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Abstract: With the outbreak of coronavirus disease-2019 (COVID-19) worldwide, developments
in the medical field have aroused concerns within society. As science and technology develop,
wearable medical sensors have become the main means of medical data acquisition. To analyze
the intelligent development status of wearable medical sensors, the current work classifies and
prospects the application status and functions of wireless communication wearable medical sensors,
based on human physiological data acquisition in the medical field. By understanding its working
principles, data acquisition modes and action modes, the work chiefly analyzes the application
of wearable medical sensors in vascular infarction, respiratory intensity, body temperature, blood
oxygen concentration, and sleep detection, and reflects the key role of wearable medical sensors in
human physiological data acquisition. Further exploration and prospecting are made by investigating
the improvement of information security performance of wearable medical sensors, the improvement
of biological adaptability and biodegradability of new materials, and the integration of wearable
medical sensors and intelligence-assisted rehabilitation. The research expects to provide a reference
for the intelligent development of wearable medical sensors and real-time monitoring of human
health in the follow-up medical field.

Keywords: wearable medical sensors; vascular embolism monitoring; IoT security; medical sensor
networks; medical sensor robots; medical sensor rehabilitation assistance

1. Introduction

With the rapid development of science and technology, the process of urbanization is
accelerating, and the construction of smart cities is now on the agenda. The construction
of smart cities is closely related to transportation, medical treatment, economy, culture,
and tourism in the city. With the global spread of coronavirus disease-2019 (COVID-19),
people paid particular attention to their health. Thus, the development of the medical
field has become of the utmost priority. In traditional medicine, the use of stethoscopes,
thermometers and electrocardiographs has played a great role in human health monitoring
and diagnosis. However, with the development of sensor technology and Artificial Intel-
ligence (AI) technology, intelligent performance within the medical field has also greatly
improved, such as the intelligent monitoring of patients’ blood pressure, wearable sensors
or implanted medical sensors to monitor vital signs, etc. [1,2]. Therefore, the application
and intelligent development of medical sensors have become the focus of scientific research
scholars in related fields.

In the process of intelligent development in the medical field, sensors are an effective
way to acquire data. For example, in the process of human breathing detection, a thermal
element is placed under the nose. During breathing, the temperature change of the airflow
exhaled from the nose causes the resistance of the thermistor to change, thereby causing
the voltage to change; subsequently, the waveform of the breathing state is obtained
after amplification and filtering [3]. However, if the sensor only relies on the thermal
element, although the device is relatively simple, it is susceptible to the influence of
external temperature changes, which may cause misjudgment. Therefore, the more reliable
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thermistor airflow method can be used. In a medical infusion monitoring system, the
capacitive liquid level sensor detection method is used to measure the infusion liquid
level [4]. When the height of the liquid level in the infusion bottle changes, the proportion
of air contained in the medium between the two plates of the capacitor changes accordingly,
which eventually causes the size of the capacitor to also change, thereby reflecting the
change in the remaining amount of liquid medicine. Therefore, an infusion-monitoring
sensor can be designed with different specifications according to the volume of different
infusion bottles to achieve the result of monitoring the medical infusion. Of course, there
are many sensors involved in the medical field, such as photoelectric sensors, ultrasonic
sensors, etc., which combine massive Machine Type Communication (nMTC) with the
medical system network to achieve human health monitoring [5,6].

In the application process of a medical sensor system, the wearable medical sensor
studied here uses mMTC technology to continuously and accurately transmit, in a timely
manner, the normal physiological activity information of the human body in the natural
environment to the medical data center through the network, which is convenient for
doctors to observe the patient’s condition. For example, vital sign parameters collected
by wearable or implanted sensors are collected by receivers (such as mobile phones and
computers), and the collected parameters can be used for preliminary data analysis [7,8].
Moreover, depending on the analysis results indicating the physiological condition of the
testee, and when it is judged that the physiological condition is abnormal, the guardian
will be notified. Finally, the records are transmitted to the medical platform data center
via 5th Generation Mobile Communication Technology, where the data can be stored
and further analyzed. In addition, large-scale machine communication technology not
only reflects the connections in terms of equipment scale, but also has the advantages of
efficient network overheads and reliability. By using sensor technology to coordinate the
transmission of collected data, not only can the patient’s vital signs be effectively monitored,
but it also helps the patient receive the care of medical staff more quickly [9]. For example,
a remote patient health monitoring system and emergency medical response system have
extremely important practical significance in the care of the elderly and the monitoring of
chronic diseases.

Therefore, continuous remote monitoring of vital signs in clinical or family environ-
ments is of great practical significance to improve the understanding of patients’ vital
signs. The current work chiefly analyzes the application of wearable medical sensors based
on wireless communication technology in vascular infarction, respiratory intensity, body
temperature, blood oxygen concentration and sleep detection, which reflects the key role of
wearable medical sensors in human physiological data acquisition. Additionally, further
exploration and prospecting are made by considering improvements in the information
security performance of wearable medical sensors, enhancing the biological adaptability
and biodegradability of new materials, and integrating wearable medical sensors and
intelligent-assisted rehabilitation. This work is expected to provide a reference for the
intelligent development of wearable devices and real-time monitoring of human health in
the medical field.

The overall structure of the work is as follows:

Section 1 defines the background, current situation, and research significance of
wearable medical sensors.

Section 2 classifies wearable medical sensors, focusing on the application of wearable
medical sensors in vascular infarction, respiratory intensity, body temperature, blood
oxygen concentration, sleep detection, and so on.

Section 3 looks forward to the intelligent prospect of wearable medical sensors, such as
information security improvement of wearable medical sensors and material improvement,
and their application in intelligent rehabilitation assistance.

Section 4 summarizes the research results and expounds the follow-up research direction.
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2. Classification of Wearable Medical Sensors

As a key module of medical data collection in the medical field, medical sensors
assume crucial tasks in the actual application process. In terms of module components,
a wearable medical sensor has a similar structure to the traditional intelligent medical
information system, usually including a processor module, sensor module, wireless RF
module, and a capability supply module. To further improve the versatility, modularity,
assembly, and other advantages of wearable medical sensors, the processor module, sensor
module, and wireless RF module are often compatible, and the collected data are connected
to the platform by the nodes existing in the wearable medical sensors. Of course, if the
wearable medical sensor fails or needs maintenance, only the sensor module would be
updated, so as to achieve the rapid increase of the database type and, finally, effectively
complete the scalability and maintainability in the sensor node.

