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Abstract: Cyber-Physical Systems (CPSs) are a mature research technology topic that deals with
Artificial Intelligence (AI) and Embedded Systems (ES). They interact with the physical world via
sensors/actuators to solve problems in several applications (robotics, transportation, health, etc.).
These CPSs deal with data analysis, which need powerful algorithms combined with robust hardware
architectures. On one hand, Deep Learning (DL) is proposed as the main solution algorithm. On the
other hand, the standard design and prototyping methodologies for ES are not adapted to modern
DL-based CPS. In this paper, we investigate Al design for CPS around embedded DL. The main
contribution of this work is threefold: (1) We define an embedded DL methodology based on a Multi-
CPU/FPGA platform. (2) We propose a new hardware design architecture of a Neural Network
Processor (NNP) for DL algorithms. The computation time of a feed forward sequence is estimated
to 23 ns for each parameter. (3) We validate the proposed methodology and the DL-based NNP using
a smart LIDAR application use-case. The input of our NNP is a voxel grid hardware computed from
3D point cloud. Finally, the results show that our NNP is able to process Dense Neural Network
(DNN) architecture without bias.

Keywords: cyber-physical systems; embedded deep learning; FPGA; neural network accelerator

1. Introduction

Nowadays, Cyber-Physical Systems (CPS) interact with the physical world by ana-
lyzing their environment using a variety of sensors. For this purpose, a powerful analysis
tool is needed, such as Artificial Intelligence (Al), or more precisely Deep Learning (DL)
algorithms. Currently, DL technologies became a hot topic in solving problems such as
data analytics and object recognition [1]. Since the late 20th century, they have evolved
in a substantial way and tend to be applied in many different fields and applications
related to computer science and engineering, such as CPS [2,3]. However, with the in-
creased accuracy requirements and complexity of Neural Network (NN) architectures, DL
technologies have been known to need a lot of computational power, mostly because of
their huge number of parameters. Unlike distributed cloud computing, where a lot of
processing power is available, embedded systems impel some restrictions on the use of DL
technologies. Even when optimizing/compressing NN or using Graphics Processing Units
(GPU) for embedded systems, there is still some possible optimization through the usage of
specialized processing systems [4,5]. Additionally, if we want to build an application using
specialized hardware processing for NN (e.g., FPGA [Field-Programmable Gate Array],
ASIC [Application-Specific Integrated Circuit]), we need a complete design methodology
for embedded DL in order to speed up the prototyping. In this paper, we introduce a new
methodology for smart applications in CPS around DL technologies. We present and share
the design of a hardware Neural Network Processor (NNP). We validate the methodology
with a smart LIDAR (LIght Detection And Ranging) application case study. The new
embedded DL methodology is oriented toward a hybrid CPU/FPGA-based design in order
to simplify the prototyping. In this work, we share our experiences and the difficulties
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encountered while developing a smart LIDAR application for pedestrian detection to
validate the proposed methodology. This paper is structured as follows: Section 2 presents
the related works, Section 3 describes the proposed design methodology, Section 4 gives
details about the NNP architecture design, Section 5 presents the experimentation results,
Section 6 is dedicated to the discussion and analysis. Finally, Section 7 concludes this work.

2. Related Works

This work deals with two main research technologies topics around: (1) platform-
based design and prototyping of deep neural network accelerator for efficient DL process-
ing and (2) DL approaches used for 3D object classification and detection, using 3D sensors
(e.g., LIDAR and a 3D camera). In this section, we give an overview and we highlight (to
the best of our knowledge) the different related works that are in relation to the two main
topics addressed in this work.

