
Journal of

Actuator Networks
Sensor and

Article

Learning-Based Coordination Model for On-the-Fly
Self-Composing Services Using Semantic Matching

Houssem Ben Mahfoudh †, Ashley Caselli † and Giovanna Di Marzo Serugendo *,†

����������
�������

Citation: Mahfoudh, H.B.; Caselli, A.;

Serugendo, G.D.M. Learning-Based

Coordination Model for On-the-Fly

Self-Composing Services Using

Semantic Matching. J. Sens. Actuator

Netw. 2021, 10, 5. https://doi.org/

10.3390/jsan10010005

Received: 30 September 2020

Accepted: 15 January 2021

Published: 20 January 2021

Publisher’s Note: MDPI stays neu-

tral with regard to jurisdictional clai-

ms in published maps and institutio-

nal affiliations.

Copyright: © 2021 by the authors. Li-

censee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and con-

ditions of the Creative Commons At-

tribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Centre Universitaire d’Informatique, University of Geneva, Route de Drize 7, CH-1227 Carouge, Switzerland;
houssem.benmahfoudh@unige.ch (H.B.M.); Ashley.Caselli@unige.ch (A.C.)
* Correspondence: Giovanna.dimarzo@unige.ch; Tel.: +41-22-379-00-72
† These authors contributed equally to this work.

Abstract: Forecasts announce that the number of connected objects will exceed 20 billion by 2025.
Objects, such as sensors, drones or autonomous cars participate in pervasive applications of various
domains ranging from smart cities, quality of life, transportation, energy, business or entertainment.
These inter-connected devices provide storage, computing and activation capabilities currently
under-exploited. To this end, we defined “Spatial services”, a new generation of services seamlessly
supporting users in their everyday life by providing information or specific actions. Spatial services
leverage IoT, exploit devices capabilities (sensing, acting), the data they locally store at different
time and geographic locations, and arise from the spontaneous interactions among those devices.
Thanks to a learning-based coordination model, and without any pre-designed composition, reliable
and pertinent spatial services dynamically and fully automatically arise from the self-composition
of available services provided by connected devices. In this paper, we show how we extended our
learning-based coordination model with semantic matching, enhancing syntactic self-composition
with semantic reasoning. The implementation of our coordination model results in a learning-based
semantic middleware. We validated our approach on various experiments: deployments of the
middleware in various settings; instantiation of a specific scenario and various other case studies;
experiments with hundreds of synthetic services; and specific experiments for setting up key learning
parameters. We also show how the learning-based coordination model using semantic matching
favours service composition, by exploiting three ontological constructions (is-a, isComposedOf, and
equivalentTo), de facto removing the syntactic barrier preventing pertinent compositions to arise.
Spatial services arise from the interactions of various objects, provide complex and highly adaptive
services to users in seamless way, and are pertinent in a variety of domains such as smart cities or
emergency situations.

Keywords: self-composition; coordination model; semantic middleware; connected objects; spatial
services; reinforcement learning; on-demand services; collective adaptive system; connected objects;
seamless interaction

1. Introduction

In his seminal and visionary paper Mark Weiser [1] describes the notions of “disap-
pearing computers and disappearing technology”, where connected objects are “embedded
in the everyday world” and made invisibly available to the users. The latter then “use them
unconsciously to accomplish everyday task”, such as obtaining information, requesting
actions, or animating otherwise inert objects-in other words, providing an “embodied
virtuality”. According to Weiser, the “real power of the concept comes from the interaction
of all of the devices”.

Today, thirty years later, connected objects are dramatically increasing in number,
and more than 20 billion more objects are expected to be connected in the next five years.
They relate to many domains such as smart city, smart building, transportation, energy,

J. Sens. Actuator Netw. 2021, 10, 5. https://doi.org/10.3390/jsan10010005 https://www.mdpi.com/journal/jsan

https://www.mdpi.com/journal/jsan
https://www.mdpi.com
https://orcid.org/0000-0001-8492-0354
https://orcid.org/0000-0001-5048-5251
https://doi.org/10.3390/jsan10010005
https://doi.org/10.3390/jsan10010005
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/jsan10010005
https://www.mdpi.com/journal/jsan
https://www.mdpi.com/2224-2708/10/1/5?type=check_update&version=2

J. Sens. Actuator Netw. 2021, 10, 5 2 of 26

business, or quality of life. Internet of things (IoT) allows these devices to communicate,
collaborate, gather data, and take decisions. Sensors and actuators can be locally connected
via gateways or edge nodes and provide massive storage, computing and acting capabili-
ties currently under-exploited, but available in a pervasive, and invisible manner in our
everyday life. Weiser’s vision takes a step closer to reality.

In this context, our research tackles Weiser’s challenge above, namely we provide com-
plex services to the users, arising from seamless and spontaneous interactions among heterogeneous
devices and connected objects, while hiding this complexity to the user. We coined this new type
of complex services and applications ”Spatial services” [2,3]. They form a new generation
of services, built and spontaneously composed on-demand, arising from the collective
interactions of connected objects. Spatial services are spatially and temporally distributed
over a geographic area, corresponding to the environment where the objects themselves
reside or on which they act. Spatial services are built dynamically through collaboration
with other services and composed on-demand for their users (providing information or
acting on the environment). Spatial services arise from the interactions of multiple sensors
and devices, working together as a decentralised collective adaptive system. They are
issued from devices heterogeneous in nature (sensors, actuators, autonomous cars, etc.),
which consume and produce data, act on their environment, in a fully distributed man-
ner, without prior knowledge about each other, and without pre-designed compositions.
In this setting, we consider that a connected object provides a set of services, enabled
by its capabilities, such as sensing, acting on its environment and communicating with
other objects.

The spatial services paradigm relies on a learning-based coordination model [2,4],
where dynamic compositions arise, fully automatically and spontaneously at run-time
exploiting IoT devices, with seamless adaptation to arriving and departing services.

In our previous works, composition of services relies on syntactic matching [2]. In
this paper, we extend our learning-based coordination model with semantic reasoning,
increasing the range of compositions and users’ interactions that our system supports,
still supporting dynamicity and lack of knowledge among services, and providing highly
adaptive and complex services to the user. The implementation of our model, discussed in
this paper, leads de facto to a semantic middleware for connected objects. Spatial services-
implemented through a learning-based coordination model and using semantic matching-
provide a highly adaptive paradigm allowing the exploitation of the collective capabilities
of connected objects, themselves evolving in a dynamic and changing environment. They
constitute an additional brick towards Weiser’s vision of users unconsciously supported
by connected objects in their everyday life.

Section 2 discusses related works. Section 3 summarises our learning-based coordi-
nation model approach to self-composition. Section 4 shows how we extend the above
model with semantic matching and reasoning. Section 5 discusses the semantic middle-
ware implementation, its deployment, and a series of experiments in various scenarios.
Finally, Section 6 provides some discussion on the overall approach and Section 7 concludes
the paper.

2. Related Works

Services composition. Service composition is commonly known as the mechanism
that combines the functionalities of two or more basic services and creates a more complex
one. It aims to exploit the available services to meet the user’s requirements [5]. Service
composition approaches may be categorised in terms of many orthogonal properties [6]. A
possible grouping may be defined using the stage during which the actual composition,
namely the services binding, occurs. Such classification divides the service composition
approaches in: (i) static composition, and (ii) dynamic composition. Static composition
approaches include orchestration and choreography [7]; both approaches use pre-defined
composition arrangements. The resulting services depend on these pre-designed composi-
tions. These approaches lead to correct compositions but lack dynamicity and adaptation,

J. Sens. Actuator Netw. 2021, 10, 5 3 of 26

and lead to reduced robustness and fault-tolerance in case services that have to take part in
the composition are not available or reliable at the moment of the composition. Therefore,
their static character has been challenged by approaches involving dynamic service compo-
sition, in order to ensure scalability and adaptability, even though these new approaches
add computational overhead to the system.

An alternative grouping, for the service composition approaches, may be defined
using the composition policy they adopt: (i) syntax-based, the matching among services
is driven by evaluating the syntactic equality among the service input/output parame-
ters; (ii) semantic-based, the composition process computes the matches relying on con-
cepts classification and their relationships (i.e., a taxonomy); and (iii) other solutions, e.g.,
AI-planning techniques.

Syntax-based composition approaches rely on the equality evaluation among services
parameters. In this case the functional aspects of services are described through a rep-
resentation that is not exploitable by any machine. Such a representation does hold an
intrinsic meaning that cannot be automatically understood by machines. For instance,
let us consider two services that provide exactly the same functionalities described in a
syntactically different manner, there is no way for an automated process to evaluate them
as equal, as there would be for a human being. Therefore a syntax-based composition
approach brings several limitations in an automated composition process since it reduces
the matching algorithm to a mere equality evaluation among words. In order to improve
the service composition matching a semantic machine-readable description of the service
and its functionalities would be needed.

The birth of the semantic web and its technologies doubtlessly brought enhance-
ments that increased the possibility to perform automated computations in many fields.
The machine-readable representation with which a service may be described allows
semantic-based composition approaches to be adopted. Such processes, relying on ex-
isting or ad-hoc concepts taxonomies, are able to perform a semantic reasoning on the
service functionalities and generate the most appropriate composition graph, according
to the defined policies. Among the above-named categories, we can mention the fol-
lowing works. From the semantic web field, Talantikite et al. [8] present a model for
automatic Web services discovery and composition. Such model exploits web services
that have previously been semantically annotated through an ontology (i.e., OWL-S [9]).
Talib et al. [10] provide a semi-automatic method to generate static web service composition
in BPEL4WS language. Tzortzis et al. [11] extend the SYNAISTHISI platform [12] to allow
semi-automatic composition of services provided by devices. The SYNAISTHISI platform
itself is a message-oriented middleware, providing tools for administrators facilitating the
integration and coordination of devices and algorithms. They are presented as semantic
web services and registered in a RDF triple-store. Other works focus on the description of
ontologies well suited for capturing IoT scenarios on the Web, such as [13], itself deriving
from an ontology for describing “Things” in a more general manner [14].