2.1. Classification Method of Wearable Medical Sensors

With the rapid development of science and technology, the application of sensors is
becoming more intelligent. In the medical field, wearable medical sensors can convert
chemical cost and concentration into electrical signals by using the principles of biological
electrodes, physical changes and chemical reactions, to finally achieve data acquisition. Ad-
ditionally, these sensors can selectively identify biochemical substances to achieve the effect
of non-electrical parameters. Human data can be obtained from wearable medical sensors
through implanted sensors, “temporary” insertion sensors, external sensors, and external
sensors in contact with body fluids. The most important characteristics of implantable
sensors are their small size, light weight, low power consumption, compatibility with the
body, and stability, in that they will not decay over time. For example, the micro piezoelec-
tric thin-film vibration sensor in blood vessels is helpful for cardiac pacing. “Temporary”
insertion sensors are inserted into the body through an incision, such as catheterization.
Such sensors, for example the silicon micromechanical pressure sensor to help shrink, is
generally used for several minutes to several hours. An external sensor is mainly used to
monitor the physiological parameters of the human body by connecting the electrode part
to the outside of the skin. Sensors in contact with body fluids are usually used in vitro. For
example, disposable blood pressure sensors are mainly used in surgery and intensive care,
so they can continuously monitor the patient’s blood pressure.

In addition, unlike mechanical sensors, wearable sensors usually use photoelectric
effects, biological impedance principles, or thermal sensing elements to measure vital
signs and bioelectric activities. Biochemical sensors combine chemical sensitive layers
and transducers to convert chemical or biological signal molecules into electrical signals,
thus quantifying biological indicators, such as glucose, alcohol, and electrolytes. In clinical
practice, physiological signals of concern include electrocardiogram (ECG), electroen-
cephalogram (EEG), electromyogram (EMG), electrooculogram (EOG), phonocardiogram
(PCG), photoplethysmography (PPG), and ballistocardiograph (BCG); electrodermal activ-
ity (EDA) can often be combined with inertial measurement unit signals that characterize
the patient’s posture and body movement [10-17]. Table 1 presents the monitoring charac-
teristics, relevant technical parameters, and a summary of research into relevant fields of
clinical application of wearable medical sensors.

Furthermore, depending on the different functions of the wearable medical sensors,
they can be divided into wearable medical sensors for detecting vascular infarction, respi-
ratory intensity, body temperature, blood oxygen concentration, and sleep. Their specific
classification is shown in Figure 1. The application analysis is emphasized according to its
different effects.
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Table 1. Summary of monitoring characteristics, relevant technical parameters, and clinical applica-
tion of wearable medical sensors.

Scholars Monitoring Channels Signal Acquisition Signal Record

Signal Frequency/Hz  Frequency/Hz  Amplitude/mV  Duration Clinical Application

Heart disease
monitoring, heartbeat
Zhuo et al. [10] ECG 1-12 0.05-150 250-1000 0.1-5 10s-24h classification, emotion
recognition, sleep
staging

Brain disease
monitoring, emotion
Razjouyan et al. EEG 1-256 0.1-100 0.3-3000 0.1-100 05-24 h recognition, sleep
[11] staging, motion
recognition, brain
function detection

Jayarathna et al.
[12]

Wang and Lin [13] EOG 1-4 0.1-20 200 0.05-3.5 0.5-24h Sleep staging

Heart disease
monitoring, heartbeat
Yun et al. [14] PCG 1 10-400 1-2000 —2-2 0.5s24h classification, emotion
recognition, sleep
staging.

EMG 1-32 25-5000 512-10,000 0.1-100 30s24h State recognition

Heartbeat classification

Akbulut et al. [15] PPG 1 0.25-40 5-500 —-10-10 100s-24 h .
and sleep staging

Heart disease
monitoring, heartbeat
Frerichs et al. [16] BCG 3 1-20 1-20 —0.05-0.05 5s-24h classification, emotion
recognition, sleep
staging

Izmailova et al.

[17] EDA 1 0.1-16 16-128 110s-24h Emotion recognition

Detect sleep
/

/ Temperature

I ;
[ detection
|
|

\
A [
; : »
\ Wearable Sensors //
\

Measure resp}iratory
intensity

Blood pressure
measurement

Figure 1. Schematic diagram of different application classification of wearable medical sensors.

2.2. Classification and Application of Wearable Medical Sensors

Wearable medical sensors are classified according to their application; they acquire
different organ or physiological parameters from the human body, such as respiratory
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physiological parameters, blood pressure physiological parameters, body temperature
physiological parameters, and sleep physiological parameters. They are very important
for knowing the vital signs and health in people’s daily life [18]. The specific classification
applications are as elaborated below.

2.2.1. Wearable Medical Sensors for Detecting Vascular Infarction

The symptoms of vascular embolism mainly include atherosclerosis, diabetes, hyper-
lipidemia, hypertension and other causes, and it mostly occurs in elderly people over sixty
years old. Wearable sensors are expected to realize active personal health management,
better treatment of various medical conditions, and better monitoring of health, mental,
and activity statuses of the elderly [19]. At the same time, there are many classifications
of vascular embolism, such as cerebral vascular embolism, intestinal vascular embolism,
pulmonary vascular embolism, and prostate vascular embolism. Therefore, in the detection
of vascular embolism diseases, different tests will be carried out according to the patient’s
symptoms. Many research scholars have conducted research in this area; Lv et al. (2013)
used sensors and interactive visualization technology to visually analyze the molecules,
cells and organs in the human body, so that medical workers could complete detection
in the human body in a short time, so as to achieve a detection effect [20]. Petani et al.
(2020) integrated an ozone sensor into medical and biological analysis equipment so that
the dissolved ozone concentration of human body fluids and tissues, such as blood, could
be measured on-site during medical procedures. It was found that significant progress can
be made in measuring temperature, range, and response and recovery times [21].

While reviewing the above-mentioned research, vascular embolism of the cardio-cerebral
blood vessel was found to be a related research topic. However, there are few studies on
the relatively rare vascular embolism diseases, such as lower extremity arterial embolism,
mesenteric embolism and uterine arterial embolism. Therefore, the application direction of
medical sensor research now includes different types of vascular embolism diseases.