2.1. FPGA-Based Design and Prototyping of Deep Neural Network Accelerator

Platform-based design and prototyping have been proposed as solutions for time-to-
market and design costs problems in circuits and systems design, e.g., Pinto et al. [6], and
we need to update such knowledge toward CPS using deep neural network accelerators.
Platform-based design in the context of CPS was already addressed in Nuzzo et al. [7],
by proposing an approach to abstract CPS design flow. Lacey et al. [8] presented the
evolution of DL using FPGAs. They displayed different tools to design a DL accelera-
tor on an FPGA platform, from high-level abstraction tools to deep learning framework.
Sze et al. [9] made a tutorial and survey about DNN and hardware for DNN processing.
They presented efficient ways to implement co-design processing of DNN using various
optimizations. Li et al. [10] presented a survey about general-purpose processors (GPP)
for neural network processing with a specific spotlight for the DianNao series accelerators.
Abdelouahab et al. [11] presented a survey about FPGA Convolutional Neural Network
(CNN) accelerators. Their work was mostly about algorithm and data management op-
timizations. Guo et al. [12] made a survey about FPGA neural network accelerators and
summarized the different techniques used, showing that FPGA is a promising platform for
neural network acceleration. Li et al. [13] proposed a model-based design methodology
involving deep NN. They proposed an integrated set of tools and libraries alongside their
methodology in order to assist designers of signal processing systems. Shawahna et al. [14]
presented a survey about FPGA-based accelerators for DL networks, in particular Convolu-
tional Neural Network (CNN), and tried to isolate a methodology for its conception. Their
survey revealed a specific pattern for FPGA-based accelerated NN architecture, which is
presented with techniques to optimize and automate the design. Those works were mainly
focused on the design and prototyping of a deep neural network accelerator; however,
there is a lack of a standard and global methodology that takes into account the design
of NNP/DL in the context of an embedded application. Our work is more focused on
a methodology for prototyping an embedded DL application on a hybrid CPU/FPGA
platform rather than just a NN accelerator. Therefore, our interest revolves around the
design and integration of deep neural network accelerators for CPS-based DL application
using hybrid CPU/FPGA-based design and prototyping.

2.2. 3D Object Classification in Deep Learning

Three-dimensional object classification is a hot topic considering current sensors such
as LIDAR or 3D cameras. The usage of DL application may help reach great accuracy in the
classification of 3D objects. Maturana and Scherer [15] proposed a 3D CNN using voxels as
input. They proposed a way to convert a point cloud to a voxel model. Brock et al. [16]
proposed a voxel-based auto-encoder and CNN to generate and classify 3D objects. Jing
Huang and Suya You [17] proposed different 3D CNN architectures using voxels as input to
classify objects. Qi et al. [18] proposed a deep learning architecture to directly classify and
segmentate point cloud instead of voxels. Zhi et al. [19] proposed a lightweight version of
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3D CNN. Three-dimensional volumetric binary voxel grid seems like a fine way to process
3D data in order to make pattern prediction for object classification. Three-dimensional
object classification using DL is a hot topic because of today’s 3D sensors and the accuracy
it can yield, but it is heavy on computing power.

To our knowledge, most of the proposed works are scarce of results and precise
information about the reproducibility of their experiments. In our paper, we tried to share
the maximum of experimentation data regarding our methodology, NNP implementation,
and performance as well as source code.

3. Proposed Methodology

In this section, we propose an embedded DL-based methodology for a FPGA-based
CPS platform design using a hardware NNP.

The first step of our methodology was the definition of the system with its require-
ments and architecture. Then, different software algorithms were designed for data pro-
cessing and DL. Those algorithms were hardware accelerated using High Level Synthesis
(HLS) software tools or designed from scratch with a Hardware Description Language
(HDL). Finally, the hardware accelerators were synthesized and uploaded on a hardware
prototype to be tested. Considering those steps, several hidden tasks were present from
data processing to data management, and the configuration of a hardware prototype. The
goal of our methodology was to mitigate those hidden tasks, either with simplification or
automation.

Our approach toward making a smart application for CPS was built around a FPGA-
based DL methodology using an NNP. This methodology was divided in four parts
(Figure 1): hardware platform, hardware acceleration, embedded processing, and DL
software. The transition between each part was as follows: the DL weight matrices were
extracted and transferred to the hardware platform, and the embedded processing was
hardware accelerated. The development and use of the NNP as a part of the methodology
was an important step in order to handle the DL processing. The description of the method-
ology was made with a top-to-bottom approach by disassembling the different tasks to
make a prototype and by explaining our design process to share our experiences. A design
flow detailing the approach of our proposed methodology is presented in Figure 2. It shows
the different steps of the four parts of the methodology and indicates how the parts are
connected to each other.

Hardware prototype

Hardware
acceleration

Extract
weights

Embedded Source
processing code

Deep
learning
software

Figure 1. Methodology global view around embedded Deep Learning (DL).
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Figure 2. Design flow for the embedded DL methodology.

Our proposed methodology for embedded DL differs from standard ones because of
its constraints. The differences are mostly about integration of the NNP and its associated
configuration software. Figure 3 illustrates the implementation of our methodology. Our
DL processing was based on a hardware NNP that we created. In order to create it, we
first designed it as a software using event-driven simulation interface (SystemC) and then
migrated it to a hardware accelerator using HLS tools. This NNP could be considered a
fully functional Intellectual Property (IP) to be integrated alongside the other IPs from the
hardware-accelerated embedded processing. This processor used the extracted weight
matrices, which came from the offline DL training and testing.

