class A mode with 4 kB of firmware
at SF11 takes more time, i.e., 796.10 s (13 min), compared with updating the firmware at
SF7, which takes only 108.65 s (1.8 min). There are several reasons which could cause the
increase in update time. These could be the firmware size and fragment size. The firmware
size has a great impact on update time, because it needs to be fragmented. The greater
firmware size means many fragments are required to be produced and, therefore, more
fragments are required to be sent to the end device. It could also be affected by the SF
and airtime; increasing the SF increases the update time. This is mainly due to the large
number of fragments that are being produced at higher SFs. This will result in a long
airtime. One of the LoRaWAN restrictions is the duty cycle, which also impacts the update
time. LoRaWAN limits the maximum application payload that needs to be sent over the
channel. This increase in update time occurs, because each SF LoRaWAN restricts the
payload size, resulting in higher SFs sending more fragments to lower SFs.

J. Sens. Actuator Netw. 2022, 10, x FOR PEER REVIEW 34 of 42 
 

 

Figure 19 also shows that the lower the SF, the lower the airtime even for the same 
fragment size. For example, the fragment sizes at SF11 and SF12 are the same, but the 
airtime at SF12 is different from the airtime at SF11. Figure 19A shows that the number of 
fragments produced depends on the SF. Higher SF values produce a greater number of 
fragments, e.g., if sending 5 kB of firmware with SF12, the number of fragments is 108, 
whereas with SF7, the fragments produced are 24. This is due to the regional restrictions 
of LoRaWAN. Since the end devices operate in the European region, a maximum number 
of payloads must not be exceeded. For instance, when the end device is operates with 
SF12, SF11, and SF10, the fragment size must be less than 51 bytes. For SF9 the fragment 
size must not exceed 115 bytes, and for SF8 and SF7 the fragment size must be less than 
222 bytes for efficient transmission. Figure 19B depicts the chosen number of fragment 
sizes for each spreading factor corresponding to the EU region. 

Looking at the time it takes to update low-powered devices, Figures 20 and 21A show 
the updated time, which starts from when the firmware update is initiated until the firm-
ware image is verified. The two modes of low-powered devices examined were Class A 
and Class C. The update time, firmware size, and the SF show a directly proportional 
relationship. For example, updating which operates in the Class A mode with 4 kB of 
firmware at SF11 takes more time, i.e., 796.10 s (13 min), compared with updating the 
firmware at SF7, which takes only 108.65 s (1.8 min). There are several reasons which 
could cause the increase in update time. These could be the firmware size and fragment 
size. The firmware size has a great impact on update time, because it needs to be frag-
mented. The greater firmware size means many fragments are required to be produced 
and, therefore, more fragments are required to be sent to the end device. It could also be 
affected by the SF and airtime; increasing the SF increases the update time. This is mainly 
due to the large number of fragments that are being produced at higher SFs. This will 
result in a long airtime. One of the LoRaWAN restrictions is the duty cycle, which also 
impacts the update time. LoRaWAN limits the maximum application payload that needs 
to be sent over the channel. This increase in update time occurs, because each SF Lo-
RaWAN restricts the payload size, resulting in higher SFs sending more fragments to 
lower SFs.  

  
(A) (B) 

Figure 20. (A) Update Time for SF11 and SF12; (B) Update Time for SF9 and SF10. Figure 20. (A) Update Time for SF11 and SF12; (B) Update Time for SF9 and SF10.

J. Sens. Actuator Netw. 2022, 10, x FOR PEER REVIEW 35 of 42 
 

 

  
(A) (B) 

Figure 21. (A) Update Time for SF7 and SF8 and (B) Cryptographic Verification Time for Both 
HMAC and CMAC. 

Comparing the update time of the different modes, which includes Class A, Class C, 
and multicast, it can be observed that when the devices are operating in the Class A mode, 
a longer amount of time is needed to update the devices compared to other modes. In 
Class A mode, the end device needs to send some data before it receives any firmware 
fragments. Moreover, the network servers set the recommended RX1 delay at 5s for Class 
A. This means the next firmware fragment will be received after 5s. The multicast mode 
is quite similar to Class C, the difference being in sending the single firmware to the set of 
devices. The update time figures show that the update time for both Class C and multicast 
is the same in some cases. For example, when updating the end device at SF8, the update 
time is the same for all firmware sizes, for both multicast and Class C, but this does not 
hold in some cases.  