2.2.2. Wearable Medical Sensors for Detecting Breathing Intensity

The human body has two ways of breathing, namely through the nose and through
the mouth. When the human body breathes, the temperature and pressure under the
nose change with the passage of the breathing airflow. Therefore, the breathing state
of the human body can be obtained by detecting changes in pressure and temperature.
Many scholars have conducted research on the detection of respiratory intensity (Table 2).
Fan et al. (2018) designed a respiration measurement device based on a portable pressure
sensor. A new algorithm based on the BP (back propagation) neural network was also
proposed to stabilize device calibration and eliminate pressure signal noise. Finally, through
experimental evaluation and case studies, the results showed that under appropriate
parameter settings, the proposed BP neural network (BPNN) algorithm can effectively
improve the reliability of the newly designed breathing device [22]. Presti et al. (2019)
discussed the manufacture of a flexible sensor, based on fiber grating encapsulated in
Dragon skin 20 silicone rubber. They developed a wearable breathing and heart rate
monitoring system and conducted an experimental evaluation of the sensor’s response
to strain, temperature changes, and relative humidity changes. The results showed that
the system was easy to wear, non-invasive, and elastic, and it seemed to be suitable for
matching the chest wall displacement well. It is used to monitor FR and HR, which provides
the possibility of detecting respiratory intensity [23]. Zhang et al. (2019) designed a new
type of fiber optic sensor that uses a mesh microbeam to simultaneously measure the
heart rate (HR) and respiratory rate (RR) of infants during the perioperative period. The
feasibility of the mesh microbend fiber sensor was evaluated, and the sensor was placed
under the subject. The research results showed that the proposed microbending optical
fiber sensor had good consistency with the standard physiological monitoring results used
in the current medical environment when measuring HR and RR [24]. Tao et al. (2020)
studied the detection effect of respiratory intensity by using a medical sensor with a three-
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dimensional tetrapodal ZnO micro-structured networks (T-ZnO MNs) material spin-coated
on an aluminum foil/ZnO piezoelectric film SAW (surface acoustic wave) device under
ultraviolet light irradiation and relative humidity stimulation. they demonstrated that the
sensitivity of the prepared material to UV (ultraviolet) light intensity changes significantly
under the bending condition. At the same time, after using T-ZnO MNs, the sensing
performance of the respiratory characteristics increased by nearly 1.7 times, showing its
ability to enhance the effect of respiration and respiration monitoring applications [25].
Miripour et al. (2020) designed a simple electrochemical sensor to selectively detect the
intensity of ROS (reactive oxygen species) in sputum samples (volume less than 500 puL) in
response to the new coronavirus epidemic. The results showed the accuracy and sensitivity
of the response calibration to both be 97%, which provides hope for real-time tracking of
the new coronavirus in sputum samples based on reactive oxygen species in more than
four hospitals [26].

Table 2. Review of different scholars’ research on respiratory intensity monitoring by wearable
medical sensor.

Scholars

Sensor Types Wearable Medical Sensor Model Effect

Fan et al. (2018) [22]

It effectively improved the
reliability of the newly
designed respiratory device.

BPNN-based respiratory

Pressure sensor .
measurement device

Presti et al. (2019) [23]

It is suitable for matching

Flexible sensor

Wearable respiratory and HR
monitoring system

chest wall displacement and
can be used to monitor FR
and HR.

Zhang et al. (2019) [24]

Optical fiber sensor

HR detection model of perioperative
infants based on new optical
fiber sensor

It was consistent with the
standard physiological
monitoring results.

Tao et al. (2020) [25]

Piezoelectric film sensor

Respiratory monitor based on

The sensitivity of respiratory
characteristics was improved

piezoelectric thin-film sensor by nearly 1.7 times.

Miripour et al. (2020) [26]

The strength of ROS (reactive oxygen
species) was used to detect sputum
samples selectively (volume less than
500 pL) during COVID-19

The accuracy and sensitivity
of response
calibration was 97%.

Electrochemical sensor

However, in the actual breathing-intensity detection process, the air pressure changes
in the nose and mouth caused by breathing are very weak, and the sensitivity of the
air pressure sensor is often very high, making it more susceptible to the influence of
external factors, and resulting in misjudgment [27,28]. Therefore, this research proposed an
algorithm for detecting breathing state and frequency, based on changes in temperature
and humidity, as shown in Figure 2. After the algorithm is processed, the temperature
and humidity changes in the breath can be successfully transformed into changes in the
breathing state. This method is simple to implement, using a digital wearable medical
sensor, and avoiding the need to filter and amplify analog signals related to temperature
and humidity caused by the use of analog sensors to isolate DC processing. The difference
in the digital wearable medical sensor data change is used to replace the average value
extraction used in the previous analog circuit, and the enlarged design simplifies the apnea
detection circuit. Perhaps, in the future, some occupations, such as pilots, can use wearable
respiratory-intensity sensors to continuously monitor their physiological state. Even sooner,
drivers will be able to use wearable respiratory-intensity sensors to undergo alcohol testing
before driving, so that traffic accidents caused by drunk driving can be avoided.
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Figure 2. Flow chart of medical sensor algorithm for detecting respiratory status and frequency,
based on changes in temperature and humidity.

Figure 2 shows the specific steps of the algorithm flow. First, the latest eight tem-
perature and humidity sampling points are taken at the current sampling time each time
and cached in the array. Second, the difference between the temperature and humidity
between every two adjacent sampling points in the array is measured to obtain the differ-
ence between the adjacent temperature and humidity sampling points. Third, with further
sampling, the array that saves adjacent differences is constantly updated. At this point, the
array can be processed in real time to calculate the corresponding breathing state and the
time between breathing, thereby obtaining the frequency of breathing and the judgment
of whether apnea has occurred. Fourth, observation of whether the difference between
the temperature value of a certain sampling point in the current array and the previous
sampling point is not negative is required, and also whether the difference between a
certain humidity value and the previous sampling point is positive. Fifth, if the conditions
of step 4 are met, and the conditions of step 4 can be maintained for more than 1.5 s (because
the human body expiration time is generally about 1.5 s), it proves that the current subject
is breathing, and the time of breathing will increase as the sampling continues to increase.
If the conditions in step 4 are no longer met, it means that the subject’s breathing state
has ended, and the ending time will continue to increase with the sampling point interval.
When the ending time exceeds 15 s, it can be determined that apnea has occurred.

The algorithm can successfully extract the breathing cycle from the temperature and
humidity change curve caused by the breathing airflow. The fluctuations in temperature
and humidity of the breath airflow reflect the condition of human breathing to a certain
extent, which has a certain degree of research significance. At the same time, the algorithm
runs on a Bluetooth chip. The Bluetooth chip obtains data from the temperature and
humidity sensors in real time, and the algorithm processes the information in real time. The
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Bluetooth chip simultaneously passes the temperature, humidity, and breathing state data
obtained by the algorithm through the operating system inside the Bluetooth chip program.
After a series of hexadecimal conversion processes, the data are transmitted to the mobile
application terminal by means of characteristic values notification, thereby achieving the
goal of monitoring the subject’s apnea during sleep with the smallest system volume [29].
An LED (Light Emitting Diode) screen display or buzzer alarm is not used, as neither is
conducive to reducing the size of the wireless monitoring system.