Development
Deep learning High Level Synthesis
training & testing (C/C++, SystemC, ...)
Hardware Descrip-
tion Language
RTL Synthesis

E igh
xtracted weights FPGA Binary

Prototype Deployment

CPU
(OS, drivers, ...)

Figure 3. Methodology implementation.
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3.1. Hardware Prototype

One contribution of this work is to develop a real prototype by acquiring physical
data from the real world and by processing it in order to obtain an accurate analysis. This
analysis was conducted by transforming physical data into specific features that were used
with a DL approach to be classified. The hardware prototype needed to host an embedded
processing application to transform physical data as features for an NN so that data could
be classified by our DL application (NNP). Hence, the hardware prototype hosted an FPGA
bitstream containing hardware-accelerated embedded processing to calculate features from
data as well as the NNP IP classifying those data. We also needed to set up the hardware
prototype with an OS and a devicetree in order to execute the FPGA control software. The
hardware prototype setup was automated with an automation tool that we developed for
this case [20]. This tool deployed a bootloader (U-Boot) and a First Stage Bootloader (FSBL)
to help obtain the first stages of the platform. The tool also deployed a Unix kernel with
its initial ramdisk, preconfigured system files, and a generic devicetree to gain access to
all components on the hardware prototype. Once set up, the hardware prototype needed
software to control the FPGA processing as well as to transmit data between the different
processing elements, since most data are available inside the platform DRAM to act as an
interface between the different processing components, such as CPU and FPGA.

3.2. Hardware Acceleration

The embedded processing was built as an FPGA hardware IP. The hardware accelera-
tor development was simplified using HLS software tools or HDL, but data management
was still a sensitive part of the development because of the FPGA constraints. In this
methodology, we considered that data is received and transmitted as a FIFO (First In, First
Out) queue in order to simplify data management, even if it may mean extra calculation
for processing tasks. This led to the embedded processing application receiving data from
sensors and directly transmitting the processed information to the NNP. It also meant that
the NNP received its data (input vector and weight matrices) as a FIFO queue and needed
to compute the classification as data transmission progress. The embedded processing
algorithms needed to be tweaked in order to compute FIFO transmitted data and used
the smallest amount of internal cache (BRAM) possible, since FPGA does not have infinite
internal memory. We mainly considered the usage of a HLS software to synthesize em-
bedded processing software from High Level Language (HLL) to Register-Transfer Level
(RTL), thus smoothing the software to hardware transfer.

3.3. Embedded Processing

The data perceived by the CPS should be processed so the NNP can use it correctly.
It is necessary for two main reasons: (1) the data needs to be transformed for the NN to
handle it and (2) to decrease the size of the neural network by computing some features
beforehand. The main constraint is about data management. With data as a FIFO queue,
most algorithms need to be redesigned in order to use as little memory cache as possible.

3.4. Deep Learning Software

A common method to make a DL application is by using specific tools to train and
test NN architectures with a dataset. In this work, we considered the NN architecture as
already defined. We also considered offline training as already conducted. The weights
were then extracted to be used directly by the NNP embedded in the hardware platform. In
this methodology, we considered weights extracted as a binary file containing the weight
matrices between all layers.

4. Neural Network Processor Implementation

The NNP was designed to simplify the integration of DL in embedded CPS applica-
tions. To keep this processor simple, some constraints were defined: process the simplest
NN architecture (fully connected NN without bias) with as few activation functions as
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possible, process any number of layers independently of their depth and width, and be
re-configurable at runtime. A no-bias architecture was chosen here because bias calculation
needs more computational power and time.

Computing a fully connected NN, also called Dense Neural Network (DNN), is mainly
about matrix calculation. The main problem that arises from the implementation is not
related to computation but data management. Weight matrices need to be loaded from
external memory to be transmitted afterwards to the FPGA in order to allow for different
configurations and because of the limited FPGA memory cache (BRAM) compared to the
size of nowaday weight matrices that can reach dozens of megabits when using 32-bit
floating-points. However, to optimize data transmission, each hidden layers” output needs
to be kept in FPGA cache. Moreover, weights need to be sorted correctly depending on the
scheduling for neuron processing units. In this implementation, inputs and weights are
floating-point numbers and no compression is currently done.