Semantic middlewares or engines. Gyrard et al. [15] propose a semantic engine
equipped with various domain ontologies for various devices types, a converter annotating
data, a reasoning engine and a query engine. The specificity of this proposal is that
it can be deployed in various cases: in cloud, into mobile devices, or inside gateways.
Zgheib [16] provides a message-oriented semantic middleware, well-suited for healthcare
applications. It is based on the publish-subscribe paradigm. In addition to the publishers
and subscribers, specific transformers wrap the physical devices transforming them into
virtual semantic ones. The latter interact with the publish-subscribe broker. More generally,
Zgheib et al. [17] provide an overview of semantic middleware for IoT, identifying various
cases, such as message-oriented, tuple-based, agent-based, database-oriented, or with
service-oriented architecture.

Coordination and agent-based approaches. We can mention various approaches
favouring dynamic compositions of services or components at run-time: from more
static ones, such as workflow-based approaches and AI Planning [18], to more dynamic

J. Sens. Actuator Netw. 2021, 10, 5 4 of 26

ones based on a central coordinator [19], to more decentralised ones, involving chan-
nels for devices to send and receive messages [20]. The approach of Vallee et al. [21]
combines multi-agents with semantic web services and provides dynamic context-aware
service composition. Other approaches in the same field usually involve planification
techniques, where agents reason on their services and the users’ needs [22]. Works on self-
composition of method fragments bring a more dynamic approach involving cooperative
agents, each representing a fragment of the composition [23]. Using similar cooperative
principles, Degas [24] proposes a syntax-based composition approach with collabora-
tive agents for dynamic composition of aerial plane trajectories. Viroli [25] presents a
tuple- and syntax-based approach that involve the notion of competition among services.
Frei et al. [26] exploit chemical reactions to produce self-designing industrial assembly
systems. Di Napoli et al. [27], always using chemical reactions, dynamically instantiate
specified workflows. De Angelis [28] proposes a chemical-inspired model that promotes
self-composition of services at run-time adopting a syntax-based composition approach.
Finally, Ben Mahfoudh et al. [4] extend the original tuple space model with learning-based
capabilities in order to accommodate self-composition.

Learning-based approaches. Inspired by cognitive sciences, learning approaches
remove pre-defined goals and objective functions [29]. The Self-Adaptive Context-Learning
(SACL) Pattern [30] involves a set of collaborative agents learning contexts and mapping
agents’ perceptions with actions and effects. Reinforcement learning solutions are suitable
for problems or search space modelled into a Markov decision process (MDP) [31]. In the
case of pre-defined workflows, multi-agent reinforcement learning [32] allows selecting
the most reliable services to be used in the workflow. Other works involve semi-dynamic
solutions using AI planning methods [18] without self-composition at run-time.

Wang et al. [33] approach is very close our learning-based proposal. Both QoS and
multi-agent reinforcement learning serve as a basis for identifying the workflow with
the best cumulative reward. To alleviate the limitations of their approach in large-scale
scenarios with many state-actions pairs, Wang et al. [33] suggest using deep Q-learning to
improve prediction and efficiency [34,35]. A full review of service composition approaches
for internet of things is presented by Aoudia et al. [36].

We propose a tuple-based, learning-based semantic model and its middleware imple-
mentation. It is completed with learning agents working on behalf of devices, applications,
or users. Our proposal combines: (1) complex adaptive services to users arising from
the interaction of connected devices; (2) fully automatic and spontaneous composition of
services (or capabilities) provided by the devices; (3) a semantic composition based on a
specific domain ontology; (4) learning agents receiving rewards from other agents, and
forwarded to them by the middleware; (5) services come with QoS, which further serve
selecting reliable services. This last point is not discussed in this paper, but fully exposed
in [4]. Compared to the above works, event though some of the presented approaches
provide a dynamic and/or semantic composition, none of them combines a decentralised
architecture, without pre-designed composition, and a semantic and learning approach.

3. Service Composition

This section discusses the different concepts of our learning-based coordination model,
and describes a running example using learning and syntactic matching that will be
revisited in the next section. This work is based on a previous work [2,4] that we will briefly
describe and reproduce here to allow the reader to understand the remainder of the paper.

3.1. Coordination Model

Coordination models provide a general solution to coordinate agents execution. They
are not specifically meant for self-composition. The most suitable ones for composition
are those providing tuples and a blackboard (favouring asynchronous coordination) and
using a chemical inspired approach (favouring spontaneous coordination). Our proposal is
inspired by nature (stigmergy and blackboard) and does not involve formal aspects. It can

J. Sens. Actuator Netw. 2021, 10, 5 5 of 26

be deployed on several heterogeneous nodes and it supports spontaneous composition.
It provides autonomous coordination between entities and offers them the capability to
update their behaviour regarding their local environment.

Coordination models inspired by nature and dealing with connected objects such as
SAPERE [37], ASCENS [38] and TOTA [39] may be used to compose services and provide
reliable solutions at run-time. We have chosen the Self-Aware Pervasive Service Ecosystem
(SAPERE) project as it is well designed, easy to use and offers a detailed documentation and
open-source implementation. Indeed, previous works demonstrate [40–42] that SAPERE is
suitable for designing spatial services and self-composition.

The SAPERE model, shown in Figure 1 (black part only) is a coordination model for
multi-agent pervasive systems. It is inspired by chemical reactions and composed of the
following concepts:

• Software Agents (i.e., coordination entities): active software entities that act as an
interface between the tuple space and the real world. An entity could be any sort of
device (e.g., sensors or actuators), application or service;

• Live Semantic Annotations (LSA): tuples of data and properties which are managed
and updated by the software agent (e.g., a property value is updated when the sensor
updates its value);

• Tuple space: shared space (i.e., coordination media) that hosts all the tuples in a node.
A node could be a Raspberry Pi, a smartphone, or any connected object that can host
a shared space;

• Eco-laws (i.e., coordination laws): chemical-based coordination rules derived from
bio-inspired mechanisms, dynamically acting on LSAs (see below).

• Operations: A set of operations (e.g., inject a new LSA, update an LSA’s content or
remove an LSA) that are executed by the system.

Agent Agent Agent

Services ActuatorsSensors

LSA LSA LSA

Eco-lawsOperations

Tuple Space

Inject
Remove
Update Decay

Bonding

Spreading

RL RL RL

Reward

Agent

Application

LSA

RL

Figure 1. Learning-based coordination model (derived from the SAPERE [37] coordination model).

The coordination model offers a set of bio-inspired mechanisms [43], under the form
of eco-laws (or coordination laws) that can be used in different domains like optimisation,
heuristic search or solving computational problems. We are interested in the following
ones for the rest of this work as they meet our needs, and serve to solve our problem:

J. Sens. Actuator Netw. 2021, 10, 5 6 of 26

• Bonding: links an agent with data provided by another agent that it was waiting for,
referred to, concerns it, etc.

• Decay: (or evaporation) is a pattern used to mark the relevance of the information lo-
cated in the tuple space. It regularly decreases the relevance of the data and ultimately
removes outdated data.

• Spreading: similar to broadcast as it diffuses information within a network. However,
the spread is done with a fixed propagation hops.

• Gradient: is build on the spreading pattern. It aggregates data using some alge-
braic operation (e.g., min, max or avg) and offers additional information about
hops distance.

Software agents follow their own logic and may be of different types, reactive, intelli-
gent, equipped with reasoning, etc. In any case, the minimum actions taken by the agents
consist in: (1) inserting data (or queries) incoming from the device (or the user) (for which
they work) into the tuple space (e.g., a new value for a sensor is available), and/or vice-
versa, (2) instructing the device to perform some action upon some event (i.e., a bonding)
incoming from the coordination media (e.g., performing some computation based on some
input value, or taking some action in the physical world, or providing some information
to the user). Actions taken in response to bonding events lead the concerned devices in
taking part in the corresponding compositions, de facto producing some collective result.

Figure 1 shows a single computational node to which several agents are directly
connected. This could be the case in a household, where all devices are connected through
their own agent to the same computational node. SAPERE, as well as our extensions,
works in a fully distributed and decentralised manner across geographical and spatial
zones. Compositions can span several computational nodes connected together, each
equipped with the middleware implementing the model, each having agents attached to
them. Hence the term “spatial services” for the corresponding compositions. Section 5.3
discusses deployment options.

3.2. Data Structure

In order to accommodate dynamic composition, we extended the original LSAs from
SAPERE as follows. A live semantic annotation or LSA is a tuple of data and properties. Its
value could change with time. An LSA is controlled (injected, removed, updated) by the
software agent. It is of the following form:

LSA ::== {S = [svc1, . . . , svcm], P = [P1, . . . , Pn]}.

P is a set of property names and svcj ∈ P are property names to which the agent
wants to bond with. The agent is notified when a property that corresponds to service svcj
is injected or updated into the Tuple space.

1. A set of Service properties or property names which we note S: A software agent is
sensitive to some property name or input to which it wants to be alerted when they
become available.

2. A set of Properties which we note P: Each software agent provides a set of properties
or output which correspond to the service that it provides. It is defined by:

Pi ::== {< keyi : vi >,< #Bi : BondedAgent >,

< #Qi : QueryAgent >,< #Ci : Schema >, #True/False}

where:

• keyi: is the property name, keyi ∈ P .
• vi: is the value of property keyi.
• #Bi: the id of the agent that manages the LSA to which a property keyi bonded.
• #Qi: the id of the agent that is at the origin of the request.

J. Sens. Actuator Netw. 2021, 10, 5 7 of 26

• #Ci: a sequence of property names representing the composition schema. The
requested property names are separated by a vertical line “|” from the provided
properties during composition.