2.2.3. Wearable Medical Sensors for Detecting Body Temperature

Body temperature is one of the important indicators that reflect the health of the
human body. Accuracy of monitoring also directly affects the health of the human body.
Knowing the specific value of the human body temperature can indirectly obtain the health
information of the human body. This is of great significance to the prevention, infiltra-
tion and treatment of diseases, especially the prevention and control of influenza during
the new coronavirus epidemic. Many scholars have conducted related research on body
temperature detection with medical sensors (Table 3). Kumar et al. (2017) demonstrated
ultra-fast detection and a reversible MoS, gas sensor at room temperature. By measuring
body temperature, it was found that under light excitation, MoS, exhibits enhanced sensi-
tivity, ultra-fast response time (29 s), and excellent recovery rate of NO, (100 ppm) at room
temperature. This is a significant improvement in sensitivity, and the sensor has reliable
selectivity to NO; and various other gases [30]. Liu et al. (2018) proposed and developed a
resistive flexible NHj3 sensor, which was prepared by depositing polyaniline-cerium dioxide
(PANI-CeO;) nanocomposite film on a flexible polyimide (PI) substrate by an in situ self-
assembly method. By comparing the morphology, structure and chemical characteristics of
pure PANI and PANI-CeO, nanocomposites, and their effects on temperature detection, it
was found that the PANI-CeO; thin-film sensor enhanced the response; shortened recovery
time; produced a perfect response concentration linearity; had good reproducibility, excel-
lent selectivity, remarkable long-term stability, ultra-low detection concentration (16 ppb)
and theoretical detection limit (0.274 ppb); and had excellent flexibility, with no significant
reduction in response after 500 bending/extension cycles [31]. By analyzing the tissue-like
mechanical compliance and good biocompatibility of a self-healing hydrogel-bioelectronic
device, Ge et al. (2019) proposed a self-healing, durable, heat-resistant and dual-sensing hy-
drogel sensor. They found that the hydrogel-bioelectronic device had superior mechanical
and thermal sensitivity, and could realize a flexible touch keyboard for feature recogni-
tion and a “heat indicator” for human forehead temperature detection [32]. Huang et al.
(2019) prepared a flexible hybrid film composed of graphene nanoplatelets (GNPs) and
multi-walled carbon nanotubes (MWCNTs) for use as a multi-functional temperature and
liquid leakage monitoring sensor, based on piezoresistive effect. The experimental results
showed that with the increase in GNP content, the hardness and Young’s modulus of
the hybrid film decreased, but the thermal conductivity showed the opposite trend. The
resistance of the hybrid film decreased linearly with the increase in temperature. As the
amount of solvent adsorbed increased, the resistance change increased linearly. These char-
acteristics prove the potential applications of hybrid membranes in detecting temperature
and liquid leakage [33]. Wang et al. (2020) reported a multi-functional sensor composed
of a hydrophobic membrane and graphene/polydimethylsiloxane sponge. It was found
that in the case of temperature stimulation, the sensor displayed a temperature-sensing
resolution of 1 Kelvin through the pyroelectric effect. The sensor could generate output
voltage signals after physical contact with different flat materials, following the principle of
contact induction charging, and the corresponding signals could be used to infer material
properties in turn. Therefore, this multi-functional sensor performed well in terms of low
cost and material recognition, and provided a design concept to meet the challenges of
functional electronics [34].
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Table 3. Summary of research on temperature detection by medical sensors by different scholars.

Scholar Type of Sensors Component of Sensors Effects

Enhanced sensitivity, ultrafast response time
Kumar et al. [30] Gas sensor MoS, (about 29 s), and excellent recovery of NO,
(100 ppm) at room temperature.

Perfect response concentration linearity, good
reproducibility, excellent selectivity, significant
long-term stability, ultra-low detection
Liu et al. [31] Resistance sensors Flexible ammonia (NHjz) concentration (16 ppb) and theoretical
detection limit (0.274 ppb) and excellent
flexibility, no significant response after 500
bending/extension cycles.

With superior mechanical feeling and thermal
sensitivity, it can realize a flexible touch
Ge et al. [32] Hydrogel sensor Hydrogel keyboard for feature recognition and a
“heating indicator” for human forehead
temperature detection.

With the increase in GNP content, the hardness
and Young’s modulus of the hybrid films
decreased, while the thermal conductivity

Piezoresistive effect Graphene nanosheets and showed the opposite trend. With the increase
sensor multi-walled carbon nanotubes in solvent adsorption amount, the change of
resistance increases linearly. It can be
potentially applied to the detection of
temperature and liquid leakage.

Huang et al. [33]

Excellent performance in low cost and material
identification provides a design concept to
meet the challenges of functional electronics.

Thermoelectric effect Hydrophobic Films and

Wang etal. [34] sensor Graphene/Polydimethylsiloxane

In the review of the research by the above-mentioned scholars, it was found that
detection of the basic physiological parameter of human body temperature does not only
reflect the current health status of the human body, but is also a key element for maintaining
physical health and normal physiological activities. Therefore, the use of wearable medical
sensors is extremely important for human body temperature detection.

2.2.4. Wearable Medical Sensors for Detecting Blood Oxygen Saturation

The main route of transmission of oxygen in the blood is hemoglobin. Oxygen sat-
uration is determined by oxygenated hemoglobin. First, oxygen enters the lungs when
the human body breathes, and then enters the blood. The blood transports oxygen to the
various organs of the human body, which is also the percentage of available hemoglobin
that carries oxygen. The specific measurement of the content of oxygenated hemoglobin is
found using the characteristics of oxygenated hemoglobin. Oxygenated hemoglobin and
deoxygenated hemoglobin absorb light of different wavelengths in a specific way. The
wavelength of light is very short: the unit of measurement is the nanometer, the wave-
length of red light being around 650 nm, and the wavelength of infrared light being around
950 nm [35,36].

The measurement of blood oxygen saturation uses the characteristics of oxyhemoglobin
and deoxyhemoglobin to absorb light of different wavelengths in a specific way. Oxyhe-
moglobin absorbs more infrared light than red light, and deoxyhemoglobin absorbs more
red light than infrared light. Finally, the heart rate blood oxygen sensor analyzes the ratio
of oxygenated hemoglobin and deoxyhemoglobin in the arterial blood that absorb two
different wavelengths of light. The absorption ratio R of the two wavelengths of light is
calculated, and then the blood oxygen saturation is calculated according to the standard
model (SpO, = HbO,/(HbO, + Hb) x 100%) for calculating SpO, [37].
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In the process of blood oxygen saturation measurement, many scholars also put
forward their own opinions (Table 4). Lee et al. (2018) believe that the pulse oximetry
sensor, as a device for monitoring the basic human health, plays a key role, while also having
a large consumption. Therefore, an ultra-low-power reflective patch pulse oximeter sensor
was proposed, using the design freedom provided by organic technology. Through optical
simulation of color-sensitive light propagation in human skin, the proposed monolithic
integrated organic pulse oximeter sensor showed successful operation at an average electric
power as low as 24 uW. Therefore, it was demonstrated that organic devices not only
have the advantages of appearance in such applications, but also have great potential as
supporters of all-day wearable health monitoring systems [38]. Khan et al. (2018) proposed
a flexible printed sensor array composed of organic light-emitting diodes and organic
photodiodes. The array sensors reflected light from tissue to determine blood oxygen
saturation. It was finally verified that the sensor measured the blood oxygen saturation of
the forehead with an average error of 1.1%, and created a two-dimensional oxygenation map
of the adult forearm under the pressure cuff-induced ischemia. In addition, a mathematical
model was proposed for the detection of blood oxygen saturation to determine oxygenation
in the presence and absence of pulsating arterial blood signals. Therefore, the mechanical
flexibility, oxygenation mapping capability, and the ability to place sensors in different
positions of the reflective oximeter array proposed in this study make it promising for
medical sensing applications, such as real-time chronic disease monitoring and tissue,
organ, and postoperative recovery management of wounds [39]. Elgendi et al. (2019)
used medical sensors generated by photoplethysmography (PPG) to detect blood oxygen
saturation for outpatient care and general health monitoring. They found that this type of
sensor device can collect pulse oximeter signals and can obtain accurate and continuous
blood pressure measurements from mobile and wearable devices [40]. Janani et al. (2020)
evaluated the diagnostic accuracy of dental pulse oximeters, thermal tests, and electric
endodontic testers with custom sensor holders in assessing actual pulp status. They
also assessed the oxygen saturation level of control healthy teeth, non-living teeth and
irreversible pulpitis teeth. Finally, a randomized controlled trial found that the customized
scaffold used in this study helped to provide an accurate response to the pulp vitality
test. At the same time, under different pulp conditions, the diagnostic accuracy of the
dental pulse oximeter was higher, followed by cold and hot pulp testers, with electric pulp
testers having the lowest diagnostic accuracy [41]. Pereira et al. (2020) used sensors to
record blood volume changes and used PPG to extract heart rate and other physiological
parameters to inform users of activity, sleep, and health [42].