In order to correctly control and configure this NNP, a configuration software is made
which has for its main tasks loading binary files containing weight matrices to the DRAM,
preparing the instructions for the NNP depending on each weight matrix dimension, and
initializing DMA transmissions.

4.1. Neural Network Processor Architecture

First, we detail the hardware architecture of the NNP and how it calculates layers and
neurons. Figure 4 represents the different parts of the processor and the communication
interfaces in-between. There are four communication channels with the NNP for different
data: the input vector, which comes directly from the embedded processing; the instructions
and weight matrix, which are loaded from the external DRAM; and the output vector,
which is loaded into the external DRAM.

: External
Data Proce551ng
IP DDR
RAM
Input vector Instructions OQutput vector
: l 1 Weight matrix |

Scheduler
Module

Weights | Output

l Inputs
¥

Neuron
Processing
unit

Instru-

ctions
¥

Figure 4. Four cores Neural Network Processor (NNP) diagram.
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4.1.1. Scheduler Module

The scheduler module loads all of the instructions from the DRAM to know how
many weights and inputs should be loaded and the activation function to be used for each
layer. Each instruction represents information about one layer and is coded by a 64-bit
word containing three pieces of information: the number of neurons in the previous layer
(30 bits), the number of neurons in this layer (30 bits), and the activation function of this
layer (4 bits).

Once all instructions are loaded, the input vector is read from the data processing IP
(Intellectual Property) into a local cache and the processing is started. For each layer, each
neuron is represented by a neuron processing unit, also called a core, and thus, each neuron
is computed individually. The scheduler starts a core by sending specific instructions to
it, which are not the same as the ones that the scheduler module is receiving. Then, each
input and weight connected to the specific computed neuron is sent. Once the core has
finished the calculation, the output is returned to the scheduler, which stores it in the local
cache (BRAM) to be used for the next layer. Once all neurons of the layer are computed, the
output vector is used as the input vector of the next layer and the process starts again. Once
the last layer is reached, the output vector of the NNP is written to the external DRAM.
Algorithm 1 describes in a shorter way the scheduler module process.

Algorithm 1: Scheduler module algorithm.

Data: Input vector, Instructions, Weight matrix
Result: Output vector
instructionsCache < read all from instructions;
inputVectorCache < read all from input vector;
repeat
processedNeurons < 0;
while all neurons are not processed do
foreach core do
| write instructions to core;
end
foreach input in inputVectorCache do
foreach core do
write input to core;
weight < read one from weight matrix;
write weight to core;
end
end
foreach core do
outputVectorCache < read output from core;
processedNeurons increment by 1;

end

end

inputVectorCache <— outputVectorCache;
until all instructions are processed;

write outputVectorCache to output vector;

Because of the size of the number of neurons in the scheduler module instructions
(30 bits), a layer should be able to have over 1 billion nodes. However, there is a hard
limit inside the scheduler module cache (BRAM) for resource utilization purposes, which
means that a layer cannot be larger than 65,536 nodes. The number of instructions that
can be loaded in the scheduler is set to 512, which makes the instructions buffer size
4096 bytes. Thus, the scheduler module uses at least 528,384 bytes of FPGA memory cache.
The resources used for the hardware scheduler component is showed in Table 1.

Table 1. Hardware scheduler resources utilization.

Name BRAM_18K DSP48E FF LUT
Utilization 260 6 4462 4867
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4.1.2. Neuron Processing Unit

Each neuron processing unit calculates one neuron at a time. It takes instructions
from the scheduler module, each instruction is a 34 bit word containing two pieces of
information: the number of inputs and weights (30 bits) and the activation function to be
used (4 bits). When an instruction is received, the processing engine module starts listening
to weights and inputs. Each time a pair of inputs and weights are received, they are
multiplied and summed to previous results. Once all inputs and weights for one neuron
are received, the activation function is calculated and sent to the output. Algorithm 2
describes in a shorter way to process the engine module process.

Algorithm 2: Neuron processing unit algorithm.

Data: Weights, Inputs, Instructions

Result: Output

instructionCache < read one from instruction;

sum < 0;

repeat
input < read weight from scheduler;
weight < read weight from scheduler;
sum < sum + input * weight;

until all weights and input are received,;

/* activation function is defined by instruction */

output < activationFunction(sum);

write output to scheduler;

As said before, the activation functions are limited to four activation functions: relu,
linear, sigmoid, and softmax. Relu, linear, and sigmoid activation functions are computed
directly inside the neuron processing unit. However, in the case of the softmax activation
function, the exponential part is performed in the neuron processing unit and the division
by the sum of the output vector is performed inside the scheduler module because only
the scheduler has access to the whole output vector. All the SystemC source code we
wrote for the NNP is available online [21]. A testbench is available to load datasets and
neural network models. The synthesis for each of those components is done using Vivado
HLS [22]. The resources used for the hardware neuron processing component is shown in
Table 2.