• #True/False: a flag that indicates if a property keyi has been consumed (#True)
or not (#False) by other agents.

3. A set of Synthetic properties that contains some features related to the operation of the
middleware. It is not shown in the above LSA representation for presentation concerns.

3.3. Learning-Based Coordination Model

In this section, we present how we extended the SAPERE model with learning. To do
so, we equipped the agents with a Reinforcement Learning module (RL) and provided a
new operation in the coordination model, called Reward (the red elements in Figure 1). The
RL module allows the agents to regulate the outcomes of the Bonding eco-law. Depending
on their current learning tables, they will or will not be sensitive to a bonding notification.
The Reward informs the agent about the positive or negative outcome of their involvement
in a service composition.

Reinforcement learning (RL) algorithms provide a suitable solution for optimisation
and decision making under uncertainty in sequential decision problems. QLearning [44] is
one of the RL algorithms that allows agents to learn a policy that maximises rewards by
taking action when being in a given state. A Markov decision process (MDP) [45] models
our problem as a set of finite actions and states. When a bonding happens, an agent has to
select the best action, from the set of actions available to him given its current state.

Our model is defined by:

• States S: a set of all possible composition schemas. A state is updated in the #C
composition property attribute of the LSA.

• Actions: A = {Ignore, React};
– Ignore the bonded LSA: useless bonding are avoided.
– React to the bonded LSA: a new property is added or updated in the agent’s LSA,

as the result of the internal computing of the agent following the bonding.

• Reward: A positive or negative reward is attributed to all agents that participated in a
successful composition (with final composition schema). The user feedback depends
on the actual relevance of the result [46].

• Exploration algorithm: ε-greedy [47]. This algorithm has a probability ε to select a
random action and a probability 1− ε to select the action that maximises the value of
the approximation of Q(s, a).

• Q function: Q : S× A→ R, where:
Qi

t+1(st, at) = Qi
t(st, at) + α× (Ri

t + γ×maxaQi
t(st+1, a)−Qi

t(st, at)), ∀i ∈ {1, . . . , n},
where n is the number of agents that participated in the service self-composition, t is
the current time, st is the state at time t in which the agent took action at, st+1 is the
next state reached by the agent after taking action at, α is the learning rate and γ is the
discount factor that determines the cumulative discounted future reward.

Our system has to learn the best action to take in order to decide on the appropriate
action in response to a notification received from the bonding eco-law. This helps to
optimise the overall system behaviour and to provide the most relevant and reliable
self-composed services. Agents will collaborate and coordinate together to produce all
possible compositions including inconclusive or useless ones for the end-user. They will
progressively update their behaviours by following the RL module. Our system converges
towards pertinent and efficient composition, i.e., the ones actually expected by the user.

In the learning-based extension, software agents as before follow their own logic,
however now, once notified of an event (i.e., through a bonding) they learn whether they
need to react to that bonding or simply ignore it. Reacting to a bonding arising from a
composition means that the device controlled by the agent is solicited in a composition,
and some action and/or result is expected from it. Learning whether or not it is pertinent

J. Sens. Actuator Netw. 2021, 10, 5 8 of 26

to enter into a composition is important to prevent participating in compositions that
in the end remain partial or do not satisfy the user or the end-system. In cases with a
large number of services and possible compositions, this also may reduce the number of
activated compositions.

3.4. Composition Schema

A composition schema is a sequence of properties names that have been consumed
during the services’ composition. In Figure 2, we suppose that a query is injected providing
a Property of name “A” as input and requesting a Property of name “D” as output. We
define two different composition schemas. We say the composition schema is partial when
the input property is present but the requested output property is not yet reached. We say
the composition schema is final when it starts with the input property and ends with the
output property. The requested properties and the composition schema are separated by a
vertical bar |.

Query Partial composition
 schema

Final composition
schema

D | A D | AB

D | ABC

D | ABD

D | ABCD

Figure 2. Composition schema: a sequence of property names representing the composition schema.

All objects are connected-in a peer-to-peer network, in a single node or through a
cloud-this allows them to interact and cooperate. Our solution supports multiple nodes,
thanks to the use of the spreading mechanism. When an agent bonds, a new property is
added or updated. A copy of its LSA is automatically spread throughout the network. All
tuple spaces will be updated and agents will be able to bond with these new properties.
All copies are dynamically deleted using the Decay eco-law after a short time.

3.5. Reward

Our system uses an RL module that needs feedback from users to adapt agents’ be-
haviours. A user (e.g., a human being or a system) is able to provide a feedback regarding
the provided result. The provided feedback is propagated back to all agents that partic-
ipated in the composition. Agents update their Qmatrix using the Reward information
R. Positive rewards are attributed to the agents that provide pertinent and efficient ser-
vices while negative rewards are attributed to the agents that did not participate in a
final schema or did not successfully provide any results. This helps to avoid unnecessary
bonding and executions.

A sparse or gradient reward [46] might be a solution to avoid long composition schema
as further partial composition schema are less rewarded. In Reinforcement learning, reward
functions depend on the problem and are tricky to choose. In this paper, we chose to use
for the positive reward the value R = +10 and for negative reward the value R = −10.

Each agent has a Q matrix that corresponds to all partial and final schema received
during execution. In order to push agents to react, at the beginning of the process, we
initialise the Ignore action with 0 and the React action with 5. The actions value are then
updated after each received reward R (Section 3.3). When the agent bonds, it will check its
Qmatrix to decide the appropriate action to take for each partial composition.

Sometimes, an agent may not receive any feedback although it reacts to the partial
composition. The composition may not be achieved (i.e., remains partial) or the user may

J. Sens. Actuator Netw. 2021, 10, 5 9 of 26

not give any feedback. Thus, to avoid all unnecessary bonding, the agent will receive an
internal negative reward when it randomly decides to ignore the bonding. After a few
iterations, all agents that provide useless properties will automatically learn not to react to
the partial composition that did not lead to a result.

3.6. Scenario

Let us consider the following scenario. A user arrives at a gas station, drives an
electric car and wishes to find an electric parking spot to park and charge their car, possibly
booking also the parking spot at the same time. To do so, they will simply utter a query
mentioning their location and the keyword electric car. More technically, this scenario
considers that electric vehicles are increasing in number and are able to communicate with
several connected objects. These objects form a communication network and cooperate
together to achieve a specific task. We consider that connected objects provide or request
services (information or actual actions in the physical world) using a syntactic matching (i.e.,
using keywords and exact syntactic matching to identify matching services and queries).

In this scenario, we consider the following entities (see Figure 3):

• A user driving an Electric car is looking for an electric parking sport. The Electric car
makes a query for an electric parking spot, on behalf of the user.

• A Gas station provides a set of services, such as restaurant, gas pump, or electric
parking spot. The Gas station advertises itself (globally) as a gas station.

• A Booking service checks the availability of a parking spot and books it for the user. It
waits for requests for parking spots.

Query

I am an Electric car at "Location x"
and I am looking for an ElectricPark spot

I am a "GasStation y"

I am an E-Park booking service

Gas pump Restaurant Parking

Agent 1

Service

Agent 2

Service

Agent 3

Tuple space

Figure 3. Scenario of a spatial service providing identification and booking of an electric car parking
spot in a gas station.

J. Sens. Actuator Netw. 2021, 10, 5 10 of 26

The resulting spatial service consists in both providing the information about the
existence and availability of an electric car spot within the gas station, and a concrete action
consisting in booking the spot in question for the user. The spatial service arises from
the seamless interactions of the electric car, the gas station and the booking service, and
depends on the currently available services. Indeed, the booking service, in this scenario,
provides a richer service than necessary, since it not only identifies electric parking spots,
but also provides a booking for them.

Agents

In this scenario, we define three agents, acting on behalf of the three entities of our
scenario, in the following manner (see Figures 3 and 4):

• Agent_1: is the query agent. It works on behalf of the Electric car. It injects in the tuple
space an LSA, with a property P with name “Location” and requests a property S with
name “ElectricParkSpot”.

• Agent_2: is sensitive to the “Location” property. It works on behalf of the Gas station.
Internally, it controls a set of services as it represents a series of Gas station services
like the parking, restaurants and gas pump as shown in Figure 3. Agent_2 injects
an LSA advertising itself with property P, as a “GasStation”, and waits for a query
corresponding to a location indicated in property S. In this example, we are interested
in the internal service of the gas station that provides parking.

• Agent_3: is a parking booking service specialising in electric parking spots. It works
on behalf of the Booking service. Its LSA will bond with a request for any output with
the “Parking” property and informs that it provides a specific electric parking spot,
by providing the “E-Park” property P.

Service

Service

Query

Tuple space

Agent 1

Agent 2

Agent 3

{S=[ElectricParkSpot], P=[<Location : x>]
#B: - #Q: Agent1 #C: ElectricParkSpot | Location #true]}

{S=[Location], P=[<GasStation: y>]
#B: Agent1 #Q: Agent1 #C: ElectricParkSpot | Location, GasStation #true]}

{S=[Parking], P=[< E-Park: - >]
#B: - #Q: - #C: - #-]}

Figure 4. Syntactic composition diagram of the electric car parking scenario.

3.7. Syntactic Composition

The bonding mechanism, as defined in Algorithm 1, using syntactic matching between
LSAs has few weaknesses, such as the case sensitivity or the impossibility to recognise
synonyms thus cannot create matching that would be correct. The former weakness may
be solved during the implementation phase, whilst the latter is impossible to solve with a
syntax-based approach.