Update time is not predictable. This is observed in Figure 22, where the device was 
updated with 3 kB of firmware operating in Class A mode. It was expected that the SF11 
update time should be less compared to SF12, however, that was not the case. This oc-
curred due to the fact that there was a time when the end device was inactive, i.e., not 
receiving the fragment for some time. This was due to the LoRaWAN restriction of duty 
cycle. The device had exceeded its duty cycle, which affected the update time. If the time 
taken to deliver the firmware image matters most, it is preferable to use the lowest SF, i.e., 
SF7. During the firmware update, it was observed that there were also more firmware 
fragments lost when the LoPy was operating on the SF7. The higher SF has the benefit of 
extended airtime. It provides better sensitivity or better coverage for low-powered devices 
that are further away, in terms of receiving the firmware fragments; however, this causes 
some delays in the end device update time.  

Figure 21. (A) Update Time for SF7 and SF8 and (B) Cryptographic Verification Time for Both HMAC
and CMAC.



J. Sens. Actuator Netw. 2022, 11, 5 32 of 39

Comparing the update time of the different modes, which includes Class A, Class C,
and multicast, it can be observed that when the devices are operating in the Class A mode, a
longer amount of time is needed to update the devices compared to other modes. In Class A
mode, the end device needs to send some data before it receives any firmware fragments.
Moreover, the network servers set the recommended RX1 delay at 5 s for Class A. This
means the next firmware fragment will be received after 5 s. The multicast mode is quite
similar to Class C, the difference being in sending the single firmware to the set of devices.
The update time figures show that the update time for both Class C and multicast is the
same in some cases. For example, when updating the end device at SF8, the update time is
the same for all firmware sizes, for both multicast and Class C, but this does not hold in
some cases.

Update time is not predictable. This is observed in Figure 22, where the device was
updated with 3 kB of firmware operating in Class A mode. It was expected that the SF11
update time should be less compared to SF12, however, that was not the case. This occurred
due to the fact that there was a time when the end device was inactive, i.e., not receiving the
fragment for some time. This was due to the LoRaWAN restriction of duty cycle. The device
had exceeded its duty cycle, which affected the update time. If the time taken to deliver
the firmware image matters most, it is preferable to use the lowest SF, i.e., SF7. During
the firmware update, it was observed that there were also more firmware fragments lost
when the LoPy was operating on the SF7. The higher SF has the benefit of extended airtime.
It provides better sensitivity or better coverage for low-powered devices that are further
away, in terms of receiving the firmware fragments; however, this causes some delays in
the end device update time.
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The total number of exchanged firmware fragments is not fixed, it depends on the
SF or the data rate used by the low-powered device, the mode the device is operating in,
and the retransmitted packets during the update process. For example, Table 12 shows
the number of messages exchanged when updating 1 kB of the firmware with SF12. These
were the number of exchanged messages during the firmware session.
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Table 12. Exchanged Number of Messages During 1 kB of Firmware Fragment with SF12.

Description Number of Messages

Class A uplinks 33
Class A downlinks 25

Class C uplinks 5
Class C downlinks 25

When the device operates in Class A mode, a greater number of messages will be
exchanged compared with the number of messages exchanged when the device is in Class C
mode. In Class A mode, the device will always send an uplink message to receive the
firmware fragment, whereas Class C mode requires no uplink message to receive the
firmware fragment. However, for Class C downlink scheduling to start, there must be
an uplink message (activation message) that needs to be sent by the device, particularly
after the OTAA join–accept. The number of uplinks comprises activation messages (only
if the device is in Class C mode, the activation message is sent twice by the low-powered
device to ensure the activation of downlink scheduling), uplink messages for requesting
retransmission of missing packets (in this case there was no query of missing packets, the
device successfully received packets), the ACK messages for the session keys, metadata,
and the update status message exchange that indicates a successful update status after
the verification of the firmware. Note that, for Class A, the number of uplink messages
generated may be more while the FUS is processing firmware updates, e.g., downloading
firmware, metadata, etc. The number of downlink messages comprises the session key
exchange, metadata exchanges, 22 firmware fragments, and the last message designating
that all firmware fragments have been sent. The 22 fragments were sent because the device
was operating with SF12, and Figure 18B shows that each fragment is 46 bytes, therefore,
the FUS had to read the 1 kB firmware 22 times.