Table 2. Hardware neuron processing unit resources utilization.

Name BRAM_18K DSP48E FF LUT
Utilization 0 48 3623 6115

4.2. Configuration Software

Once the hardware was designed, a software stack was needed to load data into the
DRAM to control the NNP. This software’s purposes are twofold: to read a configuration
file that regroups all weight matrices inside a binary file in order to determine from it the
network topology and to generate instructions as well as to sort all weights in matrices
for scheduling purposes. The weight matrices were then written in the external DRAM
waiting to be read by the NNP, which was started and waited for the input vector from the
data processing IP. Every time the NNP finished a calculation, the output vector was read
from the external DRAM. Control of the NNP was performed through DMA registers since
it is always waiting for instructions. Algorithm 3 describes how the configuration software
behaves.
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Algorithm 3: NNP configuration software algorithm.

Data: Weight matrix files
Read weight matrix files;
Infer layer dimensions from each matrix;
foreach layer do
\ Generate instruction;
end
Sort weight matrices to correspond to neuron processing unit scheduling;
Load sorted weight matrices into DRAM;
Load instructions into DRAM;
repeat
Wait for output from NNP;
Save output from DRAM;
Raise flag;
until system stop;

Regarding weight sorting, since data were a FIFO queue and to reduce data memory
cache usage inside the FPGA, the weights were transmitted in the same order as the
transmissions to their associated neuron processing unit. The scheduling algorithm loaded
all pairs of inputs and weights to each core until all neurons were processed. This means
that weights must be sorted depending on layer size and the number of available cores. The
basic process is about dividing the weight matrix into sub-matrices with a size depending
of the number of available cores (Figure 5). Each sub-matrix represents the weights for one
set of K neuron processing units. Those weights needed to be sorted by processing unit,
and this was done with a transposition. Then, each transposed matrix was vectorized for
memory writing purposes. All vectors were then merged into one vector and written into
the DRAM.

Weight matrix Weight sub-matrices
N =N
M K K K

Figure 5. Splitting the weight matrix into sub-matrices with their size depending on the number of
cores. N is the number of neurons in the current layer. M is the number of neurons in the next layer.
K is the number of neuron processing units. K’ is the size of the last sub-matrix, with K’ < K.

5. Experimentation and Results

In this section, two experiments are presented: the test and validation of our NNP
and the smart LIDAR for pedestrian detection case study. The NNP test and validation
present the time performance and accuracy of our processor. The smart LIDAR case study
is made to test our proposed methodology alongside the NNP. We propose to share our
experiments on a smart LIDAR for object classification application and the results of this
experiment. We describe in detail the workflow and each component of the application
as well as performance and resource utilization. It is noted that there is no real LIDAR
involved in this work; we instead used the 3D Point Cloud People Dataset acquired from a
Velodyne HDL 64E S2 sensor [23,24]. This dataset recorded real-world data in downtown
Zurich (Switzerland) and recorded mostly pedestrians. The main goal of this validation
is to determine if we can detect them by designing an application using our proposed
methodology.

5.1. NNP: Test and Validation

Tests were done on a Zedboard development kit [25] using the Xilinx Zyng-7000 SoC
(XC7Z020) [26]. Each test corresponds to the usage of a specific known dataset with a



J. Sens. Actuator Netw. 2021, 10, 18

10 of 17

specific NN architecture for each dataset. NN model training and testing were done with
Tensorflow [27]. NN topologies are shown in Figure 6.

1x32 1x32
28%28

10

oftmax

Dense  Rel.ULinear

(a) Topology for MNIST and Fashion MNIST dataset

1x512

1x1281x128

~ 1x32 1x32
x10
ftmax
— . ~ Linear ReLU
Dense Rel UFinear ReLU

(b) Topology for Cifar10 dataset

1x1024 1x1024

—_\\Linea
ReLU ReLU

(c) Topology for Cifar100 dataset

Dense

Figure 6. Dense Neural Network (DNN) topologies for each dataset: (a) Topology for MNIST and
Fashion MNIST dataset, (b) Topology for Cifar10 dataset, (c) Topology for Cifar100 dataset.