J. Sens. Actuator Netw. 2021, 10, 5 11 of 26

Algorithm 1 Syntactic Bonding
initialisation

1: for outLSA ∈ LSAs do

2: for inLSA ∈ LSAs do

3: if (syntacticMatching(outLSA, inLSA) and shouldBond(outLSA, inLSA)) then

4: bondLSAToLSA(outLSA, inLSA)

5: end if

6: end for

7: end for

Figure 4 shows the different LSAs corresponding to the different agents, as discussed
above. In this particular case, through syntactic matching, only one bonding can happen.
Indeed, property S of Agent_2 bonds with property P of Agent_1 (on the same “Location”
keyword). However, even though the gas station at that location can offer the electric
parking spot, no further bonding can happen. Agent_1 S property cannot bond with
Agent_3 P property because they do not use exactly the same wording (“ElectricParkSpot”
and “E-Park” are synonyms but not considered to be the same). Furthermore, no further
relation (outside the location) can be made between the gas station and the electric car
(looking for an electric park spot at that location), or between the gas station and the
booking system. This is a case where the system ends up with a partial schema. This
case highlights three issues with the syntactic matching: (1) synonyms cannot be used or
consumed during bonding; (2) no reasoning allows to consider that an electric parking
spot is, in fact, a parking spot; (3) no reasoning allows to derive that a parking is part of a
gas station.

The Qmatrix of Agent_2 and Agent_3 are presented below in Table 1. No rewards are
provided by the user as the system did not succeed to return any result that corresponds to
the requested property.

Table 1. Qmatrix of the agents after the first query (syntactic version).

Agent Schema Ignore React

Agent_2 ElectricParkSpot|Location,GasStation 0 5
Agent_3 - - -

4. Enhancing Self-Composition with Semantic Matching

The example presented above is here revisited using a semantic-based approach. We
update the bonding algorithm above, and present the new version in Algorithm 2, in order
to integrate semantic matching of services’ properties.

Algorithm 2 Semantic Bonding
initialisation

1: for outLSA ∈ LSAs do

2: for inLSA ∈ LSAs do

3: if (semanticMatching(outLSA, inLSA) and shouldBond(outLSA, inLSA)) then

4: bondLSAToLSA(outLSA, inLSA)

5: end if

6: end for

7: end for

J. Sens. Actuator Netw. 2021, 10, 5 12 of 26

Figure 3 shows how a “GasStation” element may be composed of various services:
restaurant, gas pump and electric car spots. A formal definition of the former is required in
order to be able to perform semantic reasoning on it. Its formalisation is shown in Figure 5,
where the relations between each component of the GasStation are also specified. Briefly, a
GasStation may be defined as an object that is composed of many elements, i.e., Restaurant,
GasPump, Parking. In turn, the elements may be defined as a composition of others, i.e.,
a Parking is the composition of one (or many) ParkSpot. Figure 5 also shows a possible
hierarchy of different kinds of ParkSpot (Electric or Accessible), as well as the synonyms
E-Park and ElectricParkSpot.

Figure 5. A taxonomy of concepts related to a generic Gas Station.

4.1. Scenario Revisited

Let us again unroll our scenario where an electric car, through a query, requests a
property S named “ElectricParkSpot” in output and provides a property P named “Location”
as the input. Thanks to the added semantic matching feature, and the corresponding
reasoning, the following behaviour compositions can now arise. Figure 6 shows the
different LSAs corresponding to the different agents and the bonding events.

Step 1: Agent_1, working on behalf of the electric car, injects the query above as an
LSA, asking to book an electric parking spot at a location nearby.

Step 2: A copy of Agent_1 LSA spreads in the network.
Step 3: Agent_2 bonds with the “Location” property, executes the service correspond-

ing to this query and updates its LSA by adding the ”GasStation” property (Figure 6-arrow
between LSA of Agent_1 and Agent_2, and update of Agent_2 LSA).

Step 4: A copy of the updated LSAs of Agent_2 spreads in the network.
Step 5: Agent_3 is not syntactically sensitive to the “GasStation” property. However, it

will use the newly added semantic reasoning module to bond with the “Parking” property
as it is one of the gas station components (isComposedOf in Figure 5). Agent_3 internally
identifies an electric parking spot and updates its LSA by adding the “E-Park” property
value which allows the booking of the returned electric park spot (Figure 6-arrow between
LSA of Agent_2 and Agent_3, and update of Agent_3 LSA).

Step 6: A copy of the updated LSAs of Agent_3 spreads in the network.

J. Sens. Actuator Netw. 2021, 10, 5 13 of 26

Step 7: Agent_1, waiting for a “ElectricParkSpot” property, will use the semantic
module to check if similar properties returned by Agent_3 can be provided as a result to
the user. “ElectricParkSpot” and “E-Park” have equivalent meaning (they are synonyms).
Thus, Agent_1 bonds with the new property added by Agent_3 and retrieves the booking
information about the electric park spot in the nearby gas station, and informs the user
(Figure 6 arrow between LSA of Agent_1 and Agent_3, and update of Agent_1 LSA).

Step 8: A feedback is sent by the user to evaluate the returned composition. If it
is a positive reward, agents that participated in the composition will all be rewarded
positively, otherwise they will all be rewarded negatively. Agents update their learning
tables according to the received reward. In this case, we assume that the system has
returned the requested service and the user has given a positive reward. Instantly, the
Qmatrix of all the agents that participated in the composition are updated as shown in
Table 2 after a first query (rewarded positively) and in Table 3 after a second query (also
rewarded positively).

To summarise, in this example we exploited the following relationships within the
concepts defined by ontology shown in Figure 5: (1) the use of equivalent concepts (equiv-
alentTo or sameAs); (2) the subsumption relationship (is-a); (3) the parts composing an
element (isComposedOf).

Interestingly, Agent_1 S property “ElectricParkSpot” will also bond with Agent_2 P
property “GasStation”. By performing semantic reasoning using the concepts defined by
the ontology given in Figure 5, we infer on the one hand that “ElectricParkSpot” is a “Park
Spot”, and on the other hand, that a “GasStation” is composed of a “Parking”, which in
turn is composed of “Park Spot”. This possible new bonding will lead to a final schema,
but not to the expected booking service, and so if proposed to the user, they would reward
it negatively, that composition would be progressively discarded.

Table 2. Qmatrix of the agents after the first query (semantic version).

Agent Schema Ignore React

Agent_2 ElectricParkSpot|Location,Parking −3 6.5
Agent_3 ElectricParkSpot|Location,Parking,E-park −3 6.5

Table 3. Qmatrix of the agents after the second query (semantic version).

Agent Schema Ignore React

Agent_2 ElectricParkSpot|Location,Parking −5.1 7.5
Agent_3 ElectricParkSpot|Location,Parking,E-park −5.1 7.5

Service

Service

Query

Tuple space

Agent 1

Agent 2

Agent 3

{S=[ElectricParkSpot], P=[<Location : x>
#B: - #Q: Agent1 #C: ElectricParkSpot | Location #true]}

{S=[Location], P=[<Parking: y>]
#B: Agent1 #Q: Agent1 #C: ElectricParkSpot | Location,Parking #true]}

{S=[Parking], P=[<E-Park: z >]
#B: Agent2 #Q: Agent1 #C: ElectricParkSpot | Location, Parking,

E-Park #true]}

Figure 6. Semantic composition diagram of the electric car parking scenario.

J. Sens. Actuator Netw. 2021, 10, 5 14 of 26

5. Implementation and Experiments

This section provides architectural details and implementation information, including
details of the semantic module. It discusses alternative deployments and lists the various
experiments we implemented and deployed so far, including the electric car parking
scenario discussed above. We also present experiments related to parameters settings and
discuss further validation issues.

5.1. Architecture

We propose an architecture composed of the following layers:

• Presentation layer: we propose to use an Angular web application to control the
system. It allows to configure services and inject queries.

• Service layer: a Spring Boot application used to create a RESTful web service to
instantiate and communicate with the “SAPERE Kernel” project. It is named “SAPERE
api”. It is a Maven project that provides a RESTful web service. It is considered as
a mediator between the “SAPERE Kernel” and the web application. It uses a local
MongoDB database to save user credentials and SAPERE configuration.

• Application layer: A Java-based project called “SAPERE Kernel” that provides the
essential features of our proposed solution. It provides a bidirectional socket com-
munication between all nodes in the network. The core of the SAPERE coordination
model has been extended in order to support semantic-based composition, as shown
in Figure 7. We defined a new bonding eco-law called Semantic Bonding (see Figure 7)
that holds semantic reasoning capabilities thanks to the Apache Jena rules engine [48].
The former provides a general-purpose rule-based reasoner that is exploited to per-
form reasoning on RDF data. Both the reasoner and the RDF data are included in the
semantic bonding module.

Eco-laws
Agent

LsaSpace

Notifier

Event

Networking

Bonding
Spreading

Gradient

...

Chemotaxis

.......

Semantic Syntactic

Semantic

RDF data

Figure 7. Learning-based semantic coordination middleware extended with Jena rule-based reasoner and RDF data to
support semantic reasoning.

5.2. Implementation

We used the Spring Boot 2.3.2 framework to create micro-services and provide a
RESTful API that allows to easily interact with the coordination model kernel. Besides, we
used Angular 9 to build a web application and offer a graphical user interface.

J. Sens. Actuator Netw. 2021, 10, 5 15 of 26

We adapted and implemented the new features designed to compose services on-the-
fly via semantic matching using Java 8. In particular, we developed the coordination model
extension that enables the semantic matching composition. In support of it, we designed a
serialisation/deserialisation module that allows representing the service parameters under
the form of URIs, thus making them exploitable by the Apache Jena rules engine.

Such URIs are composed of (i) a base URI: the leftmost part of the URI, shared by mul-
tiple entities; and (ii) a URI fragment: the rightmost part that defines the entities/properties
name. We defined a base URI (i.e., “http://cui.unige.ch/isi/onto/MDPI-JSAN#”) that
is used during the service matchmaking phase. During the composition process, each
service parameter is appended to the base URI, creating a URI for each parameter. Figure 8
shows an example of URI generation on the parameters passed by Agent_1, Agent_2, and
Agent_3 of the electric car parking scenario presented in Section 4.1. Such URIs are then
used by the Apache Jena rules engine to evaluate the semantic relationship among the
defined parameters.