Table 4. Review of research on sleep monitoring by wearable medical sensor.

Scholars

Sleep Monitoring by Wearable

. Achi
Medical Sensors chievements

Nakamura et al. (2019) [43]

It was feasible for in-ear sensor to monitor night
sleep outside the sleep laboratory, which
reduced the technical difficulty related to PSG.

Wearable in ear electroencephalogram (ear
EEG) was used for night sleep monitoring

Li et al. (2020) [44]

Accurately monitored physiological parameters
during sleep, such as HR, RR, body movement,
and sleep posture.

A system based on bed vibration sensor
was proposed

Kim et al. (2020) [45]

A wearable multi-biological signal wireless

interface for sleep analysis was designed The correlation of four sleep stages was 74%.

Alfarraj et al. (2021) [46]

Responsive healthcare solutions using
asynchronous WS-data helped achieve greater
efficiency and reduce the
Complexity, when evaluating healthcare
system performance.

A non-synchronous sensor data analysis
(USDA) model was introduced
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2.2.5. Wearable Medical Sensors for Monitoring Sleep

Monitoring sleep aims to judge the quality of sleep and facilitate the detection of
sleep diseases, such as common sleep apnea syndrome. In people’s work and rest, sleep
interruption may affect neural function, and may even be a symptom of physical and
mental disorders. The miniaturization of wearable medical sensors and the progress of
computing power have become favorable technologies for monitoring human physiolog-
ical conditions in real-world scenes. Many scholars in related fields have studied their
application in monitoring sleep (Table 4). Nakamura et al. (2019) proposed wearable in-ear
electroencephalography (ear EEG) for night sleep monitoring as a 24/7 continuous and
unobtrusive technology for community sleep-quality assessment. The results showed that
the in-ear sensor was feasible for monitoring night sleep outside the sleep laboratory, but
also reduced the technical difficulties related to PSG, and this technology was the key to
affordable medical treatment and future electronic health [43]. Li et al. (2020) proposed
a system based on a bed vibration sensor to monitor important parameters during sleep,
including heart rate (HR) and respiratory rate (RR), body movement, and sleep posture.
Finally, the short-term and long-term experiments on different participants and different
beds indicated that the proposed system achieved satisfactory accuracy [44]. Kim et al.
(2020) introduced a wearable multi-biological signal wireless interface for sleep analysis. It
realized comfortable sleep monitoring through a direct sleep-stage classification function.
Finally, they verified the system and found that its low-power headband analysis device
was used for wearable sleep monitoring, in which the direct sleep-stage classification was
performed based on the decision tree algorithm, with the correlation of the four sleep
stages being 74% [45]. Alfarraj et al. (2021) introduced an unsynchronized sensor data
analytics (USDA) model to effectively process wearable device data without considering
time factors. They found that a responsive healthcare solution using asynchronous WS-data
helped to achieve better efficiency and reduce complexity in evaluating healthcare system
performance [46].

The review of the above scholars’ research reveals that wearable devices are mostly
used to monitor sleep parameters in different ways, such as brain map, HR, RR, etc., and
to judge sleep quality by understanding the relevant parameters. Thus, wearable devices
monitor physiological parameters such as respiration; the overall framework is shown in
Figure 3. However, in the process of monitoring sleep, the security of data transmission
and information was not particularly addressed.
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Figure 3. Framework of respiratory monitoring system of wearable medical sensors.
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As shown in Figure 3, the respiratory monitoring system is mainly composed of N
wearable sensor detection devices and data computing center. N wearable sensors are
responsible for measuring the physiological parameters related to each sleep, and regularly
sending the collected real-time parameters to the data computing center by using the
wireless communication module. The data computing center is mainly responsible for
processing the data received by the wireless module and using the LCD to display the
processed physiological parameter information, thereby obtaining the sleep quality.

3. Intelligent Prospect of Wearable Medical Sensors

Because of its powerful data collection function, the sensor has more and more appli-
cation fields. Among them, medical health is a necessary field for people’s lives, and the
role of sensors cannot be ignored. With the rapid development of technologies, such as
the Internet of Things and artificial intelligence, medical sensors are also developing in the
direction of intelligence. Medical sensors no longer appear as a single individual device,
but in the form of a wearable medical sensor system.

3.1. Intelligent Prospect Method of Wearable Medical Sensors

With the rapid development of communication technology, 5G networks have basically
achieved full coverage, and at the same time, the Internet of Things (IoT) technology has
become more and more complete. However, in the era of the Internet of Everything,
when wearable medical sensor systems can transmit and browse the collected data more
intelligently, the security of wearable medical sensors has also become a future development
trend [47].

With the ability of wearable medical sensors to collect more and more physiological
parameter data from the human body, the performance of the wearable medical sensors
themselves has also gained attention, such as more flexible sensor materials, high elasticity
and high scalability [48,49]. With the emergence of new materials and new processes, these
improvements in wearable medical sensors appear to be more feasible.

In addition, with the aging of society, the emergence of medical auxiliary equipment is
also of great significance. It has also become a trend to combine wearable medical sensors
with rehabilitation aids to develop a wearable medical sensor rehabilitation system that is
consistent with the social elderly and movement-impaired groups.