Table 3 compares the accuracy results for each dataset achieved by our NNP depending
on its number of cores and the Tensorflow software executed on a CPU. These results mean
that our NNP correctly computes floating-point numbers without error. It is noted that the
maximum number of cores possible on this FPGA platform is 4 because of the DSP (Digital
Signal Processor) limitation (220 DSP available on our FPGA platform with each core using
48 DSP; see Table 2).

Table 3. Accuracy for each dataset.

Dataset Tensorflow 1 Core 2 Cores 3 Cores 4 Cores
MNIST 95.68% 95.68% 95.68% 95.68% 95.68%
Fashion MNIST 87.05% 87.05% 87.05% 87.05% 87.05%
Cifar10 43.91% 43.91% 43.91% 43.91% 43.91%
Cifar100 14.01% 14.01% 14.01% 14.01% 14.01%

In this work, the execution time is our main concern, and it is obviously related to the
number of parameters in the NN and the number of cores in the processor. Figure 7a shows
the execution time of three datasets depending on the number of cores. The execution time
seems to be close to linear, with a same architecture and a different number of cores, except
for when there is only one core, which shows a bottleneck. Moreover, the execution time
per parameter seems to be the same between the different datasets, as shown in Figure 7b.



J. Sens. Actuator Netw. 2021, 10, 18

11 0of 17

With Vivado HLS transforming the SystemC models to HDL, our hardware threads run in
parallel (the scheduler and neuron processing units are independent finite state machines
using the same clock). The clock for the hardware threads runs at 100 MHz, which is
150 MHz lower than the maximal frequency on our hardware. However, increasing more
than this frequency means that time constraints are not met. The use of parallel hardware
threads improved the processing time of our system. However, we want to point out the
data transfer bottleneck in the AXI system bus, which affects the whole processing time of
the system. This bottleneck is mainly due to the number of parameters transmitted. Since
we use 32-bit floating points, the parameters matrices of the NN are in the MB scale and our
AXI channels run at a theoretical maximum of 300 MB/s. We would obtain better results if
we used compression such as 16-bit fixed point integer or binary weights. Another option
to improve the time consumption would be to run the scheduler which controls the neural
processing units with a faster clock than the neuron processing units so that data are read
faster from DMA and distributed faster to the processing units, but we did not confirm
that this will bypass the data transfer bottleneck. In the context of the defined topologies,
MNIST [28] has 26,432 parameters, Cifar 10 [29] has 611,648 parameters (because, since
the input is grayscaled, the image size is 32 x 32 x 1), and Cifar 100 [29] has 2,089,984
parameters. In Figure 7b, the analysis shows that the execution time of the feed forward
sequence of a specific NN model may be predicted. This means that we can determine the
needed NNP cores for a given application with real-time constraints.

= h 636 - h 24
B [ 1866 B a 33
Z [T 11236 & 147 |
= | 5864 = | 222
| | | | | | |
0 2000 4000 6000 50 100 150 200 250
Time (us) Time (ns)
T T T T T
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= [118.62 i = 130 i
w [ 27.73 = 145
Ol 1 134.78 v | 2201
| | | | | | | |
0 50 100 150 50 100 150 200 250
Time (ms) Time (ns)
T T T T T T T T
S 4753 S e
— [163.75 | - [ 131 |
& [194.83 & [T 45
O | | 460.66 @) ] 22()
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Time (ms) Time (ns)

= 1 core = 2 cores — 3 cores mm 4 cores ‘ ’ = 1 core = 2 cores — 3 cores e 4 cores

(a) Execution time for one feedforward sequence (b) Execution time per parameter

Figure 7. Tests results of the NNP with different numbers of cores and topologies: (a) Execution time
for one feedforward sequence, (b) Execution time per parameter.

5.2. Smart LIDAR for Pedestrian Detection Case Study

The first step of this experiments was to define the workflow of the application.
Figure 8 represents all the steps of the application. It first starts with the physical world
data that were acquired through the LIDAR sensor. The sensor transmits its raw data to
the embedded processing hardware IP in order to process and transform the information
so it can be used by the NNP IP and then analyzed the data and classified the objects.
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Physical world

Smart LIDAR l

LIDAR sensor

Occupancy grid gg Point filtering

Neural network processor

Detected objects

Figure 8. Smart LIDAR for the object classification case study.