It is important to highlight that the Jena engine is performing the reasoning on the
entities defined by the ontology stored in the RDF data store, which are represented using
URIs. For the electric car parking scenario, this corresponds to Figure 5. The URIs generated
by appending the service parameters are only used in place of the ones defined in the
ontology. Due to this reason, it is not possible to evaluate the semantic relationship among
two parameters if they are not both defined in the stored ontology.

Finally, each component is wrapped in a Docker image. Moreover, a Docker Compose
has been created to instantly launch the application. The project is publicly available at
https://bitbucket.org/houssembenmahfoudh/sapere.

{S=[ElectricParkSpot], P=[<Location : x>

#B: - #Q: Agent1 #C: ElectricParkSpot | Location #true]} Agent 1

Query

{S=[Location], P=[<Parking: y>]

#B: Agent1 #Q: Agent1 #C: ElectricParkSpot | Location,Parking #true]} Agent 2

Service

{S=[Parking], P=[<E-Park: z >]
#B: Agent2 #Q: Agent1 #C: ElectricParkSpot | Location, Parking,

E-Park #true]} Agent 3

Service

serialise parameters

serialise parameters

serialise parameters

ElectricParkSpot --> http://cui.unige.ch/isi/onto/MDPI-JSAN#ElectricParkSpot
Location --> http://cui.unige.ch/isi/onto/MDPI-JSAN#Location

Location --> http://cui.unige.ch/isi/onto/MDPI-JSAN#Location
ElectricParkSpot --> http://cui.unige.ch/isi/onto/MDPI-JSAN#ElectricParkSpot

Parking --> http://cui.unige.ch/isi/onto/MDPI-JSAN#Parking

Parking --> http://cui.unige.ch/isi/onto/MDPI-JSAN#Parking
E-Park --> http://cui.unige.ch/isi/onto/MDPI-JSAN#E-Park

ElectricParkSpot --> http://cui.unige.ch/isi/onto/MDPI-JSAN#ElectricParkSpot
Location --> http://cui.unige.ch/isi/onto/MDPI-JSAN#Location

Figure 8. URIs generation of the services/queries parameters used in the semantic matching process by the Apache Jena
rules engine-electric car parking scenario.

http://cui.unige.ch/isi/onto/MDPI-JSAN#
https://bitbucket.org/houssembenmahfoudh/sapere
https://bitbucket.org/houssembenmahfoudh/sapere

J. Sens. Actuator Netw. 2021, 10, 5 16 of 26

5.3. Deployment

We consider essentially three variants for the deployment of systems supporting
spatial services, a decentralised peer-to-peer deployment, centralised within a single
node or a cloud-based deployment. We could also consider hybrid cases where some
computation occurs at the edge and some through the cloud. For all these deployments,
the semantic module (both Jena reasoning engine and RDF data) is fully included in each
node. We do not yet consider cases, where knowledge is shared or updated among nodes
(see a discussion on this point in Section 6).

We discuss here three different deployment cases, exemplified through the electric car
parking scenario.

Figure 9 shows the case where the three entities run in three distinct computational
nodes (mobile embedded devices, Raspberry of stationary nodes) connected in a P2P
fashion. Each node hosts the learning-based semantic middleware.

A

Local computer (Raspberry Pi) Local computer Embedded device (Car)

Eco-laws Agent

LsaSpace

Notifier

Event

Networking

Bonding
Spreading

Gradient

...

Chemotaxis

.......

SemanticSyntactic

Semantic

RDF data

A

Eco-laws Agent

LsaSpace

Notifier

Event

Networking

Bonding
Spreading

Gradient

...

Chemotaxis

.......

SemanticSyntactic

Semantic

RDF data

A

Eco-laws Agent

LsaSpace

Notifier

Event

Networking

Bonding
Spreading

Gradient

...

Chemotaxis

.......

SemanticSyntactic

Semantic

RDF data

Figure 9. Deployment in a P2P network.

Figure 10 shows the three entities running inside the same node, which hosts one
instance of the middleware, shared by the agents working on behalf of the three entities.

Eco-laws Agent

LsaSpace

Notifier

Event

Networking

Bonding
Spreading

Gradient

...

Chemotaxis

.......

SemanticSyntactic

Semantic

RDF data

A AA

Single computer

Figure 10. Deployment on a single computer.

J. Sens. Actuator Netw. 2021, 10, 5 17 of 26

Figure 11 shows a deployment through the cloud, where the three entities run on their
own (possibly on separate computers) and connect through the Internet to a cloud, which
hosts a single instance of the middleware shared by all entities.

In all cases, the agents (A) working on behalf of the entities run in the same node as
the middleware. More details about implementation, deployment and adaptation could be
found on previous papers [2,4].

Eco-laws Agent

LsaSpace

Notifier

Event

Networking

Bonding
Spreading

Gradient

...

Chemotaxis

.......

SemanticSyntactic

Semantic

RDF data

A AA

Cloud
Figure 11. Deployment in the cloud.

5.4. Experiments

Several experiments support our development. They are different in their purpose,
some validating the syntactic version of the middleware, other the semantic one, and in
the type of services provided to the users (information, actions in the physical world).

5.4.1. Synthetic Services

In order to provide a variety of cases on which to test syntactic composition and
learning, we worked on synthetic services developed using the coordination model imple-
mentation described in the previous section. We created a program that randomly generates
such services, with random input and output names (taken in the alphabetic characters).
For visualisation purposes, the program also automatically draws the services graph for
all possible compositions based on the services’ inputs and outputs names. All agents
and services are attached to the same node. We automatically generate random services
up to 100 services, in order to observe performance and correctness of compositions and
update of learning tables (Qmatrix). A detailed description of synthetic services can be
found in [2].

5.4.2. Electric Car Parking Scenario

We deployed the electric car parking scenario, discussed in Sections 3.6 and 4.1, in
a peer-to-peer fashion (see Figure 9), using a wireless ad hoc network. For experimenta-
tion purposes, we used three smart nodes equipped with our learning-based semantic

J. Sens. Actuator Netw. 2021, 10, 5 18 of 26

middleware-the syntactic version for original scenario (Section 3.6) and the semantic ver-
sion for the revisited scenario (Section 4.1). We attached to these nodes the services and the
corresponding agents presented for the scenario, namely the Electric Car, the Gas Station
and the Booking Service (see also Figure 3). We deployed as follows:

• A Raspberry Pi 3 hosting the gas station services (Agent_2).
• A Raspberry Pi 3 hosting the booking service (Agent_3).
• A computer which is used to inject the service request and evaluate results, represent-

ing the Electric Car (Agent_1).

We used the interface developed in the synthetic services experiments above to define,
add, remove and connect services to the system, inject queries and visualise the various
services, their compositions and the computed results.

We created the three agents described above and linked them to the middleware
running on their respective node (computer or Raspberry Pi).

Figure 12 shows the result of this deployment through our interface. On the left, we
see an automatically built graph representation of the services that advertised themselves.
In this case, Agent_3 advertised service s3 (Booking of E-Park spots in a Parking), and
Agent_2 advertised service s2 (GasStation is at Location). In the middle of the figure, we
see the LSAs corresponding to Agent_2 (s2), Agent_3 (s3) and the query q1 of the Electric
car. We can notice that the LSA of Agent_2 (s2) consumes the Location property provided
by the Query q1 and injects the “GasStation” property. However, there is no services that
can consume this property as it doesn’t belong to any of the existing input services. Hence,
no further composition can occur and the user won’t get any result. On the right, we see
a flat list of all services that advertised themselves (in this case here s2 and s3). We can
see in practice, how services composition unfolds, and in this particular example, how
the above scenario cannot return any result to the user as their input and output do not
syntactically match.

Figure 12. The experiment of the electric car parking scenario using the syntactic matching.

With the same interface and system, we executed the same scenario with the semantic
version of our middleware. Figure 13 shows the new results. As before, on the right side of
the figure, we find the two services s2 and s3 with their input and output. On the left side
of the figure, this time we find an automatically built graph representation of a possible
composition that provides the result expected by the user. In the middle, we see the LSAs.
While in the syntactic version, it was impossible to associate a GasStation with a Parking,
in the semantic version this becomes now possible.

J. Sens. Actuator Netw. 2021, 10, 5 19 of 26

Using the semantic bonding, Agent_2 will inject the GasStation property after bonding
with the query agent. Using the semantic module, Agent_3 will check if there is any
semantic matching between the GasStation and the parking property. In our case, the
matching event will be triggered and Agent_3 will inject the new property E-Park. Similarly,
Agent_1 will check if there is any semantic matching between the E-Park property and the
ElectricParkSpot. Hence, E-Park being equivalent to the ElectricParkSpot (as requested
in the query), a full service composition providing an ElectricParkSpot at the requesting
Location is now found.

Figure 13. The experiment of the electric car parking scenario using the semantic matching.

5.4.3. Emergency Situation-ICRC

We detailed an emergency situation where a doctor asks for blood bags to be brought
to their location [2]. In this case study, five services are available: two ICRC tents providing
blood bags, and three means of transport-a drone, a car, and a helicopter. The doctor’s
query starts a series of interactions among the agents working on behalf of the five services
and progressively six potential spatial services emerge (each tent with each transportation
means). We deployed this scenario with the syntactic version of the learning-based coordi-
nation middleware, both in a single node, and in a P2P network, and showed the correctness
of the compositions, and the progressive convergence towards the services preferred by
the doctor (e.g., the ones involving the drones and the car, but not the helicopter).

5.4.4. Earlier Experiments

In earlier experiments, we investigated various IoT scenarios [3], with connected
objects providing actual actions in the physical environment in response to users requests.