The costs of cryptographic operations on low-powered devices are important to
examine, since the devices are resource-constrained. Both end devices have a built-in
RAM of 4 MB and a flash memory of 8 MB, as shown in Figures 23A and 24, which
depict both RAM and flash memory consumption when updating 5 kB of the firmware.
Figure 23A,B show signature verification time and energy consumption of both MAC
algorithms, respectively. The total flash usage when updating the end device with a 5 kB
firmware size is 96.7 kB. This is made up of firmware code, firmware size, and the amount
of flash memory utilized during the signature verification. The RAM consumption on the
end device varies depending on the firmware size and the algorithm used for signature
verification. The results show that the CMAC consumes more RAM than the HMAC-
SHA256 and also does not verify faster than the HMAC-SHA256, this is because hash
functions are usually faster than block ciphers. The reason the CMAC is slower than the
HMAC-SHA256 could be the AES mode of operation used, which was MODE_ECB. The
CMAC’s total RAM consumption is 7.3 kB, while HMAC-SHA256 consumes 6.9 kB. The
RAM and flash consumption results show that these cryptographic techniques can work
perfectly in low-powered devices, since most belong to Class 0, Class 1, and Class 2, and
CMAC’s RAM and flash consumptions do not exceed these classes. It is also important to
measure the energy consumption of these cryptographic techniques to know how much
energy is consumed, since most are battery-powered. The power is obtained by measuring
the voltage and the current as shown in Figure 11 using multimeters.

It is also important to examine the energy consumed by the low-powered device and
the gateway during the update process. Figure 23A depicts energy consumption when the
low-powered device was operating in Class A and Class C mode (note that the multicast
is similar to Class C, hence, only the energy consumption of Class C was examined).
The energy consumption was compared with different SFs from 7 to 12. When the different
SFs were compared, Figure 25A shows that SF7 had the lowest energy consumption and
SF12 had the highest. Energy consumption continues to increase from SF7 for every SF
until SF12. One of the factors that causes the increase in energy consumption is airtime,
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as demonstrated in Figure 19C. Figure 19C demonstrates that when increasing the SF, a
transmission will need more airtime, hence, there is more energy being consumed by the
low-powered device.

J. Sens. Actuator Netw. 2022, 10, x FOR PEER REVIEW 37 of 42 
 

 

show signature verification time and energy consumption of both MAC algorithms, re-
spectively. The total flash usage when updating the end device with a 5 kB firmware size 
is 96.7 kB. This is made up of firmware code, firmware size, and the amount of flash 
memory utilized during the signature verification. The RAM consumption on the end de-
vice varies depending on the firmware size and the algorithm used for signature verifica-
tion. The results show that the CMAC consumes more RAM than the HMAC-SHA256 and 
also does not verify faster than the HMAC-SHA256, this is because hash functions are 
usually faster than block ciphers. The reason the CMAC is slower than the HMAC-
SHA256 could be the AES mode of operation used, which was MODE_ECB. The CMAC’s 
total RAM consumption is 7.3 kB, while HMAC-SHA256 consumes 6.9 kB. The RAM and 
flash consumption results show that these cryptographic techniques can work perfectly 
in low-powered devices, since most belong to Class 0, Class 1, and Class 2, and CMAC’s 
RAM and flash consumptions do not exceed these classes. It is also important to measure 
the energy consumption of these cryptographic techniques to know how much energy is 
consumed, since most are battery-powered. The power is obtained by measuring the volt-
age and the current as shown in Figure 11 using multimeters. 

 

(A) (B) 

Figure 23. (A) Flash Memory Consumption and (B) Crypto Energy Consumption. 

  
(A) (B) 

Figure 24. (A) CMAC RAM Consumption and (B) HMAC RAM Consumption. 

It is also important to examine the energy consumed by the low-powered device and 
the gateway during the update process. Figure 23A depicts energy consumption when the 
low-powered device was operating in Class A and Class C mode (note that the multicast 
is similar to Class C, hence, only the energy consumption of Class C was examined). The 
energy consumption was compared with different SFs from 7 to 12. When the different 

Figure 23. (A) Flash Memory Consumption and (B) Crypto Energy Consumption.