5.2.1. Deep Learning Software

The first step when working on this prototype was to define how to classify objects
from 3D data, such as the point cloud received from the LIDAR. One way to classify
objects is to convert point cloud to voxels and then to use deep learning to determine
the category [15]. The dataset used in our case study was the Sydney Urban Objects
Dataset (SUOD) [30,31], but we converted point clouds into a 32 x 32 x 32 voxel grid
using a volumetric binary occupancy grid approach. The training was performed with the
architecture represented in Figure 9 using Tensorflow software [27]. The hardware used for
the training was 16 GB of RAM with an Intel Core i7-8550U CPU with 4 cores, 8 threads, a
base frequency of 1.8GHz up to a turbo frequency of 4 GHz, as well as a 8 MB cache. Once
the architecture was defined and the training/testing was performed, the weights were
extracted in a NumPy binary format [32].

1x128 1x128
32@32x 32
1x32
1x13
Sigmoid
Linear
Dense ReLU ReLU

Figure 9. DNN topology for the Sydney Urban Objects Dataset (SUOD).

5.2.2. Embedded Processing

Three-dimensional point cloud data were the input of the smart LIDAR. Each object in
the point cloud needed to be extracted and transformed to voxels as an input for the NNP.
To achieve this, four tasks were needed, as shown in Figure 8. The first step was to make
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an occupancy grid to detect objects inside the point cloud. The second step was to remove
all points that were not considered objects. The third step was to isolate objects with a
“sliding box”. The results for those three steps were presented in a previous paper [33].
The fourth step was to convert extracted objects into a volumetric binary occupancy grid.
Once the object was transformed into a 32 x 32 x 32 voxel grid, it was sent to the NNP.
The embedded processing was written in SystemC and synthesized to RTL with an HLS
software (Xilinx Vivado HLS [22]). The algorithm for the “points to voxels” module is
presented in Algorithm 4. The module received all the points from a box two times: the
first time to calculate the bounding box and the second time to calculate the volumetric
binary occupancy grid. The input and ouput of the “points to voxels” module are shown in
Figure 10. The pedestrians were extracted in boxes of 2 x 2 x 2 meters and then converted
toa 32 x 32 x 32 voxel grid. The FPGA synthesized results are shown in Table 4. After the
hardware IPs implewere mented, we tested all extracted pedestrian boxes to find the mean
execution time per point (Table 5).

Algorithm 4: Point cloud to voxel grid (embedded processing).

voxel size < (24, 24, 24);

padding size < (32, 32, 32);

resolution < 0.1m;

minimum coordinates <— (+inf,+inf,+inf);

voxel grid < 32x32x32 cells of 1 bit;

repeat

if point coordinates < minimum coordinates then

\ minimum coordinates < point coordinates;

end

until all points received;

repeat

point coordinates < point coordinates — minimum coordinates;

if 0 < point coordinates AND point coordinates < voxel size x resolution then
center point coordinates <— point coordinates + (padding size — voxel size)
voxel coordinates <—

resolution .
2

center point coordinates
resolution

)

trunc(

voxel grid[voxel coordinates] < 1;
end
until all points received;
return voxel grid;

(a) LIDAR Point Cloud (b) Voxel Grid

Figure 10. Pedestrian extracted from a box: (a) Pedestrian as a LIDAR Point Cloud, (b) Pedestrian as
a Voxel Grid.
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Table 4. Hardware “points to voxels” resources utilization.

Name BRAM_18K DSP48E FF LUT
Utilization 2 6 4043 7778

Table 5. Results from hardware “points to voxels” module.

Mean Box Size Mean Execution Time Mean Time per Point

163 points 880,240 ns 5431 ns/point

5.2.3. Neural Network Processor

The embedded processing was synthesized with the NNP. The bitstream was then
ported on top of the platform. The hardware platform used was a ZedBoard Zynqg-7000.
The SD card generation was automated using our script [20]. This script deploys a UNIX
operating system (OS) and all other required resources to boot this OS. The weight matrices
were also integrated within the SD card along with the configuration software. In order
to evaluate the system, two tests were performed. The first test was related to the SUOD.
The accuracy was evaluated with all classes contained in the dataset. The second test was
related to the 3D Point Cloud People Dataset. We extracted all pedestrian boxes from
the Polyterrasse set to test if they were correctly classified, which means 599 fully visible
pedestrians. Thus, the accuracy is related to the number of boxes that were correctly
classified as pedestrians. With 4,204,160 parameters, the processing time of this network
topology is shown in Figure 11. The results are shown in Table 6. The results of the SUOD
accuracy for multiple object detection is really low compared to state-of-the-art neural
networks. This is mainly due to two things: the use of dense NN instead of CNN, and
the limited number of parameters in the NN compared to the number of classified objects.
However, when trying to apply the same topology to only detecting pedestrians, the results
are far better, which means that the use of dense NN and the number of parameters are
enough to classify one type of object.