Smart lighting In this experiment, the Spatial service provided to the user consists
of providing an illuminated path made of progressively lighting a series of bulbs. In this
example, the service provides some coordination actions of the bulbs in the environment [3].
We attached five connected bulbs, as shown in Figure 14, each one to a dedicated Raspberry
Pi running our middleware. We deployed the five Raspberry Pis in a peer-to-peer manner
in a sequential line. The user injected a query to get an illuminated path. This information
propagated (from the user to the end of the line, under the form of a gradient) among
the Raspberries, causing an interaction among the agents controlling the bulbs. Once the
information reached the end of the line, the final agent then lights its bulb and informs
back the other agents. Upon receiving that information from the previous agent in the
line, the current agent also lights its bulb, and so on until the illuminated path is complete
and reaches the user. A demonstration video (https://www.youtube.com/watch?v=
nSOJHKM95lg) shows the feasibility of the approach.

https://www.youtube.com/watch?v=nSOJHKM95lg
https://www.youtube.com/watch?v=nSOJHKM95lg

J. Sens. Actuator Netw. 2021, 10, 5 20 of 26

Figure 14. Smart lighting scenario.

Smart energy sharing We also experimented a more complex scenario [49], with the
same bulbs (representing household) and Raspberry Pis. We provide a service requesting
and negotiating energy sharing, as shown in Figure 15 (reproduced by the bulbs becoming
lighter or darker depending on whether the household they represent receive or need
energy). A demonstration video (https://www.youtube.com/watch?v=xvI_cK-qF6Y)
shows the feasibility of the approach. Figure 15 shows the scenario that we built using a
set of connected objects.

Figure 15. Service composition for energy management in a distributed system.

Tracing and visualising runners in a race In other experiments, with similar settings
(P2P arrangement of Raspberry Pis and mobile phones running the middleware), we were
able to trace and visualise the progression of runners, wearing beacons, during a race. The
deployment occurred in our University campus and involved active participants [3], as
shown in Figure 16.

Figure 16. Tracing and visualising runners.

5.4.5. Parameters

We also carried out experiments aiming at identifying appropriate values for the
various learning parameters and to validate the adaptability of the system to dynamic
changes (such as arrival or departure of agents) [4,50]. Experiments concerned 15 agents
involved in up to 800 learning cycles (queries followed by dynamic compositions and
positive or negative rewards).

https://www.youtube.com/watch?v=xvI_cK-qF6Y

J. Sens. Actuator Netw. 2021, 10, 5 21 of 26

• Alpha The learning rate α is set between 0 and 1. Figure 17 presents how values in the
Q matrix varies according to α. The x-axis, that we named iteration, presents a user
feedback under the form of a reward regarding a query. When the learning rate is close
to 1, our system learns faster than when it is set close to 0 (where a higher number of
feedback are required). Similarly, an agent changes quickly its behaviour after few
opposite feedback. Since in our system, agents are not systematically rewarded, and
we are dealing with a dynamic environment, α has to be relatively small in order to
limit the sensitivity of the agents to received feedback, accommodating by the way
resistance to false negative and positive feedback.

• Epsilon We have employed the ε-greedy reinforcement learning algorithm [47] that
has a probability ε to select a random action and a probability 1− ε to select the action
that maximises the value of the approximation of Q(s, a). ε-greedy ensures a perma-
nent exploration which is necessary to allow adaptation to changing environmental
conditions. A high ε value downgrades learning since the agent will explore more
frequently the system, by making more frequent random choices. A small ε value
lowers the adaptation capability of the system when the environmental conditions
change. Therefore, choosing a suitable value of ε is critical. For example, when ε = 0.2,
the agents explore the system in 20% of the cases.

• Gamma is a discount factor that weights the future rewards. It shows the importance
of such rewards in the learning process. When γ is close to 0, agents are short-sighted
as γ gives importance to the cumulative discounted future reward. However, When it
is close to 1, it helps agents to have further observations.

• Dynamicity: adding/removing agents Results in relation with dynamic changes
of agents show that when agents disappear, the compositions in which they were
involved are no longer available, negative feedbacks are sent to the the remaining
agents, who quickly invert their Qmatrix and learn to avoid those compositions.
In the case of new agents arriving in the system, and consequently new possible
compositions, the system needs a few iterations cycles in order for the whole set of
agents to learn the new meaningful compositions.

Figure 17. Learning rate-alpha.

For further optimisation, these parameters could be adapted according to the use case
or could be dynamically adapted during the run-time.

5.5. Further Validation

We validated our system by comparing some metrics like response time, oversizing,
QoS. An analysis and discussion covering strengths, weaknesses and limitations is detailed
in the following Section 6.

For further validation, we intend to focus on deploying and testing our system on
large-scale examples, as well as conducting thorough studies about the system parameters
like spreading frequency and any possibility to adapt it at run-time. We will also investigate

J. Sens. Actuator Netw. 2021, 10, 5 22 of 26

detailed comparison of different scenarios with and without semantic matching, and
comparison with other learning approaches. We are in the process of providing additional
physical deployment with robots and connected objects to target spatial services having an
actual effect on the physical environment.

6. Discussion

In this section, we will have a general discussion about the strengths, weaknesses, and
limitations of our approach.

Initial exploration and convergence of learning: Firstly, our system needs several
queries and feedback to adjust the agents’ behaviour. During this phase, solutions corre-
sponding to possible compositions are produced, caused by the exploration process and
QoS. However, these compositions may not be meaningful or useful to the user. Thus, the
system then provides non-pertinent services to the user. It requires several users’ feedback
in order to converge towards pertinent services.

We propose to use a reinforcement learning module in each agent to learn the best
action to take regarding the partial schema that it receives during the composition. Our
system progressively learns the appropriate compositions based on the users’ requests,
providing the pertinent composition (the actual service expected by the user). In addition,
the system progressively avoids unnecessary bonding operations and compositions as the
agents learn the optimal policy. As long as the users are providing feedback regarding the
returned results, the agents can adapt to changes and adjust their behaviour.

We have been using the QLearning algorithm throughout this work. A comparison
with other reinforcement learning algorithms, such as SARSA or Deep QLearning, could
improve the effectiveness of our work.

Personalised learning: As previously mentioned, our system requires several users’
feedback in order to learn how to deal with each query. The proposed platform provides
on-the-fly service composition at run-time, and correctly addresses the answer of a query
(information or action) to the user that made that query. However, the platform does not
provide personalised learning. Users may request different services even though they use
the same query.

Indeed, we propose an emergent solution based on users’ evaluation and agents
do not actually discriminate between users’ queries. Two users, performimg the exact
same query, may not reward the same result in the same manner. If we need to go
further, a three-dimensional Qmatrix or a user classification could be a solution to provide
personalised learning.

Adaptability: Our platform provides a collective adaptive solution as we are dealing
with a dynamic environment. The system is able to automatically detect at run-time the
absence or the addition of new agents. The detection of such events is supported thanks to
the indirect retrieval and injection of property in the shared tuple space. It mainly depends
on the learning rate α and the exploration factor of the greedy algorithm ε parameters.
When α is close to 1, our system learns faster than when it is set close to 0. On the other
hand, ε is used in the epsilon-greedy algorithm. This algorithm has a probability ε to select
random action and a probability 1− ε to select the action that maximises the value of the
approximation of Q(s, a). When a change occurs, the agents are not able to instantly adapt
to it. The adaptation process requires more feedback compared to the ones needed for the
initial exploration. For further optimisation, these parameters could be adapted according
to the use case or could be dynamically adapted at the run-time.

Results: We decided to select and return the most pertinent and reliable solution
according to the learning modules. However, this strategy may raise some design faults
as a user has to make multiple queries before being provided with a pertinent result. An
alternative may be to return all possible compositions to the user and offer the possibility
to evaluate results. This approach is not user friendly either as it may return a long
meaningless list of results.

J. Sens. Actuator Netw. 2021, 10, 5 23 of 26

Spreading: Our strategy to coordinate between all available nodes in the network is
to spread a copy of the LSA every time a new property is added in the property list. This
strategy is not efficient as it can flood the network with useless data. This strategy could
be optimised by learning the spreading policy. The LSA’s copy has to be sent to the nodes
that host services that it can bond with. This can avoid broadcasting and limit the traffic
between nodes.

Composition length: Service composition is a sequence of parallel and sequential
composition among all available services. If we deal we numerous services, the length of
the composition schema may be too long. However, the longer we go, the more resources
we use. Limiting the length of the composition schema and dynamically adapting it to the
available resources could be an optimisation to consider in the future.

Multiple queries: Our platform supports multiple queries. Thanks to the #Q field
that we have added for each property, we can discriminate between properties in the
property list. At the same time, many queries can be executed. Each query may be injected
in any node in the network. If a composition can return the requested property, the result
will be returned to the query agent.

Exceptions: An agent learns the right action to take according to the partial schema
that it gets when it bonds with another LSA. However, it takes time to change its behaviour
when a change occurs. This depends on the parameters used in the learning module.
Furthermore, when agents do not succeed to provide a result, the user can imagine that
there is no possible response to his query even if it exists. Automatically iterating the
query more than once, until we get a result, could be a better solution for enhancing the
user experience.

Internal loop: All agents have a list of properties related to all different compositions
and queries at a given time. We have implemented a FIFO method to keep the latest
relevant data in the list. Thus, if the number of actual processing properties exceeds the
size of the property list, a bonding loop can occur. For example, if we fix the property list’s
size to five and bond with more than five services at the same time, a bonding loop will
arise. We suggest to adapt the property list’s size to the use case need or apply the decay
for properties.

Composition Loops: During composition, a loop can arise among services. To avoid
loops during the execution, each agent checks that its LSA does not bond with the same
LSA more than once for the same query. When a new property is injected in the property
list, it keeps the #B and #Q attribute. Thus, when it bonds again with the same LSA, it
verifies that the #B and #Q of the new property are different from the properties already in
the property list. If it is the case, the property will be rejected.