3.2. Intelligent Prospective Applications of Wearable Medical Sensors
3.2.1. Prospects for Information Security of Wearable Medical Sensors

A wearable medical sensor system is mainly used to monitor human physiological
parameters, which is a body sensor network (BSN). BSN technology, based on IoT, is one of
the most important technologies in modern medical systems. It is a collection of low-power,
lightweight wireless sensor nodes that are used to monitor human body functions and
the surrounding environment [50]. Since human sensor network nodes are used to collect
sensitive human information and may operate in harsh environments, strict security mech-
anisms are required to prevent malicious interaction with the system. Therefore, security
research into human medical sensor networks has attracted many scholars” attention. Al-
Turjman et al. (2018) found that in medical applications, the 5G-inspired Industrial Internet
of Things (IloT) paradigm enables users to interact with various types of sensors through
a secure wireless medical sensor network (WMSN). However, the user’s self-verification
before each interaction is a lengthy and time-consuming process, which can interfere with
residents’ activities and reduce the overall performance of the medical system. In response
to this problem, a context-sensitive seamless identity provisioning (CSIP) framework was
proposed. The framework used a secure mutual authentication method of hash and global
assertion value, which demonstrated that the mechanism could achieve the main security
goal of WMSN in a short time [51]. Khattak et al. (2019) studied, in detail, the security
issues relating to the perception layer of the Internet of Things, and described the key com-
ponents of the Internet of Things (i.e., architecture, standards, and protocols) in the security



J. Sens. Actuator Netw. 2022, 11, 19

13 of 23

environment of the perception layer, and then the security requirements of the Internet of
Things. Second, after describing the hierarchical security of the general Internet of Things,
two key enabling technologies of the perception layer, namely RFID and sensor networks,
were discussed. Finally, open research issues and challenges related to the perception layer
were identified and analyzed [52]. Anand et al. (2020) developed a double watermark,
based on compression and then encryption, to protect the EPR (electronic patient records)
data in the medical system, which produced some important characteristics. After using
medical sensors to collect a large amount of medical data, experiments showed that the
proposed method has the ability of intelligent medical treatment, and compared with the
existing technology, the proposed work provides better performance in terms of robustness
and safety [53]. Muzammal et al. (2020) introduced several trust models complying with
the security requirements of IoT systems; they studied the security issues and requirements
of IoT, the routing protocol for low power, and lossy network (RPL) routing protocols
under various attacks, such as black holes, deception, hierarchy, etc. In addition, various
mitigation methods and the meanings of the trust model in the Internet of Things to secure
routing were analyzed. Finally, they measured trust in the IoT environment, including open
issues and research challenges, and the meaning of trust as a security paradigm for IoT
networks and routing protocols to gain a deeper understanding [54]. Zhu (2021) focused
on the problem of energy imbalance in the infusion network, introduced the calculation
method of network energy consumption under the direct transmission and minimum
energy multi-hop routing protocol, and designed an improved network structure model to
increase the communication scale. It was found that this method realized data aggregation
and data transmission, and that the development of the monitoring system application
platform adopted software technology. Furthermore, a cold chain transportation simulation
experiment was carried out on the system, and the results showed that the hardware of the
cold chain cooperative monitoring system was able to work normally, and the software
design of the monitoring system met the basic requirements of the third-party logistics
companies for the system; its accuracy also improved to a higher degree [55]. Singh et al.
(2021) analyzed big data security, and other related technologies, using data collected
by medical sensors in the field of health; they also analyzed their new trends in solving
real-world application challenges. At the same time, various well-known cryptography,
biometrics, watermarking and blockchain-based medical application security technologies
were also investigated [56].

A review of the above-mentioned scholars’ research found that there is a relatively
large amount of research into the security issues of the Internet of Things system, but there is
relatively little research into the safe interaction of user data in the medical field. Therefore,
in today’s globalized information networks, it is extremely important to protect people’s
medical information. The security of medical data is reflected in many aspects, such as
data privacy, data integrity, data timeliness, data identity verification, data anonymity, and
secure positioning [57-60]. Among them, data privacy is similar to that of wireless sensor
networks and is regarded as the most important issue in BSN; data must be protected from
leakage. If an attacker eavesdrops on communications and related key information, it may
seriously harm the interests of patients, because the attacker can use the acquired data for
many illegal purposes. Data integrity means that the system maintains the confidentiality
of data and protects it from external modifications. If the attacker changes the data by
adding some fragments, or processing the data packets, and forwards the changed data
to the coordinator, a patient who may be critically life-threatened at that time could lose
their life as a direct result, causing a great loss to society. In terms of the timeliness of data,
if an attacker captures the data in transmission and uses an older key to replay it, so as
to confuse the coordinator, it will cause irreparable damage to human health. Conversely,
the secure location of the data can make it impossible for an attacker to report the wrong
signal strength, thereby preventing them sending an incorrect report about the patient’s
location. Various security threats and attacks, such as data modification, counterfeiting,
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eavesdropping, and playback are thus avoided. Figure 4 presents the specific IoT security
system for a wearable medical sensor network.
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Figure 4. Framework diagram of IoT security system based on wearable medical sensor network.

As shown in Figure 4, in the IoT security system of the wearable medical sensor
network, when the medical system server receives the data of a biosensor wearer from
the local processor unit (LPU), it inputs the medical data into its database and analyzes it.
Subsequently, depending on the degree of abnormality of the data, it is possible to interact
with the wearer’s family members, local physicians, and even the emergency department
of a nearby medical center. When a person wears multiple biosensors on the body, and
the medical system server receives regular updates from these sensors through the LPU,
the server can maintain an operation table for each type of medical data received from the
LPU. Consequently, the safety performance criteria of the wearable medical sensor system
are achieved.