Table 6. Accuracy results per dataset.

Dataset SUOD 3D Point Cloud People Dataset
Accuracy 37.22% 93.99%
) T T
E| EH%
— | 12754 L
& [C1189.63
S | | 1555
U | | | | | | | | | |
0 200 400 600 800 1000 1200 1400 1600 1800
Time (ms)
93]
g
@
= E 23
s [ 130 B
8. 45
P | 1370
& \ \ \ \ \ \ \ \ \
= 0 50 100 150 200 250 300 350 400 450
Time (ns)

= 1 core =2 cores — 3 cores e 4 cores

Figure 11. Time performance and time per parameter for the SUOD neural network topology.
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6. Discussion

The investigation of embedded DL within the design and prototyping of CPS using
Multi-CPU/FPGA platforms shows that our proposed methodology simplifies the pro-
totyping of DL-based CPS systems (e.g., autonomous vehicles). The critical step of the
proposed methodology is the design and integration of the NNP. It is considered an accel-
erator for DL computation and mainly for the inference step. It also simplifies migration
from the software deep learning to the hardware platform. This work is also considered
a first step in simplifying the prototyping process of embedded DL for CPS. The scope
of this methodology can cover DL applications dedicated to embedded classification in
constrained environments. Our proposed methodology is oriented toward DNN topolo-
gies. In such embedded contexts, migration of the DL processing from CPU to hardware
accelerators would increase the performance of the whole system, reaching specific real-
time constraints and making the inference step easier for optimized embedded Al. Even
if the NNP integration step is not automated yet, it is portable for several applications
and platforms. In addition, the current NNP can be improved at several levels: (1) data
management needs to be refactored and optimized in order to speed up computation, (2) a
flexible architecture is needed to integrate more activation functions and topology types.
Moreover, we think that the use of the Vivado HLS software tool to implement the NNP
might slow down the final design compared to a from scratch HDL model. Currently, our
NNP is adapted for lightweight neural networks since the execution time might be enough
to reach real-time constraints in some applications while using low power. Although the
limited topology and activation functions choice might be a constraint for some applica-
tions, NNP design reuse, in the context of platform based design for CPS systems, is a
motivation for us to investigate the possibility of automated generation of this NNP with
the needed number of cores and then the automation of the whole methodology, since
several steps are already automated using our automation software. In fact, attempting to
automate such generations for every case is not a realistic goal. However, we are convinced
that automation of the NNP integration in the whole design methodology would present a
huge improvement in terms of design time, exploration, prototyping, and CPS systems
portability.

7. Conclusions

In this paper, a new methodology for Cyber-Physical Systems (CPS) design and proto-
typing is presented. It is defined around an embedded Deep Learning (DL) approach. In or-
der to compute this embedded DL algorithm, we propose a new hardware Neural Network
Processor (NNP) architecture. We also share our experience of the design/implementation
and the porting of the DL-based NNP on a real hardware Multi-CPU/FPGA platform
(Zynq). Our DL-NNP model used real data coming from a LIDAR sensor. Hardware
threads were used to transform data from a 3D Point Cloud (LIDAR) to a voxel grid, which
is considered the input of our NNP. Results related to the NNP performances are presented,
and the whole methodology is validated with a smart LIDAR for pedestrian detection case
study. The prediction of the NNP execution time is dependent on the number of parameters
(weight matrices) in the Neural Network (NN) and the number of NNP cores. We still
have some work to do to optimize the proposed NNP. In future work, we aim to automate
generation and integration of the NNP. We want to simplify the design reuse of our NNP
with automation. The work presented in this paper is a first step to understanding the
design and implementation of Artificial Intelligence (Al) in the context of embedded sys-
tems related to CPS. The proposed methodology, which is oriented toward an embedded
hardware DL based on FPGA, shows real progress in understanding the harsh relation
between the embedded world, Al, and CPS. Through this work, we defined the different
steps of this relation. We think that the automation of those steps will be extremely helpful
for embedded Al designers to simplify the prototyping steps and to move toward more
significant design space exploration.
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