Evaluation: When a composition arises and obeys to the query that has been injected
by the user, he/she is asked to evaluate the result. The latter contains the requested
property and its value, the last agent that returns the result, the query name and the
composition schema. The user can assess the result based on the returned value and the
composition schema. However, the composition schema is not significantly efficient to
evaluate the result.

Performance: When the network gets bigger and the services become numerous,
many compositions may arise. This may confuse the user as it has to choose among many
results. Our coordination model has an internal clock. At every cycle, all the eco-laws and
operations are executed. Thus, every node loops over its LSAs hosted in the tuple space
and matches them together to fire a bonding event. This event will be triggered by the
agent to execute the controlled service. Thus, the clock rate is the main factor of the service
composition’s speed.

Semantic: Adding semantic reasoning capabilities to the coordination model allows to
create compositions that could not be detected, thus either generated, using a syntax-based
approach. The adoption of a semantic-based approach enlarges the number of possible
matchings and the number of service compositions that could be generated. Thus, the
resulting composition graph will become more and more complex and may lead to mis-

J. Sens. Actuator Netw. 2021, 10, 5 24 of 26

leading feedback provided by the users. Additionally, despite the improvement we bring
with the ontology, the requests and services advertisements are still prone to interpretation.

Sharing knowledge: Semantic reasoning relies on the existence of a shared knowl-
edge that formally represents the properties advertised by the services and queried by
the users. In our electric car parking scenario, we assumed that such knowledge fully
describes the domain and it is replicated in each node, making it available to each agent.
Removing the completeness assumption, each agent might have a piece of knowledge
that differ from other agents’. With such configuration each agent might communicate
with others, requesting the needed piece of knowledge that it does not have. Another
viable configuration might be having a centralised knowledge that is accessible by each
agent. The former would allow decoupling the agents and the knowledge, enabling the
modification/replacement of the knowledge while keeping the agents unaware of it.

7. Conclusions

Our research picks up on Weiser’s vision of services made available to users, on-
demand, in a seamless manner and arising from the interaction among various devices
embedded in the environment. To this end, we specifically provide a learning-based
semantic middleware deployable locally, in a peer-to-peer fashion, on a cloud, or on a
hybrid manner across edge and cloud. We discussed a series of experiments, from a specific
case study to synthetic services, and parameters’ setting.

On-demand service composition is an appealing approach for an enormous list of
applications. It relies on connected objects, deals with dynamic environments and does not
need any complex or fixed infrastructure. It could have an impact on several domains and
applications like social distancing, energy sharing, smart city, emergency situation, disaster
crisis, traffic steering, etc.

Future works include: (1) deployment of scenarios involving concrete actions in the
physical environment through swarm robotics, as well as large-scale scenarios; (2) study
of the parameters linked to spreading frequency or with learning and how to adapt those
parameters at run-time; (3) comparison with other learning approaches; (4) complementing
our approach to facilitate users’ interaction with the system by adding a Natural Language
Understanding (NLU) module.

Author Contributions: Conceptualisation, H.B.M., A.C. and G.D.M.S.; Software, H.B.M., A.C.;
Validation, H.B.M.; Writing—original draft preparation, H.B.M., A.C. and G.D.M.S.; Writing—review
and editing, H.B.M., A.C. and G.D.M.S.; Visualisation, H.B.M.; Supervision, G.D.M.S.; Project
administration, G.D.M.S.; Funding acquisition, G.D.M.S. All authors have read and agreed to the
published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: The data presented in this study are available at: https://bitbucket.
org/houssembenmahfoudh/sapere.

Acknowledgments: The authors wish to thank Roberto Tomaylla for the implementation of the
tracing and visualisation of runners in a race as part of his MSc thesis project at the University of
Geneva.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Weiser, M. The Computer for the 21st Century. Sci. Am. 1991, 265, 94–104. [CrossRef]
2. Ben Mahfoudh, H. Learning-Based Coordination Model for Spontaneous Self-Composition of Reliable Services in a Distributed

System. Ph.D. Thesis, University of Geneva, Geneva, Switzerland, 2020.
3. Di Marzo Serugendo, G.; Abdennadher, N.; Houssem, B.M.; De Angelis, F.L.; Tomaylla, R. Spatial Edge Services. In Proceedings

of the 2017 Global Internet of Things Summit (GIoTS), Geneva, Switzerland, 6–9 June 2017.
4. Ben Mahfoudh, H.; Di Marzo Serugendo, G.; Naja, N.; Abdennhader, N. Learning-based coordination model for spontaneous

self-composition of reliable services in a distributed system. Int. J. Softw. Tools Technol. Transf. 2020. [CrossRef]

https://bitbucket.org/houssembenmahfoudh/sapere
https://bitbucket.org/houssembenmahfoudh/sapere
http://doi.org/10.1038/scientificamerican0991-94
http://dx.doi.org/10.1007/s10009-020-00557-0

J. Sens. Actuator Netw. 2021, 10, 5 25 of 26

5. Kalasapur, S.; Kumar, M.; Shirazi, B.A. Dynamic Service Composition in Pervasive Computing. IEEE Trans. Parallel Distrib. Syst.
2007, 18, 907–918. [CrossRef]

6. Lemos, A.L.; Daniel, F.; Benatallah, B. Web Service Composition: A Survey of Techniques and Tools. ACM Comput. Surv. 2015,
48, 1–41. [CrossRef]

7. Peltz, C. Web services orchestration and choreography. IEEE Comput. 2003, 36, 46–52. [CrossRef]
8. Talantikite, H.N.; Aissani, D.; Boudjlida, N. Semantic annotations for web services discovery and composition. Comput. Stand.

Interfaces 2009, 31, 1108–1117. [CrossRef]
9. Martin, D.; Burstein, M.; Hobbs, J.; Lassila, O.; Mcdermott, D.; Mcilraith, S.; Narayanan, S.; Paolucci, M.; Parsia, B.; Payne, T.; et al.

OWL-S: Semantic Markup for Web Services. Available online: https://www.w3.org/Submission/2004/SUBM-OWL-S-20041122/
(accessed on 30 September 2020).

10. Talib, M.A.; Yang, Z. Semi-Automatic Code Generation of Static Web Services Composition. In Proceedings of the Student
Conference on Engineering, Sciences and Technology, Karachi, Pakistan, 30–31 December 2004; pp. 132–137. [CrossRef]

11. Tzortzis, G.; Spyrou, E. A Semi-Automatic Approach for Semantic IoT Service Composition. In Proceedings of the Workshop
on Artificial Intelligence and Internet of Things (AI-IoT), at the 9th Hellenic Conference on Artificial Intelligence (SETN 2016),
Thessaloniki, Greece, 18–20 May 2016.

12. Pierris, G.; Kothris, D.; Spyrou, E.; Spyropoulos, C. SYNAISTHISI: An enabling platform for the current internet of things
ecosystem. In Proceedings of the 19th Panhellenic Conference on Informatics, PCI 2015, Athens, Greece, 1–3 October 2015;
Karanikolas, N.N., Akoumianakis, D., Nikolaidou, M., Vergados, D.D., Xenos, M., Giaglis, G.M., Gritzalis, S., Merakos, L.F.,
Tsanakas, P., Sgouropoulou, C., Eds.; ACM: New York, NY, USA, 2015; pp. 438–444. [CrossRef]

13. Noura, M.; Gaedke, M. WoTDL: Web of Things Description Language for Automatic Composition. In IEEE/WIC/ACM International
Conference on Web Intelligence; Association for Computing Machinery: New York, NY, USA, 2019; pp. 413–417. [CrossRef]

14. Editor, W. Thing Description (TD) Ontology. 2020. Available online: https://www.w3.org/2019/wot/td (accessed on
29 November 2020).

15. Gyrard, A.; Datta, S.K.; Bonnet, C.; Boudaoud, K. A Semantic Engine for Internet of Things: Cloud, Mobile Devices and Gateways.
In Proceedings of the 2015 9th International Conference on Innovative Mobile and Internet Services in Ubiquitous Computing,
Santa Catarina, Brazil, 8–10 July 2015; pp. 336–341. [CrossRef]

16. Zgheib, R. SeMoM: A Semantic Middleware for IoT Healthcare Applications. Ph.D. Thesis, Université Toulouse 3 Paul Sabatier,
Toulouse, France, 2017.

17. Zgheib, R.; Conchon, E.; Bastide, R. Semantic Middleware Architectures for IoT Healthcare Applications. In Enhanced Living
Environments: Algorithms, Architectures, Platforms, and Systems; Springer International Publishing: Cham, Switzerland, 2019;
pp. 263–294. [CrossRef]

18. Rao, J.; Su, X. A survey of automated web service composition methods. In Proceedings of the First International Conference on
Semantic Web Services and Web Process Composition, San Diego, CA, USA, 6 July 2004; Springer: Berlin/Heidelberg, Germany,
2005; pp. 43–54. [CrossRef]

19. Grondin, G.; Bouraqadi, N.; Vercouter, L. MaDcAr: An Abstract Model for Dynamic and Automatic (Re-)Assembling of
Component-Based Applications. In Component-Based Software Engineering; Lecture Notes in Computer Science; Gorton, I.,
Heineman, G.T., Crnkovic, I., Schmidt, H.W., Stafford, J.A., Szyperski, C.A., Wallnau, K.C., Eds.; Springer: Berlin/Heidelberg,
Germany, 2006; Volume 4063, pp. 360–367. [CrossRef]

20. Hellenschmidt, M. Distributed Implementation of a Self-Organizing Decentralized Multimedia Appliance Middleware. In
Dagstuhl Seminar Proceedings, Mobile Computing and Ambient Intelligence: The Challenge of Multimedia, 1–4 May 2005; Davies, N.,
Kirste, T., Schumann, H., Eds.; IBFI: Schloss Dagstuhl, Germany, 2005.