3.2.2. Prospects of Material Research for Wearable Medical Sensors

In the current medical field, most medical robots use an industrial robot as the op-
erating platform, and it is difficult to achieve high levels of accuracy, replicability and
reliability [61,62]. Nowadays, through mechanical structure, hardware design, and soft-
ware optimization, medical robots have achieved, to a certain extent, the characteristics
of flexible operation, and high levels of human-computer interaction and replicability for
clinical operations. Generally, robots touch or intervene in human tissues during minimally
invasive surgery. If the patient makes an involuntary movement, it is likely to affect the
position and shape of the robot in the human tissue, so that the failure of the operation is
likely to occur, and it is more likely to cause inevitable trauma to the subject [63]. Therefore,
it is also extremely important to innovate materials, while improving the performance of
medical intelligence. Many researchers have conducted investigations in this area. In view
of the fact that real-time detection of low-concentration acetone vapor plays a decisive role
in the early diagnosis of diabetes, Wang et al. (2018) fabricated a zoom medical sensor by
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using nanoscale porous crystal. They found that when the material was used as a wearable
sensing material, it showed sensitivity and selectivity to acetone gas, which provided a
basis for the manufacture of wearable medical sensors in the environmental and medical
fields [64]. Zhou et al. (2019) analyzed a simple hydrothermal method for the synthesis and
characterization of nanodisks. Morphological characterization confirmed the formation
of clear nanodisks of high density and an average thickness of 60 microns. A wearable
medical sensor was prepared, with a synthesized nanodisk as the electrode material. They
found that the gas-sensing response, response time, and recovery time of the prepared
wearable nanodisk gas sensor were 16.25 s, 52 s, and 41 s, respectively. The nanodisk
was expected to be a candidate material for manufacturing wearable medical sensors for
efficient toxic and harmful gas detection [65]. Yin et al. (2020) prepared a green conductive
Ag nanowire (AgNW)/ cellulose nanofiber (CNF) hybrid nanopaper by using surface solu-
tion mixing and vacuum filtration technology to prepare flexible sensors. Two different
types of strain sensors were designed to study their application in strain sensing. They
showed great potential in human motion and physiological signal detection. In addition,
when mixed nanopaper was used as a wearable temperature sensor, it also showed stable
and replicable negative temperature-sensing behavior, which provided guidance for the
manufacture of flexible and biodegradable wearable sensors [66]. Punetha et al. (2020)
analyzed three nanocomposite thick-film flexible gas sensors made of reduced graphene
oxide (RGO), tin oxide (SnO;), and polyvinylidene fluoride (PVDF). Chromium (Cr) was
deposited on the surface of the device by an electron beam evaporation system to form the
electrode of the device. The crystal structure, morphology, and electrical characteristics
of the device were explored for the application of body temperature measurement. The
results suggested that the sensor response was 49.2% and 71.4% sec, respectively, and the
sec of 100 ppm and 1000 ppm hydrogen concentration were obtained, respectively. A novel
low-cost flexible polymer-based nano wearable sensor was explored for the first time [67].
Cheng et al. (2021) synthesized a layered flower-like nickel-doped polymer using a one-
step coprecipitation method and prepared a gas sensor, based on the prepared material, to
evaluate its gas-sensing performance. The comparison revealed that the sensor showed
excellent moisture resistance and long-term stability. Meantime, they proposed a simple
solvent-dependent method to controllably synthesize nickel-doped sensing materials with
excellent gas-sensing performance. When the materials were applied to wearable sensors,
they showed a good application prospect in n-butanol detection [68]. Naresh et al. (2021)
summarized the evolution of biosensors, the types of biosensors based on their receptors,
transducers, and modern approaches employed in biosensors using nanomaterials, such
as noble metal nanoparticles, metal oxide nanoparticles, nanowires, nanorods, carbon
nanotubes, and quantum dots, and dendrimers and their recent advancement in biosensing
technology with the expansion of nanotechnology [69]. Leonardi et al. (2021) focused on
the main silicon-based biosensors, and discussed the most attractive sensor devices, starting
with electronic sensors, silicon nanowire field-effect transistors, and porous silicon, as well
as their optical substitutes, such as effective optical-thickness porous silicon, photonic
crystals, luminescent silicon quantum dots, and finally, luminescent silicon nanowires.
They principally investigated all these sensors in terms of working principle, sensitivity,
and selectivity [70]. Leonardi et al. (2021) critically studied all the major metal-assisted
chemical etching (MACE) routes of silicon nanowires in order to compare the advantages
and disadvantages of different MACE methods. The authors studied all these manufactur-
ing technologies from the aspects of equipment, cost, process complexity, and replicability.
Moreover, they analyzed the possibility of commercializing these technologies for use in
microelectronic technology, and investigated which technology was more suitable as an
industrial method [71].

A review of the research of the above-mentioned scholars found that although the
performance of wearable medical sensors improved after improvements in material prepa-
ration methods and diversity, wearable medical sensors alone cannot play a decisive role in
the health of the human body. Therefore, small surgical robots with medical sensor systems
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have also become a discovery trend. A specific new-material medical-sensor-robot system
model is shown in Figure 5.
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Figure 5. New-material medical-sensor-robot system model frame diagram.

As shown in Figure 5, the new-material medical-sensor-robot system collects human
body data, taken as a physical object, via a four-axis medical robot. The OPC UA (OLE for
Process Control unified architecture) communication protocol [72] was used to connect,
process and transmit the data collected by the four-axis medical robot, and the script was
used to drive the pre-drawn and optimized small medical robot model; thus, a dynamic
simulation model was established. Data analysis performed on this model can provide
services to medical staff and realize real-time status monitoring of the human health status
of the medical sensor robot. At the same time, the bio-adaptability, biodegradability, neural
interface control, high integration, miniaturization and other aspects of medical sensor
robots will also become research hotspots in the future. A medical sensor robot system that
is superior in performance, easy to manufacture, low in cost, and able to be mass produced
is expected to appear in various fields of human production and life, truly serving mankind,
and is a direction for future development.

3.2.3. Prospects of Intelligence-Assisted Rehabilitation of Wearable Medical Sensors

In addition, most traditional medical sensor rehabilitation devices are large in size,
immobile, limited to a single training mode, and boring in terms of environment. The
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wearable lower-extremity exoskeleton rehabilitation robot is a cross-integrated discipline
of mechanics, electronics, human-computer interaction, and bionics. It is worn on the pa-
tient’s limbs, and by detecting the wearer’s movement intention, it assists and protects the
intelligent and mechanized rehabilitation equipment for rehabilitation training. Numerous
research scholars in related fields have conducted research on medical sensor systems for
rehabilitation assistance. Lv et al. (2016) used big data analysis technology to analyze
the medical and health systems, and improved user experience through 3D stereo virtual
reality glasses and immersive head-mounted displays, and at the same time used voice
interactive games to provide patients with rehabilitation assistance [73]. Lv et al. (2017)
designed, developed, repeatedly evaluated, and optimized an auxiliary training tool for the
rehabilitation of dysphonia, based on actual clinical needs. This auxiliary tool can collect
relevant data from patients through medical sensors, and at the same time play games and
conduct voice training under the guidance of clinical therapists, without interference, or
allow patients to independently perform rehabilitation training at home [74]. In order to be
able to help people in the process of rehabilitation, Herrera-Luna et al. (2019) conducted
research into current assistive technology combined with sensors that obtain biological
signals from the body. They discovered sensor fusion for detecting hand movement, sensor
fusion for exoskeleton control applications, and sensor fusion for serious games for hand
rehabilitation. Moreover, through rehabilitation testing of the user’s limb strength and the
user’s limb position, it was found that in hand rehabilitation exercises, flexion, extension,
pronation, supination, strength grasping, radial/inversion, open hand, single-finger con-
traction, multi-finger contraction, pinching and holding hands and other movements can
achieve the purpose of rehabilitation [75]. Nascimento et al. (2020) introduced the latest
developments in sensors and systems for rehabilitation and health monitoring, and focused
on the implementation of sensors and biomedical applications. This research found that a
healthcare sensor can achieve family medical assistance and continuous health monitoring,
and can be used as a body rehabilitation system and sensor, and auxiliary system [76].
Xiang et al. (2020) evaluated the safety and feasibility of a new type of rehabilitation robotic
device for assisting patients with complete injury of lower limbs after spinal cord injury
(SCI). Through randomized controlled trials with patients with spinal cord injury and
complete motor paralysis, it was found that the use of a new robotic exoskeleton plan
provided potential and meaningful improvements in the mobility of patients with SCI,
and there were almost no adverse events [77]. Miao et al. (2021) combined the Internet of
Things, machine learning, multi-modal sensors and smart system technologies to design a
smart phone-based smart system to help stroke survivors improve upper limb rehabilita-
tion. The experimental results showed that the proposed model can evaluate rehabilitation
behavior, and the classification accuracy rates of very good, good and normal were 85.7%,
66.7% and 80%, respectively. At the same time, it can help stroke survivors carry out
independent remote rehabilitation training, reducing medical expenses and psychological
burden [78]. Mazzetta et al. (2019) proposed a wearable sensor system for automatic,
continuous, and ubiquitous analysis of Freezing of Gait (FOG) in patients affected by
Parkinson’s disease. They found that the gyroscope and sEMG integrated in wearable
devices could simultaneously sense the motion and action potential of antagonistic leg
muscles [79].