J. Sens. Actuator Netw. 2022, 10, x FOR PEER REVIEW 37 of 42 
 

 

show signature verification time and energy consumption of both MAC algorithms, re-
spectively. The total flash usage when updating the end device with a 5 kB firmware size 
is 96.7 kB. This is made up of firmware code, firmware size, and the amount of flash 
memory utilized during the signature verification. The RAM consumption on the end de-
vice varies depending on the firmware size and the algorithm used for signature verifica-
tion. The results show that the CMAC consumes more RAM than the HMAC-SHA256 and 
also does not verify faster than the HMAC-SHA256, this is because hash functions are 
usually faster than block ciphers. The reason the CMAC is slower than the HMAC-
SHA256 could be the AES mode of operation used, which was MODE_ECB. The CMAC’s 
total RAM consumption is 7.3 kB, while HMAC-SHA256 consumes 6.9 kB. The RAM and 
flash consumption results show that these cryptographic techniques can work perfectly 
in low-powered devices, since most belong to Class 0, Class 1, and Class 2, and CMAC’s 
RAM and flash consumptions do not exceed these classes. It is also important to measure 
the energy consumption of these cryptographic techniques to know how much energy is 
consumed, since most are battery-powered. The power is obtained by measuring the volt-
age and the current as shown in Figure 11 using multimeters. 

 

(A) (B) 

Figure 23. (A) Flash Memory Consumption and (B) Crypto Energy Consumption. 

  
(A) (B) 

Figure 24. (A) CMAC RAM Consumption and (B) HMAC RAM Consumption. 

It is also important to examine the energy consumed by the low-powered device and 
the gateway during the update process. Figure 23A depicts energy consumption when the 
low-powered device was operating in Class A and Class C mode (note that the multicast 
is similar to Class C, hence, only the energy consumption of Class C was examined). The 
energy consumption was compared with different SFs from 7 to 12. When the different 

Figure 24. (A) CMAC RAM Consumption and (B) HMAC RAM Consumption.

J. Sens. Actuator Netw. 2022, 10, x FOR PEER REVIEW 38 of 42 
 

 

SFs were compared, Figure 25A shows that SF7 had the lowest energy consumption and 
SF12 had the highest. Energy consumption continues to increase from SF7 for every SF 
until SF12. One of the factors that causes the increase in energy consumption is airtime, as 
demonstrated in Figure 19C. Figure 19C demonstrates that when increasing the SF, a 
transmission will need more airtime, hence, there is more energy being consumed by the 
low-powered device.  

  
(A) (B) 

Figure 25. (A) Low-Powered Device Energy Consumption and (B) Gateway Energy Consumption. 

In addition, calculations were completed to compare the energy consumption be-
tween the classes when operating in Class A and Class C, as well as the energy consump-
tion of the gateway. We compared low-powered devices operating in Class A and Class 
C with fixed payload sizes of 1 kB and spreading factors. Figure 25 shows that Class C 
mode consumes more energy compared to Class A mode. The figure also shows that the 
gateway consumes more energy compared to the power of the low-powered device. The 
benefit of a high SF is that extended transmission provides the receiver more opportuni-
ties to sample the signal power, resulting in better coverage; however, the energy con-
sumption is too high compared to other lower SFs.  

The HMAC consumes less energy compared to the CMAC algorithm. It can be ob-
served that the increase in firmware size is directly proportional to verification time, 
memory consumption, and energy consumption. It is then recommended to apply delta 
updates in these devices rather than larger firmware images, which may result in reduced 
memory and power consumption and a lower amount of time taken to update. 

6.3. Discussion about Properties of the Proposed Model 
This section compares the proposed model and the state-of-the-art firmware updates 

mechanisms shown in Table 13. This section explains how the proposed model fulfilled 
each property.  

Table 13. Property Comparison of the Proposed Model and State-of-the-Art Mechanisms. 

Features and Properties [32] [33] [34] [35] [36] [37] [38] Model 
Target Low-End Devices ✓ ✓    ✓  ✓ 
Target High-End Devices ✗ ✗ ✓ ✓ ✓  ✓  

Availability ✗ ✗ ✓ ✓ ✓ ✓ ✓ ✓ 
Confidentiality ✗ ✗ ✗ ✗ ✗ - ✗ ✓ 

Integrity ✗ ✓ ✓ ✓ ✓ - ✓ ✓ 
Authentication  ✗ ✗ ✓ ✓ ✓ - ✗ ✓ 
Data Freshness ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓ 

Figure 25. (A) Low-Powered Device Energy Consumption and (B) Gateway Energy Consumption.