21. Vallée, M.; Ramparany, F.; Vercouter, L. A Multi-Agent System for Dynamic Service Composition in Ambient Intelligence
Environments. In PERVASIVE 2005, Advances in Pervasive Computing; Austrian Computer Society (OCG): Vienna, Austria, 2005;
Volume 191, pp. 175–182.

22. Gabillon, Y.; Calvary, G.; Fiorino, H. Composing interactive systems by planning. In Proceedings of the 4th French-Speaking
Conference on Mobility and Ubiquity Computing (UbiMob ’08), Saint Malo, France, 28–30 May 2008; pp. 37–40. [CrossRef]

23. Bonjean, N.; Gleizes, M.P.; Maurel, C.; Migeon, F. SCoRe: A Self-Organizing Multi-Agent System for Decision Making in Dynamic
Software Developement Processes. In Proceedings of the International Conference on Agents and Artificial Intelligence (ICAART),
Barcelona, Spain, 15–18 February 2013.

24. Degas, A. Auto-Structuration de Trafic Temps-réel Multi-objectif et Multi-Critère dans un Monde Virtuel. Ph.D. Thesis, Université
de Toulouse III—Paul Sabatier, Toulouse, France, 2020.

25. Viroli, M. On Competitive Self-composition in Pervasive Services. Sci. Comput. Program. 2013, 78, 556–568. j.scico.2012.10.002.
[CrossRef]

26. Frei, R.; Şerbănuţă, T.F.; Di Marzo Serugendo, G. Self-organising assembly systems formally specified in Maude. J. Ambient. Intell.
Humaniz. Comput. 2012, 5, 491–510. [CrossRef]

27. Di Napoli, C.; Giordano, M.; Németh, Z.; Tonellotto, N. Using chemical reactions to model service composition. In Proceedings of
the 2nd International Workshop on Self-Organizing Architectures (SOAR’10); ACM: New York, NY, USA, 2010; pp. 43–50. [CrossRef]

28. De Angelis, F.L. A Logic-Based Coordination Middleware for Self-Organising Systems: Distributed Reasoning Based on
Many-Valued Logics. Ph.D. Thesis, University of Geneva, Geneva, Switzerland, 2017.

http://dx.doi.org/10.1109/TPDS.2007.1039
http://dx.doi.org/10.1145/2831270
http://dx.doi.org/10.1109/MC.2003.1236471
http://dx.doi.org/10.1016/j.csi.2008.09.041
https://www.w3.org/Submission/2004/SUBM-OWL-S-20041122/
http://dx.doi.org/10.1109/SCONES. 2004.1564784
http://dx.doi.org/10.1145/2801948.2802019
http://dx.doi.org/10.1145/3350546.3352558
https://www.w3.org/2019/wot/td
http://dx.doi.org/10.1109/IMIS.2015.83
http://dx.doi.org/10.1007/978-3-030-10752-9_11
http://dx.doi.org/10.1007/978-3-540-30581-1_5
http://dx.doi.org/10.1007/11783565_28
http://dx.doi.org/10.1145/1376971.1376979
http://dx.doi.org/10.1016/j.scico.2012.10.002
http://dx.doi.org/10.1007/s12652-012-0159-2
http://dx.doi.org/10.1145/1809036.1809047

J. Sens. Actuator Netw. 2021, 10, 5 26 of 26

29. Mazac, S.; Armetta, F.; Hassas, S. Bootstrapping sensori-motor patterns for a constructivist learning system in continuous
environments. In Proceedings of the 14th International Conference on the Synthesis and Simulation of Living Systems (Alife’14),
New York, NY, USA, 31 July 2014.

30. Boes, J.; Nigon, J.; Verstaevel, N.; Gleizes, M.P.; Frederic, M. The Self-Adaptive Context Learning Pattern: Overview and Proposal.
In Proceedings of the International and Interdisciplinary Conference on Modeling and Using Context (CONTEXT 2015), Larnaca,
Cyprus, 2–6 November 2015; Springer: Berlin/Heidelberg, Germany, 2015; pp. 91–104.

31. Ren, L.; Wang, W.; Xu, H. A Reinforcement Learning Method for Constraint-Satisfied Services Composition. IEEE Trans. Serv.
Comput. 2017. [CrossRef]

32. Wang, H.; Chen, X.; Wu, Q.; Yu, Q.; Zheng, Z.; Bouguettaya, A. Integrating On-policy Reinforcement Learning with Multi-agent
Techniques for Adaptive Service Composition. In Proceedings of the International Conference on Service-Oriented Computing,
Paris, France, 3–6 November 2014.

33. Wang, H.; Wang, X.; Hu, X.; Zhang, X.; Gu, M. A multi-agent reinforcement learning approach to dynamic service composition.
Inf. Sci. 2016, 363, 96–119. [CrossRef]

34. Wang, H.; Gu, M.; Yu, Q.; Tao, Y.; Li, J.; Fei, H.; Hong, T. Adaptive and large-scale service composition based on deep reinforcement
learning. Knowl. Based Syst. 2019, 180, 75–90. [CrossRef]

35. Ahmed, M.; Takayuki, I. A Deep Reinforcement Learning Approach for Large-Scale Service Composition. In Proceedings of the
International Conference on Principles and Practice of Multi-Agent Systems, Tokyo, Japan, 29 October–2 November 2018.

36. Idir, A.; Saber, B.; Laid, K.; Kazar, O. Service composition approaches for Internet of Things: A review. Int. J. Commun. Netw.
Distrib. Syst. 2019, 23, 194–230.

37. Zambonelli, F.; Castelli, G.; Ferrari, L.; Mamei, M.; Rosi, A.; Di Marzo, G.; Wally, B. Self-aware Pervasive Service Ecosystems.
Procedia Comput. Sci. 2011, 7, 197–199. [CrossRef]

38. Martin, W.; Matthias, M.H.; Nora, K.; Philip, M. (Eds.) Software Engineering for Collective Autonomic Systems—The ASCENS
Approach; Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2015; Volume 8998. [CrossRef]

39. Mamei, M.; Zambonelli, F. Programming Pervasive and Mobile Computing Applications: The TOTA Approach. ACM Trans.
Softw. Eng. Methodol. 2009, 18, 15:1–15:56. [CrossRef]

40. De Angelis, F.L.; Fernandez-Marquez, J.L.; Di Marzo Serugendo, G. Self-composition of services in pervasive systems: A chemical-
inspired approach, Multi-Agent Systems: Technologies and Applications. In Advances in Intelligent Systems and Computing;
Springer: Berlin/Heidelberg, Germany, 2014; Volume 296.

41. De Angelis, F.L.; Fernandez-Marquez, J.L.; Di Marzo Serugendo, G. Self-composition of services with chemical reactions. In
Proceedings of the 29th Annual ACM Symposium on Applied Computing (SAC), Gyeongju, Korea, 24–28 March 2014.

42. Ben Mahfoudh, H.; Di Marzo Serugendo, G.; Boulmier, A.; Abdennadher, N. Coordination Model with Reinforcement Learning
for Ensuring Reliable On-Demand Services in Collective Adaptive Systems. In International Symposium on Leveraging Applications
of Formal Methods; Springer: Cham, Switzerland, 2018.

43. Fernandez-Marquez, J.L.; Di Marzo Serugendo, G.; Montagna, S.; Viroli, M.; Arcos, J.L. Description and composition of
bio-inspired design patterns: A complete overview. Nat. Comput. 2013, 12, 43–67. [CrossRef]

44. Manju, S.; Punithavalli, M. An Analysis of Q-Learning Algorithms with Strategies of Reward Function. Int. J. Comput. Sci. Eng.
2011, 3, 814–820.

45. Richard, S.S.; Andrew, G.B. Reinforcement Learning: An Introduction; MIT Press: Cambridge, MA, USA, 1998.
46. Shauharda, K.; Kagan, T. Evolution-Guided Policy Gradient in Reinforcement Learning. In Proceedings of the 32nd Conference

on Neural Information Processing Systems, Siem Reap, Cambodia, 13–16 December 2018.
47. Kaelbling, L.P.; Littman, M.L.; Moore, A.W. Reinforcement learning: A survey. J. Artif. Intell. Res. 1996, 4, 237–285. [CrossRef]
48. Apache Jena-Reasoners and Rule Engines: Jena Inference Support. Available online: https://jena.apache.org/documentation/

inference/ (accessed on 30 September 2020).
49. Ben Mahfoudh, H.; Di Marzo Serugendo, G.; Abdennadher, N.; Rumsch, A.; Upegui, A. Spatial services for decentralised smart

green energy management. In Proceedings of the 2018 IEEE International Energy Conference (ENERGYCON), Limassol, Cyprus,
3–7 June 2018.

50. Naja, N. Utilisation de L’apprentissage par Renforcement pour la Composition de Service dans un Milieumdistribuée. Master’s
Thesis, University of Geneva, Geneva, Switzerland, 2019.

http://dx.doi.org/10.1109/TSC.2017.2727050
http://dx.doi.org/10.1016/j.ins.2016.05.002
http://dx.doi.org/10.1016/j.knosys.2019.05.020
http://dx.doi.org/10.1016/j.procs.2011.09.006
http://dx.doi.org/10.1007/978-3-319-16310-9
http://dx.doi.org/10.1145/1538942.1538945
http://dx.doi.org/10.1007/s11047-012-9324-y
http://dx.doi.org/10.1613/jair.301
https://jena.apache.org/documentation/inference/
https://jena.apache.org/documentation/inference/

	Introduction
	Related Works
	Service Composition
	Coordination Model
	Data Structure
	Learning-Based Coordination Model
	Composition Schema
	Reward
	Scenario
	Syntactic Composition

	Enhancing Self-Composition with Semantic Matching
	Scenario Revisited

	Implementation and Experiments
	Architecture
	Implementation
	Deployment
	Experiments
	Synthetic Services
	Electric Car Parking Scenario
	Emergency Situation-ICRC
	Earlier Experiments
	Parameters

	Further Validation

	Discussion
	Conclusions
	References