A review of the research of the above-mentioned scholars found that due to the
development of sensing technology, cheaper integrated circuits and connection technology,
wearable devices and sensing devices used to monitor physical activity, whether for health,
sports monitoring or medical rehabilitation, have been rapidly expanded. However, the
construction of the actual medical sensor-assisted rehabilitation systems involves robotics,
ergonomics, control theory, sensor technology, information-processing technology, and
other disciplines, which require the integration of a variety of high-tech technologies [80,81].
Thus, the driving system, perception system, control system, man-machine matching
system, man-machine interaction system and battery management system of any medical-
sensor-assisted rehabilitation system are all extremely critical.
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Therefore, while some breakthroughs and progress have been made for medical
sensor-assisted rehabilitation systems, continuous improvement should include the mod-
ularization of the exoskeleton structure, the intelligentization of the control system, and
the improvement of the performance evaluation of rehabilitation training effects. The
theoretical research of modularization can be summarized as modular design of complex
products, modular design of complex systems, and modular construction of industrial
organization. The exoskeleton robot is divided into modules according to certain rules
to make each module function independent and targeted, reduce the complexity of the
exoskeleton robot, make breakthroughs in scientific research easier, and ultimately better
meet the actual needs of different users [82]. In the intelligentization of control systems,
the advent of the 5G era is promoting the in-depth development of artificial intelligence
technology. The exoskeleton robot control system should keep pace with the times, so that
the robot can learn independently, realize intelligent control, make operation simple and
easy, enhance the user experience, and realize more comfortable and humanized rehabilita-
tion training [83]. The improvement of the ability to evaluate the effects of rehabilitation
training enables exoskeleton robots to successfully complete human-machine coordinated
motion [84]. In the current rehabilitation training process, its power-assisted ability, power-
assisted effect, bone stability, metabolic value, wearer fatigue, etc. cannot be monitored
and presented. In the follow-up, real-time evaluation of the rehabilitation effect will be
achieved by presenting the medical effect of each rehabilitation training. This will enable
medical staff to formulate corresponding strategies in time, which will have a great effect
on rehabilitation training.

3.2.4. Prospect of Intelligent Prediction Based on the Combination of Wearable Medical
Sensors and Intelligent Algorithms

In recent years, the development of artificial intelligence and the research into artificial
intelligence in the medical field have gradually begun, making people aware of the good
prospects for the integration of artificial intelligence and medical care. Among them, the
combination of the popular deep-learning field and sensor data-acquisition technology
has shown relatively great application potential in disease prediction and drug response
prediction [85]. Many researchers in related fields have conducted research into this
combination. Mosenia et al. (2017) described the architecture of a typical system based on
wearable medical sensors and discussed various research directions relating to wearable
medical sensors, and how previous studies tried to solve the limitations of components
used in wearable medical sensors system to meet the ideal design goal of an intelligent
algorithm applied to wearable medical sensors [86]. Misra et al. (2020) proposed a scheme
of dynamically selecting radio protocols in the energy-limited wearable Internet of Things
medical system and considered using multiple radio protocols to send the physiological
parameters sensed by patients to the server through local processing units (LPU). Through
actual data and large-scale simulation, their results showed that compared with the existing
schemes, the data rate increased by nearly 78% and the throughput increased by about
7% [87]. Qiao et al. (2021) proposed an intelligent feature-learning detection system (FLDS)
based on deep learning combined with medical sensors for fetal congenital heart disease
(CHD), a disease with a high mortality rate. A large number of their experiments showed
that the accuracy of the proposed model algorithm could reach 91.9% [88]. Yu et al. (2021)
also used deep learning combined with medical IoT technology to predict and analyze
diseases. It was found that Internet-of-Medical-Things (IoMT) sensors can be used for
spreading, which could ensure timely disease prediction and form a healthcare system
with advantages in both prediction and time performance [89]. Li et al. (2021) proposed a
multi-modal medical image fusion method with deep learning, based on the characteristics
of multi-modal medical images and the actual needs of medical diagnosis. It was found
that the system can realize batch processing of images, and at the same time showed its
superiority in terms of visual quality and various quantitative evaluation standards [90].
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A review of the research of the above-mentioned scholars found that the combination
of medical sensors and deep learning technology can predict human health, such as fetal
congenital heart disease. However, most of the medical sensor systems proposed by the
above scholars were tested in the laboratory or under simulated conditions, and the relevant
technical models were not applied to businesses. A series of tests are still needed before they
can be used in the actual medical field. Meantime, some scholars have conducted predictive
analyses on brain diseases in the medical field. For example, the use of fuzzy clustering
and neural networks to predict brain tumors [91], and the combination of Digital Twins
technology and artificial intelligence technology to predict diseases [92] are all intelligent
developments in the medical field and are of great significance to improving human health
to avoid disease.

4. Conclusions

Based on the collection of human physiological data in the medical field, the present
work classifies and prospects the application and intelligent development of wearable
sensors in the medical field. The application classification of wearable medical sensors
shows that they play a very key role in detecting human physiological data, such as vascular
infarction, respiratory intensity, body temperature, and blood oxygen concentration. The
intelligent development of wearable medical sensors was prospected. The technologies for
improving safety performance and integrating with assisted rehabilitation were explored
to provide new development opportunities for the intelligent development of the medical
field and real-time monitoring of human health. Meantime, analyzing and summarizing
the research of scholars in the related fields of medical and artificial intelligence will help
to improve the wearable medical sensor materials. Finally, such materials will realize the
real-time detection of temperature, humidity, sensitivity, surface roughness, and other
parameters, and afford high sensitivity and multi-functionality, together with a high level
of flexibility, and self-healing, self-cleaning, a self-power supply, and transparency.
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