J. Sens. Actuator Netw. 2022, 11, 5 35 of 39

In addition, calculations were completed to compare the energy consumption between
the classes when operating in Class A and Class C, as well as the energy consumption of
the gateway. We compared low-powered devices operating in Class A and Class C with
fixed payload sizes of 1 kB and spreading factors. Figure 25 shows that Class C mode
consumes more energy compared to Class A mode. The figure also shows that the gateway
consumes more energy compared to the power of the low-powered device. The benefit of a
high SF is that extended transmission provides the receiver more opportunities to sample
the signal power, resulting in better coverage; however, the energy consumption is too high
compared to other lower SFs.

The HMAC consumes less energy compared to the CMAC algorithm. It can be
observed that the increase in firmware size is directly proportional to verification time,
memory consumption, and energy consumption. It is then recommended to apply delta
updates in these devices rather than larger firmware images, which may result in reduced
memory and power consumption and a lower amount of time taken to update.

6.3. Discussion about Properties of the Proposed Model

This section compares the proposed model and the state-of-the-art firmware updates
mechanisms shown in Table 13. This section explains how the proposed model fulfilled
each property.

Table 13. Property Comparison of the Proposed Model and State-of-the-Art Mechanisms.

Features and Properties [32] [33] [34] [35] [36] [37] [38] Model

Target Low-End Devices 3 3 3 3

Target High-End Devices 7 7 3 3 3 3

Availability 7 7 3 3 3 3 3 3

Confidentiality 7 7 7 7 7 - 7 3

Integrity 7 3 3 3 3 - 3 3

Authentication 7 7 3 3 3 - 7 3

Data Freshness 7 7 7 7 7 7 7 3

Constrained-network 3 3 7 7 7 3 7 3

Performance Evaluation 3 7 7 7 3 3 3 3

Distributed/P2P 7 7 3 3 3 3 3 3

3: Covered, 7: Uncovered, (blank): Not clear.

6.3.1. Confidentiality, Integrity, and Authentication

The proposed model provides confidentiality of data through AES encryption. The
mode of operation for encryption or decryption is MODE_CTR. The FUS encrypts low-
powered device data before it is pushed to the network and performs decryption when it
retrieves data on the Blockchain network. The end device also performs encryption and
decryption of sensitive information such as session keys. Integrity and authentication are
provided using the MAC, SHA256, and ECDSA algorithms at different levels. After the
firmware is downloaded, the FUS performs firmware integrity and authentication checks
before the firmware is sent to the end device. The end device also provides integrity and
authentication checks through the MAC algorithm.

6.3.2. Data Freshness

Data freshness is required through confidentiality, and data integrity was provided.
Data freshness ensures that data is new, and a man-in-the-middle attack has replayed no
old messages. The data freshness in the proposed model is ensured between the FUS and
the end device. Both the FUS and the end device have a function that keeps track of a
nonce value that is only known between them. For example, when the end device receives
the session key, it will verify the nonce value carried on that message against the expected
nonce value. If the nonce value is the right one, it will accept the message as new and it
know that it was not replayed.
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6.3.3. Availability and Peer-to-Peer Network

The proposed model utilized IPFS and Blockchain nodes to ensure a high availability
of data. Instead of storing the firmware image on a centralized server, the firmware
image is published on the decentralized peer-to-peer IPFS network and syncs with all
nodes available in the network. The model utilizes an Infura node to store and retrieve the
firmware image stored on the IPFS network. Even if one of the nodes is offline, the firmware
will still be downloaded. The firmware metadata is stored on the Ethereum Blockchain
network, which ensures the high availability of firmware metadata. The model uses an
Infura node connected to the Ethereum network to store and retrieve firmware metadata.

6.3.4. Constrained-Networks, Low-End Devices, and Performance Evaluation

The proposed model was tested and evaluated in a constrained network. The Lo-
RaWAN network was utilized as a constrained network to provide long-range, low power,
at a low bandwidth between 250 bit/s and 11 kBit/s in Europe using LoRa modulation (de-
pending on the spreading factor). The proposed mechanism uses low-powered devices as a
low end. Blockchain operations, LoRaWAN, and cryptographic costs have been evaluated
and analyzed in Sections 6.1 and 6.2.

7. Application Scenario Utilizing the Proposed Model

This section presents the scenario that helps to understand the proposed model.
The application scenario is presented by the low-powered device owner (Alice), the device
manufacturer (DM), and the attacker (Bob). Suppose Alice has a garden planted in a
rural area that is far from her home. She bought a LoRa-end device with a LoRa gateway.
The device is equipped with Wi-Fi and LoRa. She plans to use the end device to monitor
the soil moisture so that she can make decisions about what to do about plants based on
the data she receives from the low-powered device. Since the garden is far from her home
and in a place where there is no electricity, she cannot connect the device via Wi-Fi. Alice
also wants to keep the low-powered device safe from people such as Bob who may try
to obtain access to the end device to produce fake data that might be misleading to Alice
and result in her not growing the plants accordingly. Alice downloads the FUS from the
DM website and runs it on her computer. The downloaded FUS will help her convey the
firmware safely to the end device.

It is assumed that the DM has deployed the smart contract to the public Blockchain
network and holds three Blockchain keys: the private key, the public key, and the wallet
address. The DM has a ready smart contract to store firmware data, and Alice has config-
ured the FUS to securely serve firmware updates to the end device. Now, suppose the DM
announces a bug that can lead Bob to access Alice’s device to produce fake data. Before the
DM releases a new firmware update, Bob tries to impersonate the DM to produce the fake
firmware. Bob may know the DM smart contract address on the Blockchain network, the
smart contract logic that was deployed on the Blockchain, and finally, the public key and
the wallet address of the DM, but not the private key of the DM. So, he tries to upload the
new firmware to the Blockchain knowing that the FUS will serve the malicious firmware
to Alice’s device. Unfortunately, Bob cannot upload and transmit the firmware to the
end device because he does not have the DM’s private key, since the smart contract logic
restricts who may upload new firmware to the Blockchain network.

Suppose now, the DM uploads the new firmware to the Blockchain, and Alice has
already configured the FUS to receive the updates. The FUS establishes the session keys
and pushes them to Alice’s device. However, Bob eavesdrops on the session keys and tries
to use them later. In the future, Bob waits for Alice’s device to initiate firmware updates
and reply with earlier session keys captured during the previous update. However, Alice’s
device prevents this kind of replay attack, since the unique randomly generated nonce is
only known between the FUS and Alice’s device; therefore, this makes it impossible for
Alice’s device to use session keys provided by Bob. After Bob fails to establish a session
with Alice’s device, he somehow pushes a fake firmware fragment to Alice’s device. When
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Alice’s device has received all fragments, it verifies them and, since one of them comes from
Bob, the verification process will capture that and not install the firmware. Note, Alice’s
device is safe from the attackers and can be updated in an environment where there is no
electricity, with no need for Wi-Fi, and finally, Alice’s device information is stored safely in
an immutable manner.

8. Conclusions

Privacy and security in the IoT are still a challenge. Most of the bugs and vulnerabilities
are found while these devices are in the field, therefore, it is required that security measures
are taken to mitigate the vulnerabilities. In this study, we proposed and implemented a
Blockchain-based security model that could be used to enhance LoRaWAN security during
the firmware update process. We evaluated a proposed model showing the impact of
updating LoRa Class A, Class C, and multicast devices. The results showed that firmware
size in the constrained networks has a great impact on update time. For example, updating
a low-powered device with 4 kB of firmware at SF7 can take 108 s (1.8 min), whereas,
at SF12, can take 796.10 s (13 min); this could be even longer for a larger firmware size.
Firmware size also greatly impacted the verification process, i.e., using either of the MAC
algorithms (HMAC-SHA256 and CMAC) will require more RAM when the firmware image
becomes larger. This implies that the model can work for constrained devices, but also
that it depends on the firmware image size which plays a huge role in the verification
process. The model is designed and implemented to handle the scalability of firmware
update requests. Unfortunately, larger-scale tests were not possible, due to the limited
number of end devices. In future work, we plan to improve the proposed model by
incorporating asymmetric cryptography and examining the effect of the Blockchain-based
ECDSA algorithm.
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